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Abstract
Coronavirus disease 2019 (COVID-19) is a novel harmful respiratory disease that has rapidly spread worldwide. At the end of 2019,
COVID-19 emerged as a previously unknown respiratory disease in Wuhan, Hubei Province, China. The world health organization
(WHO) declared the coronavirus outbreak a pandemic in the second week of March 2020. Simultaneous deep learning detection and
classification of COVID-19 based on the full resolution of digital X-ray images is the key to efficiently assisting patients by enabling
physicians to reach a fast and accurate diagnosis decision. In this paper, a simultaneous deep learning computer-aided diagnosis (CAD)
system based on theYOLOpredictor is proposed that can detect and diagnose COVID-19, differentiating it from eight other respiratory
diseases: atelectasis, infiltration, pneumothorax, masses, effusion, pneumonia, cardiomegaly, and nodules. The proposed CAD system
was assessed via five-fold tests for the multi-class prediction problem using two different databases of chest X-ray images: COVID-19
and ChestX-ray8. The proposed CAD systemwas trained with an annotated training set of 50,490 chest X-ray images. The regions on
the entire X-ray images with lesions suspected of being due to COVID-19 were simultaneously detected and classified end-to-end via
the proposed CAD predictor, achieving overall detection and classification accuracies of 96.31% and 97.40%, respectively. Most test
images from patients with confirmedCOVID-19 and other respiratory diseaseswere correctly predicted, achieving average intersection
over union (IoU) greater than 90%. Applying deep learning regularizers of data balancing and augmentation improved the COVID-19
diagnostic performance by 6.64% and 12.17% in terms of the overall accuracy and the F1-score, respectively. It is feasible to achieve a
diagnosis based on individual chest X-ray images with the proposed CAD systemwithin 0.0093 s. Thus, the CAD system presented in
this paper canmake a prediction at the rate of 108 frames/s (FPS), which is close to real-time. The proposed deep learning CAD system
can reliably differentiate COVID-19 from other respiratory diseases. The proposed deep learning model seems to be a reliable tool that
can be used to practically assist health care systems, patients, and physicians.

Highlights of the Article
A fast deep learning computer-aided diagnosis (CAD) based on the
YOLO predictor is proposed to simultaneously detect and diagnose
COVID-19 respiratory disease from the entire chest X-ray (CXR) images.
The COVID-19 respiratory disease is automatically detected and classi-
fied end-to-end with overall detection and classification accuracies of
96.31% and 97.40%, respectively.
The proposed deep learning CAD system is able to detect and classify
COVID-19 or other respiratory diseases in a single X-ray image within
0.0093 seconds.
The presented CAD system is able to predict at least 108 frames/sec at the
real-time of prediction.
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1 Introduction

Coronavirus disease 2019 (COVID-19) has recently become
an unprecedented public health crisis worldwide [1]. At the
end of December 2019, patients with a previously unknown
respiratory disease were identified inWuhan, Hubei Province,
China [2]. By January 25, 2020, the diagnosis of COVID-19
had been confirmed in at least 1975 more patients since the
first patient was hospitalized on December 12, 2019. COVID-
19 caused by a new coronavirus named severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [2, 3]. The typ-
ical symptoms of COVID-19 include fever, shortness of
breath, dizziness, cough, headache, sore throat, fatigue, and
muscle pain [2–4]. After the first case of COVID-19 was
discovered in Wuhan, the virus has rapidly spread to 216
countries worldwide, largely due to human-to-human trans-
mission of the virus early in the clinical course [1]. The
COVID-19 pandemic has imposed substantial demands on
the public health systems, health infrastructure, and econo-
mies of most countries worldwide [5]. Because the total num-
ber of people infected by SARS-CoV-2 has increased rapidly,
the capacity of healthcare systems (i.e., beds, ventilators, care
providers, masks, etc.) is insufficient to meet the demand. Due
to the rapid transmission of SARS-CoV-2 from person to per-
son, millions of people have been infected, more than four
billion people have been instructed to remain at home, and
many people have lost their jobs [1, 2, 5]. Severe COVID-
19 has caused deaths worldwide [6]. As reported by the world
health organization (WHO) on November 17, 2020 [6], the
numbers of patients with confirmed cases of COVID-19, re-
covered COVID-19 patients, and non-surviving COVID-19
patients were 55.4M, 38.6M, and 1.3M, respectively.
Moreover, education systems have been negatively affected
by the COVID-19 pandemic, and schools and universities
have switch to remote learning.

To date, the most widely used screening tool for the detec-
tion and diagnosis of COVID-19 has been real-time reverse-
transcription polymerase chain reaction (RT-PCR) [7].
Radiological imaging techniques such as chest digital X-ray
(CXR) and computed tomography (CT) are the standard
screening tools used to detect and diagnose chest respiratory
diseases early in the clinical course, including COVID-19 [1,
8]. Due to the low sensitivity of RT-PCR, radiological images
are also used for diagnostic purposes in patients with symp-
toms of respiratory diseases. Although the CT is the gold
standard, primary chest digital X-ray systems are still useful
because they are faster, deliver a lower dose of radiation, are
less expensive, and are more widely available [4, 8]. Indeed,

CT scans or X-rays should be routinely obtained in addition to
RT-PCR results to improve the accuracy of the diagnosis of
COVID-19 [8]. However, the large number of patients who
test positive for SARS-CoV-2 makes the use of regular
screening on a daily basis challenging for physicians. Thus,
on March 16, 2020,the United States administration encour-
aged experts and researchers to employ artificial intelligence
(AI) techniques to combat the COVID-19 pandemic [1].
Currently, experts have started to use machine learning and
deep learning technologies to develop CAD systems to assist
physicians in increasing the accuracy of the diagnosis of
COVID-19 [1, 8]. In the last few years, the use of deep learn-
ing methods as adjunct screening tools for physicians has
attracted a great deal of interest. Deep learning CAD systems
have been shown to be capable and reliable, and promising
diagnostic performance has been achieved using the entire
image without user intervention [9, 10]. The use of a deep
learning CAD system could assist physicians and improve
the accuracy of the diagnosis of COVID-19 [1]. Deep learning
CAD systems have been successfully applied to predict dif-
ferent medical problems, such as breast cancer [9, 10], skin
cancer [11, 12], and respiratory disease, using digital X-ray
images [8]. The rapid spread of the COVID-19 pandemic and
the consequent death of humans worldwide makes it neces-
sary to apply deep learning technologies to develop CAD
systems that can improve the diagnostic performance. This
need was the motivation for developing a deep learning
CAD system to diagnose COVID-19 based on entire digital
X-ray images.

In this paper, our contributions to the diagnosis of COVID-
19 based on digital X-ray images are as follows. First, a si-
multaneous deep learning CAD system that uses the YOLO
predictor was adopted to detect and diagnose COVID-19 di-
rectly from entire chest X-ray images. Second, COVID-19 is
differentiated from eight other respiratory diseases in a
multiclass recognition problem. Third, deep learning
regularizations of data balancing, augmentation, and transfer
learning were also applied to improve the overall diagnostic
performance for COVID-19. Finally, our proposed CAD sys-
tem was trained and optimized with five-fold tests using data
from two different digital X-ray datasets, COVID-19 [13, 14]
and ChestX-ray8 [15]. The outcomes of this study can be used
to guide other researchers when developing novel deep learn-
ing CAD frameworks to accurately diagnose COVID-19.

The objective of this work was to provide a practical and
feasible CAD system based on AI that can help physicians,
patients, healthcare systems, and hospitals by facilitating the
faster and more accurate diagnosis of COVID-19.
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The rest of this paper is organized as follows. A review of
the relevant literature is presented in Section 2. The technical
aspects of the deep learning CAD-based YOLO system are
detailed in Section 3. The results of the experiment with
COVID-19 are reported and discussed in Sections 4 and 5.
Finally, the most important findings of this work are summa-
rized in Section 6.

2 Related works

Starting in 2020, after the discovery of COVID-19, some
artificial intelligence (AI) systems based on deep learning
have been employed to detect COVID-19 on digital X-ray
and CT images. In [16], Oh et al. presented a patch-based
deep learning CAD system consisting of segmentation and
classification stages that could identify COVID-19 based
on CXR images. With regard to segmentation, FC-
DenseNet103 was used to segment and extract the full lung
regions from the entire CXR images. With regard to classi-
fication, multiple random patches (i.e., regions of interest)
were extracted from the segmented lung regions for use as
the input for the classification DL model. They used CXR
images from multiple patients who were healthy and pa-
tients who were diagnosed with bacterial pneumonia, tuber-
culosis, and viral pneumonia associated with COVID-19.
Diagnostic accuracies of 84.40% and 88.9% were achieved
for the F1-score and overall accuracy, respectively. Ozturk
et al. [8] proposed the deep learning DarkCovidNet that can
automatically detect COVID-19 based on digital chest X-
ray images. They developed their model using 17
convolutional layers with the aim of achieving binary clas-
sification (i.e., COVID-19 and no finding) and multinomial
classification (i.e., COVID-19, no finding, and pneumonia)
diagnoses. They achieved overall classification accuracies
of 98.08% and 87.02% for the binary and multinomial clas-
sifications, respectively. Fan et al. [17] proposed a deep
learning model called Inf-Net that can be used to identify
or segment suspicious regions indicative of COVID-19 on
chest CT images. They used a parallel partial decoder to
generate the global representation of the final segmented
maps. After that, they used implicit reverse attention and
explicit edge attention to enhance the segmented bound-
aries. They achieved segmentation accuracies of 73.90%
and 89.40% with regard to Dice and the enhanced-
alignment index, respectively. In May 2020, Wang et al.
[18] proposed COVID-Net, which was based on a deep
learning model and could differentiate patients with
COVID-19 from healthy individuals and those with pneu-
monia based on digital X-ray images. The classification
performance of their model was compared with the those
of VGG-19 and ResNet-50 using the same database of dig-
ital X-ray images [18]. The authors concluded that COVID-

Net outperformed VGG-16 and ResNet-50, with positive
predictive values (PPVs) of 90.50%, 91.30%, and 98.9%
for healthy, pneumonia, and COVID-19, respectively.
Hamdan et al. [19] presented a deep learning COVIDX-
Net model that can be used to distinguish between
COVID-19 patients and healthy individuals based on 50
digital chest X-ray images. They used seven well-
established deep networks as feature extractors and com-
pared their classification results. Compared with other deep
learning models, VGG-19 and DensNet201 had the highest
diagnostic performance value of 90%. Apostolopoulos
et al. [20] tested the ability of five well-established deep
learning networks to detect COVID-19 on digital X-ray
images. They used three classifications, namely, normal,
pneumonia, and COVID-19, and they achieved the best
overall classification accuracy of 93.48% with VGG-19.
Additionally, they tested all five deep learning models with
regard to the binary classification problem (i.e., COVID-19
against non-COVID-19), and they achieved the highest ac-
curacy of 98.75% with VGG-19. Sakshy et al. [21] pro-
posed a three-phase deep learning detection model to detect
COVID-19 on CT images with a binary classification task.
They used data augmentation, transfer learning, and abnor-
mality localization with different backend deep learning
networks: ResNet18, ResNet50, ResNet101, and
SqueezeNet. They concluded that the pre-trained
ResNet18 using the transfer learning strategy achieved the
best diagnostic results of 99.82%, 97.32%, and 99.40% in
the training, validation, and test sets, respectively. Khan
et al. [22] proposed a deep learning convolutional neural
network (i.e., CoroNet) that could be used to diagnose
COVID-19 as a multiclass problem based on whole chest
X-ray images. They achieved an overall accuracy of 89.6%
for the identification of COVID-19 from among bacterial
pneumonia, viral pneumonia, and normal images. Narin
et al. [23] compared the classification performances of three
different deep learning convolutional neural networks (i.e.,
ResNet-50, InceptionV3, and InceptionResNetV2) using
chest X-ray images. They evaluated the ability of those
three models to differentiate patients with COVID-19 from
individuals without COVID-19, and they achieved the best
classification accuracy of 98% using ResNet-50. Ardakani
et al. [24] evaluated ten different well-established DL
models to diagnose COVID-19 on CT scans in routine clin-
ical practice. They differentiated between COVID-19 and
non-COVID-19 with a binary classification task, and they
achieved the best diagnostic result using the ResNet-101
and Xception DL networks, with an overall accuracy of
99.40%. Pereira et al. [7] presented a classification scheme
based on wel l -known texture descr ip tors and a
convolutional neural network (CNN). They used a resam-
pling algorithm to balance the training dataset for a
multiclass classification problem. Their model achieved
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an average F1 score of 65%. Moreover, comprehensive sur-
vey studies on deep learning applications pertaining to
COVID-19 are presented in [25, 26]. Such deep learning
methods have been employed to diagnose COVID-19 on
entire X-ray images. This is due to the lack of X-ray images
with annotated regions of suspected lesions. However, it is
not practical to use the entire X-ray image to achieve a
reliable diagnosis of COVID-19 [27]. Thus, the detection
of suspicious regions specific to individual respiratory dis-
eases is critical for achieving a more accurate diagnosis
because it could be used to derive more representative deep
features of the abnormalities. To our knowledge, this is the
regional convolutional deep learning CAD system devel-
oped to simultaneously detect COVID-19 and differentiate
it from among other respiratory diseases based on chest X-
ray images. The automatic detection of COVID-19 is a ma-
jor challenge for researchers. Our previous promising diag-
nostic results from the breast cancer diagnosis CAD system
using the YOLO predictor [9, 10] have encouraged us to
employ a similar system to detect and classify COVID-19,
with the aim of enhancing the diagnosis of COVID-19.

3 Material and methods

Deep learning computer-aided diagnosis (CAD) based on the
YOLO predictor was used to simultaneously detect COVID-
19 and differentiate it from eight other respiratory diseases:
atelectasis, infiltration, pneumothorax, masses, effusion,
pneumonia, cardiomegaly, and nodules. The CAD system
presented in this paper has a unique deep learning framework

structure; the system has been validated and can simultaneous-
ly detect and classify COVID-19. Figure 1 is a conceptual
diagram of the proposed CAD system.

3.1 Digital X-ray images dataset

We used two different digital chest X-ray databases, namely,
COVID-19 [13, 14] and ChestX-ray8 [15]. The data distribu-
tions for the two datasets are shown in Fig. 2.

3.1.1 COVID-19 dataset

The COVID-19 dataset used in this study was collected
from two different publicly available sources. First, we
used the digital X-ray images from patients with
COVID-19 collected by Cohen et al. [13] from different
public sources, hospitals and radiologists. These images
are publicly available to help expert researchers develop
AI based on deep learning approaches to improve the
diagnosis and understanding of COVID-19. Researchers
from different countries try to constantly update these
datasets and add more X-ray images. In this study, we
used the available X-ray images acquired from 125 pa-
tients with COVID-19 (82 males and 43 females).
Unfortunately, complete metadata were not yet available
for all these patients. Age was provided for only 26 pa-
tients; the average age was 55 years. Second, we used
digital X-ray images from patients with COVID-19 col-
lected by a research team from Qatar University [14]. All
these images are publicly available in portable network
graphic (png) file format with a size of 1024 × 1024
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Fig. 1 Schematic diagram of the proposed deep learning CAD system based on the YOLO predictor
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pixels. This dataset is publicly provided for researchers to
develop useful and impactful AI models with the aim of
addressing the COVID-19 crisis. The metadata were not
yet available for all patients with COVID-19. In this
study, we used all available digital X-ray images from
201 patients with COVID-19. Thus, a total of 326 CXR
images were collected and used to develop the proposed
CAD system. The classification labels for these images
are publicly available, but the information regarding the
GT localization (i.e., bounding box) is not yet available
for either COVID-19 dataset. This is because the CXR
images are rapidly collected in the context of the pandem-
ic. To locate the abnormalities, we asked two expert radi-
ologists to annotate the abnormalities (i.e., lesions associ-
ated with COVID-19) localizations in a parallel manner.
Since some CXR images were provided by the authors
with some small white/black arrows, as shown in
Figure 3a-c, showing the localization of the COVID-19
lesions, we compared the experts’ opinion with the
existing annotations and marked the suspected lesions
with a rectangle. Each bounding box GT was determined
by the coordinates corresponding to the width (w), height
(h), and center (x, y) of the abnormality. Figure. 3 shows
some examples of COVID-19 lesions with the associated
GT information.

3.1.2 ChestX-ray8

The ChestX-ray8 [15] dataset is the most frequently used and
widely accessible medical imaging examination dataset avail-
able for eight different respiratory diseases: atelectasis, infil-
tration, pneumothorax, masses, effusion, pneumonia,
cardiomegaly, and nodules. In this study, we used all CXR
images with ground truth (GT) information involving the dis-
ease class label and the disease localization information as a
labeled bounding box. The information pertaining to the GT
bounding box (i.e., the starting point of the box (x,y), width
(w), and height (h)) for each image is publicly available in the
XML file [15]. As shown in Fig. 2, a total of 984 frontal views
of CXR images were used, which were representative of eight
different respiratory diseases. These images were accurately
converted from DICOM format into ‘.png’ file format with a
size of 1024 × 1024 pixels. Figure. 4 shows an example of an
X-ray image for each disease class with the associated GT
information.

3.2 Data preparation: Training, validation, and testing

To fine-tune and evaluate the proposed CAD system, the
COVID-19 [13, 14] and ChestX-ray8 [15] datasets were
used. As shown in Fig. 2, the chest X-ray images for

Fig. 3 Example cases of COVID-19 in different patients. The ground-truth (GT) information of the bounding box (i.e., green) for each case is
superimposed on the original chest X-ray (CXR) image. The GT information was determined by expert physicians
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Fig. 2 Data distribution over all nine classes of respiratory diseases. The datasets for each classes were randomly split into 70%, 20%, and 10% for the
training, testing, and validation sets, respectively
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each disease class were randomly divided as follows:
70% in the training dataset, 20% in the evaluation
dataset, and 10% in the validation dataset [9, 10]. The
hypertrainable parameters of the proposed deep learning
system were selected via the training process using the
training and validation datasets. After that, the final per-
formance of the proposed CAD system was assessed
using the evaluation set. Meanwhile, our proposed
CAD system was assessed using five-fold tests in the
training, validation, and evaluation datasets. These sets
were generated by stratified partitioning to ensure equal
testing of each X-ray image and to avoid system bias
error. It is important to use k-fold cross-validation to
develop a robust, reliable, and efficient CAD system,
especially given the small sizes of medical datasets
[9–11]. In addition, to prevent the development of bias
in the proposed prediction model during the learning
process due to an unbalanced training set, we used the
following techniques. First, the training set for each
mini-batch was automatically shuffled. Second, a weight-
ed cross-entropy was used as a loss function to optimize
the deep learning trainable parameters [28].

3.2.1 Balancing and augmentation strategies for the training
dataset

Data balancing and augmentation strategies were applied to
enlarge the size of the training dataset, avoid overfitting, and
accelerate the learning process [9, 10]. These practical solu-
tions were successfully applied to address the challenge of
small datasets of annotated medical images [9, 10]. During
training, each mini-batch included an almost equal number
of digital X-ray images for each disease class [29, 30]. This
was to avoid overfitting and prevent the performance of the
deep learning model from being biased towards the disease
class with the largest number of images (i.e., COVID-19). To
balance the training sets and avoid having a majority of im-
ages related to COVID-19, the training images from the eight
disease classes in the ChestX-ray8 dataset were flipped twice
(i.e., left-right and up-down), generating 1378 chest X-ray
images. Thus, the total number of images in all disease classes
in the training set after balancing was 2295 (i.e., 917 original
images from all disease classes including COVID-19 and
1378 balanced images from eight disease classes from the
ChestX-ray8 dataset).

Fig. 4 Example cases of eight common respiratory diseases in different
patients from the ChestX-ray8 dataset [15]: a atelectasis, b infiltration, c
pneumothorax, d mass, e effusion, f pneumonia, g cardiomegaly, and h

nodule. The ground-truth (GT) information of the bounding box (i.e.,
green) for each case is superimposed on the original image
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After data balancing, an augmentation strategy was applied
for all nine disease classes as follows. First, the original chest
X-ray images were randomly scaled and translated ten times.
Second, the X-ray images for each class were rotated around
the origin center by 0°, 45°, 90°, 135°, 180°, 225°, 270°, and
315°. Finally, the rotated X-ray images for each class with θ =
0° and 270° were flipped left-right and up-down. This ensured
that each X-ray image for each balanced class was augmented
22 times. Thus, a total of 50,490 X-ray images were generated
and used to train our proposed CAD system. For each k-fold
test, the same data balancing and augmentation strategy was
utilized. In addition, transfer learning was applied to initialize
the trainable parameters using ImageNet [9, 10]. Then, the
deep learning CAD system was fine-tuned using our training
set of chest X-ray images [31].

3.3 The concept of the deep learning CAD system

To simultaneously predict (detect and classify) COVID-
19 from among the other respiratory diseases, a deep
learning CAD system based on the YOLO predictor
was adopted and used. With regard to object detection,
previous studies have employed conventional image pro-
cessing algorithms, machine learning classifiers, or com-
plex deep learning pipelines [9, 10]. In contrast, our pro-
posed CAD system is a regressor model that can simul-
taneously detect the localization of potential disease le-
sions and predict the probabilities of those lesions be-
longing to specific disease classes [10]. It has a robust
ability to simultaneously learn the characteristics of the
entire input X-ray image and the background. Thus, it
can locate regions with lesions indicative of respiratory
diseases with fewer background errors than other existing
methods [30]. In addition, it has a unique deep learning
structure allowing it to simultaneously optimize trainable
parameters end-to-end to tune the training weights for
the detection and classification tasks. Unlike the Faster
R-CNN [32] and sliding window [33] methods, YOLO
inspects the regions suspected of containing disease le-
sions directly in the context of the entire chest X-ray
images. The conceptual diagram of the CAD-based
YOLO predictor is shown in Fig. 1.

In fact, the YOLO predictor starts by dividing the input X-
ray image into N × N grid cells, as shown in Fig. 1. If the
lesion (i.e., the lesion associated with COVID-19 or any other
respiratory diseases) center falls into any grid cell, that cell is
responsible for predicting that disease. For each grid cell, five
anchors (i.e., bounding boxes) are assigned and used to predict
the disease class to which the lesion belongs (i.e., COVID-19,
pneumonia, etc.). For each anchor, YOLO predicts the disease
class of the lesions based on five prediction parameters: center
location (x,y), width (w), height (h), and confidence score
probability (Prconf.). The confidence score interprets the

YOLO-based confidence that the predicted box contains a
lesion and how accurate it expects the representation of the
final output prediction by that box to be.

During the training process, the predicted confidence in
each anchor is calculated by the multiplying the probability
of the existing respiratory disease (i.e., lesion) by the value of
the intersections over union (IoU) as follows:

Confidence Prconf :ð Þ ¼ Prob Objectð Þ � IoUGT
Pred:: ð1Þ

If the grid cell does not contain any respiratory dis-
ease lesion, the confidence of all bounding boxes of
that cell should be zero. In contrast, if any suspected
disease lesion falls in that grid cell, Prob(Object )
should be greater than zero. Thus, the confidence of
all bounding boxes of that cell should also be greater
than zero. However, the network has been optimized to
achieve the highest object probability and the highest
object confidence. Based on both object probability and

IOUGT
Pred:, the coordinates of all bounding boxes are si-

multaneously optimized and adjusted to fit the object
that is falling in the specific grid cell. During the train-
ing process, each grid cell predicts the conditional class
probabilities Prob(Classi| Object ) for all nine disease
classes (i.e., COVID-19 and other respiratory diseases).
During training, the confidence score for a detected
bounding box is determined based on the conditional
class probabilities as follows:

Confidence Score ¼ Prob ClassijObjectð Þ

�Confidence i ¼ 1; 2; 3;…; and 9

ð2Þ

where

Prob ClassijObjectð Þ ¼ Prob Classið Þ
Prob Objectð Þ : ð3Þ

Then,

Confidence Score ¼ Prob Classið Þ
Prob Objectð Þ � Prob Objectð Þ

�IoUGT
Pred: ¼ Prob Classið Þ � IoUGT

Pred:

ð4Þ

During testing, to obtain the confidence score when
there is no GT, the conditional class probability is mul-
tiplied by the individual box confidence value. The de-
tected bounding boxes with the highest confidence
values indicate that COVID-19 or another respiratory
disease is present, which should be considered the final
prediction output. However, the confidence score proba-
bility for each detected bounding box encodes the prob-
ability for each disease class and how well each box fits
the classes of respiratory diseases. The confidence score
for each box is computed as follows:

M. A. Al-antari et al.2896



Confidence ScoreBoxi ¼

argmax Prconf :i � Pr classijObjectð Þð Þ; Prconf :iþ1 � Pr classiþ1jObjectð Þ� �
;…etc

� �
i ¼ 1; 2; 3;…; and 9:

ð5Þ

For each bounding box, only one disease class is predicted
and assigned (i.e., COVID-19, pneumonia, mass, etc.). As
long as all bounding boxes are assigned to the same grid cell,
the disease class for these boxes should be the same, but they
can have different confidence values and conditional proba-
bilities. Finally, the detected box that has the maximum con-
fidence probability should be used to determine the final pre-
dicted output of the proposed CAD system. Moreover, all
other detected bounding boxes have IoUGT

Pred: < 45% with
lower confidence scores are suppressed using the algorithm
of non-max suppression (NMS).

3.3.1 Deep learning structure of the CAD system

The structure of the proposed CAD system involves
convolutional layers (Conv.), fully connected (FC) layers,
and tensor of prediction (ToP), as shown in Fig. 5. Deep
high-level features are extracted with 23 sequential
convolutional layers, while the coordinates of the detected
bounding boxes and the output probabilities are predicted with
two FC layers. The total number of derived deep-feature maps
depends mainly on the number of convolutional kernels that

are used for each convolutional layer. Moreover, convolution
reduction layers with a kernel size of 1 × 1 are added and
utilized, followed by 3 × 3 convolutional layers, as shown in
Fig. 5. This structure is used to reduce the size and compress
the derived feature representations [9, 10]. In addition, batch
normalization (BN) layer is used after each convolutional lay-
er to reduce overfitting, accelerate convergence, and stabilize
the training of the deep network [9, 10]. Down-sampling using
max-pooling (MP) with a size of 2 × 2 is applied five times
after the convolutional layers to minimize the dimensionality
of the derived deep-feature maps and select the most appro-
priate deep features. The aggregated deep-feature maps from
the last convolutional layer are concatenated and flattened
using global average pooling (GAP) to feed directly into the
fully connected layers. The numbers of nodes or neurons for
the first and second dense layers are modified to 512 and
4096, respectively. The final output of the proposed model
is called a tensor of prediction (ToP), which contains all de-
tected predictors of the five anchors: coordinates (x, y,w,
and h), confidence scores (Prconf.), and the conditional class
probabilities of all nine disease classes (PrCOVID − 19,
PrPneumonia, …etc). These predictors are encoded in the 3D
matrix of the ToP with the size of N ×N × (5 × B + C), where
N, B, and C represent the number of grid cells, number of
anchors, and number of classes, respectively [27]. As men-
tioned above, the input X-ray image is divided into 7 × 7
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nonoverlapping grid cells, and each grid cell should detect any
lesion (caused by COVID-19 or the other respiratory diseases)
in that cell. The size of 7 × 7 was chosen to achieve the best
performance, as shown in our previous studies. Meanwhile,
five anchors or bounding boxes (i.e., B = 5) are used to detect
the object in each grid cell. The proposed CAD system was
built to detect and recognize nine classes of respiratory dis-
eases (i.e., C = 9). Thus, the final output represents a 3D ToP
with a size of 7 × 7 × 34. This means that the actual output
layer of the fully connected layer has 7 × 7 × 34 or 1666 neu-
rons. Each set of 34 neurons in the output FC layer is respon-
sible for predicting all parameters of the five bounding boxes
for each grid cell in the original chest X-ray image. Here, the
key is that each grid cell can onlymake local predictions for its
region of the input X-ray image. The proposed prediction
model has the capability to detect and classify respiratory
diseases faster than other recent detection methodologies.
Moreover, the leaky rectified linear activation function is uti-
lized in all the convolutional and fully connected layers, while
the ReLU activation function, ϕ(x) = max (0, x), is only uti-
lized in the final dense layer [27]. The leaky rectified linear
activation function ϕ(θ i) is expressed as the linear

transformation of the input θi with a nonzero slope for the
negative part of the activation function as follows:

ϕ θið Þ ¼ θi; if θi > 0
0:1� θi; otherwise:

�
ð6Þ

3.4 Experimental setting

The input digital CXR images were scaled using bilinear in-
terpolation to a size of 448 × 448 pixels [9, 10]. In addition,
the intensity of all CXR images was linearly normalized to a
range of [0 ~ 1] as in [9, 10]. A multiscale training strategy
was used to learn predictions across different resolutions of
the input X-ray images [34]. Since the proposed network
downsamples the derived deep-feature maps five times, the
network randomly chose a new image dimension size for ev-
ery 10 batches in multiplies of 32 (i.e., 320, 352, …, 608).
Thus, the smallest input resolution was 320 × 320, and the
largest input resolution was 608 × 608. Moreover, a mini-

(a) (b) (c) (d)

Pr. = 27%Pr. = 27% Pr. = 17%

Fig. 6 Effect of the confidence score (i.e., Prconf) threshold on the number of detected bounding boxes. The potential regions including suspected lesions
(i.e., detected bounding boxes) caused by COVID-19 were detected using confidence score thresholds of a 0.005, b 0.02, c 0.10, and d 0.20
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batch size of 24 and number of epochs of 120 were utilized to
train and validate the proposed CAD system.

3.5 Implementation environment

To execute the experimental study, a PC with the following
specifications was used. Intel® Core(TM) i7-6850K proces-
sor, RAM of 16.0 GB, 3.36 GHz, and four GPUs NVIDIA
GeForce GTX1080.

3.6 Evaluation strategy

Our evaluation strategy used two conditions to deter-
mine whether the detected bounding boxes constituted
a final true detection. First, the overlapping ratio (i.e.,

IoUGT
Pred: ) between the detected bounding box and its

corresponding GT boxes had to be equal to or greater
than an appropriate practical threshold. Second, the con-
fidence score (i.e., Prconf) of the final detected box had
to be equal to or greater than an appropriate threshold
[27, 35]. Specifically, we always use the maximum con-
fidence score to evaluate truly detected boxes [9, 10]. A
high confidence score reflects a highly accurate predic-
tion that the lesion exists in the detected bounding box
[9, 10].

For the quantitative evaluation with each fold test, we
used weighted objective metrics, including sensitivity
(Sens.), specificity (Spec.), overall accuracy (Acc.), the
F1-score or Dice, the Matthews correlation coefficient
(Mcc.), the positive predictive value (PPV), and the nega-
tive predictive value (NPV) [9, 10]. To avoid having test
sets that were unbalanced with regard to the nine disease
classes, we used the weighted class strategy [27]. The
weighted ratios for atelectasis, infiltration, pneumothorax,
masses, effusion, pneumonia, cardiomegaly, nodules, and
COVID-19 were 0.14, 0.10, 0.08, 0.06, 0.12, 0.09, 0.11,
0.06, and 0.25, respectively. All evaluation indices were
computed using multiclass confusion matrices for each fold
test [9, 10].

4 Experimental results

4.1 Detection results

4.1.1 The prober threshold of the IoU and confidence score

The presented CAD system is able to predict five anchors (i.e.,
bounding boxes) for each grid cell in entire X-ray images. To
suppress undesirable detected boxes with very small confidence
scores, the non-max suppression (NMS) technique was used [9,
34]. This algorithm required three consecutive stages during theTa
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testing phase. First, detected bounding boxes with confidence
scores less than 0.005 were directly discarded. Second, among
any remaining boxes, the box with the highest confidence score
(i.e., Prconf.) was selected to represent the final predicted
bounding box. Finally, any remaining boxes with IoUnms ≥
50% with respect to the predicted box representing the final
output identified in the second step were also discarded.
Figure 6a shows the potential predicted boxes after applying
NMS. During the evaluation phase, the overlapping ratio of the
IoU between the final predicted box and its GT had to be greater
than an appropriate threshold to ensure that the confidence that
the predicted box includes the lesion is high. Experimentally,
we found that the appropriate threshold for IoUGT

Pred: was greater
than 45%, as shown in Fig. 7a. The majority of the final detect-
ed bounding boxes for the X-ray images in the test set had in
IoU accuracy greater than 90%. The final detected boxes with
IoUGT

Pred: < 45% were considered to be false detections. In ad-
dition to controlling the IoU, we also adjusted the appropriate
threshold for the confidence score to ignore the undesirable
detected boxes. Figure 6b-d show the detected bounding boxes
stratified by different probability thresholds of the confidence
score. Experimentally, we found that the appropriate confi-
dence threshold was greater than 10%, as shown in Fig. 7b.

This was for the detection of at least one suspected lesion in
each test image for diagnostic purposes.

4.1.2 Detection results after 5-fold cross-validation

The presented deep learning CAD system can efficiently au-
tomatically predict suspected COVID-19 lesions and other
respiratory disease lesions from entire X-ray images. Table 1
shows the overall detection performance according to 5-fold
validation using the test images from all nine disease classes.
For each k-fold test, the same deep learning structure, training,
and testing parameters of the presented CAD system were
applied. The detected regions of interest (ROIs) that involved
COVID-19 or other respiratory diseases were considered to be

correctly detected if and only if IoUGT
Pred:≥45% with Prconf. ≥

10%. Otherwise, they were considered to be false detection
cases even if.Prconf. ≥ 10%. Indeed, the most correct final de-
tected bounding boxes had the maximum IoU and confidence
scores as well. Based on the average of the 5-fold tests, the
CAD-based YOLO was shown to be a reliable and feasible
method of detecting COVID-19, with an overall detection
accuracy of 96.31%. It failed to detect only 3.69% of
COVID-19 cases in all the images. More generally, the

(b)

GT: Infiltration

Predicted: Infiltration

IoU = 98.31%

Pr. = 96.79%

(c)

GT: Pneumothorax

Predicted: Pneumothorax
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Pr. = 84.89%

(d)

GT: Mass
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Pr. = 90.30%

GT: Effusion
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IoU = 100%

Pr. = 92.74%
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GT: Pneumonia
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GT: COVID-19
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GT: Atelectasis
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IoU = 85.59%

Pr. = 27.40%

Fig. 8 Examples of correctly predicted cases of COVID-19 and other
respiratory diseases from chest X-ray (CXR) images: a atelectasis, b
infiltration, c pneumothorax, d mass, e effusion, f pneumonia, g
cardiomegaly, h nodule, and i & j COVID-19. The GT information

(green), detected bounding box (red), IoU, and probability or confidence
score (Pr.) for each case are superimposed on the original chest X-ray
images
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presented CAD system has the capability to correctly detect
respiratory diseases, with an overall detection accuracy of
90.67% for all nine disease classes. The true and false detec-
tion cases for the individual classes for the 5-fold validation
are presented in Table 1.

With regard to the qualitative evaluation, Fig. 8 shows
examples of correctly detected suspicious lesions indicative
of COVID-19 and all other disease classes. The overlapping
ratios (i.e., IoU) for the resulting bounding boxes beside their
corresponding confidence scores from each case are also pre-
sented. The detected boxes of these cases have acceptable IoU
ratios and high confidence scores, indicating that the lesions
have been accurately detected. Figure. 9 shows some exam-
ples of falsely detected cases of all nine disease classes. The
final detected boxes of these cases have undesirable overlap-
ping ratios with their GTs. Therefore, they were considered
incorrect detection cases even if they satisfied the confidence
score condition.

4.2 Classification results

The presented CAD-based YOLO predictor has the capability
to simultaneously detect ad classify end-to-end the detected
ROIs as COVID-19 or other respiratory diseases. As shown in
Figs. 8 and 9, the presented CAD system detects the final
regions with suspected lesions of respiratory diseases and

classifies them at the same time. In fact, this is the key char-
acteristic that makes the YOLO predictor faster and more
accurate than other techniques, such as Faster R-CNN [10,
27, 34]. All final detected bounding boxes are classified even
if they have been incorrectly detected. With regard to classi-
fication, it is important to know the final diagnosis status of
each X-ray image (i.e., COVID-19 or another disease) since
its GT label is available. The classification evaluation results
are derived based on the multiclass confusion matrices for all
nine classes over each fold test. Figure 10 shows an example
of the confusion matrices for all disease classes from the 3-
fold and 5-fold tests. Indeed, most of the COVID-19 cases
were correctly distinguished from other respiratory diseases.
Due to the high degree of similarity between COVID-19 and
other respiratory diseases, some cases of COVID-19 were
misclassified as pneumonia and vice versa. The weighted rec-
ognition evaluation metrics obtained via the five-fold test for
all classes are reported in Table 2. Specifically, the classifica-
tion evaluation results for each individual disease class as an
average of the tests are shown in Fig. 11. It is clear that the
proposed CAD system achieved an average overall accuracy
of classification between 94.60% for pneumonia and 97.40%
for COVID-19. The sensitivity was 91.69%, the specificity
was 98.79%, and the Mcc. was 91.96% for differentiating
COVID-19 from the other respiratory diseases. The classifi-
cation performance of the system for COVID-19 as
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Fig. 9 Examples of the incorrectly predicted cases of COVID-19 and
other respiratory diseases from chest X-ray images: a atelectasis, b infil-
tration, c pneumothorax, d mass, e effusion, f pneumonia, g nodule, and

(h, i, & j) COVID-19. The GT information (green), detected bounding
box (red), IoU, and probability or confidence score (Pr.)for each case are
superimposed on the original chest X-ray images
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represented by the F1-score was 93.86%. We can conclude
that the CAD system achieved satisfactory and promising
classification performance with regard to the problem of the
multiclass recognition of respiratory diseases.

4.3 Effects of the regularization strategies

To improve the diagnostic performance for COVID-19 and
the differentiation of COVID-19 from other respiratory dis-
eases, data balancing and augmentation strategies were used.
In this regard, the presented CAD systemwas trained and fine-

tuned over 5-fold tests using the original, balanced, and aug-
mented datasets in three separate scenarios. In each scenario,
the same deep learning structure and learning settings were
used. Figure 12 shows the weighted classification perfor-
mance as an average of the 5-fold tests for each scenario.
The balancing strategy improved the diagnostic performance
by 3.43%, 1.47%, 2.79%, 3.35%, 3.86%, 3.28%, and 1.43%
in terms of the sens., spec., Acc., F1-score, Mcc., PPV, and
NPV, respectively. The major improvement was achieved
through data augmentation after balancing. After applying
the augmentation strategy, the classification performance
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Fig. 10 The derived multiclass
confusion matrices of COVID-19
against other lung diseases from
the test sets over a 3-fold and b 5-
fold tests
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was improved by 12.91%, 4.49%, 6.64%, 12.17%, 12.99%,
11.72%, and 3.56% in terms of the sens., spec., Acc., F1-
score, Mcc., PPV, and NPV, respectively.

4.4 The cost of the prediction time

The training time depends on the deep learning structure,
training settings (i.e., number of epochs and mini-batch
size), number of training sets, and specifications of the
PC. For each fold test, the presented CAD system re-
quired almost 18 h for training. To make predictions
for all test images, the proposed CAD system required
2.44 s. Since we had 263 test images across all disease
classes, the predication time for an individual X-ray im-
age was 0.0093 s. Our CAD system can make reliable
preditctions in real time by 108 FPS. The rapid global
spread of COVID-19 is challenging for physicians. The
accurate and fast detection of COVID-19 based on entire
chest X-ray image can help physicians, patients, and
health care systems.

5 Discussion

Recently, researchers have been encouraged to apply artificial
intelligence (AI) methodologies to help physicians in hospi-
tals diagnose COVID-19. Indeed, deep learning based on
CNN has been shown to achieve promising classification re-
sults with different applications. To date, a few studies based
on machine learning and deep learning models have been
designed and presented. Such studies employed deep learning
models to classify entire input X-ray images. However, it is
neither efficient nor accurate to base a diagnosis on an entire
X-ray image [12, 27]. Thus, the detection by the CAD system
of regions containing suspected lesions related to a respiratory
disease (i.e., COVID-19 or another disease) represents a cru-
cial prerequisite for achieving a more accurate diagnosis.
Table 3 compares the prediction compression performance
of our proposed CAD system with the performance of the
latest deep learning models. Ozturk et al. [8] presented the
deep learning model of DarkCovidNet that can be used to
differentiate COVID-19 cases from pneumonia and normal
cases. They achieved an overall diagnostic performance of
87.02%.Wand et al. developed the COVID-Net deep learning
model to differentiate COVID-19 cases from normal and
pneumonia cases. They achieved an overall diagnotic perfor-
mance of 92.40%. Meanwhile, Khan et al. [22] presented the
deep learning model of CoroNet, which can be used to differ-
entiate COVID-19 cases from bacterial pneumonia, viral
pneumonia, and normal cases. A diagnostic performance of
89.60% was achieved for the multiclass recognition problem.

In this study, the proposed CAD system could effectively
differentiate COVID-19 from eight other respiratory diseases.
The detection accuracies for all nine disease classes ranged
from 71.50% for pneumothorax to 97.60% for infiltration.
The overall performance for the correct detection of regions
with suspicious lesions was 90.67%. With regard to the
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Table 2 Weighted classification measurements (%) for COVID-19
among the other lung diseases as an average over the 5-fold tests in the
test set

Fold Test Sens. Spec. Acc. F1-
score

Mcc. PPV NPV

Fold1 88.25 99.16 97.59 85.47 83.60 86.0 98.90

Fold2 84.47 99.09 97.37 84.75 82.75 85.33 98.72

Fold3 83.33 98.78 97.08 83.63 81.50 84.40 98.68

Fold4 85.25 99.16 97.59 85.47 83.60 86.0 98.90

Fold5 84.47 99.09 97.37 84.75 82.75 85.33 98.72

Average (%) 85.15 99.056 97.40 84.81 82.84 85.412 98.784
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detection of COVID-19, an overall detection accuracy of
96.31% was achieved. The results of the evaluation of the
detection capability of the model for each individual disease
class are reported in Table 1. The proposed CAD system could
simultaneously predict the diagnosis (i.e., COVID-19 or not)
for each detected ROI to determine the final diagnosis of the
input X-ray image. As shown in Table 2, a promising classi-
fication accuracy of 97.40% was achieved over 5-fold tests.
The simultaneous detection and classification of COVID-19
or other respiratory diseases in a single assessment of an entire
X-ray image is helpful for physicians, especially when the
number of patients is large. This will directly help support
health care systems in hospitals as well. By controlling the
confidence score threshold for the detected bounding boxes,
we can select the desired number of boxes that should be used
for the final real-time diagnosis. As shown in Fig. 6c, after
adjusting the confidence threshold to be greater than 10%, two
detected boxes were finally assigned two different regions
with lesions suspected of being related to COVID-19. These

results are logical and acceptable because COVID-19 and oth-
er respiratory diseases can affect both lungs in the same pa-
tient. Meanwhile, it is important to consider the final detected
regions with suspicious lesions for classification even if they
have been incorrectly detected. As shown in Fig. 9, most
falsely detected cases were correctly classified. Additionally,
it may help physicians focus on regions with suspicious le-
sions other than those with GTs. Figure 9h-j show the incor-
rectly detected ROIs according to the annotated position of the
GT, but the final diagnosis was accurate. Meanwhile, deep
learning regularizations for data balancing and augmentation
were applied to improve the final diagnostic performance of
the proposed CAD system. As shown in Fig. 12, these
regularizers obviously improved the diagnostic performance
as reflected in all evaluation indices. The average of the five-
fold tests for the overlap class problem showed that the clas-
sification performance increased from 90.76% to 97.40% and
from 72.64% to 84.81% with regard to the Acc. and F1-score,
respectively. Generally, CAD systems could support physi-

Table 3 Prediction performance comparison against the latest deep learning models for the diagnosis of COVID-19 based on chest x-ray images

Reference Method Prediction Classes: No. of images Diagnosis Accuracy
(%)

Ozturk et al. [8] DarkCovidNet COVID-19: 125, Pneumonia: 500, and Normal: 500 87.02

Wang et al. [18] COVID-Net COVID-19: 53, Pneumonia: 5526, and Normal: 8066 92.40

Apostolopoulos et al. [20] VGG19, Mobile Net, Inception,
Xception,
and InceptionResNet v2

COVID-19: 224, Pneumonia: 700, and Normal: 504 93.48 ➔ for VGG19

Khan et al. [22] CoroNet COVID-19: 284, Pneumonia bacterial: 330, Pneumonia
viral: 327, and Normal: 310

89.60

The Presented CAD
system

CAD-based YOLO Predictor COVID-19: 326 and the number of images from other
eight
classes are shown in Fig. 2.

Detection: 90.67
Classification: 97.40

65

75

85

95

Sens. Spec. Acc. F1-score Mcc. PPV NPV

ecna
mrofreP

noitacifissal
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)

Evaluation Metrics 

Original Balancing Balancing and Augmentation

Fig. 12 Effect of enlarging the training set sizes using different deep learning regularization strategies on the overall classification performance of the
proposed CAD system. The evaluation results are presented as the average of the 5-fold tests in the test sets for all disease classes
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cians by providing a second opinion that could be used when
making the final decision regarding the diagnosis. The fast
and accurate diagnosis of COVID-19 based on entire X-ray
images is key to helping physicians, patients, and health care
systems.

The proposed CAD system has some advantages. First, the
model has promising predictive accuracy for differentiating
COVID-19 from other respiratory diseases is achieved.
Second, the model can rapidly predict the presence of
COVID-19 and other respiratory diseases based on entire X-
ray images. Finally, user interventions are not required to de-
tect and classify COVID-19 because the proposed CAD sys-
tem has a unique end-to-end deep learning structure.

Despite the encouraging and rapid diagnostic performance
for COVID-19, some drawbacks and limitations need to be
addressed. Annotated digital X-ray images from COVID-19
patients are still unavailable. Considerable time and effort on
the part of physicians is needed to label and localize the exact
regions containing lesions associated with COVID-19.

In the future, when the annotated chest X-ray images be-
come available, we plan to validate the presented CAD sys-
tem. For increase the reliability of the diagnosis, we will ex-
pand our proposed CAD system to diagnose COVID-19 based
on digital CT images. Additionally, we plan to locally collect
digital X-ray and CT images for further validation. To achieve
more accurate pre-training of deep learning models, a gener-
ative adversarial network (GAN) could be used to synthesize
images [27].

6 Conclusion

In this work, a deep learning CAD system is proposed that can
simultaneously detect and diagnose COVID-19 based on
chest X-ray images. Our presented deep learning system was
built in a unique deep learning structure and can rapidly pre-
dict the regions containing suspicious lesions likely associated
with COVID-19 on entire X-ray images. The proposed CAD
system was validated with regard to the multiclass recognition
problem, achieving a promising diagnostic accuracy of
97.40% over 5-fold tests. Highly accurate and rapid informa-
tion extraction from entire CXR images is a key for develop-
ing a comprehensive and useful patient triage system in hos-
pitals and healthcare systems. The promising diagnostic per-
formance and the rapid prediction time make this proposed
CAD system practical and reliable as a means of assisting
physicians, patients, and health care systems.
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