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Abstract
The novel coronavirus (COVID-19) pneumonia has become a serious health challenge in countries worldwide. Many
radiological findings have shown that X-ray and CT imaging scans are an effective solution to assess disease severity during
the early stage of COVID-19. Many artificial intelligence (AI)-assisted diagnosis works have rapidly been proposed to focus
on solving this classification problem and determine whether a patient is infected with COVID-19. Most of these works have
designed networks and applied a single CT image to perform classification; however, this approach ignores prior information
such as the patient’s clinical symptoms. Second, making a more specific diagnosis of clinical severity, such as slight or
severe, is worthy of attention and is conducive to determining better follow-up treatments. In this paper, we propose a
deep learning (DL) based dual-tasks network, named FaNet, that can perform rapid both diagnosis and severity assessments
for COVID-19 based on the combination of 3D CT imaging and clinical symptoms. Generally, 3D CT image sequences
provide more spatial information than do single CT images. In addition, the clinical symptoms can be considered as prior
information to improve the assessment accuracy; these symptoms are typically quickly and easily accessible to radiologists.
Therefore, we designed a network that considers both CT image information and existing clinical symptom information
and conducted experiments on 416 patient data, including 207 normal chest CT cases and 209 COVID-19 confirmed ones.
The experimental results demonstrate the effectiveness of the additional symptom prior information as well as the network
architecture designing. The proposed FaNet achieved an accuracy of 98.28% on diagnosis assessment and 94.83% on
severity assessment for test datasets. In the future, we will collect more covid-CT patient data and seek further improvement.
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1 Introduction

The novel coronavirus (COVID-19) is an infectious disease
that has spread rapidly to most countries worldwide. To date
(May 27, 2020), over 5,543,761 confirmed cases have been
reported, and the disease has caused over 150,159 deaths.
This situation has attracted concerns about serious public
health emergencies from many health organizations. The
current tests and diagnosis methods available for COVID-
19 are based primarily on reverse transcription polymerase
chain reaction (RT-PCT) [1, 2]; consequently, obtaining
test and diagnosis results requires a minimum of 4–6 h.
Considering the rate at which COVID-19 spreads, 4–6 hh
is a long time to obtain the results. In addition, a shortage
of RT-PCR test kits has been a huge challenge for many
countries.

An alternative solution for clinical assessment of
COVID-19 is to adopt computed tomography (CT) or X-ray
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Fig. 1 CT image examples of three patients with COVID-19. The
images in the first row are from a normal patient; the images in the
second row are from a patient classified as slight; and the images in

the third row are patient classified as severe. The red arrows denote
several potential abnormal lesion areas

scans, which are both faster and cheaper than RT-PCR.
In addition, CT images are readily available and show an
accuracy similar to that of RT-PCT. Thus, CT medical
imaging could play a vital role in assessing patients who
are positive for COVID-19. Several works [3–5] have
demonstrated promising results regarding the effectiveness
of using CT scans for COVID-19. On the other hand, there is
a high demand for rapid severity assessments of COVID-19
using CT scans during the early stage of the disease because
such assessments are beneficial for determining follow-
up treatments. Generally, clinical severity assessments for
patients include 2 categories: slight and severe, which leads
to different treat plans. Figure 1 shows CT image examples
from 3 cases with normal assessment and another slight
or severe COVID-19 assessments. Compared with normal
cases, the severe ones represent more obvious abnormal
lesion areas in a larger scale. Besides, the symptoms of
these three patients are given in Table 1. Shi et al. [6]
conducted descriptive studies on 81 patients with COVID-
19 in Wuhan, China. Pan et al. [7] reported on lung
changes over time from chest CT images during COVID-
19 recovery. Based on these radiological findings, chest CT
images and clinical symptoms, including fever, cough and
dyspnoea, of patients with COVID-19 can be beneficial for

clinical assessments. Zhao et al. [8] compiled a COVID-
CT dataset1 and proposed a deep learning method to predict
whether a patient is affected with COVID-19. Although
this method achieves promising performance based on this
open public dataset, it cannot predict specific severity
assessments. Currently, many AI (artificial intelligence)-
assisted diagnosis works have been proposed that focus
on solving this classification task to determine whether a
patient has been infected with COVID-19. However, most of
these networks are designed to perform classification based
on a single CT image, and they ignore prior information,
such as a patient’s clinical symptoms. As shown in Fig. 2a,
the workflows of these networks typically consist of feature
extraction from a single CT image followed by classification
prediction for disease assessment. However, more specific
diagnosis of clinical severity, including slight and severe
assessments, is worthy of attention and is beneficial for
determining follow-up treatments.

In this paper, we explore a fast assessment method for
both diagnosis and severity assessments based on 3D CT
imaging and clinical symptoms. The workflow is shown

1The COVID-CT dataset is available at https://github.com/UCSD-
AI4H/COVID-CT
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Table 1 Symptoms of three patient cases in Fig. 1

Symptoms Fever Cough Muscle ache Fatigue Headache Nausea Diarrhoea Stomachache Dyspnea

Patient 1 – – – – – – – – –

Patient 2
√ √

– – – – – – –

Patient 3 –
√

– – – – – – –

“
√
” denotes the patient is with the certain symptom, for instance fever

in Fig. 2b. First, to consider additional spatial tomography
information, we apply 3D CT image sequences instead
of single CT images. This may make the operation more
convenient for radiologists, who can simply input continual
chest CT image sequences from patients without having to
select a specific single CT image in advance. Second, the
clinical symptoms from patients can function as additional
prior information to improve assessment performance.
Such clinical symptoms are easily and rapidly accessible
compared with laboratory results. By employing both 3D
CT image sequences and clinical symptoms, we are able to
achieve rapid both diagnosis and severity assessment in the
early stage of COVID-19 disease, which can act as a point
of reference to assist radiologists in determining follow-up
treatments.

The remainder of this paper is organized as follows:
Related works are shown in Section. 2. We describe our
method in Section 3. First, we describe the details of 3D CT
image sequences and clinical symptoms and then present
the network workflow details, where four modules are
introduced. In the next section, we describe the COVID-
19 datasets and the network training implementation and

present the experimental results. In Section 5, we highlight
several discussion points regarding our work and future
research directions. Finally, we conclude the paper in
Section 6.

2 Related works

Because of their fast data acquisition, X-ray and CT
scans are widely applied to acquire imaging evidence
for radiologists. Because COVID-19 shows quite similar
manifestations in images, AI-assisted diagnosis is in high
demand in medical imaging. In this section, we introduce
several works based on X-ray and CT-based scans intended
to perform COVID-19 diagnosis.

2.1 X-ray-based screening of COVID-19

Although the sensitivity of X-ray images is less than that
of CT images for chest sites, it is usually employed as
the typical first-line imaging modality. Via a chest X-
ray, patients infected with COVID-19 frequently exhibit
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Fig. 2 The workflows of classification frameworks based on a a single CT image and b our proposed network (FaNet)
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bilateral low-zone consolidation that peaks 10–12 days
from symptom onset [9]. Several approaches to COVID-19
classification have been explored. Narin et al. [10] proposed
three different classical CNN-based models, ResNet50 [11],
InceptionV3 [12] and InceptionResNetV2 [13], to predict
COVID-10-infected patients from chest X-ray radiographs.
Apostolopoulos et al. [14] introduced transfer learning [15]
with CNNs for automatic detection of COVID-19 using a
collection of 1,427 X-ray images. Zhang et al. [16] studied
a deep learning method with anomaly detection using 14
public chest X-ray datasets and achieved an accuracy of
96% for COVID-19 cases. Hemdan et al. [17] compared
the classification performances of 7 deep models, including
VGG19 [18], DenseNet201 [19], ResNetV2, Inception V3,
InceptionResNetV2, Xception [20] and MobileNetV2 [21]
and found that VGG19 and DenseNetV2 achieved better
accuracy, while MobileNetV2 obtained the fastest testing
time. Sethy et al. [22] conducted statistical analysis and
showed that ResNet30 plus SVM achieved a superior
classification performance; their best model achieved an
accuracy of 95.3% for COVID-19 detection. Zhang et al.
[16] developed detection models using 1,531 X-ray images
that detected COVID-19 cases with 96% accuracy and
non-COVID-19 cases with an accuracy of 70.65%.

2.2 CT-based screening of COVID-19

Because characteristic CT imaging patterns are employed
in the diagnosis of COVID-19 patients in Hubei, China,
CT findings have been gradually become recommended
because they supply major evidence for early diagnosis
and for assessing the course of the disease [23]. Li et al.
[24] proposed CT visual quantitative analysis to explore
the latent relationship between COVID-19 classification
and imaging manifestations. Wang et al. [5] proposed
an Inception migration-learning method and achieved an
overall accuracy of 73.1% on the testing dataset. Song et al.
[25] developed a deep learning-based CT diagnosis system
to identify patients infected with COVID-19 that achieved
an excellent AUC of 0.99. Barstugan et al. [26] applied
support vector machines (SVMs) [27] and several feature
extraction methods, including the grey level co-occurrence
matrix (GLCM) [28, 29], local directional pattern (LDP)
[30–32], grey level run length matrix (GLRLM) [33, 34],
grey level size zone matrix (GLSZM) [35], and discrete
wavelet transform (DWT) [36] algorithms, and obtained a
classification accuracy of 99.68%.

3Methods

In this section, we first introduce 3D CT image sequences
and clinical symptoms. Then, we provide an overview of the

model framework of FaNet. Finally, the parameter selection
details are elaborated.

3.1 3D CT image sequences and clinical symptoms

We applied both 3D CT image sequences and clinical
symptoms from COVID-19 patients to obtain fast clini-
cal assessments. Instead of selecting single CT images to
accomplish prediction, we considered that image sequences
could provide more spatial information. In addition, in
practice, this approach allows radiologists to process the
CT image directly without having to select a specific sin-
gle image. The usage of CT image sequences can also
improve fault tolerance for clinical assessment. Similar to
video classification [37, 38] or action recognition [39–41],
we output specific classes based on the image sequences.
In terms of clinical symptoms, several works [42, 43]
have shown that latent relationships exist between the
ultimate clinical assessment and COVID-19 patient symp-
toms. Meanwhile, the clinical symptoms are easily acces-
sible, which helps in acquiring fast clinical assessment
when clinical symptoms are treated as auxiliary informa-
tion for CT image sequences. Figure 3 shows the statis-
tical distribution of clinical symptoms for clinical sever-
ity assessment based on 209 COVID-19 patients (194
slight cases and 15 severe cases). Based on observation,
cough and severe assessment are closely related. Among
these patients, some of them expressed no obvious symp-
toms. For these non-symptomatic patients, the CT image
sequence could be the critical discriminatory information.
By introducing information from both CT images and
symptoms, we are able to perform a fast clinical assessment
for COVID-19.

A CT image sequence with a data shape of h×w × c× k

first needs to be processed into a 3D matrix with a data
shape of h × w × k, where h, w and c represent the height,
width and channels of a CT image, respectively, and k

represents the length of the image sequence. Because the
number of channels for the CT image is 1, this process can
be considered as dimensionality reduction, unlike in natural
images, where the number of channels in the processed
matrix must be considered as k. Thus, this task can be
considered as a problem similar to the image classification
[11, 18, 19, 44–46].

For the clinical symptoms, we adopted 11 symptoms
to act as prior information, including fever, cough, muscle
ache, fatigue, headache, nausea, diarrhoea, stomachache
and dyspnea. If the patients is with the certain symptom,
the certain symptoms are encoded as 1. Otherwise, the
responding symptoms are set as 0. In addition, we adopted
patient gender and age as parts of the extra information
joined the symptoms. Then, we converted this prior
information into a vector for each COVID-19 patient.
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Fig. 3 The statistical distribution of clinical symptoms (fever, cough, muscle ache, fatigue, headache, nausea, diarrhea, stomachache and dyspnea)
for clinical severity assessments was based on confirmed cases for COVID-19

3.2 Fast assessment network (FaNet)

To enable fast and accurate diagnosis and severity assess-
ments for COVID-19, we designed our networks based
on both CT image sequences x and clinical symptoms y

from patients. As shown in Fig. 2b, the model framework
consists of 4 modules: encoding for symptoms, feature
extraction from CT image sequences, fusion, and predic-
tion. The symptom and feature extraction modules use two
feature streams—the clinical symptoms and the CT image
sequences, respectively. Next, the fusion module fuses the
outputs of these two streams into a single fused feature.
Finally, the prediction module predicts the clinical assess-
ment based on the fused feature. As shown in Fig. 4, more
framework details are given. Note that our network could

conduct two tasks, including diagnosis and severity assess-
ment. The entire framework can be formulated as follows:

T ask 1 : G(x, y) =
{
0, Non − COV ID − 19
1, COV ID − 19

. (1)

where G(·) represents our network. “T ask 1” is related
to the diagnosis assessment for COVID-19. Similar to
“T ask 1”, the severity assessment of COVID-19 is
represents as “T ask 2” as follows:

T ask 2 : G(x, y) =
⎧⎨
⎩
0, Normal

1, Slight

2, Severe

. (2)

where G(·) represents our network.
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3.2.1 Symptom-fused channel attention modules

To fuse symptom prior information, we combine the
shared symptoms information during the feature extraction.
Inspired by channel attention [47, 48] and self-attention [49,
50], the symptom-fused channel attention module (SCAM)
is designed. Firstly, two convolution layers in SCAM are
employed to extract shallow feature Fs . The image size
reduces half through max pooling and The channel average
pooling is used to gain channel-wise feature Fc.

Fc = Hcap(Fs) (3)

where Hcap denotes the channel average pooling operation.
For the shared symptoms, a convolution layer with filter size
1×1 is used to keep the length of expanded symptom vector
Fe same with Fc.

Fe = He(y) (4)

where He denotes the convolution operation and y denotes
the original symptom vector. In terms of channel attention
FCA for Fs , it could be formulated as follows:

FCA = Sigmoid(Hca(Sigmoid(Fe) ∗ Fc)) (5)

where Hca denotes the convolution layer with filter size
1 × 1 and Sigmoid(·) denotes the activation functions to
map value into [0, 1]. “*” denotes element-wise product
operation. To avoid information loss, the skip connection is
utilized. At last, the output of i-th SCAMMi

out is formulated
as follows.

Mi
out = Mi

in + Fs ∗ FCA (6)

whereMi
in denotes the input information for i-th SCAM and

“*” denotes element-wise product operation.

3.2.2 Prediction module

In our prediction module, the channel pooling operations
are introduced to replace fully connection layers to shrink
parameters. For better performance, the channel average
and max pooling are both employed in prediction module.
To combine these channel-wise features, concatenation are
used. Then, a convolution with filter size to squeeze the
combined channel-wise features half. Finally, a convolution
is used to predict the diagnosis assessment and another con-
volution for predicting severity assessment. This prediction
processes could be formulated as follows:

FSK = HSK(Concatenation(Hcap(Mn), Hcmp(Mn)))

(7)

where FSK denotes the shrink channel-wise features. HSK

denotes the convolution to shrink combined channel-wise
features. Hcap and Hcmp denotes the channel average
pooling and channel max pooling. Mn denotes the output

Table 2 Network parameter details for symptom-fuse channel
attention module (SCAM)

Component Kernel size

Convolution layer 1 3 × 3 × 32 × 16

Convolution layer 2 3 × 3 × 16 × 32

Convolution layer 3 (He) 1 × 1 × 11 × 32

Convolution layer 4 (Hca) 1 × 1 × 32 × 32

data of the last SCAM. Based on FSK , the prediction
outcome of diagnosis assessment z1 is formulated as

z1 = Hd(FSK) (8)

whereHd denotes the convolution layer with filter size 1×1.
Similar to z1, the prediction output of severity assessment
z2 is formulated as:

z2 = Hs(FSK) (9)

whereHs denotes the convolution layer with filter size 1×1.

3.3 Parameter selection

In this part, the parameter selection details are illustrated.
For the input data, the input CT image data shape are set as
512 × 512 × 160, where h = 512, w = 512 and h = 160.
Due to the CT image slice thickness is 1mm, the length of
sequences could cover most of the lung sites for patients.
The convolution before SCAM is fixed with kernel size
1×1×160×32, which shrink the channel number from 160
to 32. As is shown in Tables 2 and 3, the network parameter
details are described. In terms of the number of SCAM,
we set this parameter as 5, which is validated to gain best
performance in Section 4.4.

4 Experiments

In this section, we evaluate the performance of our method.
First, we describe the datasets, which include data from 209
COVID-19 patients and 207 normal patients. Next, the data
augmentation and network training implementation details
are elaborated. Finally, we report the experimental results
and ablation studies.

Table 3 Network parameter details for prediction module

Component Kernel size

Convolution layer 1 (HSK ) 1 × 1 × 64 × 32

Convolution layer 2 (Hd ) 1 × 1 × 32 × 2

Convolution layer 2 (Hs ) 3 × 3 × 32 × 3
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Table 4 Several methods based on FaNet and their descriptions

Methods Descriptions

FaNet-Random FaNet with random symptoms input;

FaNet-Res FaNet with only skip connection in SCAMs;

FaNet-Rca FaNet with only residual channel attention

in SCAMs;

FaNet-WA FaNet without channel average pooling

in prediction module;

FaNet-WM FaNet without channel max pooling

in prediction module.

4.1 Patient data studies

We acquired 209 COVID-19 patient data and 207 normal
patient data from Guizhou General People’s Hospital and
the second Xiangya Hospital. The ages of the patients
ranged from 8 to 84. The lengths of the CT image sequences
ranged from 202 to 653. We split the data into groups, with
300 patients for training and 116 for testing. Because one
input to our method consists of CT image sequences, these
patient data were cut into multiple sequences of the same
length 160 with uniform sampling, which covers the most
parts of lung site. The other input is the vector of clinical
symptoms for each corresponding image sequence. The CT
images were obtained using a Siemens CT scanner with a
slice thickness of 1.0 mm and a reconstruction matrix size of
512×512. The scan voltage ranges from 110 to 130 KeV. In
addition, the distances from the source to the detector and to
the patient were set to 940 and 535, respectively. To reduce
file number of CT images, the patient data was exported as
video files with an image size of 512 × 512 using Radiant
software.

4.2 Data augmentation and network training
implementation

We conducted data augmentation for our collected patient
data. For patient data testing, we randomly selected 116
image sequences total patient’s data, which would not
exist in training datasets. Regarding the training data, we
randomly selected the initial index of the image sequence
from the patient data during each epoch, which can
improve the data diversity. Regarding data augmentation,

Table 5 Parameter counts for
different methods Methods AlexNet ResNet MobileNet Vgg SeNet DenseNet FaNet

Parameter 3.365×107 3.366×107 3.361×107 3.365×107 3.366×107 3.370×107 1.020×105

Counts

we conducted horizontal flip, vertical flip, and rotation (90◦,
180◦ and 270◦) operations to acquire richer samples.

The Adam optimizer [51] with an initial learning rate of
0.001 was adopted to minimize the loss function. We trained
the entire network using 1,000 epochs during the ablation
studies and to conduct parameter selection. The network
was implemented in PyTorch on a computer equipped with
a TITAN 2080Ti GPU. The runing time on the test dataset
for each clinical assessment was less than 104 s.

4.3 Experimental results

To validate the effectiveness of our proposed method, we
design several versions based on our proposed method
shown in Table 4. Inspired by deep neural networks
for image classification in natural domain, we design
our proposed methods in 3D CT image sequences and
introducing the clinical symptom prior information. Thus,
we compare our method with several methods, including
AlexNet [52], ResNet [11], MobileNet [21], VGG [18],
SeNet [53] and DenseNet [19], to evaluate the performance.
Due to the new scene in CT images for these comparison
methods, we redesign these methods with similar parameter
counts (shown in Table 5) and adopt the fully connection
layers for prediction outcomes. Note that the application
of both channel average and max pooling avails the
significant reduction of the amount of network parameters
compared to fully connection layers. After training models
for the same number of epochs, the accuracy both on
diagnosis assessment and severity assessment of FaNet was
considerably better than that of the other methods on the test
datasets (shown in Table 6).

4.4 Ablation studies

We conducted an ablation study to compare model perfor-
mances under different number of symptom-fused channel
attention module and validate the effectiveness of introduc-
ing symptom information.

4.4.1 The number of symptom-fused channel attention
module

The ablation studies are conducted to compare the
performance under different number (3, 4, 5, 6, 7) of
SCAM. As is shown in Fig. 5, we find the accuracy on both

2844 Z. Huang et al.



Table 6 Accuracy on diagnosis
and severity assessments for
different methods

Methods AlexNet ResNet MobileNet Vgg SeNet DenseNet FaNet

Diagnosis assessment 46.55.17% 66.38% 53.45% 55.17% 56.03% 53.45% 98.28%

Severity assessment 45.69.86% 66.38.93% 53.45% 50.86% 54.31% 45.69% 94.83%

diagnosis assessment and severity assessment is best under
5 SCAMs when same training epochs are adopted. Besides,
the networks parameter counts increases when applying
more SCAMs. While, the more parameter counts may lead
to worse fitting results under limit datasets.

4.4.2 The effectiveness of clinical symptom prior
information

We design two version methods, including FaNet-Res
and FaNet-Rca, which are not fused with symptom prior
information under same training epochs. As is shown in
Fig. 6, FaNet achieves obviously better performance than
other two methods. The simple channel attention may not
leads to improve the accuracy. While, the self-attention
introduced the symptom could avail the performance,
which proves the effectiveness of clinical symptom prior
information. Besides, we directly input random symptom
information for trained FaNet and it leads worse perfor-
mance (shown in Table 7), which also proves the symptom
plays an important role in improving performance.

4.4.3 The effectiveness of channel pooling in prediction
module

The prediction module in FaNet are equipped with both
channel average and max pooling operations to shrink
the feature maps so as to help following two prediction

Fig. 5 Accuracy for different parameter selection on the number of
symptom-fused channel attention module (SCAM)

tasks. Based on this original version, we design another
two versions, including FaNet-WA and WM, which only
adopt only channel average pooling or channel max pooling
operation. To validate the effectiveness of channel pooling,
we train these three models under same epochs. As is
shown in Fig. 7, FaNet gains better performance than
other models, which demonstrates that the both employing
channel average and max pooling operations in our
proposed network could achieve better performance rather
than applying only one channel pooling operation.

5 Limitations and future works

We first discuss the setting regarding the length of the
CT image sequences. To cover the lung site, we set the
length of CT sequence k as 160. A longer length would
require more time to process the CT image sequence;
thus, a tradeoff exists between accuracy and running
time. Second, motivated by the need for fast clinical
assessments of COVID-19, we introduced the clinical
symptoms from patients as prior information based on
CT image sequences because that symptom information
is quickly and readily accessible. However, we note that
other prior information could also be considered that might
achieve better performance, such as the laboratory results
from real-time RT-PCR and sequencing of nucleic acids
from the virus [54]. In future works, this problem could be

Fig. 6 Accuracy comparison among FaNet-Res, FaNet-Rca and FaNet
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Table 7 Accuracy comparison between FaNet-Random and FaNet

Methods FaNet-Random FaNet

Diagnosis assessment 46.55% 98.28%

Severity assessment 45.69% 94.83%

explored by introducing other network technologies such
as recurrent neural networks [55] to extract more latent
spatial information. What’s more, the total amount of data
is somewhat limited since the experiment in this work
involved the data of only 416 patients with or without
COVID-19. In future work, we will collect more patient data
and seek to further improve these results. Due to the addition
of new data, we would consider more strategies to avoid
potential overfitting, such as cross validation or introducing
the weight regularization.

6 Conclusion

In conclusion, this paper proposed a fast assessment net-
work for both diagnosis and severity assessment of COVID-
19. Based on previous findings for patients with COVID-19,
CT image scans can form an effective solution for rapid
clinical assessments. On the other hand, patient clinical
symptoms also show a latent relationship with the final
assessment. Thus, we explored a fast severity assessment
network that considers both 3D CT image sequences and
clinical symptoms. The CT image sequences are much sim-
pler for radiologists to use because they do not need to
select a specific individual CT image and the data of the

Fig. 7 Accuracy comparison among FaNet-WA, FaNet-WM and FaNet

symptoms can be easily accessed. Ablations studies validate
the effectiveness of introducing symptom prior information
and network designing. The experimental results illustrate
that FaNet achieves fast clinical assessment for COVID-19
with an accuracy of 98.28% on diagnosis assessment and
94.83% on severity assessment. In future work, we will seek
to further improve current results.
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