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Abstract
The outbreak of the novel coronavirus clearly highlights the importance of the need of effective physical examination
scheduling. As treatment times for patients are uncertain, this remains a strongly NP-hard problem. Therefore, we introduce
a complex flexible job shop scheduling model. In the process of physical examination for suspected patients, the physical
examiner is considered a job, and the physical examination item and equipment correspond to an operation and a machine,
respectively. We incorporate the processing time of the patient during the physical examination, the transportation time
between equipment, and the setup time of the patient. A unique scheduling algorithm, called imperialist competition
algorithm with global search strategy (ICA GS) is developed for solving the physical examination scheduling problem.
A local search strategy is embedded into ICA GS for enhancing the searching behaviors, and a global search strategy is
investigated to prevent falling into local optimality. Finally, the proposed algorithm is tested by simulating the execution
of the physical examination scheduling processes, which verify that the proposed algorithm can better solve the physical
examination scheduling problem.

Keywords Flexible job shop scheduling · Physical examination scheduling · Transportation time · Setup time ·
Imperialist competition algorithm · Local search · Global search

1 Introduction

The problem studied here is a result of the novel coronavirus
outbreak that began in 2019, which first attacked Wuhan,
China, and quickly spread to most regions of the country.
Three months later, the virus had swept the world, and as
of April 28, 2020, the novel coronavirus epidemic infected
3034801 people and killed 210511 (according to data
released by Johns Hopkins University in the United States
https://gisanddata.maps.arcgis.com/apps/opsdashboard/
index.html#/bda7594740fd40299423467b48e9ecf6). Fac-
ing so many patients within a short period became a
critical challenge for hospitals with limited resources and
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equipment [1, 2]. Using available resources with the best
efficiency, improving patient flow, and optimizing treat-
ment management are crucial for hospitals [3]. With the
growth of the disease, many hospitals expanded capac-
ity because the number of patients, even in Wuhan, far
exceeded the standard carrying capacity. However, due
to many obstacles, these expansion activities encountered
many restrictions, which further reduced the available
resources for meeting established needs efficiently.

During the process of physical examinations of suspected
patients with the novel coronavirus, the traditional exten-
sive medical approach includes most physical examinations
choosing the items with less waiting time. As the exami-
nations increased in the queue at the physical examination
center, more time was wasted with longer waits.

To reduce this bottleneck, we introduce a scheduling sys-
tem that determines the start time of each patient in different
testing groups as well as the order in the scheduling cycle.
Additional medical challenges can be solved by enhanced
scheduling. Hsieh [4] proposed a viable and systematic
approach to develop a scalable and sustain-able schedul-
ing system based on multi-agent system (MAS) to shorten
patient stay in a hospital. Quintana et al. [5] studied the
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Home Health Care Scheduling Problem which involves
allocating professional caregivers to patients’ places of res-
idence to meet service demands. Azaiez and Al-Sharif [6]
developed a computerized nurse scheduling model approx-
imated by 0-1 goal programming for improving manual
scheduling. Pham and Klinkert [7] researched a new surgi-
cal case scheduling method to ensure the quality of patient
care and effectively use hospital resources. Zhu et al. [8]
proposed an efficient outpatient scheduling method and
created a qualification matrix to apply the group role assign-
ment algorithm, making an automatic outpatient scheduling
feasible. Cappanera et al. [9] studied the performance of
three scheduling strategies. The goal of this plan is to
maximize the number of scheduled surgeries and balance
the workload across beds and operating rooms. Gartner
and Kolisch [10] studied hospital patient flow planning
to maximize the contribution margin by developing two
mixed-integer programming (MIP) processes to be embed-
ded into static and rolling horizontal programming methods
under the condition of scarcity of medical resources. This
approach considered the procedures of the clinical path-
way (such as the types of diagnostic activities and surgery)
as well as the sequence in which they must be applied to
the patient. Ahmadi-Javid et al. [11] developed a method
based on decentralized agents, in which patients and hos-
pital resources are represented as agents with individual
goals to solve challenges of patient scheduling and hospital
resources. Erhard et al. [12] adopted a quantitative method
of doctor scheduling in hospitals by describing the related
characteristics of various doctor scheduling problems inves-
tigated. Jiang et al. [13] proposed the two simple scheduling
strategies of weight accumulation and priority enhancement
for improving waiting time management. These experi-
mental results suggested that an effective scheduling strat-
egy can significantly reduce patient waiting times without
expensive capacity expansions.

Scheduling is becoming more and more popular in recent
years [14, 15]. The flexible job shop scheduling problem
(FJSP) is an extension of job shop scheduling [16]. FJSP
primarily considers two problems, the first of which sorts
all operations of the job into a reasonable order, and the
second assigns each sorted operation an appropriate and
available machine. The makespan represents the maximum
completion time of a job.

The FJSP model plays an important role in the medical
field and services with its application, enabling hospital
resources to be effectively used in limited time. The FJSP
provides a pre-analysis of the processing time and notifies
employees in advance of upcoming activities so that patients
can be prepared quickly. Yin et al. [17] represented surgery
scheduling as an extended multi-resource, constrained FJSP

that was solved by an improved ant colony algorithm.
Su et al. [18] regarded the problem of determining the
optimal operating room schedule as a FJSP and proposed
a SOMO-based approach for solving the operating room
scheduling problem. Lee et al. [19] studied the problem
of completing multiple processes within one day as a
flexible job shop model with fuzzy sets and proposed a
scheduling strategy to determine the start time of multiple
operating rooms. Behmanesh et al. [20] researched the
surgical case scheduling problem in multioperating theater
environment with uncertain service times in order to
minimize makespan and structured the no-wait multi-
resources fuzzy fexible job shop scheduling in operating
theater. Also, Behmanesh and Zandieh [21] studied the
Surgical case scheduling problem with fuzzy surgery time
and formulated the problem as a novel bi-objective no-
wait multi-resource FJSP. The surgical cases are optimally
allocated to the existing resources and sequenced in the
surgery list of these resources so as to minimize both
objectives within their time window. Luscombe et al. [22]
proposed a dynamic scheduling framework to provide
real-time support for the management of scarce resources
in emergency departments. Recently, many meta-heuristic
algorithms have been applied to FJSP, such as the simulated
annealing algorithm [23] based on local search heuristics,
variable neighborhood search (VNS) [24], the Tabu search
algorithm [25], and the iterative greedy (IG) algorithm [26],
as well as population-based methods, including the particle
swarm optimization algorithm (PSO) [27], a hybrid discrete
artificial bee colony (ABC) algorithm [28], An improved
Jaya (IJaya) algorithm [29], an improved artificial immune
system (IAIS) algorithm [30], and discrete imperialist
competitive algorithm (DICA) [31]. The traditional open
shop scheduling method is not flexible enough, and many
types of medical equipment cannot be fully utilized during
an emergency. The main contribution of this paper is that the
physical examination scheduling is regarded as a FJSP, and
an improved imperialist competition algorithm is applied
to the improvement of hospital physical examination
scheduling. The improved local search strategy is embedded
in the algorithm to enrich the search behavior and avoid
premature convergence. A global search strategy is studied
to prevent falling into local optimization. The optimization
idea of sorting and scheduling is fully combined to make
effective use of limited resources and equipment.

The remainder of this paper is organized as follows. The
second section describes the scheduling environment and
formally states the problem. The third section details the
description of the algorithm, and the fourth section reviews
the experiment to verify the algorithm. Finally, the fifth
section provides a summary and suggests future research.
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2 The environment of scheduling

For an example scheduling scenario, we first investigate the
physical examination of the patient suspected to have the
novel coronavirus. With a pre-analysis of the time required
to perform the physical examination, the exam is then
scheduled and completed as planned. Our goal is to identify
a scheduling scheme that allows for the shortest completion
times within this environment.

2.1 Flexible job shop scheduling

The FJSP is defined as follows. A set of jobs J={J1, ...,
Jn} must be performed on a set of machines M={M1, ...,
Mn} where each independent job Ji consists of a sequence
of operations Oi . To apply FJSP, we consider the patient as
a job, each physical examination item as an operation, and
the physical equipment is considered machine. Considering
the transportation time between the input warehouse and
the first machine, a virtual machine with zero processing
time is defined, machine 0. Within the processing time of
the patient during physical examination, the transportation
time between equipment and the setup time required for
the patient are also incorporated. The FJSP approach is
adopted because patients can be assigned to a variety
of physical examination equipment. Figure 1 depicts the
physical examination scheduling as a FJSP, because the
transportation time and setup time are taken into account,
therefore, patients will not proceed directly when it reaches
equipment. In addition, some patients may have a physical
examination on the same device, therefore patient 2 has a
physical examination in equipment 1 twice, indicating that
different physical examination items of patient 2 are carried
out on the same physical examination equipment.

2.2 Assumptions

During the process of physical examination scheduling, the
following constraints exist:

– All patients are ready at time zero.

Fig. 1 The physical examination scheduling process

– Each patient has a fixed number of physical examina-
tions operations.

– Transportation and setup times must be considered.
– Once a patient is examined on equipment, the process

is not interrupted until the entire routine is complete.
– The time of the next operation is greater than or equal

to the time of the previous operation.

2.3 Problemmodel

The parameters and indexes are listed in Table 1. For a math-
ematical model of FJSP, a sequence-based mixed-integer
linear programming model is established to minimize the
physical examination times of patients. The objective is to to
minimize the makespan of a patient’s physical examination.
Therefore, the objective function can be expressed as con-
straint (1), where Cmax represents the maximum completion
time.

MinCmax (1)

Constraint (2) and (3) guarantees that every physical exam-
ination item should be allocated to only one equipment. If
the Yj,1,i,0 value of is 1 that represents the first operation of
patient j is processed on machine i.
m∑

i=1

Yj,q,i,0 = 1 ∀j (2)

Table 1 The variable definitions

Variables Comment

j, h The indices of the patients.

i, f, k The indices of the physical examination equipment.

q, e The index of the physical examination items.

n The number of patients.

m The number of physical examination equipment.

M A large positive number.

Ei The available physical examination equipment.

nj The number of physical examination items of patient j .

Oj,q qthoperation of job j .

Ej,q,i A binary variableoftaking value 1 if Oj,q is processed on

machine i, and 0 otherwise.

Pj,q,i The processing time of Oj,q on machine i.

Tj,k,i The transportation time of the job j from the machine k

to machine i.

Si,h,j The setup time between job j and job h on machine i.

Cj,q A continuous variable for the completion time of Oj,q .

Xj,q,h,e A binary variable taking value 1 if Oj,q is processed after

Oh,e, and 0 otherwise.

Yj,q,i,k A binary variable taking value 1 if Oj,q is processed on

machine i and Oj,q−1 on machine k, and 0 otherwise.
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m∑

i=1

m∑

k=1

Yj,q,i,k = 1 ∀j, q > 1 (3)

During the physical examination that each physical exami-
nation item for each patient is allocated to a single piece of
equipment, and that these must be selected from a series of
available equipment, which can be expressed by constraints
(4) and (5).
m∑

k=1

Yj,1,i,0 ≤ Ej,1,i ∀j, i (4)

m∑

k=1

Yj,q,i,k ≤ Ej,q,i ∀j, q > 1, i (5)

According to the definition of variable Yj,q,i,k , Oj,q−1

should be processed on equipment k, if is processed on Oj,q

equipment i. Therefore, constraints (6) and (7) ensure that
if Oj,q is operated on machine i, Oj,q−1 is processed on
machine k.

Yj,2,i,k ≤ Yj,1,k,0 ∀j, i, k (6)

Yj,q,i,k ≤
m∑

f =1

Yj,q−1,k,f ∀j, q > 2, i, k (7)

The constraints (8)–(17) are sequencing constraints. Con-
straints (8) and (9) enforce that starts Oj,q just after the
completion of patient Oj,q−1 and the transportation and
setup time of patient j to equipment i. Constraints (10)
to (17) ensure that equipment can only be applied to one
patient at a time.

Cj,1≥
m∑

k=1

Yj,1,i,0(Pj,1,i + Tj,0,i +
n∑

h=1

Xj,1,h,1 · Si,h,j ) ∀j

(8)

Cj,q ≥ Cj,q−1 +
m∑

i=1

m∑

k=1

Yj,q,i,k(Pj,q,i + Tj,k,i

+
n∑

h=1

Xj,q,h,e · Si,h,j ) ∀j, q > 1, h, e (9)

Cj,q ≥ Ch,z + Pj,q,i + Si,h,j − M(1 − Xj,q,h,z)

M(2 −
m∑

k=1

Yj,q,i,k −
m∑

k=1

Yh,z,i,k)

∀j, q > 1, h �=, e > 1 (10)

Cj,1 ≥ Ch,z + Pj,1,i + Si,h,j − M(1 − Xj,1,h,z)

−M(2 − Yj,1,i,0 −
m∑

k=1

Yh,z,i,k)

∀j, q > 1, h �= j, e > 1 (11)

Cj,q ≥ Ch,1 + Pj,q,i + Si,h,j − M(1 − Xj,q,h,1)

−M(2 −
m∑

k=1

Yj,q,i,k − Yh,1,i,0)

∀j, q > 1, h �= j, e > 1 (12)

Cj,1 ≥ Ch,1 + Pj,1,i + Si,h,j − M(1 − Xj,1,h,1)

−M(2 − Yj,1,i,0 − Yh,1,i,0)

∀j, q, h �= j, e (13)

Ch,z ≥ Cj,q + Ph,z,i + Si,h,j − M(Xj,q,h,z)

−M(2 −
m∑

k=1

Yj,q,i,k −
m∑

k=1

Yh,z,i,k)

∀j, q, h �= j, e > 1 (14)

Ch,z ≥ Cj,1 + Ph,z,i + Si,h,j − M(Xj,1,h,z)

−M(2 − Yj,1,i,0 −
m∑

k=1

Yh,z,i,k)

∀j, q > 1, h �= j, e (15)

Ch,1 ≥ Cj,q + Ph,1,i + Si,h,j − M(Xj,q,h,1)

−M(2 −
m∑

k=1

Yj,q,i,k − Yh,1,i,0)

∀j, q, h �= j, e (16)

Ch,1 ≥ Cj,1 + Ph,1,i + Si,h,j − M(Xj,1,h,1)

−M(2 − Yj,1,i,0 − Yh,1,i,0)

∀j, q, h �= j, e (17)

The completion time of the whole physical examination
scheduling is greater than or equal to the completion time of
each physical examination scheduling, and each scheduling
time is more than 0, which can be expressed by constraint
(18) and (19).

Cmax ≥ Cj,nj
∀j (18)

Cj,q ≥ 0 ∀j, q (19)

Constraint (20) shows that those related variables are binary.

Xj,q,h,z, Yj,q,i,k ∈ {0, 1} (20)

3 Algorithm descriptions

To solve the physical examination scheduling problems,
we apply a new intelligent optimization algorithm, called
the imperialist competition algorithm that is inspired
by the competitive behavior of the imperialist. In the
ICA GS, individuals are represented as countries. First,
the better countries with smaller makespan values are
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called imperialists, and others become colonies of these
imperialists. Then, the imperialists who occupy the colonies
attempt to assimilate them and apply a mutation before the
assimilation. After the internal strengths of the imperialists
change, the strategy of the imperial competition and
updates is implemented. During this process, the most
powerful colony replaces the weakest imperialist. When an
imperialist no longer has colonies, it undergoes a demise
strategy to re-assign it to the imperialist that is the most
power over their colonies.

The adoption of a strategy for an imperial development
plan satisfies the fact that imperialists feature certain
development strengths and ruling strategies in the real
world. For the process of continuous development, there
may appear similar countries, and similarity significantly
reduces the performance of the algorithm. Therefore, we
adopt a similarity replacement strategy. In addition, a local
search strategy is embedded in the ICA GS for enhancing
search behaviors and prevented the solution from falling
into a local optimization that was introduced by the global
search strategy. The framework for the ICA GS is described
in Algorithm 1.

3.1 Representation

Each solution uses a multi-layer coding rule that contains
information about the equipment selection (EQS) and
examination sequence (EXS) (Fig. 2). The equipment
selection randomly selects available physical examination
equipment according to the physical examination items of
the patient and stores the available physical examination
equipment numbers into the EQS array. For the examination
sequence, the patient number is stored in the EXS array
according to a random order of the patient underwent

a physical examination. The initial solution requires the
corresponding processing of the EQS part, for which we
adopt the LS strategy proposed by Zhang et al. [32], and the
EXS part, for which we use a random selection strategy.

3.2 Initialize the empires

In the ICA GS, all populations (Pop) include several impe-
rialists (Nim) and their countries (Ncl). The imperialists
have the smaller makespan, and the remainder are colonies
of the imperialists, such that

Pop = Nim + Ncl (21)

A roulette selection process is applied to calculate the
power of each imperialist as

power(n) = 1

makespan(n)
(22)

The calculation of the number of colonies occupied by each
imperialist (colonyNum) is performed according to

colonyNum(n) = Ncl · power(n)

Nim∑
n=1

power(n)

(23)

3.3 Mutation operation

Mutation is a strategy adopted by the imperialist to reduce
repetition (Fig. 3). If the imperialist improves after a
mutation, then the new imperialist replaces the previous
imperialist. Otherwise, the imperialist remains unchanged.
The operation of the mutation follows the process as:

(1) For the EQS part,

Step 1: Randomly select several positions.
Step 2: Replace the elements of the selected posi-

tions with the available equipment numbers.

(2) For the EXS part,

Step 1: Randomly select two positions.
Step 2: Swap the element of the two positions.

3.4 Assimilation operation

The process by which colonies learn from empires is called
assimilation. The steps for the assimilation strategies are as
follows:

(1) For the EQS part, we apply the two-point crossover
strategy [33] (Fig. 4).

Step 1: Choose an imperialist and one of its colonies,
with EQS parts represented as Q1 and Q2,
respectively.

Step 2: Randomly select two positions from Q1.
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Fig. 2 An individual
representation in the scheduler

Fig. 3 The mutation process

Fig. 4 The assimilation strategy
of the EQS part

Fig. 5 The assimilation strategy
of the EXS part
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Fig. 6 The imperialist’s update
strategy

Step 3: Insert elements between the selected posi-
tions in Q1 into the EQS part (Qm1) of
the new colony. Then, the remaining posi-
tion inserts the element of the corresponding
previous colony.

(2) For the EXS part, we adopt the POX strategy [34]
(Fig. 5).

Step 1: Choose an imperialist and one of its
colonies, with their EXS parts represented by
X1 and X2, respectively.

Step 2: Randomly select several positions from X1.
Step 3: Insert the elements of the selected positions

from the imperialist into the EXS part (Xo1)
of the new colony, and insert the other
elements of X2 into Xo1 in order.

A new colony is obtained after assimilation. If the new
colony is improved over the previous version, then the
previous colony is replaced. Otherwise, the previous colony
remains.

3.5 The imperialists’ updating

Through iteration, colonies may gain more power than
the corresponding imperialist. In this scenario, the most
powerful colony becomes the new imperialist. The colonies
under the previous imperialist are then allocated to the new
imperialist. The previous imperialist also becomes a colony
of the new imperialist (Fig. 6).

3.6 The competitionmechanism

During the imperialist competition, the strongest and
weakest imperialists are selected. Then, the colonies of
the weakest imperialist transfer to belonging to the most
powerful imperialist (Fig. 7). When an imperialist does not
have any colonies, then the imperialist performs the strategy
of extinction.

3.7 The imperialists’ development

To improve the performance of ICA GS, we apply the
development mechanism to make some changes to the
imperialist. This process is also separated into two parts.

Fig. 7 The imperialist’s update strategy

H. Yu et al.3942



Table 2 Combination of the key parameter values

Parameter Level

1 2 3 4

Pop 50 100 150 200

Nim 5 10 15 20

I terOS 1 3 6 9

I terMS 1 3 6 9

Step 1: For the EQS part, a position is randomly selected
and replaced with an available equipment number .

Step 2: For the EXS part, two positions are randomly
selected, and the elements of the first position are moved
into the second position. The element between these two
positions moves forward.

3.8 Similarity substitution

During the process of continuous development of the
empires, highly similar countries may appear; this reduces
the performance of the algorithm. For addressing this issue,
we adopt the following similarity replacement strategy.

Step 1: Randomly select two colonies within the imperi-
alist.

Step 2: Compare the similarity between the elements in the
two parts of the solution of the selected colonies.

Step 3: After comparison, those pairs with the highest
similarity are selected, and then initialize one of
the countries to reduce similarity of the colonies.

3.9 Local search strategy

To further enhance the performance of the proposed algo-
rithm, a local search strategy is next introduced. The number

1 2 3 4

Pop

600

605

610

615

m
ea

n

1 2 3 4

Nim
1 2 3 4

IterOS 
1 2 3 4

IterMS

Fig. 8 The factor level trends of the four key parameters

of iterations in the inner loop is expressed by I terMS, and
the number of iterations in the outer loop is expressed by
I terOS. The internal loop section uses the same strategy
as the EQS part of the mutation operation. If a better solu-
tion can be obtained, then it replaces the previous solution.
Otherwise, the previous solution is replaced with a lower
probability. The outer loop uses the two-point crossover
strategy and replaces the previous solution if it obtains a
better one. Otherwise, the previous solution is replaced with
a lower probability. The framework for this local search
approach is described in Algorithm 2.

3.10 Global search strategy

A global search strategy is applied to improve the unim-
proved solution during the last several iterations and elim-
inate the state that exists in a local optimum. This final
optimization enables the entire population to achieve a
better solution.

Step 1: Create a vector W1 for storing the replaced
solution from each evolution when the solution
cannot be improved after a given iteration.

Step 2: Create a vector W2 for storing the local optimal
solution.

Step 3: Apply the following two methods of random
selection to produce the optimal solution.
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Table 3 Compare the experimental data ICA and ICA GS

Instance Scale Best ICA ICA GS Dev

min avg max min avg max dev1 dev2

Inst1 3x3 87.00 87.00 87.00 87.00 87.00 87.00 87.00 0.00 0.00

Inst2 3x5 126.00 132.00 136.47 146.00 126.00 133.50 134.00 4.76 0.00

Inst3 3x6 142.00 158.00 175.00 187.00 142.00 158.27 169.00 11.27 0.00

Inst4 3x7 167.00 180.00 200.70 213.00 167.00 183.77 193.00 7.78 0.00

Inst5 3x8 221.00 235.00 247.50 256.00 221.00 234.30 241.00 6.33 0.00

Inst6 3x10 275.00 282.00 300.93 310.00 275.00 286.83 296.00 2.55 0.00

Inst7 5x3 137.00 137.00 145.10 150.00 138.00 139.07 143.00 0.00 0.73

Inst8 5x5 154.00 164.00 185.30 190.00 154.00 164.40 180.00 6.49 0.00

Inst9 5x6 220.00 236.00 246.10 256.00 220.00 228.47 237.00 7.27 0.00

Inst10 5x7 240.00 253.00 276.90 286.00 240.00 256.53 267.00 5.42 0.00

Inst11 5x8 273.00 282.00 302.90 315.00 273.00 282.83 290.00 3.30 0.00

Inst12 5x10 306.00 327.00 347.33 361.00 306.00 323.97 335.00 6.86 0.00

Inst13 10x3 114.00 114.00 115.27 116.00 114.00 114.03 115.00 0.00 0.00

Inst14 10x5 165.00 168.00 187.70 199.00 165.00 174.93 181.00 1.82 0.00

Inst15 10x6 249.00 276.00 285.60 295.00 249.00 266.17 275.00 10.84 0.00

Inst16 10x7 193.00 215.00 227.33 239.00 193.00 213.10 221.00 11.40 0.00

Inst17 10x8 328.00 361.00 378.57 401.00 328.00 348.53 361.00 10.06 0.00

Inst18 10x10 319.00 368.00 389.90 407.00 319.00 339.20 354.00 15.36 0.00

Inst19 20x3 301.00 309.00 315.77 321.00 301.00 306.30 309.00 2.66 0.00

Inst20 20x5 279.00 289.00 308.87 329.00 279.00 288.43 298.00 3.58 0.00

Inst21 20x6 390.00 417.00 444.73 459.00 390.00 416.33 428.00 6.92 0.00

Inst22 20x7 344.00 374.00 395.83 412.00 344.00 364.77 380.00 8.72 0.00

Inst23 20x8 439.00 514.00 542.33 565.00 439.00 469.07 520.00 17.08 0.00

Inst24 20x10 487.00 547.00 567.63 595.00 487.00 518.47 538.00 12.32 0.00

Inst25 30x3 424.00 438.00 449.83 458.00 424.00 429.20 443.00 3.30 0.00

Inst26 30x5 467.00 488.00 508.40 527.00 467.00 482.07 494.00 4.50 0.00

Inst27 30x6 674.00 699.00 741.33 771.00 674.00 688.27 712.00 3.71 0.00

Inst28 30x7 517.00 547.00 608.03 628.00 517.00 568.87 593.00 5.80 0.00

Inst29 30x8 654.00 710.00 734.03 771.00 654.00 687.03 711.00 8.56 0.00

Inst30 30x10 700.00 728.00 784.37 815.00 700.00 725.87 761.00 4.00 0.00

Inst31 50x3 742.00 753.00 764.23 776.00 742.00 753.20 758.00 1.48 0.00

Inst32 50x5 731.00 778.00 803.33 830.00 731.00 760.77 776.00 6.43 0.00

Inst33 50x6 924.00 1027.00 1065.33 1105.00 924.00 1001.80 1024.00 11.15 0.00

Inst34 50x7 827.00 881.00 920.20 961.00 827.00 868.93 892.00 6.53 0.00

Inst35 50x8 961.00 1027.00 1067.27 1118.00 961.00 1003.30 1039.00 6.87 0.00

Inst36 50x10 1073.00 1159.00 1214.27 1261.00 1073.00 1132.47 1180.00 8.01 0.00

Inst37 100x3 1547.00 1562.00 1573.33 1591.00 1547.00 1558.03 1566.00 0.97 0.00

Inst38 100x5 1513.00 1551.00 1596.17 1636.00 1513.00 1540.77 1562.00 2.51 0.00

Inst39 100x6 1991.00 2099.00 2140.30 2182.00 1991.00 2055.80 2094.00 5.42 0.00

Inst40 100x7 1578.00 1636.00 1699.50 1746.00 1578.00 1619.97 1643.00 3.68 0.00

Inst41 100x8 1833.00 1889.00 1971.90 2022.00 1833.00 1887.23 1929.00 3.06 0.00

Inst42 100x10 1858.00 1858.00 2006.43 2084.00 1859.00 1937.63 1980.00 0.00 0.05

mean 594.52 625.12 653.79 675.64 594.57 619.04 635.93 5.92 0.02
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Fig. 9 ANOVA result for the ICA and ICA GS

Step 3.1: Cross two randomly selected solutions
from W1 to produce a new solution that
replaces the original optimal value only if the
new solution is better.

Step 3.2: Cross two solutions from W2 to
produce a new solution by replacing the
optimal value generated from the local search
strategy only if the newly generated solution
is better. Otherwise, do not perform the
replacement.

The framework for the global search approach is
described in Algorithm 3.

4 Experimental analysis

We simulate the execution of the physical examination
scheduling process by studying the operation of jobs on
different machines and verifying the advantages of the
algorithm. All numerical experiments are performed on a
Lenovo PC with a 3.3-GHz processor and 4-GB memory
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Fig. 10 Convergence curves of the ICA and ICA GS
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Table 4 Global search numerical verification

Instance Scale Best ICA NGS ICA GS Dev

min avg max min avg max dev1 dev2

Inst1 3x3 87.00 87.00 87.00 87.00 87.00 87.00 87.00 0.00 0.00

Inst2 3x5 126.00 126.00 136.47 146.00 126.00 133.50 134.00 0.00 0.00

Inst3 3x6 142.00 143.00 175.00 187.00 142.00 158.27 169.00 0.01 0.00

Inst4 3x7 167.00 167.00 200.70 213.00 167.00 183.77 193.00 0.00 0.00

Inst5 3x8 221.00 221.00 247.50 256.00 221.00 234.30 241.00 0.00 0.00

Inst6 3x10 275.00 275.00 300.93 310.00 275.00 286.83 296.00 0.00 0.00

Inst7 5x3 137.00 137.00 145.10 150.00 138.00 139.07 143.00 0.00 0.01

Inst8 5x5 154.00 166.00 189.30 196.00 154.00 164.40 180.00 0.08 0.00

Inst9 5x6 220.00 220.00 246.10 256.00 220.00 228.47 237.00 0.00 0.00

Inst10 5x7 240.00 241.00 276.90 286.00 240.00 256.53 267.00 0.00 0.00

Inst11 5x8 273.00 273.00 282.90 291.00 273.00 282.83 290.00 0.00 0.00

Inst12 5x10 306.00 306.00 347.33 361.00 306.00 323.97 335.00 0.00 0.00

Inst13 10x3 114.00 114.00 115.27 116.00 114.00 114.03 115.00 0.00 0.00

Inst14 10x5 165.00 168.00 187.70 199.00 165.00 174.93 181.00 0.02 0.00

Inst15 10x6 249.00 259.00 285.60 295.00 249.00 266.17 275.00 0.04 0.00

Inst16 10x7 193.00 193.00 227.33 239.00 193.00 213.10 221.00 0.00 0.00

Inst17 10x8 328.00 336.00 378.57 401.00 328.00 348.53 361.00 0.02 0.00

Inst18 10x10 319.00 323.00 369.90 407.00 319.00 339.20 354.00 0.01 0.00

Inst19 20x3 301.00 306.00 315.77 321.00 301.00 306.30 309.00 0.02 0.00

Inst20 20x5 279.00 283.00 308.87 329.00 279.00 288.43 298.00 0.01 0.00

Inst21 20x6 390.00 394.00 444.73 459.00 390.00 416.33 428.00 0.01 0.00

Inst22 20x7 344.00 359.00 395.83 412.00 344.00 364.77 380.00 0.04 0.00

Inst23 20x8 439.00 479.00 542.33 565.00 439.00 469.07 520.00 0.09 0.00

Inst24 20x10 487.00 504.00 567.63 595.00 487.00 518.47 538.00 0.03 0.00

Inst25 30x3 424.00 428.00 449.83 458.00 424.00 429.20 443.00 0.01 0.00

Inst26 30x5 467.00 469.00 508.40 527.00 467.00 482.07 494.00 0.00 0.00

Inst27 30x6 670.00 670.00 741.33 771.00 674.00 688.27 712.00 0.00 0.01

Inst28 30x7 517.00 553.00 608.03 628.00 517.00 568.87 593.00 0.07 0.00

Inst29 30x8 654.00 668.00 734.03 771.00 654.00 687.03 711.00 0.02 0.00

Inst30 30x10 698.00 698.00 784.37 815.00 700.00 725.87 761.00 0.00 0.00

Inst31 50x3 742.00 742.00 764.23 776.00 742.00 753.20 758.00 0.00 0.00

Inst32 50x5 731.00 736.00 803.33 830.00 731.00 760.77 776.00 0.01 0.00

Inst33 50x6 924.00 984.00 1065.33 1105.00 924.00 1001.80 1024.00 0.06 0.00

Inst34 50x7 827.00 832.00 920.20 961.00 827.00 868.93 892.00 0.01 0.00

Inst35 50x8 961.00 965.00 1067.27 1118.00 961.00 1003.30 1039.00 0.00 0.00

Inst36 50x10 1073.00 1085.00 1214.27 1261.00 1073.00 1132.47 1180.00 0.01 0.00

Inst37 100x3 1547.00 1547.00 1573.33 1591.00 1547.00 1558.03 1566.00 0.00 0.00

Inst38 100x5 1513.00 1517.00 1596.17 1636.00 1513.00 1540.77 1562.00 0.00 0.00

Inst39 100x6 1991.00 2001.00 2140.30 2182.00 1991.00 2055.80 2094.00 0.01 0.00

Inst40 100x7 1578.00 1585.00 1699.50 1746.00 1578.00 1619.97 1643.00 0.00 0.00

Inst41 100x8 1833.00 1837.00 1971.90 2022.00 1833.00 1887.23 1929.00 0.00 0.00

Inst42 100x10 1859.00 1980.00 2006.43 2084.00 1859.00 1937.63 1980.00 0.07 0.00

mean 594.4 604.21 652.93 675.21 594.57 619.04 635.93 0.02 0.00

H. Yu et al.3946



running Windows 7. The FJSP method was written in C++
to improve speed and robustness.

4.1 Experimental parameters

We test the influence of the four parameters of Pop, Nim,
I terOS, and I terMS on the performance of the algorithm.
First, the levels of each parameter are listed in Table 2.
With these values, the Taguchi method (Montgomery [35]
2005) was introduced with which an orthogonal array L16 is
constructed. For each parameter combination, the proposed
algorithm independently ran 30 times, and the average
fitness value of the algorithm was collected as the response
variable. Finally, the factor level trend chart for the four
parameters was drawn based on the obtained data. As seen
in Fig. 8, when Pop is at level 3, Nim at level 4, I terOS

at level 2, and I terMS at level 4, the proposed ICA GS
algorithm achieves the best performance.

4.2 Comparison of ICA GS and ICA

For evaluating the performance of the proposed algorithm,
the ICA [36] was selected for comparison because it
adopts a new local search strategy that makes the algorithm
converge well. Our algorithm is also formed by improving
the local search strategy as well as adding a new strategy.
The performance measure considered is the percentage
deviation (dev) of the best value, calculated as

dev = fc − fb

fb

∗ 100% (24)

where fb represents the best solution of all comparison
algorithms and fc is the best solution to the tested algorithm.
Each algorithm runs 30 times independently, each time for
30 s, the best solution, the worst solution, and the average
solution from the algorithm are presented in Table 3.

The first column in Table 3 represents the instance
name, The second columns provides scale size of the
algorithm, in which two numbers represent the number of
patients and the number of physical examination equipment,
respectively. The best fitness values for each instance are
included in the third column. The subsequent six columns
describe the minimum value, average value, maximum
value collected by the two algorithms, respectively, while
the dev values obtained from the two compared algorithms
are provided in the last two columns. From this information
in Table 3, ICA GS obtains a better value in the same
running environment.

To determine if the resulting comparisons are signifi-
cantly different, we performed a multifactor analysis of
variance (ANOVA) with results shown in Fig. 9 for the ICA
and ICA GS. This comparison suggests that the improved
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Fig. 11 ANOVA result for strategies with and without global search

algorithm obtains better values. Also, based on the gener-
ated convergence curve in Fig. 10, ICA GS demonstrates a
strong convergence ability.

4.3 Effectiveness of the Global Search Strategy

To validate the value of the global search strategy, we
conducted detailed comparisons between the algorithm

Table 5 Comparison between CPLEX and ICA GS

Scale Best Algorithm Dev

CPLEX ICA GS CPLEX ICA GS

3x2 116.00 119.00 116.00 0.03 0.00

3x3 97.00 99.00 97.00 0.02 0.00

3x4 121.00 124.00 121.00 0.02 0.00

4x2 171.00 175.00 171.00 0.02 0.00

4x3 122.00 125.00 122.00 0.02 0.00

4x4 124.00 125.00 124.00 0.01 0.00

5x2 173.00 181.00 173.00 0.05 0.00

5x3 116.00 123.00 116.00 0.06 0.00

5x4 135.00 136.00 135.00 0.01 0.00

6x2 109.00 114.00 109.00 0.05 0.00

6x3 75.00 77.00 75.00 0.03 0.00

6x4 123.00 123.00 124.00 0.00 0.01

7x2 88.00 88.00 88.00 0.00 0.00

7x3 108.00 112.00 108.00 0.04 0.00

7x4 112.00 112.00 112.00 0.00 0.00

8x2 152.00 158.00 152.00 0.04 0.00

8x3 78.00 80.00 78.00 0.03 0.00

8x4 173.00 173.00 173.00 0.00 0.00

9x2 149.00 154.00 149.00 0.03 0.00

9x3 109.00 112.00 109.00 0.03 0.00

9x4 133.00 133.00 133.00 0.00 0.02

mean 123.05 125.86 123.10 0.02 0.00
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Table 6 Multi-algorithm comparison of experimental data

Instance Best Fitness Deviation

EGA AIA MIG ICA GS dev1 dev2 dev3 dev4

Inst1 87.00 93.00 87.00 87.00 87.00 6.90 0.00 0.00 0.00

Inst2 126.00 135.00 126.00 134.00 126.00 7.14 0.00 6.35 0.00

Inst3 142.00 176.00 154.00 162.00 142.00 23.94 8.45 14.08 0.00

Inst4 167.00 197.00 176.00 182.00 167.00 17.96 5.39 8.98 0.00

Inst5 221.00 246.00 224.00 236.00 221.00 11.31 1.36 6.79 0.00

Inst6 267.00 288.00 267.00 284.00 275.00 7.87 0.00 6.37 3.00

Inst7 137.00 137.00 137.00 142.00 138.00 0.00 0.00 3.65 0.73

Inst8 154.00 176.00 157.00 171.00 154.00 14.29 1.95 11.04 0.00

Inst9 213.00 231.00 213.00 229.00 220.00 8.45 0.00 7.51 3.29

Inst10 240.00 275.00 253.00 259.00 240.00 14.58 5.42 7.92 0.00

Inst11 273.00 294.00 283.00 277.00 273.00 7.69 3.66 1.47 0.00

Inst12 306.00 351.00 325.00 313.00 306.00 14.71 6.21 2.29 0.00

Inst13 114.00 114.00 115.00 114.00 114.00 0.00 0.88 0.00 0.00

Inst14 165.00 179.00 174.00 170.00 165.00 8.48 5.45 3.03 0.00

Inst15 249.00 289.00 267.00 257.00 249.00 16.06 7.23 3.21 0.00

Inst16 193.00 227.00 234.00 204.00 193.00 17.62 21.24 5.70 0.00

Inst17 328.00 376.00 360.00 338.00 328.00 14.63 9.76 3.05 0.00

Inst18 319.00 391.00 352.00 354.00 319.00 22.57 10.34 10.97 0.00

Inst19 301.00 308.00 310.00 307.00 301.00 2.33 2.99 1.99 0.00

Inst20 279.00 306.00 285.00 284.00 279.00 9.68 2.15 1.79 0.00

Inst21 390.00 452.00 439.00 419.00 390.00 15.90 12.56 7.44 0.00

Inst22 344.00 385.00 377.00 363.00 344.00 11.92 9.59 5.52 0.00

Inst23 439.00 538.00 512.00 496.00 439.00 22.55 16.63 12.98 0.00

Inst24 487.00 559.00 544.00 520.00 487.00 14.78 11.70 6.78 0.00

Inst25 424.00 443.00 446.00 439.00 424.00 4.48 5.19 3.54 0.00

Inst26 467.00 509.00 507.00 484.00 467.00 8.99 8.57 3.64 0.00

Inst27 674.00 783.00 714.00 710.00 674.00 16.17 5.93 5.34 0.00

Inst28 517.00 611.00 590.00 567.00 517.00 18.18 14.12 9.67 0.00

Inst29 654.00 743.00 696.00 673.00 654.00 13.61 6.42 2.91 0.00

Inst30 700.00 761.00 741.00 735.00 700.00 8.71 5.86 5.00 0.00

Inst31 742.00 770.00 762.00 764.00 742.00 3.77 2.70 2.96 0.00

Inst32 731.00 800.00 745.00 755.00 731.00 9.44 1.92 3.28 0.00

Inst33 924.00 1012.00 1021.00 1023.00 924.00 9.52 10.50 10.71 0.00

Inst34 827.00 899.00 1028.00 865.00 827.00 8.71 24.30 4.59 0.00

Inst35 961.00 1062.00 974.00 986.00 961.00 10.51 1.35 2.60 0.00

Inst36 1073.00 1193.00 1073.00 1172.00 1073.00 11.18 0.00 9.23 0.00

Inst37 1547.00 1562.00 1560.00 1555.00 1547.00 0.97 0.84 0.52 0.00

Inst38 1513.00 1574.00 1531.00 1565.00 1513.00 4.03 1.19 3.44 0.00

Inst39 1991.00 2045.00 2033.00 2085.00 1991.00 2.71 2.11 4.72 0.00

Inst40 1578.00 1643.00 1605.00 1649.00 1578.00 4.12 1.71 4.50 0.00

Inst41 1833.00 1908.00 1864.00 1926.00 1833.00 4.09 1.69 5.07 0.00

Inst42 1847.00 1974.00 1847.00 1974.00 1859.00 6.88 0.00 6.88 0.65

mean 593.90 643.21 621.62 624.50 594.57 8.30 5.65 5.42 0.18
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featuring the global search strategy, ICA GS, and the
one without, ICA NGS. We recognize that ICA GS and
ICA NGS have the same content, except for the global
search strategy that is performed using a random method.
After each algorithm runs independently for 30 s and
30 runs, the comparison results of the algorithm are
shown in Table 4. The following observations are seen
from Table 4. (1) For solving the given 42 instances, the
proposed ICA GS algorithm obtained 40 optimal values,
whereas the ICA NGS obtained only 21 optimal values.
(2) The last row in the table shows that, with a dev value
of 0.00, the proposed ICA GS algorithm performs better
than ICA NGS. A comparison of the two algorithms with
ANOVA is presented in Fig. 11, which suggests that the
proposed global search strategy enhances the searching
capabilities of the proposed algorithm.

4.4 CPLEX verification

For evaluating the performance of ICA GS, we use the
exact solver IBM ILOG CPLEX 12.7.1 to calculate the MIP
model. The settings for the precision solver configured as
the following. The maximum number of threads is three,
and the time limit is set to 3600 seconds. For the ICA GS,
due to its ability to obtain a satisfactory solution within an
acceptable time, the maximum CPU time of 30 s is applied
as a stop criterion. Twenty-one small-scale examples are
tested, with the number of jobs n ∈ {3, 4, 5, 6, 7, 8, 9} and the
number of machines m ∈ {2, 3, 4}. The experimental results
are reported in Table 5, showing that ICA GS obtained 16
optimal values out of 21 instances representing that ICA GS
can obtain the optimal Pareto solution better than CPLEX.

4.5 Multi-algorithm comparison

In order to verify the advantage of the proposed algorithm
in solving the physical examination scheduling problem,
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Fig. 12 ANOVA results for comparing multiple algorithms
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Fig. 13 Convergence comparisons
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we compared the ICA GS with other current popular
algorithms, including enhanced GA (EGA) [37], AIA
[38], and modified IG (MIG) [39]. We coded these
four algorithms and ran each in the same environment.
The instances ran 30 iterations to thousands of iterations,
and all comparison algorithms used the same stop criteria.
The optimal values obtained from comparing the four
algorithms are shown in Table 6, with the instance
name in the first column, followed by the best fitness
values for each instance in the second column. The best
solution of all the comparing algorithms are included in
the third column, which is obtained by comparing the
optimal values of all algorithms. The subsequent four
columns describe the fitness values collected from the four
algorithms, respectively. The dev values obtained by the
four compared algorithms are listed in the last four columns,
respectively.

From Table 6, we make the following observations. (1)
For the 42 instances with different problem scales, we use
bold to specify the optimal solution obtained, through which
we can see that ICA GS obtained 38 better results, which is
better than all others. (2) The last line in the table suggests
that, on average, the proposed algorithm obtained a value of
0.18, which is better than the other algorithms. (3) Overall,
ICA GS shows significantly better performance compared
with the other four algorithms.

Figure 12 illustrates the ANOVA results for the
four compared algorithms suggesting that ICA GS can
obtain the most optimal value. Figure 13 compares the
convergence curves of four examples with different problem
sizes, and the simulation results demonstrate that the
algorithm features good convergence for the problems
considered.

5 Conclusion and future research

The outbreak of the novel coronavirus, with its serious
infectivity, caused a large number of patients to become sick
within a short period. With the condition of limited public
resources in hospitals, more patients must receive more
efficient treatments within a limited time. Therefore, we
introduced a complex flexible job shop scheduling model
based on the ICA GS to solve the physical examination
scheduling problem. Considering the processing time of the
patient during the physical examination, the transportation
time between equipment, and the setup time of the patient.
In addition, the local search strategy was embedded into
ICA GS to enrich the searching behaviors along with
a global search procedure to enhance the exploration
ability. The effectiveness of the algorithm for physical
examination scheduling was verified through multiple
simulation experiments.

In future work, we will consider the following aspects.
(1) In the real world, patients may have special circum-
stances in the process of physical examination, such as
patients whose symptoms are close to the novel coronavirus.
In order to minimize the spread of the virus, we need to
examine such patients in a timely manner. At this time, it
may be necessary to disturb the original scheduling order,
which may lead to the reallocation of scheduling space.
(2) Consider the obstruction limit and no waiting condi-
tion, time and occupation limit, robust buffer, fixed activity
and sequence, release time and strict cut-off time during the
actual physical examination. (3) Expand the research objec-
tives [40], what we are studying at present is to minimize
the completion time of the whole physical examination pro-
cess, but in the physical examination scheduling in the real
world, just minimizing the completion time of the physical
examination process can not meet the actual requirements at
all. Patients expect to have a physical examination as soon
as possible and minimize the completion time of the whole
physical examination process. Hospitals expect to minimize
the use of medical resources and minimize medical costs,
which will be our future research objectives. (4) In the future
research, our method will be compared with the current
practice to see the applicability of our method and con-
stantly improve our method, such as integrate the algorithm
with other algorithms to improve the ability of exploration.
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