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Abstract
Ensemble learning is an algorithm that utilizes various types of classification models. This algorithm can enhance the prediction
efficiency of component models. However, the efficiency of combining models typically depends on the diversity and accuracy
of the predicted results of ensemble models. However, the problem of multi-class data is still encountered. In the proposed
approach, cost-sensitive learning was implemented to evaluate the prediction accuracy for each class, which was used to
construct a cost-sensitivity matrix of the true positive (TP) rate. This TP rate can be used as a weight value and combined with
a probability value to drive ensemble learning for a specified class. We proposed an ensemble model, which was a type of
heterogenous model, namely, a combination of various individual classification models (support vector machine, Bayes, K-
nearest neighbour, naïve Bayes, decision tree, and multi-layer perceptron) in experiments on 3-, 4-, 5- and 6-classifier models.
The efficiencies of the propose models were compared to those of the individual classifier model and homogenous models
(Adaboost, bagging, stacking, voting, random forest, and random subspaces) with various multi-class data sets. The experimental
results demonstrate that the cost-sensitive probability for the weighted voting ensemble model that was derived from 3 models
provided the most accurate results for the dataset in multi-class prediction. The objective of this study was to increase the
efficiency of predicting classification results in multi-class classification tasks and to improve the classification results.

Keywords Ensemble learning .Multi-class data . Cost-sensitive learning . True positive

1 Introduction

Currently, the problem of Multiclass classification with deci-
sionmaking processes is a fundamental problem in supervised
learning which is an important problem in classify results by
multiple label-classes [1–3]. For example, the works [4–6]
applied to real-life situations such as text categorization, entity
recognition, and disease diagnose respectively. Therefore,
finding an appropriate method or strategy to solve the multi-
class classification problem is important. However, it is diffi-
cult to solve multi-class classification problems in order to the
scope of a decision for a problem is the decision-making pro-
cess probably be more complex than the problems of binary
classifications [7]. The decision-making process [4, 8–10] is
another problem that has been studied in this research. Part of
the decision to classify the result class of the data set. There is

often a problem with multi-class dataset data due to improper
classification of results due to the large collection and distri-
bution of class results. From the increasing number of multi-
class data sets Therefore, new machine learning algorithms
[11–13] need to be developed to improve the efficiency of
the results class prediction and find that there are multiple
learning models that can be used to solve the same problem
[14–16]. Ensemble learning is a machine learning process to
improve the efficiency of predictions [17–19]., [20] using a
strategy to combine multiple learning predictions and helps to
reduce the problem of inappropriate model selection by com-
bining all models. This method is popular and widely used to
improve performance than individual models [13, 21, 22].
According to the effectiveness of the ensemble learning meth-
od, it is necessary to create Creating a new ensemble model to
improve the model’s accuracy and stability [16, 20, 23]. The
main challenges of creating a new ensemble model are how to
combine strategy and methods. Determine the assigning
weight probability, which is the method preceding the final
class result classification process for multi-class data. In as-
pect of designing an efficient new ensemble model method
[24–26], there are 4 key points to be considered: dataset, based
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model, combination strategy and method of assigning proba-
bility weight. According to previous studies [16, 27, 28] the
researcher tends to not pay much attention to multi-class data
sets due to the multi-class classification. There is a complex
decision-making class classification results that are difficult to
manage [29]. To deal with this important problem, there are 2
mainmethods that are used to create classificationmethods for
multi-class data: The traditional base model method and the
ensemble model method. At the traditional base model meth-
od [30–40], the model used to classify the resultant class, such
as classifying the resultant class The nature of the decision
tree, which is the decision tree method [41], is used to predict
the pattern recognition class of the individual base model. [5,
42–44] Accuracy depends on the factors of the prediction of
the result of class [45]. Although the traditional base model
method can classify the result class in the case of multi-class
data sets, it has difficulty in the decision of classifying the
correct results class without information bias is greater than
the ensemble model. Therefore, the ensemble learning model
[46], is considered to be more appropriate for managing
Multi-class classification, complex results in which they can
improve the classification performance by using the combina-
tion method (multiple classifier) in machine learning [47–49].
Decision-making, the method of assigning weight (assigning
weight probability to class result) is one of the challenges for
classifying new result classes in multi-class data. [50–52]
Therefore, ensemble learning methodology has been consid-
ered for reducing class bias occurrence from classification
results [4, 53]. Maintaining good classification performance
comes from combining result classes. By determining the ap-
propriate probability weight and obtaining a higher classifica-
tion accuracy for multi-class data [54, 55]. The latest tech-
niques for the combination method are selection base model
and assigning method. Many studies [40, 56–58] attempt to
optimize the probability weight obtained from the prediction
of the class results from the ensemble model. It focuses on the
combination strategy process, which is a combination of
weighted voting methods, which is a method for assigning
appropriate weight values to classifications that do not affect
the effectiveness of the model and the accuracy of the classi-
fication is derived from the improvement of assigning weight.
In this step, the true positive value of the prediction of the
resulting class increases and decreases. The misclassified data
sets of multi-class data are compared to the base classification
model and traditional ensemble model [42, 50, 59]. Another
important problem is the lack of complete training samples in
the data set, which causes training data insufficient data and
the difficulty of using a combination strategy to combine
models to create good classification methods for multi-class
data. Therefore, recent work focuses on supervised machine
learning methods, including cost-sensitive methods.
Approach [57] in order to overcome the decision problem of
classifying the appropriate outcomes. Most jobs that provide

high accuracy (Measure the efficiency of the model by confu-
sion matrix methods including Precision, Recall, F-measure,
G-mean, and Accuracy). Only for multi-class data classifica-
tion that has more than 2 result classes, the accuracy resulting
from each the range of the number of classes. The result shows
that even if the dataset has more classes, which should not be
decrease the accuracy. While evaluating performance using
the confusion matrix method of the base classification model
and traditional ensemble model, the performance evaluation is
lower than the new ensemble model. This is possible because
of the information bias. The selection of the result class from a
single pattern without randomization appropriate randomiza-
tion results in incorrect results class predictions due to incor-
rect probability weight assignments. [5, 60, 61] Current work
is trying to improve the efficiency of the method combination
by setting cost new cost-sensitive weight (new assigning
weight) for more accurate probability weight of class result.

In our research, we present a novel supervised cost-
sensitive weighted based on Ensemble learning classification.
For process resolution decision-making of multi-class classi-
fication. The framework that we have proposed is cost-
sensitive probability weighted based on ensemble learning,
which differs from the initial classification work [42, 62] that
focuses on the pattern recognition of The classification of an
individual base model that does not take into account the
predisposition of the class result data obtained from predic-
tions from the model may lead to information bias. Complex
multi-class data without parameter adjustment prior to testing
data, making cost-sensitive probability weighted methods sta-
ble in the process [63] while achieving accuracy It must be
assessed by the efficiency of good classifying multi-class data.
In addition, the cost-sensitive methods weighted based on
ensemble learning that are presented are different from the
traditional ones that are usually simple votes. [5, 20, 42, 64].
Who use the weight voting method in the assigning probabil-
ity weight method because cost-sensitive weighted based on
ensemble learning. The key principle is to determine the new
weight of the final class result. It is used before the result class
classification procedure to help reduce the risk of bias data
management at the test samples from the base model integra-
tion, the proposed cost-sensitive weighted methods have been
tested on multi-class benchmark datasets and have been im-
plemented. The comparison of other state-of-the-art methods
demonstrates the effectiveness of the framework presented in
the areas of Precision, Recall, F-measure, G-mean and
Accuracy.

To conclude, our main contributions are four folds:

1. Our proposed method offers cost-sensitive weighted-
based on ensemble learning, which is a novel supervised
combination model based on Ensemble learning classifi-
cation Based onmachine learningmethods to improve the
classification of data from individual models to ensemble
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models for problem solving processes. The costed-
weighted approach is to learn multi-class samples without
adjusting the parameters of the base model, providing a
good evaluation of the model. Than the base model meth-
od and the traditional ensemble model.

2. Our proposedmethod presents the novel supervised learn-
ing of the cost-sensitive probability weighting ensemble
learning method, where the combination strategy elimi-
nates information bias from the decision to classify wrong
outcomes, which is a good way of consolidating when
that strategy gives value misclassified by decreasing.

3. The methods is used TPrate-weight, which is a novel
combination strategy from the improvement of the prob-
ability weight to combine the base model to provides a
better classification performance compared to the many
existing methods that are tested using benchmarks
dataset.

4. In this research, our proposed method present efforts to
improve the process decision-making for multi-class data
sets by suggesting the combination methods in the con-
structing ensemble model of the framework

2 Literature review

2.1 Ensemble model

The ensemble learning approach employs diverse classifica-
tion models to enhance the prediction efficiency on various
datasets. Although the individual models provide satisfactory
prediction accuracy and precision on the dataset, they are
sometimes confronted with the problem of bias when speci-
fying the dataset that is obtained from the prediction or spec-
ifying the parameter. One of the approaches to resolving the
bias is the joint decision approach, which is called ensemble
learning with one additional base classification model. The
decision is later combined via voting [64]. In this study,
weighted voting was deployed to enhance the efficiency in
predicting the classification model. Ensemble learning was
utilized in various research studies to enhance the prediction
efficiency. Reference [42] applied ensemble learning to multi-
class ensemble classification and proposed the Kalman-filter-
based heuristic ensemble (KFHE). Based on this approach,
ensemble learning was conducted during the final procedure.
The data were deployed with Kalman filters to combine var-
ious individual models with multi-class classification. The
experiment compared the KFHE and the original ensemble
model and calculated the efficiency of KFHE for testing data
without noise and data with noisy class labels. The KFHE
realized a significantly better value.

Ensemble learning has also been used to enhance the effi-
ciency of classifiers. In reference [5], natural language

processing (NLP) was conducted via ensemble learning,
which employed the voting technique to combine classifiers
for named-entity recognition. This approach was crucial for
NLP. This study recommended two solutions for generating
the ensemble model, which differ in terms of their effects in
enhancing the efficiency. It was hypothesized that the reliabil-
ity of predicting each classifier differed among the output
classes. Therefore, the ensemble system must search for each
class that was most suitable for the classifier through voting,
such as binary voting. Additionally, it must determine the
number of votes for each class for the single classifiers, such
as the real votes. The applied model classified and selected
without domain knowledge or language-specific resources.
The results for each language demonstrated that multi-
objective optimization (MOO) with real voting could yield
higher efficiency than the individual classifiers in the ensem-
ble. For selecting a suitable weight, all the parameters should
be set to the most suitable values at the same time. To realize
this objective, multi-objective optimization was implemented
to enhance the efficiency in evaluating the quality of one ad-
ditional classification.

In addition to improving the efficiency of machine learning
via ensemble learning, reference [20] deployed extreme learn-
ing machines to improve the efficiency of the classification
model via an advanced ensemble with various models.
Extreme learning was efficient in its general operation.
However, overfitting of the training data could be likely. To
resolve the problem of low efficiency, a heterogeneous en-
semble was implemented. This study proposed the advanced
ELM ensemble (AELME) for classification. This approach
was comprised of the regularized ELM, the 2-norm-
optimized ELM (ELML2), and the kernel ELM. The ensem-
ble was generated by training the ELM classifier, which was
randomly selected on a subset of the training data with resam-
pling. The resampling subset was selected for the classifica-
tion of the training data. Each classifier was learned for
selecting the data subset randomly via the ELM algorithm.
The AELM-Ensemble was developed using the objective
function to increase the diversity and accuracy in the group
of the final ensemble. The class labels of the unseen data were
predicted via majority voting, which were combined with the
predictions from ensembles in AELME. The results of the
study demonstrate that AELME yielded higher accuracy than
the other models on benchmark datasets. Classifying the train-
ing data of the subset and combining heterogeneous ELM
classifiers yielded high accuracy in the overall operation.

Moreover, in multi-objective optimization, ensemble learn-
ing is typically used to increase the efficiency of the classifier.
Reference [4] conducted a sentiment analysis. An ensemble
was generated via the weighted voting of multi-objective
methods that are based on the differential evolution algorithm
for text sentiment classification with supervised machine
learning. Most approaches that employ ensemble learning
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for sentiment analysis manage the features to enhance the
prediction efficiency. The study attempted to develop a
multi-objective method by increase the efficiency via a
weighted voting scheme to fix the suitable weights for each
classifier and output class to increase the prediction efficiency
for all the algorithms and the sentiment classification. Thus, a
multi-objective differential evolution algorithm (MODE) was
implemented in this study. Several mutation operators were
applied to enhance the efficiency of the differential evolution
algorithm. The weight of each classifier for each output class
was prescribed by the MODE algorithm, whereas the weight
of each classifier for each output class was combined by the
ensemble to yield the final prediction for each output class.

Ensemble learning is one of the learning algorithms that
has the highest efficiency in supervised learning with groups
of models. The prediction strategy is to combine the predic-
tions that are derived from multiple learning algorithms to
generate the final result [65] and to increase the prediction
efficiency [17]. The ensemble learning model utilized the ad-
vantages of each base model when combining the models.
Then, the resulting model was utilized to generate the final
result by combining the subdivisions from the prediction [66].
The model that combines the learning models was regarded as
an efficient approach for improving the classification perfor-
mance, and it realized outclassed management with a small
sample size, high dimensionality, and data with complicated
structures, such as the individual models [67]. Furthermore,
ensemble learning was one of the machine learning ap-
proaches that was deployed to combine models to improve
the result of each individual model. This approach relies on
the combination of the output of sets of learning models ac-
cording to specified rules to obtain a better model than an
individual learner [68]. Ensemble learning is regarded as an
efficient machine learning technique, which is comprised of
diverse components for a single task instead of various sub-
tasks. Later, the base learning machines were combined to
form ensemble learningmachines. Compared to the individual
algorithms, it was found that the ensemble techniques could
reduce the error in determining the mean and combine the
multiple classification models to reduce overfitting of the
training data. Many research studies have demonstrated the
efficiency of ensemble learning, which is an easy technique.
In addition, they indicated that ensemble learning realizes
higher efficiency than the individual algorithms with the same
complexity [27]. Ensemble learning is the combination of the
outputs of sets of learning models according to specified rules
to obtain a better model than single learners. Ensemble learn-
ing has been widely implemented in applications such as im-
age recognition, speech recognition, and industrial process
monitoring. Ensemble learning consists of two main proce-
dures: The first procedure involves training. The ensemble
model is derived from the base learning algorithms. The sec-
ond procedure involves prediction. The output of the model is

combined to generate the decision. The selection of the en-
semble model can be divided into two stages:: The first stage
fixes the functions or criteria for evaluating and ranking the
model. The second stage deploys a search algorithm to search
the group for the best model. The performances of ensemble
methods depend on the training data. A severe problem of the
ensemble learning algorithm during the stage of learning is
maintaining the performance without duplicating the base
model. In generating a different model from the feature space,
the base models did not reduce the accuracy compared to the
individual model, whereas the efficiency of all the ensemble
models was enhanced [69]. Regarding ensemble learning, six
vital techniques have been employed for analysis. However,
the homogenous model is used as a technique for ensemble
learning by voting from the separation data. The traditional
homogenous model is described as follows.

2.1.1 AdaBoost (adaptive boosting)

AdaBoost [31, 70, 71] is a machine learning algorithm and one
of the approaches that has been derived from ensemble learning.
The approach combines weakmodels from various classification
models. The main strategy of the AdaBoost algorithm concerns
the generation of the model weights and sample weights. Once
in the process of repeated training, themodelweights and sample
weights were trained by the weak model. The weights of the
samples, which were inaccurately predicted, would increase to
focus on the next training step. The model weights were calcu-
lated based on the error rate of each weak model.

2.1.2 Bagging (bootstrap aggregating)

Bootstrap aggregating (bagging) [72–75] is one of the primary
ensemble methods that uses bootstrap sampling. With bag-
ging, the ensemble, as a homogeneous ensemble, was com-
bined to generate the prediction model with data resampling.
Bagging was used to generate a subset for resampling, and
aggregating was used to generate a subset for bootstrapping.
The main objective of bagging was to reduce the error from
the variance of the unstable base classifier.

2.1.3 Stacking

Stacking [16, 76, 77] is an approach that combines models.
Stacking was deployed to reduce the error rate by reducing the
bias in the data. The main strategy of stacking is to combine
the outputs of various prediction models.

2.1.4 Random forest

A random forest [29, 78–80] or a random decision forest is an
ensemble learning method for classification and regression.
Moreover, random forest was one of the most powerful and
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successful machine learning algorithms and combined the di-
versity of randomized decision trees and prediction via
averaging.

2.1.5 Random subspace

Random subspace [28] was proposed in a decision forest.
Random subspace consists of multiple decision trees that are
generated in multiple random subspaces, which are combined
to form a classifier. Random subspace was the approach of the
classifier ensemble, which was deployed to resolve the problems
of noise and more redundant data than the single classifier. The
random subspace of the training dataset was improved similarly
to bagging. This improvement was conducted in the feature
space, especially in the instance space. This approach was de-
rived from the random subspace for generating the base classifier
when the dataset had complicated or irrelevant properties.

2.1.6 Voting

Voting [62] is regarded as the easiest approach for combining
individual classification algorithms. To select the rules for
combining the classifier ensemble, voting is the decision rule
for selecting a single class out of several alternatives. Voting
predicts the class via majority voting. Voting is the approach
that is most frequently implemented in ensemble learning. The
pattern of voting includes unweighted and weighted voting.
Unweighted voting involves simple voting or majority voting,
while weighted voting involves simple weighted voting.

A literature review summary is presented in Table 1. The
base learner model depends on the experimental data. For
model combination, a strategy of combining the predictions
of the classifications that are made is applied to the ensemble.
There are two main types of ensembles: homogeneous ensem-
bles and heterogeneous ensembles (Fig. 1).

Homogeneous ensembles used the same learning algo-
rithm, whereas, heterogeneous ensembles use various learning
algorithms, such as the classifier combination model. As an
example of the research of Zhibin Wu et al. [73] in which the
heterogeneous ensembles ensembles are constructed from two
basic methods in comparing the model’s performance. Thus,
creating models using the principles of a traditional ensemble
model is the bagging method. By creating the ANN model as
the 1st ensemble model and the SVM model as the 2nd en-
semble model, these methods will be combined. A sample
voting technique to create a new ensemble model, then com-
pare to find the best method.

3 Proposed framework

Our proposed framework is a type of heterogeneous ensemble.
This study focused on enhancing the efficiency of the data

classification. Several classification models are typically
employed for the test, such as the naive Bayes, multilayer
perceptron, and decision tree models. These approaches were
employed to evaluate the efficiency to identify the best ap-
proach. The model that was tested by those methods was called
the base classifier model. The efficiency of the base classifier
model was evaluated to identify the best approach. It was pos-
ited that best approach for the dataset depended on the attri-
butes of the input dataset. Therefore, the strategy of testing the
base models resulted in testing of the ensemble model, which is
a combination of various models, to obtain a model with higher
efficiency in testing the datasets and with higher accuracy. This
study used a dataset with multiple data types to evaluate the
efficiency and probability of the most suitable class and could
encourage the dataset to realize the best accuracy. To combine
the models, the base model was used to generate an ensemble
model for obtaining the predicted class and the weights for
calculating and combining the models. The weights from the
probability of the class occurrence were calculated with the true
positive (TP) rate, which measures the reliability of the class
that was predicted by the model in comparison with the actual
class. In addition, our purposed model uses the reliability rate
as a parameter of the probability weight model to select a class.
Before generating the model, the dataset was pre-processed.
This procedure prepared the dataset before model testing. In
this research study, the test for model efficiency was divided
into three parts, namely, testing of the base model, the original
ensemble model, and the proposed new ensemble model or the
TPweight-voting ensemble model that consists of 3TP-
Ensemble, 4TP-Ensemble, 5TP-Ensemble and 6TP-
Ensemble. All the models, starting with the base model, consist
of six models: the decision tree, k-nearest neighbours, support
vector machine, multilayer perceptron, naive Bayes, and
Bayesian network approaches. The base model was regarded
as the beginning model for generating each new ensemble
model. Next, the original ensemble model, which was com-
prised of another six approaches, namely, AdaBoost, bagging,
random forest, random subspace, stacking, and voting, is pre-
sented. The models were combined via the traditional ap-
proach. Finally, the new ensemble model, namely, the
TPweight-voting ensemble model, is presented. This model
consists of four approaches: the 3TP-Ensemble model, the
4TP-Ensemble model, the 5TP-Ensemble model and the 6TP-
Ensemble model. The TPweight-voting ensemble model con-
sists of the base model and realizes improved prediction per-
formance by combining various datasets into a new model to
increase the prediction efficiency. This study aims at develop-
ing a more efficient model for multi-class classification datasets
than the original individual models. In this study, the original
ensemble models were compared.

Before the data are input for the test, they are pre-proc-
essed. The procedure for preparing the data before testing is
as follows: First, various datasets that were derived from the

A. Rojarath and W. Songpan4912



UCI dataset (Center for Machine Learning and Intelligent
Systems) were input for testing. Before testing the model with
the datasets, the datasets were handled in two steps. The first
step involved preparing the data. This step started with data
cleaning, which involved cleaning the data and deleting the
instances with large amounts of missing data. The second step
replaced the missing values via imputation to make the data
smoother. The final data preparation stage was data transfor-
mation. This stage transformed the data type according to the

testing input pattern of the classification model. Part of the
input data described the input attributes. Each dataset contains
two or more classes to facilitate learning in multi-class classi-
fication problems. After adapting the datasets, the classifica-
tion models were tested, and the obtained accuracy values
were compared to identify the best approach for testing on
the multiple datasets after the input data were suitably man-
aged for testing with the classification model as the basis for
generating the new ensemble model.

Table 1 Literature classification according to the base learner and the use of homogeneous and heterogeneous ensembles

Year Authors Datasets Base learner Homogeneous Heterogeneous

2014 Monther Alhamdoosh, Dianhui
Wang [69]

9 datasets on regression tasks from UCI ANN x

2015 Jingjing Cao, Sam Kwong, Ran
Wang, Xiaodong Li, KeLi,
Xiangfei Kong [64]

20 UCI data sets and Finance event
series data

CSSV-based ELM algorithms
(class-specific soft voting)

x

2016 Aytu ˘g Onan et al. [4] 9 public sentiment analysis datasets NB, SVM, LR, BLR, LDA x

2016 Hamit Erdala et al. [74] Publicly available dataset that was
supplied by the Turkish Supervisory
Body (BDDK)

Dstump, Rtree, REPTree x

2017 Adnan O. M. et al. [20] 10 diverse datasets from a machine
learning repository (UCI)

Svm (LibSVM) x

2018 Zhen-Ya Wang, Chen Lu, Bo Zhou
[67]

datasets that were collected from a
rotary actuator system

PNNs: probabilistic neural
networks (feedforward
neural networks)

x

2018 Diego P.P. et al. [27] 2 sets real-world datasets from the UCI
Machine Learning repository

RNN x

2018 Mücahid Barstug˘an et al. [71] ECG signals from the MIT Arrhythmia
Database

SVM x

2018 Haoyuan Hong et al. [72] a landslide inventory mapwith a total of
237 landslide locations

DT x

2018 Zhibin Wu et al. [73] five climate zones in China and the
location of Changsha city

ANN, SVM (Bagging) x

2018 Jing Gu et al. [28] four UCI benchmark clustering datasets KNN x

2019 Arjun Pakrashi, Brian Mac Namee.
[42]

30 UCI datasets. Kalman-filter-based heuristic
ensemble (KFHE)

x

2019 Pablo Pérez-Gállego et al. [65] 32 datasets AG, PAG, HDy (selective
method)

x

2019 Zhixiong Li, Dazhong Wu, Chao
Hu, Janis Terpenny [17]

218 testing data sets of the 2008 IEEE
PHM Data Challenge

particle filters (PFs), Kalman
filter and hidden Markov
model

x

2019 A. Galicia et al. [66] Australian solar photovoltaic data DT, GBT, RF x

2019 Junhua Zheng, Hongjian Wang,
Zhihuan Song, Zhiqiang Ge [68]

Industrial benchmark K-NN x

2019 Yuyan Wang et al. [16] Prostate cancer dataset DT, SVM, RBF x

Fig. 1 Categories of Ensemble classifier models. (a) Homogeneous ensemble. (b) Hetorogeneous ensemble
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Figure 2 illustrates that the overall generation of the new
ensemble model, which is comprised of two main parts: base
model classification and ensemble model classification. The
first part involves selecting a suitable model for combining
and generating the new ensemble model. The second part
generates the new ensemble model and is divided into two
procedures. The notations that are used in this paper are pre-
sented in Table 2. The framework imported of multi-class
dataset which has the data set divided into 2 sets, Training
dataset and Testing dataset, then import and test with the
based model. The reason why the proposed model used train
and independent splitting in order to the training set is a set in
which the model uses the imported dataset train to verify and
assess the accuracy of the model. However, to measure error
using data set is independent of all the data for choosing the
best model which is simulation to real case study. The split
independent train-test data has advantage with case of many
attributes to be consider many classes in the experiment. The
independent data splitting method will be not bias and
overfitting when is considered and applied to real situation
that shown the robustness of this methodology. In addition,
it will be in the selection process based model. When prepa-
ration of testing data into the model, at this stage, the accuracy
and predicted result will be obtained in Fig. 3.

After obtaining the correctness, the next step will select the
based model to create a new ensemble model and also will
combine strategy with the base model that work together.
Eachmodel from the testing dataset have predicted class result
of each model. The Classn value from this process is in the
process of generating the heterogenous ensemble model, in
which each classes are assigned a new Weight value for each
class result. The equation is ProbCn*Combine strategyCn.

This results in the Probability weight of the class result mul-
tiplied by the method or strategy used to combine the models.
Combine strategyCn is divided into four methods: Combine
strategyCn with TP rate, Recall, Precision, and Fmeasure. For
example, the method presented by the research is Combine
strategyCn with TP rate-weight, which details the creation of
the heterogenous ensemble model and the calculation exam-
ple as shown in Fig. 4.

Figure 4 shows the TP weight class calculation process,
which contains a combination strategy by using TP rate, cal-
culated with the probability of class result (probability
weight). This method is caused by a combination of a variety
of base models to achieve a newweight Class N. For example,
the probability value of class N generated by a model M and
multiplies with the TP rate of class N from model M.

The principle of TP-rate calculation is to calculate the value
of the model that the class is actually accurately predicted
value from 0 to 1. The true positive calculation of the class
is divided by the total number of that class, where True pos-
itive is the relative value of the predicted class result and actual
class result when the predicted class only meets the actual
value. The result of class from the calculation was example
that shown how to calculate the new weight of class as Fig. 5:
Christian was calculated, the TP rate of 0.667 is derived from
the predicted value of model1. In addition, model1 as bayse
model was given the probability value that were from 0 to 1
which was 0.211. The new weight of model1 of class 1 as
probability weigh of m1 mulplies with TP rate fo class1 as
0.141 approximatly.

After that the processes find the new weight class of all
classes in that datasets when calculating to find all new weight
classes that have occurred, therefore, The further calculated

Fig. 2 Overview of the Newweight-voting ensemble model
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for the TP weight ensemble model method will be created a
ensemblemodel, if the number ofmodel N is 3 the newweight
class of m1 to m3 shown 3 TP-weight Ensemble model in
Fig. 6. The TP weight ensemble model is an example of a
combination of 3 based models, which called the 3TP-weight
ensemble model method. The 3TP-weight were composed of

mlp, svm and bayes methods. The Christian class was calculat-
ed as new weight class of Christian from mlp model are com-
bined with new weight class from Christian of svm model and
new weight class of Christian from bayes model. For example,
the 3TP-weight ensemblemodel is 0.287 by the 9th instances of
classes: Christian with the 3TP-weight ensemble model was

Fig. 3 Instance of corerectness
TP rate

Table 2 Description of notations
for generating the heterogenous
ensemble model

Notation Description

cm class set, where m in the number of classes in each dataset that is generated in the testing samples

dw predicted result set, where w refers to the total number of instances in the testing dataset

et set for the TPweight model, where t refers to the number of generated TPweight ensemble models

fk set for the Fmeasure-weight model, where k refers to the number of generated Fm-weight ensemble
models

Fr Fmeasure-weight ensemble

gw Set of Newweight class, where w is the number of instances in the testing dataset (Ts)

Mn base models

mb number of base models for testing

nd set for the New-weight model, where d refers to the number of generated New ensemble models

nu training sample set, where u is the total number of instances in the training dataset

pe set for the Precision-weight model, where e refers to the number of generated Prec-weight ensemble
models

Prr Precision-weight ensemble

Pw probability value set, where w refers to the total number of instances in the testing dataset

rc set for the Recall-weight model, where r refers to the number of generated Rec-weight ensemble
models

rw true-positive rate

Rr Recall-weight ensemble

sw sample set, where w is thel total number of instances in the testing dataset

tj Combination strategy, where j refers to the total number of strategies

Tn training dataset

Ts testing dataset

Tw set of weights that were derived from the TPweight set, where

w refers to the total number of instances in the testing dataset

Tr TP rate

Trw TPweight values

wd set for the Newweight model, where d refers to the number of generated New ensemble models
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maximum value. Therefore, the TP weight is calculated of each
class, which will be calculated as the WeightCn value of each
class result from each model, the WeightCn value is the new
probability weight for each class result and then use the weight
averaging method to combine the WeightCn of each class from
each model to get a NewWeight_Cn and select the class that

has the maximumNewWeight_Cn to be the final class result of
new ensemble model.

The process of creating a new ensemble model can be
described in 4 steps as follows: Firstly, the models are com-
bined by assigning weights to the predicted class. Secondly, a
suitable class for generating another new ensemble model is

Fig. 4 Process of TP-rate weight ensemble model

Fig. 5 Example of prediction
with TP-rate weight ensemble
model
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Fig. 6 Process of the TP weight voting ensemble model
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identified in the voting stage. The overall procedure is de-
scribed in Algorithm 1.

Algorithm 1 provides an overview of all the processes in the
construction of the Newweight-voting ensemble learning model.
First, the dataset was input. The dataset was divided into two
parts: the training dataset, which is denoted by Tn, and the testing
dataset, which is denoted by Ts. The process of generating the
Newweight-voting ensemble learning model was divided into
two main procedures: generating the base model and generating
theNewweight model. Building the new ensemblemodel begins
with the generation of the base model. The model set M= (m1,
m2,…, mb), where b is the number of base models for testing, is
generated. Another process involves selecting the model based
on the accuracy on the testing dataset (Ts). Algorithm 2 presents
the procedure for selecting the model for generating the new
ensemble model, which results in the base model that is used
in the process of combining themodels. In the second procedure,
the Newweight model was generated by generating a set of
weights from the Newweight set W. In addition, a set of proba-
bilities was generated, where the probability value set is P= (P1,
P2,…, Pw) and w refers to the total number of instances in the
testing dataset (Ts). Moreover, the set for the Newweight model
(w1, w2,…, wd) was generated, and d refers to the number of
generatedNew ensemblemodels. InAlgorithm 3, the calculation
function for theNewweight ensemblemode is implemented. The
class with the largest Newweight was selected as the classifica-
tion result of the Newweight-voting ensemble model, as present-
ed inAlgorithm 4. Then, themodel obtains Newweight, which is
the probabilityweight that is selected as the suitableweight of the
new class for the New ensemble result in every sample set (Ts).

The final result that is obtained from all the processes is the
Newweight-voting ensemble learning model.

Algorithm 2 describes the selection of the base model for
the process of combining the models. In this step, the training
dataset was input, where the training sample set is N= (n1,
n2,…, nu) and u is the total number of instances in the training
dataset. The testing dataset contains the sample set S = (s1,
s2,…, sw), where w is the total number of instances in the
testing dataset from the class set C= (c1, c2,…, cm), in which
m in the number of classes in each dataset that is generated
from the testing samples (S) and the accepted accuracy value.
In the step of selecting the model, the generated base model
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accepted the probability set P = (P1, P2,…, Pw) and the pre-
dicted result set D= (d1, d2,…, dw) that was derived from the
probability of classifying the testing sample set (Ts). For gen-
erating the base model, the actual class and the predicted class
from the samples in Tswere considered. The accuracy value is
equal to the number true positives in the dataset multiplied by
one hundred. Then, the obtained result is divided by the num-
ber of observations in the testing set (S). Having calculated the
accuracy value of the base model, the model use to generate a
new ensemble model, which was selected by sorting all the

models in descending order of their accuracy values. The step
of selecting the model for the combination involves deleting
the base model that has the lowest accuracy. The base models
were repeatedly deleted until three models remained; these
models were combined. Thus, the model combination was
the 3new-Ensemble, 4new-Ensemble, 5new-Ensemble and
6new-Ensemble model. After generating the base model and
obtaining the accuracy value for selecting the base models, the
final result was the various models for generating the
Newweight-voting ensemble model.

Algorithm 3 presents a process for calculating weight in the
new ensemble model. The traditional weight is replaced by the
new weight from the combination strategy that consists of 4
methods for determining the new weight. Traditional base
model combined with TP-weight method, Precision-weight,

Recall-weight and Fmeasure-weight method.The input data in
this process were the testing sample set S = (s1, s2,…, sw),
which was calculated for generating the ensemble model with
the class set (C) and probability set (P) that were derived from
the testing sample set (Ts). Next, the base model set M= (m1,

Cost-sensitive probability for weighted voting in an ensemble model for multi-class classification problems 4919



m2,…, mb) is accepted, where b is the number of tested base
models. Algorithm 3 begins by calculating the probability
values (P) of the sample set (S) via the measure for each
model, and the values were between 0 and 1. The collection
of probabilities is expressed in Eq. 1. The class result is pre-
dicted with the base model (M), and the prediction result set
D= (d1, d2,…, dw) of the testing sample (Ts) is generated. This
process results in the actual class and the predicted class.

Prob Cm1
1

� �
; Prob Cm2

2

� �
;…; Prob CmN

N

� �� � ð1Þ

True Positive rate-weight ensemble learning is a method in
which various factors Comes from the rate that the class pre-
dicted correctly. The TP rate was calculated and used to de-
termine the new weight of the new ensemble model, namely,
TP-weight. The procedure for calculating the TPweight values
by considering the probability of the class result from the
prediction model multiplied by the weight, which was derived
from the calculated TP rate (Trw) of each testing sample (Ts).
The TP rate was calculated from the number of predicted
classes that corresponded to the actual class in each sample
set divided by the total number for all classes, as expressed in
Eq. 2, from the confusion matrix in Table 3.

Trmi
ci ¼ TPClass Cm1

1

Nm1

� �
;

TPClass Cm2
2

Nm2

� �
;…;

TPClass CmN
N

NmN

� �� 	

ð2Þ

To combine the models, the TP-weight values of each class
were combined through the average weight, which combined
the TP-weight from each model to determine the suitable class
with the largest TPweight. The class became the TP-weight
class ensemble result. The TP-weight class can be calculated
via Eq. 3.

TPweight Cmi
i

:

max
1≤n < Ci

TPweight Cmi
i > α; f xð Þ ¼ f bx


 �

1

mi
*∑mi

i¼1 Probmi
Ci
*TrmCi


 �

8
><

>:
ð3Þ

For every class (C) in the TP-weight class ensemble result,
an equation for the probability set P = (P1, P2,…, Pw) was
obtained, where P was a set of probabilities of the class that
were derived from the base model. The probability was mul-
tiplied by the weight from calculating the TP-weight values
(Tr). The weight from the result that the model could correctly
predict (D) was compared to the actual results of the testing
samples (Ts), where w is the number of instances in the testing
dataset (Ts) divided by the number in the base model set
M= (m1, m2,…, mb), in which b is the number of base models
that are used in the test to generate the ensemble model.

Precision-weight ensemble learning is a method in which
various factors Comes from measuring the accuracy of the
model by considering class by class. The Precision was calcu-
lated and used to determine the new weight of the new ensem-
ble model, namely, Precision-weight. The procedure for calcu-
lating the Precision-weight values by considering the probabil-
ity of the class result from the prediction model multiplied by
the weight, which was derived from the calculated Precision
(Pr) of each testing sample (Ts). Precision can be calculated
from the ratio of the rows that the class predicted correctly
based on the actual class. As for the total number of rows from
the class result that is predicted correctly and incorrect predic-
tion of the class being considered. Which will look for every
class, the results in the import data set as in Eq. 4.

Precmi
Ci

¼ TPClass Cm1
1

TPm1 þ FPm1

� �
;

TPClass Cm2
2

TPm2 þ FPm2

� �
;…;

TPClass CmN
N

TPmN þ FPmN

� �� 	
ð4Þ

To combine the models, the Precision-weight values of
each class were combined through the average weight, which
combined the Prec-weight from each model to determine the
suitable class with the largest Prec-weight. The class became
the Prec-weight class ensemble result. The Prec-weight class
can be calculated via Eq. 5.

Precweight Cmi
i

:

max
1≤n < Ci

Precweight Cmi
i > α; f xð Þ ¼ f bx


 �

1

mi
* ∑
i¼1

mi

Probmi
Ci
*PrecmCi


 �

8
>><

>>:
ð5Þ

Table 3 Confusion matrix table for each model

#Dataset = N Predicted class1 Predicted class2 … Predicted classN

Actual class1 TPclass1
(#True Positive with class1)

FNclass2(#False Negative with
class1as class2)

... FNclassN
(#False Negative with class1 as class N)

Actual class2 FNclass2
(#False Negative with class2 as class1)

TPclass2
(#True Positive with class 2)

... FNclassN
(#False Negative with class2 as classN)

Actual classN FNclassN
(#False Negative with class N as class1)

FNclassN(#False Negative with class
N as class2)

TPclassN
(#True Positive with class N)
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For every class (C) in the Prec-weight class ensemble re-
sult, an equation for the probability set P= (P1, P2,…, Pw)was
obtained, where P was a set of probabilities of the class that
were derived from the base model. The probability was mul-
tiplied by the weight from calculating the Prec-weight values
(Prr). The weight from the result that the model could correct-
ly predict (D) was compared to the actual results of the testing
samples (Ts), where w is the number of instances in the testing
dataset (Ts) divided by the number in the base model set
M= (m1, m2,…, mb), in which b is the number of base models
that are used in the test to generate the ensemble model.

Recall-weight ensemble learning is a method in which var-
ious factors Comes frommeasuring the accuracy of the model
by considering class by class. The Recall was calculated and
used to determine the new weight of the new ensemble model,
namely, Recall-weight. The procedure for calculating the
Recall-weight values by considering the probability of the
class result from the prediction model multiplied by the
weight, which was derived from the calculated Recall (Rr) of
each testing sample (Ts). The Recall value can be calculated
from the ratio that the class predicts correctly to the actual
class values. The total number of rows that the class predicts
is incorrect and is not considered combined with all the cor-
rectly predicted rows, which will be finding the resulting class
in the imported data set, as in Eq. 6.

Recmi
Ci

¼ TPClass Cm1
1

TPm1 þ FNm1

� �
;

TPClass Cm2
2

TPm2 þ FNm2

� �
;…;

TPClass CmN
N

TPmN þ FNmN

� �� 	
ð6Þ

To combine the models, the Recall-weight values of each
class were combined through the average weight, which com-
bined the Rec-weight from each model to determine the suit-
able class with the largest Rec-weight. The class became the
Rec-weight class ensemble result. The Rec-weight class can
be calculated via Eq. 7.

Recweight Cmi
i :

max
1≤n < Ci

Recweight Cmi
i > α; f xð Þ ¼ f bx


 �

1

mi
* ∑
i¼1

mi

Probmi
Ci
*RecmCi
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8
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>>:
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For every class (C) in the Rec-weight class ensemble
result, an equation for the probability set P = (P1, P2,…,
Pw) was obtained, where P was a set of probabilities of
the class that were derived from the base model. The
probability was multiplied by the weight from calculating
the Rec-weight values (Rr). The weight from the result
that the model could correctly predict (D) was compared
to the actual results of the testing samples (Ts), where w is
the number of instances in the testing dataset (Ts) divided
by the number in the base model set M= (m1, m2,…, mb),
in which b is the number of base models that are used in
the test to generate the ensemble model.

Fmeasure-weight ensemble learning is a method in which
various factors is derived from the weights of the probability
of occurrence of the resulting class. The F-measure was cal-
culated and used to determine the new weight of the new
ensemble model, namely, Fm-weight. The procedure for cal-
culating the Fm-weight values by considering the probability
of the class result from the prediction model multiplied by the
weight, which was derived from the calculated F-measure (Fr)
of each testing sample (Ts). The F-measure can be calculated
from the combination of the performance indicators of the two
class result classification: precision and recall. The F-measure
shows the average measurement of the accuracy and accuracy
of that class can be calculated. Can be obtained from the
following equation, where the F-measure is equal to the pre-
cision multiplied by the recall value multiplied by 2 times the
precision combined with the recall value as in the 8th equation

F−Measure ¼ 2� precision� recall
precisionþ recall

ð8Þ

To combine themodels, the Fm-weight values of each class
were combined through the average weight, which combined
the Fm-weight from each model to determine the suitable
class with the largest Fm-weight. The class became the Fm-
weight class ensemble result. The Fm-weight class can be
calculated via Eq. 9.

Table 4 Description of the
datasets UCI data set # of Attributes # of Instances # of Classes Data Types

Balance Scale 5 625 3 Integer

Eucalyptus Soil 20 736 5 Integer, Text

Grass Grub 9 155 4 Integer, Text

Lymphography 16 148 4 Text

Mushroom 23 8124 7 Text

Car Evaluation 7 1728 4 Text

Flags 30 129 8 Integer, Text

Urban Land Cover 148 675 6 Integer

Vehicle 19 846 4 Integer

User Knowledge 6 403 4 Integer
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Fmweight Cmi
i

:

max
1≤n < Ci

Fmweight Cmi
i > α; f xð Þ ¼ f bx
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For every class (C) in the Fm-weight class ensemble result,
an equation for the probability set P = (P1, P2,…, Pw) was
obtained, where P was a set of probabilities of the class that
were derived from the base model. The probability was mul-
tiplied by the weight from calculating the Fm-weight values
(Fr). The weight from the result that the model could correctly
predict (D) was compared to the actual results of the testing

samples (Ts), where w is the number of instances in the testing
dataset (Ts) divided by the number in the base model set
M= (m1, m2,…, mb), in which b is the number of base models
that are used in the test to generate the ensemble model.
According to the equation, the number of classes with class
n starts with n = 3, where n is the number of the class that was
tested in the dataset, with at least three classes for the test with
the objective of determining the multi-class classification re-
sults. Then, the class for which the combination strategy
weight including the TP-weight, Prec-weight, the Rec-
weight and the Fm-weight that exceeds α, which a threshold
parameter that is set to 0.8 to yield the maximum accuracy rate
in this study, was voted as the Newweight class of the
Newweight -voting ensemble learning model.

Table 5 Parameter settings for each algorithm

Algorithm Abbreviation Parameter settings

Naive Bayes NB useKernelEstimator = False

Multilayer Perceptrons MLP hiddenLayers = a
learningRate = 0.3
trainingTime = 500

Bayesian Bayes estimator = SimpleEstimator -A 0.5
searchAlgorithm =K2 -P 1 -S BAYES

Support Vector Machine SVM c = 1
filter type = Normalize training data
kernel = PolyKernel

Decision Trees DT confidenceFactor = 0.25
numFolds = 3
unpruned = False

K-Nearest Neighbours k-nn KNN= 1, 3, 5
crossValidate = False
distanceWeighting = No distance weighting
meanSquared = False
nearestNeighbourSearchingAlgorithm = LinearNNSearch -A
distanceFunction = EuclideanDistance -R first-last

K-Nearest Neighbours k-nn KNN= 1, 3, 5
crossValidate = False
distanceWeighting = No distance weighting
meanSquared = False
nearestNeighbourSearchingAlgorithm = LinearNNSearch -A
distanceFunction = EuclideanDistance -R first-last

Adaptive Boosting Adaboost classifier = DecisionStump
numIterations = 10
weightThreshold = 100

Bootstrap Aggregating Bagging classifier = REPTree, minNum= 2.0, minVarianceProp = 0.001, numFolds = 3
bagSizePercent = 100
numIterations = 10

Random Forest RF maxDepth = 0
numTrees = 10

Random Subspace RS classifier = REPTree, minNum= 2.0, minVarianceProp = 0.001, numFolds = 3
numIterations = 10
subSpaceSize = 0.5

Stacking – metaClassifier = Zero
numFolds = 10

Vote – combinationRule =Average of Probabilities

Naive Bayes NB useKernelEstimator = False
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After the calculation in Algorithm 3, the new weight was
obtained. The combination strategy set T, was generated, and
every sample set (Ts) in each model was calculated. Then, the
models were combined by the new-weight ensemble model set
T= (t1, t2,…,tj), where j refers to the total number of strategies. In
the final process, The new weight ensemble was calculated con-
tinuously until the number of new weight ensemble values in the

testing sample set S= (s1, s2,…, sw) was equal to the number in
the testing dataset (Ts). The obtained Newweight ensemble was
deployed to determine the Newweight ensemble class by the
Newweight ensemble-voting maximum class. The results of this
process were the Newweight ensemble values of each class,
namely, each class of every model had a new weight that was
derived from the new ensemble model.

Algorithm 4 describes the process of selecting the Newweight
class that has the largest weight as the classification result of the
Newweight -voting ensemble learningmodel. The input data con-
sist of the testing samples (S) and the class (C) of the testing dataset
(Ts). Moreover, the sets of the base model (M) and Newweight
(W)were input. The procedure of selecting the weight started with
the selection of the largest Newweight values that were calculated
from every class compared to all the classes in the dataset and
from every sample set (S). Next, the Newweight class setG= (g1,
g2,…, gw) was generated. This procedure generates a new class
ensemble result set (G), where g is the new class that is obtained
by calculating the Newweight values and w is the number of
instances in the testing dataset (Ts). This procedure results in
new classes of ensemble models. Afterwards, a new ensemble
model, namely, the Newweight-voting ensemblemodel, was gen-
erated, and the accuracy value was calculated from the testing
samples (S) through the obtained Newweight class. Eventually,
the results that were obtained by selecting the largest weight for
the Newweight class were the sample classes in Ts or all classes in
the testing dataset (Ts) from the new ensemble model.

4 Experimental results

This section describes the results of testing the model classi-
fications. Ten datasets were considered in the test, which were

derived from the UCI dataset (Center for Machine Learning
and Intelligent Systems). Each dataset is detailed in Table 4.
The table describes the attributes of the datasets. Moreover,
for each of the ten datasets, it specifies the numbers of attri-
butes, instances, and classes. The data were collected as inte-
gers and text files for the tests of the model. The largest dataset
contained 8124 instances, and the smallest dataset contained
129 instances. The largest number of attributes was 148, and
the smallest number was 5 attributes; hence, the test considers
the model and the dataset that collected most and fewest attri-
butes. Finally, the attributes of the classes were collected. It
was a test of the multi-class classification performance, where
the testing dataset with the most classes had 8 classes and that
with the fewest classes had 3 classes. For testing of the model
and the data, various datasets were considered. The datasets
with the largest amount and the smallest amount of data gen-
erated the classifiers or predictors efficiently if there were
many data instances to be considered in the test. Then, three
types of classification models (the base model, the original
ensemble model, and the TPweight-voting ensemble model)
were tested. In this study, a test was administered to compare
two ensemble models, namely, the original ensemble model
and the new ensemble model. The obtained accuracy indicates
that the Newweight ensemble model realized higher efficien-
cy of the prediction class than the evaluation of the weight of
the classification result using the combination strategy, which
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encouraged the probability of the class to have higher efficien-
cy (Table 5).

5 Disscussion

The weight of cost-sensitive have divided into 4 weight mea-
sure as true-positive rate. True Positive rate-weight ensemble
learning, Precision-weight ensemble learning, Recall-weight
ensemble learning and Fmeasure-weight ensemble learning as
Table 7. Each combination strategy is assessed by the overall
performance measurements based on cost-sensitive learnings.
The TP-rate cost-sensitive probability method was given the
best performance measurement methods compared to other
methods. The advantage of True positive rate-weight ensem-
ble learning concept as expertise of models is used to able to
predict only correct a class that is also high accuracy only each
classes. Therefore, the experiment of TP weight will be better
than other weighting measure. Our propose model focused on
different weight measures is used for value combination from
N ensemble methods. The overall performance as Precision,
Recall, F-Measure, G-mean and Accuracy are measure
repeatly that shown robustness of models definitely.

The overall performances of the classification models with
between 3 and 7 classes are compared in Tables 6 and 7. This
table compares the precision, recall, F-measure, G-measure
and accuracy values of the base model classifications of all
six models and six homogenous models. The proposed model
with the best performance value was 3TP-ensemble model, as
the values on nine datasets indicate that the 3TP-ensemble
model yields the best results. On another dataset, the best
results are obtained by the 6TP-ensemble, which is of the
same type as the proposed model. The homogenous ensemble
model that performed the best was the random forest model,
whereas the approaches of stacking and voting yielded lower
accuracy rates. The Bayes classification models realized sat-
isfactory performance. Therefore, our proposed model was
recently improved to enhance the efficiency in predicting the
base classification results and to yield high precision, recall, F-
measure and G-mean values in classifying the datasets, as
shown in Fig. 7.

The multi-classes datasets in Fig. 8 were divided into three
groups: First, the datasets with between 3 and 4 classes were
grouped, which are balance scale, lymphographic, vehicle,
grass grab, car evaluation, and user knowledge modelling.
The best model is 3TP-ensemble, whereas the percentage ac-
curacy rate is the same as those of classification models MLP

Fig. 7 Evaluation measure (Precision, Recall, F-Measure, and G-Mean) performances of each data set and model

Fig. 8 Accuracy performance versus the number of classes for multi-class classification
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and Bayes. Second, the datasets with 5 and 6 classes were
grouped, which are eucalyptus soil and urban land cover.
The highest accuracy rates are realized by 3TP and 6TP, re-
spectively. This type of proposedmodel yields the best results.
Finally, the datasets with 7 and 8 classes were grouped.

In addition, the F-measure performance of 3TP-ensemble
is compared with those of other homogenous models in
Reference [14], which proposed KFHE-e (noise 5%) and
KFHE-1 (noise 5%), which were also based on the limitations
of current multi-class classification ensemble algorithms. Our
proposed model, namely, 3TP-ensemble, yields F-measure
values of 0.909, 0.75, and 0.463 on the balance scale (3 clas-
ses), lymphography (4 classes) and flags (8 classes) datasets,
as shown in Fig. 9. The percentage accuracy of 3TP-ensemble
is the highest, namely, 85.74%, on the Lymphography dataset
(4 classes) compared with mlp:NS ECOC V1, mlp:NS ECOC
V2, svm: NS ECOC V1 and svm: NS ECOC V2 in reference
[4] and NP-AVG and NP-MAX in reference [37], as shown in
Fig. 10. The experimental results demonstrate the robustness
and high performance measure values of the 3TP-Ensemble
model.

The TPweight ensemble could yield the most suitable pre-
dicted class among the new multi-classes of the classification
result with increased accuracy. According to our approach, the
model that provided the highest average accuracy value was

the TPweight-voting ensemble model. Comparing the best
accuracy values on each dataset between the homogenous
ensemble model and the newly proposed ensemble model,
the TPweight ensemble realized higher efficiency for
predicting the result than the ten datasets and the original
ensemble model. The TPweight-voting ensemble model was
proposed for increasing the efficiency of predicting the classes
in various datasets with multi-class labels in practice. The
model encouraged the prediction in each sample set Ts to
obtain the most suitable class, which was deriven by parame-
ter α, which reflected the reliability of probability weight for
each model, in combination with the TP rate. According to the
experimental results for this approach, it could increase the
accuracy value of the prediction to a higher value than those
that were realized by other models of the original ensemble
model.

6 Conclusions

In this research, we present a novel supervised cost-sensitive
weighted based on Ensemble learning classification. By the
framework of the method cost-sensitive probability weighted
based on ensemble learning is introduced with the machine
learning concept of cost-sensitive weighted ensemble learning

Fig. 9 F-measure performance
comparison with other works

Fig. 10 Accuracy performance
comparison with other works
(Lymphography dataset)

Cost-sensitive probability for weighted voting in an ensemble model for multi-class classification problems 4929



which takes advantage of combining results to improve pre-
dictive performance -sensitive weighted is designed to reduce
class bias occurring as a result of classification The focus is on
the combination strategy that combines weighting with the
method of weight voting, which is a method for determining
the appropriate weight value. The method presented is based
on instructional learning. That is, to learn the model first by
dividing test data sets into training data and testing data in
order to design a class result. For a multi-class dataset test data
set, we demonstrate comprehensive results when compared to
methods and apply it to 10 multi-class data sets. We clearly
show that the method cost-sensitive probability. Our weighted
based probability on ensemble learning has superior methods
other state-of-the-art features in Accuracy, Recall, F-measure,
G-mean and Accuracy, and reduce misclassified performance.
And achieve accuracy values based on good evaluation of
classifying multi-class data. Our methods are efficient and
stable for problem sets in decision making processes. The
multi-class dataset for future work will explore the manage-
ment of selection base model for creating a new ensemble
model to enhance the classification of data sets resulting from
the combined prediction.
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