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Abstract
A short introduction to survival analysis and censored data is included in this paper. A thorough literature review in the field
of cure models has been done. An overview on the most important and recent approaches on parametric, semiparametric and
nonparametric mixture cure models is also included. The main nonparametric and semiparametric approaches were applied
to a real time dataset of COVID-19 patients from the first weeks of the epidemic in Galicia (NW Spain). The aim is to model
the elapsed time from diagnosis to hospital admission. The main conclusions, as well as the limitations of both the cure
models and the dataset, are presented, illustrating the usefulness of cure models in this kind of studies, where the influence
of age and sex on the time to hospital admission is shown.
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1 Introduction

1.1 Survival analysis

Survival analysis is the branch of Statistics which considers
the study of the elapsed time until the occurrence of an
event of interest [1]. Frequently, such event is death by
a pathology, and thus this variable receives the name of
“lifetime”, and the event is called “failure” or “death”.
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From a statistical point of view, the survival function at
time t is conceived as the probability of an individual living
beyond that time. As a result, the basis of survival analysis
relies on the estimation of such a probability for any value
of t . Mathematically, this survival function is defined as

S(t) = P(T > t),

where T represents the “lifetime”. It is important to
highlight that S(t) can take any shape which satisfies the
following conditions [2]:

– S(t) is a decreasing function
– S(0) = 1 and limt→∞ S(t) = 0

A key concept in survival analysis is the hazard function,
h(t), which represents the instantaneous failure rate for
a certain individual. That is, this function represents the
probability that a subject will experience an event of
interest within a small specific time interval, given that the
individual has survived until the beginning of this interval,
defined by:

h(t) = lim
Δt→0

P [t ≤ T < t + Δt |T ≥ t]
Δt

.

Note that if T is a continuous variable, S(t) and h(t) are
directly related through

h(t) = −d ln[S(t)]
dt

.
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A wide variety of inference techniques can be applied
to estimate the survival function and, due to its direct rela-
tionship, for the hazard function. The idea is to use samples
extracted from a specific population, in order to assess
the behavior of the time-to-event variable. Furthermore,
these analyses can be useful for the comparison of the sur-
vival curves estimated from different populations, or for the
assessment of the influence of certain explanatory variables
on the lifetime of a group [3].

1.2 Censored data

There are some limitations regarding data availability when
performing a survival study. In some cases, the study design
does not allow for the accurate measure of the lifetime for
all the individuals within the sample, and this phenomenon
is known as censoring. As an illustrative example, let
us define the population of “patients diagnosed with a
terminal disease”, where the variable of study would be
“elapsed time from the diagnosis until death”. Due to
specific circumstances that may happen during the follow-
up period, such as hospital transfer, leaving the study prior
to experiencing the event or premature end of study, the
lifetime of some individuals will be unknown. In such cases,
these observations are said to be censored.

Censoring plays a key role in survival analysis, and its
influence needs to be specifically considered. We can find
two major types of censoring [4]:

– Point censoring, which arises when the event of interest
does not occur within the study period, known as
right censoring, or when we cannot determine the
exact lifetime even if the event of interest happens
in between the limits of this period. In the previous
example, an observation of a certain individual would
be right-censored if death occurs after the end of the
study, or if there is a loss of follow-up during the
study. On the other hand, the observation will be left-
censored if death occurs in the follow-up period but we
cannot determine the date of diagnosis, previous to the
beginning of the study.

– Interval censoring, which appears in these cases when
the event happens between two exact time points,
but it is not possible to determine the exact point of
occurrence within the interval. For example, if the study
variable is “time to recurrence” of a certain disease, the
data will be interval censored if a patient does not suffer
from the disease in a follow-up visit, but he or she does
present it in the following medical check-up, being thus
impossible to determine the exact point between both
visits when the symptomatology has appeared.

This paper focuses on right censoring, which is the most
common censoring case in clinical studies [4]. Therefore, in

order to deal with censoring, some specific notation needs
to be introduced [5]. The random variable “real lifetime”,
even though it is not always observed due to censoring, is
represented by Y . Its probability density function is denoted
by f (y) and its survival function by S(y).

The maximum lifetime that can be observed for each
individual, due to the aforementioned limitations, is known
as “censoring time” and denoted by C. Its value is
determined by the end of the study, or by the moment
of the loss of follow-up, and can be different for each
individual. Therefore, the variable Y can be observed only
if condition Y ≤ C is fulfilled. Otherwise, the observation
is censored and only C is observed. The random variable
“observed lifetime”, T , is defined as T = min(C, Y ). If
the observation is not censored, the observed lifetime will
be equal to the real lifetime. Moreover, δ is the uncensoring
indicator:

δ = 1(Y ≤ C). (1)

As defined by (1), δ is equal to 0 if the observation is cen-
sored, and it is equal to 1 otherwise. The sample is just a col-
lection of independent observations (T1, δ1), . . . , (Tn, δn)

with the same distribution as the random variables (T , δ).
Data analysis tools for the survival curve consider

censoring. One of the most popular estimators is the Kaplan-
Meier (KM) estimator by [6], named after the researchers
who developed it. The KM estimator is a nonparametric
estimator, and thus it does not make any assumption with
regards to the specific form of the probability distribution of
Y . This method considers that the probability of surviving
beyond time t from the beginning of the study equals the
product of the n survival rates in the period [0, t] [7].
Mathematically, it is defined as:

Ŝ(t) =
n∏

i:T(i)≤t

(
1 − δ[i]

n − i + 1

)
. (2)

In (2), δ[i] is the corresponding uncensoring indicator
concomitant of T(i), and T(1) ≤ T(2) ≤ · · · ≤ T(n) are the
ordered observed lifetimes. It has been proved that this is the
nonparametric maximum likelihood estimator for S(t) [8].
Furthermore, a generalization of KM has been proposed in
such a way that it allows considering the effect of a certain
covariate X in S(t). This generalization, introduced by [9],
is known as the Beran estimator, defined as:

Ŝh(t |x) =
∏

i:T(i)≤t

(
1 − δ[i]Bh(i)(x)∑n

r=i Bh(r)(x)

)
, (3)

where

Bh(i)(x) = Kh(x − X[i])∑n
j=1(Kh(x − X[j ]))

. (4)

In (4), Kh represents the rescaled kernel function with
a smoothing parameter, h, and X[i] is the covariate
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concomitant of T(i). A suitable choice of h is critical in
kernel estimation, and several bandwidth selection methods
can be considered, such as bootstrap [10], plug-in [11], or
cross-validation [12].

1.3 Survival analysis versus curemodels

Classical survival analysis assumes that all the individuals
will experience the event of interest. However, in some
cases, a fraction of the population will never experience
failure. This fact is especially relevant in cancer studies:
when the event of interest is the recurrence of a tumor and
the study variable is the “time from remission to relapse”,
some individuals will never suffer from a new tumor, even
after a long time period. These individuals are said to be
cured. Note that in a general survival analysis framework
cure differs from the classical meaning of absence of illness,
but refers to the fact that these patients are exempt to suffer
the event of interest.

The application of cure models has not been limited
to Medical Sciences or Epidemiology, but has also been
extended to different areas such as Social Sciences,
Economy or Engineering. For instance, the elapsed time
from marriage to divorce, the lifespan of a specific product,
or the unemployment period until an individual gets a job
are all considered as time-to-event studies [13, 14].

From a practical point of view, distinguishing between
cured individuals and censored observations which are
susceptible to experience the event of interest is not trivial.
Cure models handle this situation, becoming essential
statistical techniques in cases where applying a classical
survival analysis is not appropriate.

The aim of this work is to review the distinct types
of cure models, comparing their strengths and limitations.
Furthermore, the different approaches will be applied to
a COVID-19 dataset, studying the elapsed times from the
diagnosis until hospitalization.

2 Curemodels

The main idea of cure models is the willingness to complete
the unavailable information in order to identify and estimate
the fraction of cured individuals [15]. In this case, the
survival function for the population does not fulfill one
of the aforementioned assumptions which hold in classical
survival analysis, since limt→∞ S(t) > 0. The value of this
limit is denoted as 1 − p and corresponds to the proportion
of cured individuals in the population or cure rate [16].
Estimating the value of 1 − p is one of the main objectives
of these models.

From their first appearance in 1949, various types of cure
models have been proposed, which can be classified into

two main groups: mixture cure models and promotion time
cure models. The latter were designed as biological models
for the analysis of relapse times in cancer studies [17]. They
were formally proposed by [18], and they were initially
used to model the tumour latency [19]. In such a case,
it is assumed that after the first diagnosis and successful
treatment, a number N ≥ 0 of carcinogenic cells remain
in the organism in a latent form, each one of them for a
period of time Tk , until they finally develop a new tumour.
Those individuals for whom N ≥ 1 present at least one
carcinogenic cell and are susceptible to relapse, whereas
those with N = 0 are said to be cured and the latency time
T is infinite [16].

Promotion time cure models assume that N follows a
Poisson distribution with parameter θ > 0, which is the
average number of carcinogenic cells in the population.
Assuming that the different T are i.i.d. with probability
distribution F(t), and independent from N , it can be
demonstrated that the survival function of the population is
defined by

S(t) = exp[−θF (t)].
Mixture cure models are a sort of two-part models

which were firstly introduced by [20]. These models study
the response variables in two separate groups, which are
identified by a binary variable, B, which is equal to 0 if the
individual belongs to the cured group, and it is equal to 1
if the subject is susceptible to suffer the event of interest.
Therefore, B is the indicator variable for the susceptibility,
and it is only partially observed since it is not possible to
distinguish between those susceptible observations that are
censored and those observations of cured individuals.

In the context of survival analysis with a fraction of cured
individuals, mixture models define the survival function of
the population as:

Spop(t |x,z) = 1 − p(x) + p(x)Su(t |z). (5)

In (5), X and Z are two sets of covariates which might be
equal or not, and p(x) = P(B = 1|X = x) represents
the probability of being susceptible given the value of the
covariates, X, and it is known as the incidence of the model.
On the other hand, Su(t |z) = P(T > t |Z = z, B = 1) is
the survival function for the susceptible group, conditioned
to the set of covariates, Z, and it is known as the latency
of the model [16]. The model formulation provides that
the cure rate, 1 − p(x), depends only on X, whereas the
survival function of the susceptible group depends only
on Z. The fact of having these two groups of covariates
separated for cured and uncured individuals allows us to
consider external factors to have different influence in
both groups of patients. This is the main advantage of
mixture cure models, the methodology in which this paper
is focused. Depending on the assumptions established for
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the latency and the incidence of the model, there are
parametric, semiparametric and nonparametric approaches
of cure models.

Parametric models Parametric mixture cure models were
the first mixture cure models developed, and can be con-
sidered the basis of any further research in this field during
the past 50 years. They were introduced by [20] to study a
mouth cancer cohort who had been treated with a certain
therapy, with the intention to model the relapse of these
patients. [20] considered the cure rate as constant, and
the survival function of the susceptible individuals was
modeled according to a lognormal distribution with inde-
pendence to any external covariate. [21] studied deeply the
approach from [20], considering an exponential model for
the latency, also with independence of covariates.

More than 30 years after the original proposal, the first
cure models considering the influence of covariates were
developed. [22] proposed a new model where the latency
followed a Weibull distribution, dependent on a set the
covariates, Z, and modelling the incidence with a logistic
function.

These parametric models show limited flexibility, due to
the strict assumptions with respect to the latency and the
incidence distribution. A generalization of the latter models,
but still maintaining the parametric behavior, are the models
based on the accelerated failure time (AFT). They assume
the presence of covariates where their effects are fixed and
multiplicative by the accelerated factor on the time scale
[23]:

log(T ∗) = β0 + βZ + σε. (6)

In (6), T ∗ is the survival time of the susceptible individuals,
and σ is a scaling positive parameter. These models con-
sider an error term (ε), whose density function is previously
defined. AFT models were firstly proposed by [24] and
later developed by [25]. Note that the aforementioned [20,
21] and [22] models can be derived from them, by giving
specific values to the model parameters.

In all the cases, the estimation of the model parameters
of parametric mixture models is performed using the
maximum likelihood criterion, which is derived from
classical survival models. The likelihood function for these
models is defined as the product of two contributions: on the
one hand, the censored observations and, on the other hand,
the uncensored observations. It is not possible to distinguish
between cured and uncured individuals in the censored part
of the sample.

Semiparametric models Semiparametric models arise from
the necessity to improve the flexibility of the aforemen-
tioned approaches in order to extract information from the
sample to a greater extent. They are said to be semiparamet-
ric since this flexibility is usually assigned to the latency,
whereas the incidence is still modeled using parametric
methods - usually, assuming a logistic regression for p(x).
Depending on the assumptions made on the survival func-
tion of the susceptible group, we may find several types of
semiparametric cure models:

– Proportional hazards (PH) cure models. These models
are based on the regression model, which is applied
to general survival studies in order to model the risks
that may affect a population. Therefore, these models
are based on the hazard function, which is directly
related to the survival function. In PH models, the
hazard function of an individual is given by the product
between the baseline function and a non-negative
function of the covariates:

h(t |z) = h0(t)c(β
′z).

The function c(·) is known as the link function and
is frequently chosen as the exponential function [2].
Besides, h0(t) is the baseline hazard function and
may take any possible shape, being parametric or
nonparametric. Given the relationship between the
hazard and the survival functions, the model can be
expressed in terms of this latter function:

S(t |z) = S0(t)
c(β ′z),

where S0 represents the survival baseline, defined as
S0(t) = P(T > t |Z = 0, B = 1). These
models were introduced by [26], who adapted the
parameter estimation methods for classical survival
analysis to the presence of a cure fraction. Due to the
additional condition B = 1 in the definition of S0,
the traditional estimation methods cannot be applied,
and thus additional tools were developed, based on
expectation-maximization (EM) methods [16].

– AFT models. These models consist of a semiparametric
adaptation of the aforementioned AFT models for
the latency. These were introduced by [27], allowing
the error term to present any survival functions
without restrictions. Similarly as in the PH models,
the incidence is modeled using a logistic function. The
parameter estimation is performed using the maximum
likelihood criterion, via EM methods.

– Flexible models. The aforementioned semiparamet-
ric approaches considered a logistic regression for
incidence estimation. Nonetheless, [28] proposed an
enhancement in the model flexibility by introducing
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new functions to infer the cure rate, such as the pro-
bit or log-log distributions. They also considered the
EM algorithm and the maximum likelihood criterion to
estimate the parameters.

This flexibility, however, might not be enough
to gather all the information within the study since
incidence estimation is still parametric. Although
parametric methods show some important advantages,
such as their ease of interpretation or the simplicity of
the parameter estimation, some authors have proposed
semiparametric approaches to estimate the cure rate.
Some of these semiparametric approaches are based
on splines [29] or on single-index structures [30].
The flexibility can be further improved if completely
nonparametric forms are introduced for the latency,
being independent of any external covariate [31] or
even taking these external factors into account [15],
while the incidence is still modeled using parametric
formulations.

Nonparametric models In the aforementioned cases, at
least one of the model components, namely the latency
or the incidence, was defined by a (semi-)parametric for-
mulation. However, a completely nonparametric approach
for both elements can be also considered, achieving thus
the maximum flexibility of the models. The first nonpara-
metric models were proposed by [32], but the authors did
not consider the influence of covariates in the latency and
incidence. This issue was partially solved by [33], who
considered discrete variables.

The main progress in this field was carried out by [10],
who proposed a completely nonparametric model, based on
the nonparametric estimator for the cure rate developed by
[34]. This estimator is also based on the Beran estimator
for the survival function (see (3)). Regarding the selection
of the smoothing parameters in this nonparametric context,
[35] introduce a bootstrap bandwidth selection method for
both the latency and the cure rate estimations. Furthermore,
[36] proposed a nonparametric covariate hypothesis test for
the incidence in mixture cure models, which can be applied
to continuous, discrete and qualitative variables. This test
allows for the identification of those variables that play a
significant role on the cure rate. This nonparametric model
does not assume any previous restriction, and therefore, it
can be completely adjusted to the data.

3Mixture curemodels applied to COVID data

3.1 Dataset

A practical study has been performed using a COVID-
19 database to illustrate the application of cure models.

COVID-19 databases are broadly studied in the present
time, as reviewed in [37], to develop a variety of
mathematical models on the disease features [38]. The
data was extracted from the Servicio Galego de Saúde
and provided by the Dirección Xeral de Saúde Pública
(Galicia, NW Spain). The dataset consists of 4307 COVID-
19 patients who tested positive by PCR, being thus a
representative cohort which has also been used to model
several features related to COVID-19 disease, such as the
disease severity [39] and the hospital and intensive care unit
(ICU) length-of-stay [40]. The available variables for each
individual are:

– ID number of the patient, unique and anonymous
– The age of the individual at diagnosis
– The sex (male/female) of the patient
– The date when the PCR test was first performed
– The hospital admission date, in case it was necessary

due to the severity of the symptoms

The variable of interest is defined as “time from diagnosis to
hospital admission”. Hospital admission and bed occupation
is an important issue that needs to be addressed in
order to cope with the current situation, and thus it
has been the target of a large number of investigations
[41–48]. Since this is a time-to-event variable, survival
methods can be used, as [49] did in their investigations
concerning this variable for a Catalonian cohort [49].
Furthermore, there is a large fraction of individuals in
the dataset (around 90%) who had not been admitted
into hospital at the end of the follow-up period. Part of
these individuals might be censored observations and thus,
admission would occur after the end of the study. However,
there will also be a number of individuals which do not
require hospitalization during the illness, being those cured
observations.

The database analysis by means of survival and cure
models was performed using R software [50, 51].

3.2 Preliminary analysis

From the 4307 patients of the sample, 2615 (60.72%)
are female. The average age is 57.1 years. The average
age for men is 56.3 years and for women is 57.6 years.
The distribution of the sample in terms of age and sex is
represented in Fig. 1.

Data registration started on March, 6th, 2020, and the
first hospitalization occurred a day after. The last diagnosis
observation is placed on April, 2nd, whereas the last
observed hospitalization took place on April, 3rd. The
minimum survival time, defined as the elapsed time from
diagnosis until hospital admission is 1 day, being 13 days
the maximum uncensored observation of the time-to-event
variable.
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Fig. 1 Demographic distribution of the sample in terms of age and sex

A first insight of the study variable behavior can be
performed using the KM estimator for the survival curve
(Fig. 2). By using this approach, it is possible to assess
some of the main features of the dataset. The points marked
with the + symbol correspond to censored observations,
which are distributed all over the time line. The jumps
represent the time points where the failure has occurred
for the uncensored observations. The form of the curve is
due to the characteristics of the individuals in the database:
the diagnosis and hospitalization times were registered in
a short date format, considering only the day of diagnosis.
Thus, the survival times are discrete observations and,
considering the relatively short extension of the study, there
exist large leaps that finally lead to the observed curve
shape. Furthermore, we can also observe a plateau in the
curve, which extends from the last uncensored observation
on.

In the same way, a preliminary analysis for the covariate
influence (age and sex of the patient) can also be performed
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0.00

0.25

0.50

0.75

1.00

0 5 10 15 20 25
Time (days)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Fig. 2 Survival function estimation using the KM method for time to
hospital admission

by using the Beran estimator presented in (3). Specifically,
the survival curves conditional on the age and sex were
calculated, and the shape of these curves was observed for
several values of these covariates. In Fig. 3 a comparison
of the curves obtained with different covariate values is
presented, when the “sex” variable is equal to 0 (male) or 1
(female), or when the covariate “age” is equal to the 1st or
3rd sample quantiles, namely 42 and 72 years. Apparently,
the age covariate has an increased influence in the survival
when compared to the covariate “sex”, since the conditional
survival functions are more far apart.

In order to obtain further information about the behavior
of the study variable, it is necessary to apply the
aforementioned cure models. Therefore, in this study we
will apply semiparametric approaches, implemented in the
smcure R package by [50], and nonparametric approaches,
using functions from the npcure R package by [51].

3.3 Semiparametric cure models

The smcure package contains the tools needed to apply
mixture cure models to a given dataset in a semiparametric
context [50]. It considers Cox PH-derived models and
AFT-derived models, as those presented in Section 2.
The implementation of the smcure function allows us to
explicitly select the model, as well as to select the type of
parametric regression for the incidence between the three
following distributions: logit, probit and complementary-
loglog (cloglog). The parameter adjustment is performed
using the EM algorithm under the maximum likelihood
criterion.

A total of 6 different semiparametric mixture cure
models were defined by combining the two available models
for the latency (PH and AFT models) with the three
possibilities for the incidence regression (logit, probit and
cloglog). In all the models, both the sex and the age of the
patient were considered as covariates for both the latency
and the incidence. The significance of these covariates
obtained for each of the models is presented in Tables 1 and
2. The covariates could not be considered as significative in
any of the cases, and thus we cannot claim that the age or
the sex of an individual affects the probability of needing
hospitalization or the time since diagnosis until hospital
admission.

The AFT and Cox PH models were compared by setting
the sex and age covariates to some representative values in
the sample. In this case, the survival curves were estimated
considering a female individual since females represent
the majority of the sample, 57 years old, which is the
median age within the sample. The survival curves for
this representative individual estimated with both latency
models (AFT and PH), applying a probit regression for
the incidence, are presented in Fig. 4. As we can observe,
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Fig. 3 Estimated survival curves obtained by the Beran method, which
considers the survival conditioned to a set of covariates. On the left,
the survival curve estimated for two individuals aged 42 and 72 years,

aiming to illustrate the influence of this variable. On the right, the esti-
mated survival curves of women and men, which allow us to observe
the influence of the sex of the patient on the study

there is not a significant difference between both models.
This can be due to the intrinsic limitations in the dataset
used for our analyses. In this particular case, we can
anticipate, on the one hand, the presence of a low fraction of
susceptible individuals, since about 90% of the observations
are censored. On the other hand, the time-to-event variable
is discretized, since the starting point considered is the day
when the diagnosis took place, ignoring the exact moment
within it. Even though there are some mixture cure models
that specifically consider discrete time variables [52], they
have not been implemented in R yet.

In order to tackle with the aforementioned limitations, we
simulated the behavior of a continuous-time variable using
as a basis the original dataset. For this, we perturbed the data
with random variables derived from a uniform distribution
U(−1, 1). As a result, a value between 0 and 1 is randomly
subtracted or added to the original value of the time variable,
and therefore the lifetimes will no longer be represented by
integers.

After applying this procedure and fitting again the
previously presented models, it was found that the covariate
“sex” presented a significant influence on the latency of the

Table 1 Significance of the covariates “sex” and “age” on the latency
of the proposed semiparametric models

Latency model Variable Coefficient estimation p-value

Proportional hazards
Cox model

age 1.26 · 10−3 0.641

Proportional hazards
Cox model

sex 2.63 · 10−2 0.744

Accelerated failure time age 0.00 1.00

Accelerated failure time sex 0.00 1.00

AFT models, with a p-value 0.015. This fact is also evident
when representing the estimated survival curves for women
and men, where we can notice that the survival of women is
higher when compared to men. Thus, we can conclude that
the period from the diagnosis until the hospital admission
for those patients with severe symptomatology will be
longer for women. The variable “sex”, however, was not
found significant for the incidence of the model, concluding
that with this approach men and women show equal
probabilities of needing hospitalization. This reinforces the
ideas by [53] and [54]. However, recent researches on
COVID-19 cohorts have shown that male patients exhibit a
worse prognosis compared to women, which may lead to
an early need for hospitalization, as shown by these results
[54].

Furthermore, this analysis allows proper comparison
between AFT and PH models. Besides the different results
obtained for each of the models, in Fig. 5 (right), we can
see that for a 57 years old female patient, a slightly different
behavior between models is appreciated. This difference
reinforces the importance of an accurate selection of the

Table 2 Significance of the covariates “sex” and “age” on the
incidence for the three approaches considered

Incidence model Variable Coefficient estimation p-value

logit age 4.02 · 10−8 0.186

logit sex −1.66 · 10−7 0.934

probit age −2.95 · 10−11 0.999

probit sex 4.51 · 10−10 0.999

cloglog age −3.04 · 10−11 0.932

cloglog sex 2.42 · 10−9 0.908
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Fig. 4 Comparison between the latency estimated with both AFT and
PH models for the same individual. The survival probability values are
so close between models that is nearly impossible to distinguish both
curves

model characteristics in order to capture the information
within the sample.

3.4 Nonparametric cure models

The npcure package by [51] can be used to apply
nonparametric estimations for mixture cure models. It
includes the methods developed by [10, 35] and [36], which
have been previously presented in Section 2.

Besides the appropriate tools needed to study the latency
and the incidence of the population for a certain event of
interest, this package includes some covariate hypothesis
tests that can be used to confirm the inclusion of a certain
covariate in the incidence in a mixture cure model.

Furthermore, the test by [32] is also implemented, which
allows us to check if there is a cured fraction of individuals
in the sample, and thus the suitability of cure models.
Accepting or rejecting the null hypothesis determines the
absence or presence of a pleateau in the survival curve,
respectively. This plateau corresponds exclusively to the
observations of cured individuals. The Maller-Zhou test
was applied to the dataset, and a p-value equal to 0 was
found. Therefore, we can reject the null hypothesis and
thus confirm that there exists a cured fraction of individuals
within the sample.

Another hypothesis test that can be used to study the
significance of covariates for the cure probability is also
included in the npcure package. This test is based on
[55], and it was extended by [36], making it possible to
determine whether the cure probability, is dependent of a

given covariate X or not:
{

H0 : cure probability = 1 − p

H1 : cure probability = 1 − p(x)

These hypotheses were tested for the COVID-19
database, and the results show that, with a significance level
α = 0.01, both sex and age influence significantly on the
cure probability of the population, with p−values equal to
0.002 and 0, respectively. Thereby, we justify the inclusion
of both covariates in our analyses.

In the npcure package, the estimation of the latency is
implemented following the method described in [35], which
is based on the Beran estimator for the calculation of the
survival curve of the susceptible individuals, conditionally
on a certain set of covariates. For each one of the covariates,
namely age, sex, or a combination of both, a different curve
is obtained. Since this estimation uses a kernel smoothing
method, selection of the smoothing parameter is performed.
The bootstrap method is used to mimic the minimization of
the Mean Integrated Squared Error (MISE) criterion. The
value of the bootstrap MISE is approximated using Monte
Carlo, based on 100 bootstrap resamples.

In order to analyze the effect of the age on the latency,
we estimated the survival curve when this covariate is equal
to 20, 50 and 80 years, using the previously computed
bootstrap smoothing parameter selector. The result is
presented in the left part of Fig. 6. As it was expected,
among the COVID-19 patients who needed hospitalization,
those in their early stages of life tend to need it later after
their diagnosis when compared with the elder population.
The probability of the need for hospital admission at the
beginning of the disease increases in the case of older
people, and it is at that point in the course of the disease
when the differences are more evident. This is consistent
with the results of the epidemiological research that has
been carried out in the last months, which claims that age is
a clear risk factor for COVID-19 bad prognosis. Recently, it
has been empirically observed that patients aged over 65 are
prone to the need for ICU admission or respiratory support,
at the same time they present a decreased lymphocyte count
compared to young individuals [56].

As for sex, even though the covariate hypothesis test
showed that this factor implied a significant influence on
the cure rate (that is, no need of hospital admission),
the estimated survival function of male and female were
practically equivalent, as it can be observed in the right part
of Fig. 6.

The covariate age also showed a significant influence
on the incidence of the model, as it was anticipated by
the covariate test (Fig. 7). In order to observe the changes
in the cure probability when increasing the age of the
patient, its value was estimated with the nonparametric
method proposed by [10] for an age interval between 20
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Fig. 5 Results obtained with the semiparametric models when work-
ing with continuous-time variables, which were calculated using the
probit model for the incidence. On the left, the survival curves of
susceptible patients are estimated separately for women and men

using the AFT model. On the right, the survival curves are estimated
for a 57 year-old female individual considering the two available
semiparametric approaches

and 90 years old. The cure probability showed a decreasing
tendency when increasing the age of the patient. This is also
consistent with the previous results on COVID-19 literature,
since it has been claimed that there is a clear increase in the
hospitalization rates with advanced ages, being elder adults
those who needed more frequently hospital care [57].

The covariate sex has a small influence in the cure
probability, even though the covariate test considered a
significant effect of this factor. This probability was found
to be 0.870 for men and 0.877 for women. Sex, thus,
apparently causes a difference of only 1% in the probability
of hospitalization after a COVID-19 positive diagnosis.
The difference between male and female patients, however,
appeared to be significant when these probabilities were
calculated in the interval of ages between 20 and 90 years

(Fig. 7). It is important to highlight that males need, on
average, hospital care more frequently than women, and
this need clearly increases when considering elder patients.
Once again, these results fall into line with the literature
[54]: men tend to suffer a more severe symptomatology
and thus, to need hospital admission more frequently than
women.

In the case of nonparametric models, we also performed
the data perturbation in order to obtain continuous-time
data, following the same approach as with semiparametric
models. The main difference when compared with the
discrete data models was the loss of signification for
sex in terms of cure probability (p-value = 0.058),
although the p−value obtained for this test is close to
the significance level if we consider α = 0.05. The age
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Fig. 6 Estimated survival function for the time until hospital admis-
sion of the susceptible patients using the nonparametric model, con-
ditional on the covariates. On the left, model latency calculated for

different values of the covariate “age of the patient”. On the right,
latency of the model conditional on the sex of the patient

802



Cure models to estimate time until hospitalization...

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80
Age (years)

C
ur

e 
pr

ob
ab

ili
ty

Sex

Male

Female

Fig. 7 Estimation of the cure probability (no need of hospital care)
of COVID-19 patients with respect to the age, which shows a clear
decreasing trend for both men and women

is still found significant for such a probability, and the
estimated incidence is equivalent to the one obtained with
the discretized times (Fig. 8, right side).

With regards to the latency, we obtained a smooth
estimation of the survival curve when working with a
continuous-time variable, which is more likely to be an
accurate approximation of the real function. Furthermore,
the differences between curves are easily observed when
implementing the data perturbation. In the left side of Fig. 8,
it can be noticed that the lifetime of young patients (that is,
the elapsed time until their hospitalization), increases in the
first stages of the disease, and then decreases until it is on the
same level as the lifetime of the elder. This can be due to the
current COVID-19 protocols: those patients over a certain

age are directly admitted to the hospital when any minimal
medical complication arises, whereas young individuals will
only require hospital care if the symptoms are severe or if
they last for a long time period.

4 Discussion

In our research, it has been claimed that different cure
models lead to a variety of results and reach different
conclusions, even though all of them belong to the same
category of mixture cure models. When working with
discrete lifetimes, nonparametric models apparently fit
better to the actual situation, since there exist studies
sustaining the influence of sex and age on COVID-
19 prognosis. When using semiparametric models, we
concluded that the set of covariates considered for this study
does not yield any significant effect neither on their latency
nor on their incidence, independently of the configuration
selected for the model. Furthermore, it has been previously
stated that these models might fail to reach convergence in
the likelihood maximization, and thus resulting in biased
estimators [58]. Due to the intrinsic features of our data,
showing some limitations such as the discretization of the
times, the high rate of censored data and a foreseeable high
cure probability, it is possible that semiparametric models
are not a good choice for analyzing this data. Nonetheless,
they have been previously used for other COVID-19 studies,
specifically semiparametric Cox PH models, which also
considered the influence of the age on the survival [59].

In order to tackle with some of the limitations, we
analyzed the behavior of the models when working with
continuous data. In this case, it was indeed possible to
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Fig. 8 Features of the nonparametric model when working with continuous data. On the left, comparison between survival curves of the patients
with respect to their ages (20, 50 and 80). On the right, the trend of the cure probabilities when calculated with discrete and continuous times is
compared
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assess the effect of the sex of the patient on the latency.
Therefore, the importance of working with exhaustive, high
quality data in order to obtain feasible conclusions was
reinforced.

Furthermore, nonparametric models were able to deter-
mine the effect of the study covariates on the time to hospital
admission variable, even when it was discretized. With
this approach, we studied the influence of the age on the
survival of the population, and the results were consistent
with the epidemiological data available in the literature. As
far as we know, there are not previous publications con-
sidering completely nonparametric models to estimate the
cure on COVID-19 cohorts, and this, together with the mod-
els developed by [40] on the length-of-stay prediction, are
pioneer on the field.

Cure models are not the only tool that can be used to
extract information about COVID-19 patients. Indeed, most
of the aspects concerning this disease have been tackled
using different sorts of models and algorithms, including
clinical de-identification of COVID-19 datasets [60] or
forecasting of the number of future patients using ARIMA
models [61].

There also exist several studies aiming to predict the
hospital and ICU admission based on different covariates
such as age, gender and medical conditions of the patients,
using classification algorithms such as Support Vector
Machines and Random Forest [62, 63]. This leads to
conclusions that can be completed with the results of this
work, since this will give information of when that hospital
admission will take place. However, machine learning-
based approaches are not the best option when working
with censored data, although they are specially helpful
when handling high-dimensional clinical data [64]. Note
that, in a context with censored data, it is not possible
to apply directly machine learning classical models since
they do not account for censored observations. Therefore,
machine learning techniques should be adapted so that
they also consider individuals who do not experience the
event of interest. Thus, a few techniques have arisen
in order to adapt this kind of predicting algorithms to
the peculiarities of censored time-to-event observations,
such as likelihood-based approaches [65] or the inverse
probability of censoring [66]. Nonetheless, these methods
are not completely developed and, as far as we know,
theoretical results that prove their good behavior have
not been presented yet. For future research, it will be
interesting to study and propose a complete adaptation of
machine learning techniques to the context of censored data.
Therefore, both approaches will contribute in the analysis,
leading to a more accurate result.

5 Conclusions

Over the last 60 years, there has been a remarkable
progress in cure models and thus several implementations
of these tools are available. In this work, we pointed
out the differences among them, firstly from a theoretical
perspective and later by their application to a real dataset.
It has been observed that different model implementations
reach a variety of conclusions related to the same dataset,
which highlights the importance of using a suitable model
when studying time-to-event data.

On the other hand, this paper emphasizes the importance
of having high-quality datasets. It has been observed that
working with discrete data leads to completely different
results than considering continuous data. It is important to
note that, besides choosing a suitable model for the data,
using a representative and informative database is also an
essential part in the analysis.

When working with proper variables and suitable
models, it has been possible to analyze some key aspects of
hospitalization in COVID-19 and its relationship with the
variables sex and age of the patient. Therefore, it has been
proved that cure models are helpful tools for this kind of
studies.
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Medina-Peralta M, Duarte-Salles T (2020) Hospitalization and 30-
day fatality in 121,263 COVID-19 outpatient cases. Unpublished
manuscript https://doi.org/10.1101/2020.04.07.20057299

50. Cai C, Zou Y, Peng Y, Zhang J (2012) smcure: Fit Semiparametric
Mixture Cure Models, R package version 2.0. http://CRAN.
R-project.org/package=smcure
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