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Abstract
COVID-19 has proven to be a deadly virus, and unfortunately, it triggered a worldwide pandemic. Its detection for further
treatment poses a severe threat to researchers, scientists, health professionals, and administrators worldwide. One of the
daunting tasks during the pandemic for doctors in radiology is the use of chest X-ray or CT images for COVID-19 diagnosis.
Time is required to inspect each report manually. While a CT scan is the better standard, an X-ray is still useful because it is
cheaper, faster, and more widely used. To diagnose COVID-19, this paper proposes to use a deep learning-based improved
Snapshot Ensemble technique for efficient COVID-19 chest X-ray classification. In addition, the proposed method takes
advantage of the transfer learning technique using the ResNet-50 model, which is a pre-trained model. The proposed model
uses the publicly accessible COVID-19 chest X-ray dataset consisting of 2905 images, which include COVID-19, viral
pneumonia, and normal chest X-ray images. For performance evaluation, the model applied the metrics such as AU-ROC,
AU-PR, and Jaccard Index. Furthermore, it also obtained a multi-class micro-average of 97% specificity, 95% f1-score, and
95% classification accuracy. The obtained results demonstrate that the performance of the proposed method outperformed
those of several existing methods. This method appears to be a suitable and efficient approach for COVID-19 chest X-ray
classification.

Keywords COVID-19 · Chest X-ray · Deep learning · Classification

1 Introduction

The world will remember 2020 as a catastrophic year for
humanity. Pneumonia of unknown etiology, which was
identified in Wuhan, China in December 2019 [26] with its
earliest death reported on 10th January 2020, has become
a pandemic [51] and is rapidly gulping the entire world
under its net. The World Health Organization (WHO)
named it COVID-19 (Corona Virus Disease-2019), and
the virus is also known as SARS-CoV-2 (severe acute
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respiratory syndrome coronavirus-2) [37]. According to
the Johns Hopkins Bloomberg School of Public Health,
globally confirmed coronavirus cases reached 20,306,856,
with 741,723 deaths recorded as of 12th August 2020
[28]. Owing to the coronavirus flare-up, the Research
and Development wings of various research communities
are effectively participating in identifying an effective
compelling symptomatic system and vaccination for its
treatment [59]. Because the cure is under discovery, it
is essential to take sufficient precautionary measures and
maximize testing. Owing to the scarcity of test kits
for this confirmatory test, the search for alternatives
is ongoing. In general, coronavirus side effects range
from the usual cold to fever, cough, brevity of breath,
intense respiratory issues and multi-organ failure, and death
[51]. These are challenging tasks for master clinicians
at each medical clinic owing to the limited number of
radiologists. Therefore, simple, accurate, and quick models
can help conquer this issue and provide convenient help to
patients.

Furthermore, the rapid rise of the COVID-19 epidemic
has increased the need for expertise and expanded
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enthusiasm for creating automated discovery systems
that depend on artificial intelligence (AI) methods. AI
approaches can help acquire accurate results and are useful
at eliminating hindrances such as lack of accessible real-
time reverse transcription-polymerase chain reaction (RT-
PCR) test kits and waiting time of test outcomes [6].
According to Ref. [51], acute respiratory problems are the
primary symptoms of COVID-19 that can be detected using
chest X-ray (CXR) images. Chest computed tomography
(CT) scans can recognize the infection when the symptoms
are mild [53]. The use of this information can overcome
the constraints of different tools such as the absence of
diagnostic kits. While CT scan is a better standard, X-ray is
still valuable because it is less expensive, faster, and more
widely used [45, 47]. The advantage of using X-ray images
is the accessibility of imaging systems at most health centers
and laboratories, even in rural areas. In the absence of
common side effects, such as fever, the use of X-ray images
of the chest has a relatively decent capacity to recognize the
illness [63].

In previous studies, several machine learning algo-
rithms have been used to automatically classify digitized
chest images [11, 31, 35]. Although the application of
machine learning techniques for automatic diagnosis is
useful in the clinical field, if there are enough anno-
tated images, deep learning approaches are superior com-
pared to classical machine learning methods [3, 54]. Deep
learning allows developing end-to-end models to accom-
plish guaranteed results using input information without
the need for manual feature extraction [30, 32]. Various
deep learning approaches have been effectively applied
to numerous issues, including skin cancer classification
[9, 19], breast cancer identification [7, 10], brain dis-
ease classification [56], pneumonia detection using X-
ray images of the chest [44], and lung segmentation
[14, 52].

Various ensemble learning methods have been proposed
to improve the performance of deep learning neural net-
works. This improvement can be achieved by combining
the predictions from multiple models [20]. Ensemble learn-
ing combines the predictions from multiple neural network
models to reduce predictions’ variance and generalization
error. Recently, many ensemble approaches have shown
their efficient performance in many fields including ‘classi-
fication of rockburst intensity’ [62], ‘motor imagery classi-
fication’ [33], ‘cervical histopathology image classification’
[61], and ‘detection of misleading information on COVID-
19’ [12]. By observing the advantages of deep learning
applications shown in the clinical field, this study proposes
a deep learning-based improved Snapshot Ensemble tech-
nique for the efficient classification of COVID-19 CXR
images.

1.1 Contributions

Below is the list of technical contributions of this study.

• This study proposes a deep learning-based improved
Snapshot Ensemble technique for COVID-19 CXR
classification.

• A popular Convolutional Neural Network (CNN) archi-
tecture (ResNet50), which is a pre-trained network, is
applied by the transfer learning approach.

• Data augmentation is implemented to deal with a
relatively small number of samples, which prevents
the model from over-fitting, to provide efficient
performance.

• Snapshot Ensemble technique is implemented, which
allows using an ensemble of multiple neural networks
at no additional training cost.

• An improved Snapshot Ensemble algorithm is proposed
to enhance model training and accuracy.

• The obtained results are evaluated using popular metrics
such as AU- ROC, AU- PR, precision, recall, specificity,
accuracy, f1-score, and Jaccard Index.

• The proposed model is compared with baseline
methods to show the efficiency of COVID-19 CXR
classification.

1.2 Roadmap

The rest of this paper is arranged as follows. Section 2
describes the related work. Section 3 discusses the
preliminaries of the proposed method including data
augmentation, convolution neural network, and Snapshot
Ensemble technique. Section 4 describes the proposed
improved Snapshot Ensemble technique. Moreover, dataset
details and experimental results are reported in Section 5.
Section 6 presents the discussion of experimental results.
Finally, Section 7 presents the conclusions of this study.

2 Related work

Although this study is not constrained to clinical or
biotechnology fields, it includes specialists from different
fields (e.g., from AI and data science) to prevent and control
the pandemic by providing their specialized perspectives
and potential solutions. In previous studies, several methods
have been proposed to detect, cure, and predict COVID-
19. Different analysis approaches offer models to predict
the pandemic’s evolution in specific geographical areas,
countries, or create a global model. The models allow us
to predict virus behavior, which is used to make future
response plans. Hernandez-Matamoros et al. in [24] have
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analyzed the spread of COVID-19 using an Auto-Regressive
Integrated Moving Average (ARIMA) model to show the
spread of the pandemic through 6 geographic regions
(continents). The model created a relationship between the
countries and predicted the spread of the virus, behavior,
and geographic region cases. Koushlendra Kumar Singh
et al. in [50] have reported a Kalman filter-based short-
term prediction model for forecasting COVID-19 using
the popular machine learning techniques such as Random
Forest and Pearson Correlation. However, the proposed
approach is not used to predict the geographic region cases;
instead, it is used to classify CXR images.

Among other diagnosis methods, medical images are
essential [2, 13, 17, 18, 60]. Recently, CNN has become
one of the most mainstream and successful methodologies
that uses numerous radiology images to detect COVID-
19. CNN’s initial advantage is its capacity to automatically
learn features from domain-specific images, unlike the
classical machine learning methods. The mainstream
system for preparing CNN architecture is to transfer learned
knowledge from a pre-trained system that satisfied one
undertaking into another assignment [39]. The transfer
of knowledge via the fine-tuning mechanism showed
outstanding performance in X-ray image classification [3,
15, 49].

Hemdan et al. [23] have utilized a deep learning
model called COVIDX-Net to analyze COVID-19 chest
X-ray images containing 7 CNN models. Wang et al.
[58] have proposed a deep learning CNN model for
COVID-19 recognition (COVID-Net) using chest X-
rays, which obtained a 92.4% accuracy when classifying
COVID-19, non-COVID pneumonia, and normal classes.
Apostolopoulos et al. [5] have built a deep transfer learning
model using 224 positive COVID-19 images. This model
achieved a 98.75% accuracy for binary class and a 93.48%
progress rate for multi-class data. Ali Narin et al. [36] have
achieved a 98% COVID-19 identification accuracy using
CXR images combined with the ResNet50 model.

Recently, Sethy and Behera [48] have proposed a CNN-
based model that relies on different ImageNet pre-prepared
models to extract high-level features. Those features were
fed into SVM as a machine learning classifier to distinguish
COVID-19 CXR images. The abovementioned study shows
that the combination of the ResNet50 model and SVM-
classifier produced useful results. The abovementioned
study suggested that transfer learning can separate critical
biomarkers that are identified with the COVID-19 disease.
Harsh Panwar et al. [40] have developed nCOVnet (i.e.,
a fast screening method for the detection of COVID-19
by analyzing X-rays), which is a deep neural network
method. Rodolfo M. Pereira et al. have developed an
RYDLS-20 model [41] using a resampling method. The

model used a CXR image database and obtained a 0.65
f1-score.

Turker Tuncer et al. [57] have applied an automated
Residual Exemplar Local Binary Pattern and iterative
ReliefF-based method for COVID-19 lung X-ray image
classification. A modified deep CNN model has also
been proposed by Mohammad Rahimzadeh and Abolfazl
Attar [43] for detecting COVID-19 and pneumonia in
CXR images by concatenating Xception and ResNet50V2
methods. Asmaa Abbas et al. [1] have proposed another
deep CNN model called DeTraC (Decompose, Transfer,
and Compose) to classify COVID-19 CXR images and
deal with random images by investigating class boundaries.
Tulin Ozturk et al. have proposed an automatic COVID-
19 detection method (DarkCovidNet) for CXR images
using the DarkNet model with a transfer learning approach.
Recently, Perumal et al. [42] have presented a transfer
learning model to accelerate the prediction process and
assist medical professionals in identifying COVID-19 using
CT scan and CXR images. However, the tests used to
identify COVID-19 are not sufficiently fast. The proposed
approach overcomes the limitation of a long testing period
using an automated deep learning-based technique. The
proposed approach allows for obtaining results in less time,
especially during the initial stages of virus development.

3 Preliminaries

This section describes details of the methods used for
distinguishing COVID-19 from CXR images.

3.1 Data augmentation

The data imbalance problem makes the model more or
less biased towards certain classes [4]. The proposed
method uses the data augmentation approach to solve
class imbalance, which artificially adds images to fewer
categories to equal those of the largest class. The proposed
approach randomly chose and copied the images belonging
to the class with fewer samples to create duplicate
images while resampling. However, because deep neural
networks perform better with a large amount of data, data
augmentation helps create images that depict its class’s
features at every possible angle. Data augmentation ensures
that the trained model can predict a class with higher
precision at any angle the image is obtained. Different
techniques used for data augmentation are as follows:

– Randomly rotate images in the range (0 to 180◦)
– Randomly zoom image
– Randomly shift images horizontally
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– Randomly shift images vertically
– Randomly flip the images horizontally
– Randomly flip the images vertically

3.2 CNN

In general, deep learning approaches uncover the dataset’s
highlights, such as images and videos that are hidden in
the original data. Among these deep learning techniques,
CNNs are widely used for medical image classification [21].
CNNs are feed-forward Artificial Neural Networks (ANN)
[25] with alternating convolutional and sub-sampling layers.
Profound 2D-CNN has many hidden layers and parameters.
It can learn intricate patterns, given that it is trained on a
gigantic size of visual database with ground-truth labels.
Further, it is a modern architecture that processes high
volumes of information with higher accuracy and relatively
low computational expense compared to other classification
algorithms owing to the efficiency in handling extensive
data. Using different filters to identify specific features in
images, CNN uses a unique way of image classification.
Furthermore, the deep learning model’s relevant filters
grasp the more in-depth features and convert them into
predetermined features using pooling layers.

3.3 Transfer learning

The transfer learning approach is faster and simple to
apply without the requirement for an enormous annotated
dataset for training. Accordingly, numerous analysts tend
to apply this strategy, particularly in medical imaging.
This approach can be accomplished using the following
important situations:

– “Shallow- tuning” which adapts only the last classifi-
cation layer to adapt to the new task and freezes the
parameters of remaining layers without training;

– “Deep- tuning” aims to retrain all of the parameters of
the pre-trained model from the end-to-end approach;

– “Fine- tuning” intends to continuously train more
layers by tuning the learning parameters to achieve a
considerable performance boost.

Transfer knowledge via the fine-tuning approach demon-
strated exceptional performance in X-ray image classifica-
tion [49].

3.4 Cyclic learning rate scheduling

To improve results and make the model converge at a global
minimum instead of a local minimum, the learning rate
should be increased periodically instead of exponentially
to determine the optimal learning rate. Cyclic learning rate
scheduling makes this possible by cyclically changing the
learning rate, which helps the model escape several global
minima. In addition, this eliminates the necessity to find
an optimal maximum learning rate manually. The utilized
cyclic learning rate approach is shown in Fig. 1.

3.5 Snapshot ensemble technique

Ensemble models of neural networks are known to
be substantially robust and accurate than individual
networks. However, training multiple deep networks for
model averaging is computationally expensive. Therefore,
‘Snapshot Ensembling’ has been proposed to ensemble
multiple neural networks at no additional training cost

Fig. 1 Visualization of the cyclic learning rate, where the X-axis shows the number of epochs, and the Y-axis shows the learning rate
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Fig. 2 Illustration of SGD optimization using typical learning rate schedule (left), and the illustration of Snapshot Ensembling (right) [27]

with consistent lower error rates [27]. By adopting
cyclic learning rate scheduling, Snapshot Ensembling
has confirmed its compatibility with diverse network
architectures and learning tasks. The proposed approach
used this technique to periodically save model parameters
during training. When the model converges to local minima

during a cycle, these parameters are saved, and the learning
rate increases to apply another model. This approach allows
us to gather an ensemble of models in a single training
cycle. Figure 2 shows the illustration of Stochastic Gradient
Descent (SGD) optimization (with a typical learning rate
schedule) and the illustration of Snapshot Ensemble [27].

Fig. 3 Workflow of the proposed method
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4 Proposedmethod

This section describes the proposed model creation and
improved Snapshot Ensemble technique. Figure 3 visualizes
the workflow of the proposed method.

4.1 Model creation

The idea behind the transfer learning approach is to use
the CNN model, which has been already trained on the
ImageNet [46] data. The model is then applied to the lower
layers of the proposed model to capture the generic features.
In the proposed approach, the higher layers are fine-tuned to
our specific domain and redefine the last layer that outputs
three values that correspond to three different classes.
The proposed approach uses ResNet50 [22] pre-trained
architecture owing to its better results. These results were
obtained while experimenting with five epochs on different
pre-trained architectures. The proposed approach also uses
the ‘Adam’ (adaptive moment estimation) optimizer [29]
with weight decay to reduce overfitting and obtain the best
validation accuracy upon training the data. Adam is one of
the latest algorithms in the family of optimizers for model
training. It combines two powerful optimizers: RMSProp
(Root Mean Square Propagation) and AdaGrad (Adaptive
Gradient). Unlike other optimizers, as training proceeds, it
uses a different learning rate for every parameter in the
network and then adjusts it along with the parameter.

The proposed model is built in Python using Keras
Sequential API. In this API, we have to attach one layer
to the model at a time. First, the ResNet50 architecture (a
pre-trained architecture, which is used to capture generic
features) is added to the model. Then, a dropout layer is
added, which is a new regularization method. The dropout
layer randomly ignores a few nodes from each training
sample and makes the model learn features in a distributed
way. In addition, it improves the generalization and reduces

Table 1 Proposed model summary

Layer (type) Output shape Param #

ResNet50 (Model) (None, 2048) 23587712

dropout 1 (Dropout) (None, 2048) 0

dense 1 (Dense) (None, 128) 262272

dropout 2 (Dropout) (None, 128) 0

dense 2 (Dense) (None, 3) 387

Total param # : 23,850,371

Trainable param # : 9,193,987

Non-trainable param # : 14,656,384

overfitting. A dense layer with 128 nodes is added, which
is a part of a fully connected layer where different features
from ResNet50 are converted to provide an output from
128 nodes. Then, a dropout layer is added, followed by the
dense output layer with three nodes, which correspond to 3
different CXR types; the net output provides the probability
of each class. These layers utilize commonly used ReLU
(Rectified Linear Unit) [16] as an activation function, which
adds nonlinearity to the model. Furthermore, the Snapshot
Ensemble technique is added to the abovementioned model.
Table 1 shows the proposed model summary.

The core of Snapshot Ensembling is an optimization
process that visits few local minima before converging to
the ultimate solution. It gradually saves snapshots at each
local minimum and averages their predictions to quickly
obtain the global minimum. Nevertheless, in the regular
model, we have to travel for a long time to reach a global
minimum. Thus, this ensemble model helps us to reach the
global minimum in fewer epochs. To converge to multiple
local minima, Snapshot Ensemble follows a Cyclic Cosine
Annealing schedule [34] as a cyclic learning rate schedule.
This method splits the training process into C cycles; each
cycle starts with a large learning rate, annealed to a lower
learning rate. The learning rate of α for the iteration t is
calculated as follows:

α(t) = α0

2
(cos(

πmod(t − 1, [T/C])
[T/C] ) + 1) (1)

Here, α0 represents the initial learning rate; T represents
the total number of training iterations, and C represents the
number of cycles.

4.2 Improved snapshot ensemble technique

Improved Snapshot Ensemble technique proposes to con-
sider the weighted average instead of taking the average of
probabilities of all models. To choose the weights for dif-
ferent models, random weight initialization is considered.
After checking the improvements, new weights are added
to the best weights. If there is no improvement, the number
of improvements counter increases. We continue this pro-
cess until the number of improvements counter reaches a
specific limit; here, the limit is named patience. Thus, the
final accuracy and final improved weights can be obtained.
Algorithm 1 represents the pseudo-code of the improved
Snapshot Ensemble algorithm.

4.2.1 Improved snapshot ensemble calculation

The proposed Snapshot Ensemble model uses three models.
During model execution, three snapshots of the model have
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Table 2 Illustration of the Snapshot Ensemble model prediction

M1 ..... Mm Pa

C1 p11 ..... p1m Pa1 =Average(p11, ...., p1m)

. . ..... . .

. . ..... . .

. . ..... . .

. . ..... . .

. . ..... . .

Cn pn1 ..... pnm Pan =Average(pn1, ...., pnm)

been saved. The snapshots produce three different weight
probabilities for each model evaluation. An ensemble
probability is calculated by taking the ‘average’ of all
three probabilities. Further, the weights of the resultant
class with the highest probability are used to obtain
the ensemble model accuracy. Example illustrations of
‘Snapshot Ensemble model’ and ‘improved Snapshot
Ensemble model’ calculations are shown in Tables 2 and 3,
respectively. The details of Tables 2 and 3 are as follows:

– C1, ...Cn :represents the number of classes
– M1, ...Mm :represents the number of models
– Pa :represents the predicted class probabilities using the

Snapshot Ensemble model and
∑n

i=1 Pai
= 1

– Pw :represents the predicted class probabilities
using the improved Snapshot Ensemble model and∑n

i=1 Pwi
= 1

– p11, ...pn1 :represents the prediction probabilities of
model ‘M1’ for ‘n’ classes

– Similarly, p1m, ...pnm :represents the prediction proba-
bilities of model ‘Mm’ for ‘n’ classes

– p11, ...p1m :represents the prediction probabilities of
class ‘C1’ for ‘m’ number of models

– Similarly, pn1, ...pnm :represents the prediction proba-
bilities of class ‘Cn’ for ‘m’ number of models

– w1, ...wm : represents the random weights initialized to
‘m’ number of models for ‘n’ number of classes

Table 3 Illustration of the improved Snapshot Ensemble model
prediction

M1 ..... Mm Pw

C1 p11w1 ..... p1mwm Pw1 =Average(p11w1, ...., p1mwm)

. . ..... . .

. . ..... . .

. . ..... . .

. . ..... . .

. . ..... . .

Cn pn1w1 ..... pnmwm Pwn =Average(pn1w1, ...., pnmwm)

5 Experimental evaluation

This section describes the evaluation metrics, dataset
details, and experimental procedure, along with obtained
results and comparisons. Test executions are performed
using Python and Keras Sequential API.

5.1 Evaluationmetrics

After the implementation of the proposed approach, the
proposed model performance is evaluated using popular
evaluation metrics such as Area Under the Curve (AUC)
- Receiver Operating Characteristic (ROC), Area Under
Precision-Recall curve (AU-PR), Specificity (or) True
Negative Rate (TNR), Precision (or) Positive Predictive
Value (PPV), Recall (or) Sensitivity (or) True Positive
Rate (TPR), f1-score (or) F-measure, accuracy, and Jaccard
Index. ROC is a 2-dimensional graph that plots between
TPR and False Positive Rate (FPR). Similarly, it may
be characterized as an exchange between sensitivity and
specificity. The ROC curve contains TPR on the Y-axis
and FPR on the X-axis. AUC-ROC is most suitable when
both classes maintain approximately the same number of
samples. In the case of data imbalance, majority samples
have a higher impact on the curve than minority samples,
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Fig. 4 Visualization of few X-ray samples [Note: From top to bottom, rows with labels 0, 1, and 2 represent the class names such as COVID-19,
viral pneumonia, and normal samples, respectively]

which causes a biased result. However, AUC-PR is mostly
used for class imbalance problems because it does not
consider false positives and false negatives, which produces
unbiased results without sample influence. Medical studies
require higher AUC results.

The Jaccard Index, which is also known as the Jaccard
similarity coefficient, is a statistic that is used to under-
stand similarities between sample sets. The mathematical
representation of the Jaccard Index is as follows:

J (M, F) = |M ∩ F |
|M ∪ F | = |M ∩ F |

|M| + |F | − |M ∩ F | (2)

where, M and F represent the sample sets (if M and F are
both empty, define J (M, F)), and 0 ≤ J (M, F) ≤ 1.

Similarly, the formulae used to evaluate the performance
of the model (e.g., TNR, PPV, TPR, f1-score, and accuracy)
are given as follows:

T NR = T N

T N + FP
(3)

PPV = T P

T P + FP
(4)

Table 4 COVID-19 CXR dataset details

X-ray type Number of samples

COVID-19 219

Viral Pneumonia 1345

Normal 1341

Total 2905

T PR = T P

T P + FN
(5)

f1 − score = 2 ∗ precision ∗ recall

precision + recall
(6)

Accuracy = T P + T N

T P + T N + FP + FN
(7)

Where TP, FP, TN, and FN represent True Positive, False
Positive, True Negative, and False Negative in independent
datasets, respectively.

5.2 Dataset details

This study uses the collection of 2905 X-ray images from
the COVID-19 CXR dataset. The image dataset is a publicly
accessible COVID-19 CXR dataset [8], which is derived
from the COVID-19 Radiography Database.1 It contains
219 COVID-19, 1345 viral pneumonia, and 1341 normal
CXR images. Table 4 shows the details of the dataset.
Figure 4 shows sample images from the X-ray dataset
containing COVID-19, viral pneumonia, and normal types.

5.3 Resizing of images and normalization

Keeping the same-size ratio does not result in the loss of
information in the image. Because all original images in
the dataset have different sizes, a considerable computation

1https://www.kaggle.com/tawsifurrahman/
covid19-radiography-database
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Fig. 5 Details representing before and after data balancing using data augmentation for the CXR dataset [Note: Labels 0, 1, and 2 represent the
class names such as COVID-19, viral pneumonia, and normal samples, respectively]. a Before data balancing. b After data balancing

time is required to train the data. Therefore, all images in
the dataset are resized to the dimension (75 × 100 × 3).

Because each input image pixel value ranges from 0 to
255, and the neural networks do not support the format, the
following normalization method is applied to all images.

NI = (X − μ)

σ
(8)

Here, NI represents the normalized image; X represents
the original image pixel value; μ represents the mean of all
corresponding pixel values, and σ represents the standard
deviation of all corresponding pixel values.

After normalization, each color code format value
changed to the range of -2 to 2, which is preferred by
neural networks. The obtained data were further divided into
training and testing sets, i.e., 80% and 20%, respectively.
The training dataset is divided into training and validation
parts at the 80:20 ratio. After analyzing the data, the
datasets were determined to be imbalanced. Then, according
to Section 3.1, data augmentation was applied only to
the final training data. Figure 5 shows the number of
training instances of each category obtained after data
preprocessing.

5.4 Model training and testing

Testing is necessary to measure the classification accuracy
of the testing data. The proposed model’s test accuracy is
obtained using different combinations of the epochs and
number of ensemble models. The proposed model is trained

Table 5 Test accuracy of the proposed model on the COVID-19 CXR
dataset

X-ray Support Accu- Jaccard Precision Recall f1- Specifi-

type racy Index score city

COVID-19 38 1 0.97 0.97 1 0.99 1

Viral- 273 0.90 0.90 1 0.90 0.95 0.99

pneumonia

Normal 270 0.99 0.91 0.91 1 0.95 0.92

Sum 581

Average 0.95 0.91 0.95 0.95 0.95 0.97

using an exponential learning rate reducer to improve the
test accuracy. Apart from this, to reduce the computation
time, the proposed model is trained with combinations of
a different number of models and number of epochs so
that the number of models × Number of epochs per model
= 30, which makes the total number of epochs for the
entire model to be 30. After reviewing the abovementioned
combinations, the following optimal values are fixed: the
number of models = 3, the number of epochs per model =
10, batch size = 10, and the maximum learning rate remains
0.001.

Furthermore, to determine the efficiency of the proposed
model, performance evaluation is made for the following
models, such as the proposed model (i.e., ResNet50 +
improved Snapshot Ensemble + data balance), ResNet50
with data balance, and ResNet50 without data balance,
on the CXR dataset. Table 5 shows the performance
details of the proposed model on the CXR dataset. The
ResNet50 model’s performance with data balance on the
CXR dataset is shown in Table 6. Similarly, Table 7
shows the performance of the ResNet50 model without
data balance on the CXR dataset. These results show
that the proposed model can achieve an overall accuracy
of 95% and specificity of 97% for the multi-class CXR
dataset. Moreover, the micro average of precision, recall,
f1-score, and Jaccard similarity is determined to be
95%, 95%, 95%, and 91%, respectively. Whereas the
ResNet50 model, with data balance, achieved an overall
accuracy of 92% for three classes of the same dataset.

Table 6 Test accuracy of the ResNet50 model with data balance on the
COVID-19 CXR dataset

X-ray Support Accu- Jaccard Precision Recall f1- Specifi-

type racy Index score city

COVID-19 38 0.97 0.86 0.90 0.95 0.92 0.99

Viral- 273 0.86 0.85 0.99 0.86 0.92 0.99

pneumonia

Normal 270 0.95 0.86 0.88 0.99 0.93 0.88

Sum 581

Average 0.92 0.86 0.92 0.92 0.92 0.96
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Table 7 Test accuracy of the ResNet50 model without data balance on
the COVID-19 CXR dataset

X-ray Support Accu- Jaccard Precision Recall f1- Specifi-

type racy Index score city

COVID-19 38 0.97 0.90 0.93 0.97 0.95 0.99

Viral- 273 0.84 0.83 0.99 0.84 0.91 0.99

pneumonia

Normal 270 0.98 0.86 0.87 0.99 0.92 0.87

Sum 581

Average 0.91 0.85 0.92 0.92 0.92 0.96

The micro average of precision, recall, f1-score, and
Jaccard similarity obtained are 92%, 92%, 92%, and 86%,
respectively.

Similarly, the ResNet50 model without data balance
achieved an overall accuracy of 91% for the same dataset.
In addition, the micro average of precision, recall, f1-
score, and Jaccard similarity is determined to be 92%,
92%, 92%, and 85%, respectively. Tables 5, 6, and 7 show
that the proposed model exhibits an efficient performance
compared with ResNet50 with data balance and ResNet50
without data balance. In addition, by observing the proposed
model’s class results, the COVID-19 class has achieved
a 100% accuracy, 100% specificity, and 99% f1-score.
Moreover, the ensemble accuracy for three models, along
with the improved accuracy using the proposed algorithm,
are shown in Table 8. The proposed algorithm acquired a
multi-class micro average accuracy of 95.18%. Therefore,
the proposed model shows the potential to assist in COVID-
19 treatment and decision making at critical stages.

In Fig. 6, the AU-ROC and AU-PR curves represent the
performance analysis of the proposed model for individual
classes such as COVID-19, pneumonia, and normal CXR
data. Similarly, in Fig. 7, the AU-ROC and AU-PR curves
are plotted for the ResNet50 model with data balance.
In Fig. 8, the AU-ROC and AU-PR curves are plotted

Table 8 Improved accuracy with the best weights using the proposed
approach

Model (or) Improvement Accuracy (%) (or) Weight

Model-1 94.15

Model-2 93.80

Model-3 94.66

Snapshot Ensemble 94.84

Improvement-1 95.01

Improvement-2 95.18

Best weight for model-1 0.020691

Best weight for model-2 0.54205966

Best weight for model-3 0.43724934

for the ResNet50 model without data balance. Moreover,
the proposed model obtained AU-ROC values of 1.00 for
COVID-19, 0.99 for viral pneumonia, and 0.99 for normal
data. Similarly, it obtained the AU-PR values of 0.99 for the
COVID-19 class, 0.99 for viral pneumonia, and 0.99 for the
normal class. These AU-ROC and AU-PR curves show the
strength of the proposed approach in dealing with different
types of image data.

5.5 Comparison

Table 9 provides a detailed comparison of the pro-
posed model with recent baseline models to demon-
strate the effectiveness of the proposed model. All com-
parisons are made only for the multi-class data. The
majority of investigations referenced to compare with the
proposed work used the COVID-19 CXR data, which
was acquired from different openly accessible sources.
The proposed model utilized a total of 2905 CXR
images [219 COVID-19 (+), 1345 Viral Pneumonia,
and 1341 Normal]. Although many proposed models in
the literature showed efficient results while classifying
CXR images, the proposed model obtained a multi-class
micro-average of 97.16% specificity, 95.23% precision,
95.63% recall, 95.42% f1-score, and 95.18% classification
accuracy.

6 Discussion

Because the scarcity of COVID-19 test kits necessitated
the need for automated discovery systems that depend on
AI methods, the proposed improved Snapshot Ensemble
technique utilizes ResNet50 (which is a transfer learning
approach) to provide a quick alternative to aid the diagnosis
process. Many models described in the literature utilized
the advantage of transfer learning technique and ResNet
models to achieve better performance results. For example,
Xiaowei Xu et al. in [60] obtained an 86.70% accuracy
using the combination of ResNet18 model and location-
attention mechanism for early screening and distinguishing
COVID-19 from influenza-A viral pneumonia (IAVP) and
healthy CT images. Further, a deep learning DarkCovidNet
[38] model was utilized to detect COVID-19. This approach
utilized 1125 CXR images consisting of 125 COVID-19
positive, 500 pneumonia, and 500 no-findings samples to
develop the model. This approach showed an accuracy of
87.02%.

Similarly, Rahimzadeh and Attar [43] achieved a
91.40% accuracy using the concatenation of Xception and
ResNet50V2 networks. Abbas et al. [1] obtained 93.10%
accuracy and 100% recall using the DeTraC model. Fur-
thermore, the COVID-Net [58] model achieved a 93.30%
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Fig. 6 AU-ROC and AU-PR curves representing the proposed model
for the individual classes such as COVID-19, viral pneumonia, and
normal. Figure 6a to c visualize the AU-ROC curves, and Fig. 6d to

f visualize the AU-PR curves. [Note: Labels 0, 1, and 2 represent the
class names such as COVID-19, viral pneumonia, and normal samples,
respectively]

progress rate for COVID-19 detection using radiography
pictures. Moreover, Apostolopoulos and Mpesiana devel-
oped a transfer learning approach using VGG19 and
MobileNet v2 model [5] for a similar reason as COVID-Net.
For this experiment, 224 COVID-19 positive, 700 cases of
pneumonia, and 504 ordinary radiology pictures were used,
and a 93.48% accuracy was achieved.

Furthermore, the studies presented in [55] and [41]
have shown excellent performance by achieving greater
than 95% accuracy. Most of these prior studies experi-
enced data scarcity during the building of the models. The
proposed model is developed to deal with the challeng-
ing COVID-19 problem by exploiting data augmentation
for the class imbalance problem. Although many existing
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Fig. 7 AU-ROC and AU-PR curves representing the ResNet50 model
with balanced data for the individual classes such as COVID-19, viral
pneumonia, and normal. Figure 7a to c visualize the AU-ROC curves,

and Fig. 7d to f visualize the AU-PR curves. [Note: Labels 0, 1, and
2 represent the class names such as COVID-19, viral pneumonia, and
normal samples, respectively]

methods achieved excellent results, the proposed model
demonstrated efficient results by achieving a high f1-score
of 95.42% compared to other similar methods applied
to CXR images. The proposed method demonstrated its
robustness in coping with the limited availability of train-
ing data and irregularities in the data distribution. More
importantly, the proposed improved Snapshot Ensemble
algorithm provides a generic solution to improve the

model’s efficiency. Moreover, the utilized metrics (e.g.,
micro average accuracy, precision, recall, f1-score, speci-
ficity, Jaccard similarity, AU-ROC, and AU-PR) showed
excellent results to support the efficient performance of the
proposed model.

The proposed method’s significant advantages are as
follows. X-ray images are considered owing to the readily
available disease diagnosis methods. It is an efficient
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Fig. 8 AU-ROC and AU-PR curves representing the ResNet50 model
without data balance for the individual classes such as COVID-19,
viral pneumonia, and normal. Figure 8a to c visualize the AU-ROC

curves, and Fig. 8d to f visualize the AU-PR curves. [Note: Labels 0, 1,
and 2 represent the class names such as COVID-19, viral pneumonia,
and normal samples, respectively]

approach to assist technicians with diagnosing to get fast
predictions. CT scan is an expensive and not readily
available procedure because this equipment is usually
located in big hospitals. It is essential to collect balanced
data for better predictions. Here, data augmentation and
class balancing are essential in model performance, as
has been previously observed. Moreover, another important

benefit of the proposed method is that it does not depend on
the disease stage; it can be applied even at an early stage.

In addition to classic image processing techniques, pre-
defined generative models can be used to improve the
model’s performance. The proposed approach used the
ReLU activation function, which is the most commonly
used activation function. However, it is recommended to try
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Table 9 Comparison of the proposed model with baseline models

Method Image Number of Accuracy Precision Recall f1-score Specifi-

name type cases (%) (%) (%) (%) city (%)

ResNet+ Location Chest CT 219 COVID-19 (+) 86.70 81.30 86.70 83.90 93.10

Attention [60] 224 Viral pneumonia

175 Healthy

DarkCovidNet [38] CXR 125 COVID-19 (+) 87.02 89.96 85.35 87.37 92.18

500 Pneumonia

500 No-FIndings

Xception and CXR 180 COVID-19 (+) 91.40 35.27 80.53 49.05 99.56

ResNet50V2 [43] 6054 Pneumonia

8851 Normal

ResNet50 (applied CXR 219 COVID-19 (+) 92.25 92.35 92.47 92.41 96.12

in this work) 1345 Viral Pneumonia

1341 Normal

DeTraC [1] CXR 105 COVID-19 (+) 93.10 - 100 - 85.18

11 SARS

80 Normal

COVID-Net [58] CXR 358 COVID-19 (+) 93.30 98.90 91.00 94.78 95.67

5538 COVID-19 (-)

8066 Healthy

VGG-19 [5] CXR 224 COVID-19 (+) 93.48 93.27 92.85 93.06 98.75

700 Pneumonia

504 Healthy

ResNet18 [55] CXR 423 COVID-19 (+) 95.02 93.88 93.61 93.74 92.41

144 MERS

134 SARS

RYDLS-20 [41] CXR 1000 Normal 95.10 57.61 82.76 65.00 99.30

90 COVID-19 (+)

10 MERS

11 SARS

10 Varicella

12 Streptococcus
11 Pneumocystis

Proposed CXR 219 COVID-19 (+) 95.18 95.23 95.63 95.42 97.16
model 1345 Viral Pneumonia

1341 Normal

the available advanced activation functions. In the future,
the proposed work can be addressed using various sources
of data for COVID-19 diagnosis to compare the outputs
with the current CXR image outcomes. It is also possible to
get local CXR images of COVID-19 patients and evaluate
them using the proposed model. After the evaluation, the
proposed model can be deployed at local health centers.

7 Conclusion

In this study, a deep learning-based improved Snapshot
Ensemble technique is proposed to efficiently classify

COVID-19 CXR images. The proposed model takes
advantage of the popular transfer learning approach (e.g.,
ResNet50) for efficient deep feature extraction. The
proposed model enhanced the existing Snapshot Ensemble
technique by providing an improved Snapshot Ensemble
algorithm. The proposed model demonstrated efficient
performance in classifying COVID-19, viral pneumonia,
and normal CXR images. The model can obtain high micro
average multi-class accuracy of 95% (with 97% specificity
and 95% f1-score). The model can also obtain AU-ROC and
AU-PR values of 1.00 and 0.99 for the COVID-19 class.
Moreover, the model achieved a high f1-score compared
to several modern methods. These results clearly show that
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this model can assist in COVID-19 treatment and decision
making at critical stages.
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