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Abstract
The paper proposes an approach to signal denoising based on a combination of Variational Mode Decomposition with the
Split Augmented Lagrangian Shrinkage Algorithm.
In our research, we found that the proposed approach gives a great improvement of denoising gyroscopic signals. In turn,
the results for the synthetic signals are not straightforward. For the bumps synthetic signals, the proposed algorithm gives
the best results for different levels of signal degradation. While for the Doppler and blocks synthetic signals the reference
methods give better results. However, for heavisine test signal the proposed algorithm gives better results in almost all cases.
A weak point of the presented algorithm is its time complexity. The proposed approach is based on the Split Augmented
Lagrangian Shrinkage Algorithm, which is the iterative optimization method since the time of computation strongly depends
on the number of iterations.
The presented results show that the proposed approach gives a great improvement in signal denoising and it is a promising
direction of future research.

Keywords non-linear signals processing · dictionary methods · SALSA · robotics

1 Introduction

Throughout the world, researchers and engineers are
developing intelligent robotic systems for manufacturing,
service, and medicine and health care. The application
of intelligent robotics systems can increase productivity,
safety, and quality of life for people. However, the design
and the production of these systems require knowledge
of sensors and actuators. Moreover, the intelligent robotic
systems required algorithms and methods to process
acquired data from sensors and to control operating
actuators.

Intelligent robots are designed, in most cases, to replace
humans in dangerous and repetitive jobs. For example,
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many modern industrial robots are exploited in heavy lifting
tasks, precision drilling, packing, and sealing.

Service robots have been designed and developed for
applications in agriculture, house cleaning, fire fighting,
mining, surveillance, military uses, and undersea explo-
ration. Services provided by state-of-the-art robots have one
of the greatest potential application of intelligent robotics in
the future.

Intelligent robotic systems designed for health care are
used in surgery, rehabilitation, and assistance in daily
living. For example, medical robots have the potential to
increase the quality of medicine and health care enabling
human surgeons to treat individual patients with improved
efficacy and greater safety. On the other hand, robotic
systems for rehabilitation and for helping deal with physical
disabilities will become more and more important. The
robots can be used to assist with physical therapy, as part of
smart prosthetic devices and help disabled people in daily
living [1, 2].

One of the main elements of intelligent robotics systems
is sensors. Sensors are devices whose purpose is to detect
changes in the environment and send the acquired data to
the processing unit. The sensing devices may operate under
different load conditions and environmental conditions
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(temperature, humidity). All of these may result in noisy
measurements. Noise is a signal distortion hindering the
process of data acquisition. Therefore, the processing of
sensor data is one of the most important components of
intelligent robotics systems [3]. The major element of the
signal processing is denoising. Denoising is the process
of suppressing the noise from data to the desired extent.
From numerous types of noise prevailing in data acquired
from electronic devices Additive White Gaussian Noise
(AWGN), quantization noise, and bias instability are the
most common [4].

There exist several different denoising approaches orig-
inating from various disciplines like spectral and multi-
resolution analysis, partial differential equations, and statis-
tics. Based on the type of denoising algorithms, they can
broadly be referred to as time-domain filtering, transform-
domain filtering, and dictionary learning methods.

Time-domain methods include local and non-local filters.
These filters exploit the similarities between statistics of
different regions in the signal. The main difference between
local and non-local approaches is the size of the surrounding
regions.

A filter is considered to be local if the filter support
for denoising a sample is restricted by time distance.
Local methods are effective in terms of time complexity.
The popular local filters designed for noise reduction are
Gaussian filter [5], Wiener filter [6], Median filter [7], and
Savitzky-Golay filter [8].

On the other hand, one of the examples of the non-local
algorithm is the Nonlocal Means method (NLM) which is
implemented both 1D and 2D signals [9], [10]. The NLM
estimation exploits the non-local similarities in the signal
to denoise the signal. One of the drawbacks of the NLM
denoising scheme suffers from the “rare-patch” effect. It
can lead to some morphological dissimilarity between the
original and the NLM denoised signals.

In contrast to approaches designed in the time domain,
the transform domain methods are based on the property of
sparsity.

Sparse property means that the signal can be represented
by a fewer number of the non-zero coefficient. One of the
examples of approach is the denoising algorithms based on
the wavelet transform.

The denoising methods based on the wavelet [11, 12]
usually transform the signal into multiple sub-bands at
different resolutions and scales. Low-frequency noise exists
in larger frequency coefficients and high-frequency noise
dominates a lower frequency coefficient. Unfortunately, the
wavelet-based methods are sensitive to periodic noise and it
is difficult to select the exact value of threshold [13].

Sparse representation of the signal has been widely
researched in recent years. The algorithm based on sparse
representation tends to offer denoising effects, therefore it is

a powerful tool. The basic assumption behind sparsity-based
denoising is that the signal can be sparsely represented in a
transform domain but the noise cannot. If this assumption
holds it is possible to find a threshold in the transform
domain that suppresses the dense but small noise and keeps
the sparse high-valued signal components.

The other approach is the Empirical Mode Decomposi-
tion (EMD) [14]. Unlike the wavelet-based approach, EMD
has the advantage of not relying on the predefined basis
functions. In the EMD method analyzed signal is decom-
posed into the set of oscillatory components (Intrinsic Mode
Functions, IMF). Empirical Mode Decomposition method
is widely used for analyzing non-stationary signals. How-
ever, there are many problems to use EMD. One of them is
the problem of mode mixing, i.e. the existence of different
time scales in a single IMF. Another is that Empirical Mode
Decomposition still has not to sound mathematical theory.

Variational Mode Decomposition (VMD) is an adaptive
and non-recursive signal analysis method [15]. Compared
to EMD, the VMD approach has a strong mathematical
background. This helps to improve the accuracy of signal
separation and noise robustness [16]. Moreover, Variational
Mode Decomposition effectively eliminates the effect of
mode mixing during the decomposition process [17].
The set of determined, based on the VMD algorithm,
components are also named IMF.

VMD algorithm has been used in many fields. For
example, in [18] the authors reported the application of
Variational Mode Decomposition in forecasting day-ahead
energy prices. While the authors of [19] proposed VMD in
the analysis of seismic signals. The discussed method is also
used for the enhancement of gyroscopic signals [20].

More recently, in [21] the authors combine the Varia-
tional Mode Decomposition method and the LSTM (long
short-term memory) network to solve the problem of fore-
casting the non-ferrous metal price.

In the paper, a sparse signal processing is applied to
design a new denoising algorithm based on Variational
Mode Decomposition. The general idea of the proposed
approach is to apply the Split Augmented Lagrangian
Shrinkage Algorithm algorithm to each mode extracted
from the signal with the use of the VMD algorithm.

1.1 Contribution

The main contribution of this paper is a new algorithm for
signal denoising based on Variational Mode Decomposition
and the Split Augmented Lagrangian Shrinkage Algorithm
algorithms.

We also compared our proposal with, the Non-local
means algorithm, Median filter, Savitzky-Golay filter, and
two wavelet-based denoising methods. Verification of the
proposed methods was performed based on synthetic signals
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with the different levels of degradations as well as on the
real-world signals acquired from the three-axis gyroscope.

2 Basic principles

2.1 Variational Mode Decomposition

VMD is a multi-resolution analysis method used to extract
modes (sub-signals) and their central frequencies from a
non-stationary signal.

Each sub-signals extracted from original signal y(t) by
applying VMD is given by

uk(t) = ak cos(φk(t)) (1)

where k = 1, 2, . . . , K , K represents the predefined
number of the modes, the phase φk(t) is a non-decreasing
function (φ′

k(t) ≥ 0), the envelope is non-negative (a′
k(t) ≥

0), and both the envelope ak(t) and the instantaneous
frequency ωk(t) = φ′

k(t) vary much slower than the phase
φk(t) [15].

When the decomposition is completed, the original signal
y(n) is represented by

y(t) =
K∑

k=1

uk(t). (2)

In the VMD method, the modes are extracted iteratively
based on a variational model that aims to minimize the
sum of bandwidths of all modes {uk(t)}Kk=1. The extracted
modes have specific sparsity properties while reproducing
the input signal. It is assumed that each sub-signal to be
mostly compact around a centre frequency [15].

The associated constrained variational optimization
problem and the corresponding objective function to
calculate modes and their central frequencies is as follows

{u∗
k, ω

∗
k } = min{uk},{ωk}

{
K∑

k=1

∥∥∥∥ ∂

∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
exp−jωkt

∥∥∥∥2

2

}

s.t.
K∑

k=1

uk(t) = y(t)

(3)

where t is the time index, δ(t) is the Dirac distribution,
uk is shorthand notations for k-th mode from the set of
all sub-signals, i.e. uK = {u1, u2, . . . , uK} and ωk stands
for k-th centre frequencies of k-th mode, i.e. ωK =
{ω1, ω2, . . . , ωK}. The symbol ∗ denotes convolution. y(t)

represents the signal to be decomposed.
By introducing the Lagrangian multiplier λ and the

second penalty factor α (data-fidelity constraint parameter),

the constrained variational problem (3) can be transformed
into its unconstrained variational equivalent

L(uk, ωk, λ) = α
K∑

k=1

∂
∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
exp−jωkt

2

2

+
∥∥∥∥∥y(t) −

K∑
k=1

uk(t)

∥∥∥∥∥
2

2︸ ︷︷ ︸
(a)

+
〈
λ(t), y(t) −

K∑
k=1

uk(t)

〉
︸ ︷︷ ︸

(b)

(4)

The function L() is augmented Lagrange function
where (a) and (b) enforce the constraint by imposing a
quadratic penalty and incorporating a Lagrange multiplier
respectively.

The quadratic penalty provides reconstruction fidelity,
typically in the presence of additive i.i.d. Gaussian noise. In
turn, the Lagrangian multiplier is used to enforce constraints
strictly [15].

In order to solve the unconstrained optimization problem
(4) it can be split into two different sub-problems, i.e,
minimization of uk(t) and ωk(t). Such separation of the
formulated problem (4) is represented as

u
(l+1)
k ← arg minuk

L
(
u

(l+1)
i<k , u

(l)
i�k, ω

(l)
i , λ(l)

)
(5a)

ω
(l+1)
k ← arg minωk

L
(
u

(l+1)
i , ω

(l+1)
i<k , ω

(l)
i�k

, λ(l)
)

(5b)

where k = 1, 2, . . . , K , l means the l-th iteration. To
solve the optimization problems (5a) and (5b) ADMM
(Alternating Direction Method of Multipliers) approach is
applied. To this end, the complete optimization problem (4)
is splitted into sub-problems (5a and 5b). It is convenient to
handle since it allows to minimize cost function iteratively
for a single parameter of interest rather than optimizing cost
function for all optimization variables simultaneously.

Based on continuous iteration updated, all modes and
their corresponded centre frequencies are determined from
[15]

û
(l+1)
k (ω) = ŷ(ω) − ∑

i �=k û
(l+1)
i (ω) + λ̂(ω)

2

1 + 2α (ω − ωk)
2

(6a)

ω
(l+1)
k =

∫ ∞
0 ω

∣∣ûk(ω)
∣∣2

dω∫ ∞
0

∣∣ûk(ω)
∣∣2

dω
. (6b)

The formula (6a) resulting in the update of k-th mode in
the frequency domain. While (6b) is used to get an update
of k-th mode’s frequency as the estimation of their center of
gravity.

The modes and their corresponding frequencies in the
spectral domain are the fundamental components of the
VMD algorithm.
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The extracted modes obtained through the VMD
algorithm have largely disjoint spectral support and are
therefore automatically quasi-orthogonal. For more details
on the Variational Mode Decomposition algorithm, we refer
readers to [15].

2.2 Dictionary adaptation

Dictionary adaptation is a new approach to the enhancement
of signal decomposition. The introduced method is closely
related to dictionary learning [22], [23] however there are
some important differences between them. In a dictionary
learning, a typical set-up starts with a training set, which is
a collection of training data. Afterward, the training data is
used to learn the dictionary begins with the initial set of its
elements. The elements of the dictionary are named atoms
and they can be any waveform. The learning process should
determine the dictionary of atoms that can synthesize the
analyzed signal.

In the dictionary adaptation [24] we only have one
signal, not a training set. In our case, the atoms of the
dictionary are given in the form of a cos(φ(t)) (1). As we
will demonstrate later, it is possible to get a reasonable
adaptation of the dictionary based on the initial set of
atoms through optimization algorithms and with only one
measurement of the signal.

A dictionary is a collection of parametrized waveforms.
In the paper the dictionary is determined based on VMD
algorithm:

D = {u1(t), u2(t), . . . , uK(t)} (7)

where uk(t) are defined such that they are amplitude- and
frequency-modulated signals (see eq. 1).

Instead of a VMD-based dictionary, it is possible to
consider other dictionaries. One of the widely used is the
Fourier-based dictionary which is a collection of sinusoidal
waveforms. Another example, is the wavelet dictionary
composed of translations and dilations of the basic mother
wavelet.

Generally, in the dictionary adaptation approach, we
can use any decomposition method that gives a sparse
decomposition of signal [25]. Therefore, the signal can be
decomposed into a set of sparse sub-signals depending on
the choice of the dictionary that was used in the extraction
procedure. Essentially, a more redundant dictionary tends
to give better adaptivity to the signal, which implies better
sparsity of the decomposition. However, if the dictionary is
not a basis, the decomposition is not unique.

When the dictionary is orthogonal, the method works
perfectly. If the dictionary is not orthogonal, the situation
is less clear. To improve the performance of dictionary
adaptation methods, many other algorithms can be used.
In the paper, we propose the Split Augmented Lagrangian

Shrinkage Algorithm-based approach to improving the
dictionary determined with the use of Variational Mode
Decomposition.

2.3 Basis Pursuit Denoising

Basis pursuit (BP) finds signal representation in an
overcomplete dictionary applying optimization methods.
Overcomplete dictionary means that that there are in general
many representations of the signal. Optimization methods
in basis pursuit formulation are used to minimize the 	1

norm of coefficients occurring in the current representation.
However, because of the non-differentiability of the
	1 norm, this optimization principle leads to sparse
decompositions.

BP problem can be adapted to the case of the noisy
(measured) signal. In this case we assume the following
discrete-time model of the signal

y(n) = s(n) + ξ(n), n = 1, 2, . . . , N (8)

where s(n) is the noise-free (clean) signal and ξ(n) denotes
the additive white Gaussian noise. In this setting, s(n) is
unknown, while y(n) is known.

Without loss of generality we can assume that the
components of (8) are represented as vectors in R

N , i.e.
y ∈ R

N , s ∈ R
N , and ξ ∈ R

N .
Let us assume that the unknown vector s is represented as

s = Bx (9)

where B is the matrix representation of a convolution
operator, while x represents the vector of unknown
coefficients [26].

In the case of noisy signal, BP problem can be
reformulated to Basis Pursuit Denoising (BPD). The classic
formulation of BPD to determine unknown x has the form

x∗ = arg max
s

‖Bx − y‖2 + λBPD ‖x‖1 (10)

where y is the measured signal and λBPD stands for the
regularization parameter. The parameter λBPD allows to
get either a very sparse (high-value) or a dense (low-value)
solution.

The classic solution of the problem (10) has the form [27]

x∗ =soft(y, λBPD)=
{

sgn (y) (|y|−λBPD) |y|>λBPD

0 |y|≤λBPD .

(11)

The function soft(y, λBPD) is the proximal operator
called the soft thresholding operator.

An alternative solution of the problem (10) is an iterative
optimization algorithm called SALSA (Split Augmented
Lagrangian Shrinkage Algorithm). SALSA is a variable
splitting method that transforms the unconstrained problem
into a constrained variable problem. Then, the new problem
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is solved with the use of augmented Lagrangian method
[28]. Variable splitting is a procedure that introduces a
new variable, e.g. r. Based on the auxiliary variable r the
unconstrained optimization problem (10) can be converted
into constrained problem

{x∗, r∗} = arg max
x,r

‖Bx − y‖2 + λBPD ‖r‖1

s.t. r − x = 0.
(12)

The rationale behind applying variable splitting is that it
may be easier to solve the constrained problem (12) than it
is to solve its unconstrained equivalent (12).

To solve BPD problem (10), which is transformed into
(12), SALSA algorithm can be applied. In the case of
overcomplete Parseval transform the algorithm has the
following form [26], [29]

v ← soft(x + d, λBPD/μ) − d (13a)

d ← 1

μ
BH (y − Bv) (13b)

x ← d + v (13c)

where BH denotes the complex conjugate (Hermitian)
transpose of B, μ is a positive parameter that balances the
penalization.

It is worth emphasizing that SALSA is a universal
approach, as it allows a general regularizer, not just the 	1

norm. Moreover, the SALSA algorithm is fast however the
algorithm is fast as a whole if a fast implementation for B
and BH is available [29].

3 VMD-based signal denoising with
thresholding operator

Recently, in the paper [16] the authors proposed denoising
algorithm combining Variational Mode Decomposition with
hard and soft thresholding operators.

The hard thresholding operator for VMD algorithm
(originally proposed by Donoho [30]) has the form

u∗
k = hard(ûk, λhard,k) =

{
ûk

∣∣ûk

∣∣ > λhard,k

0
∣∣ûk

∣∣ ≤ λhard,k
(14)

while soft threshold is defined as

u∗
k = soft(ûk, λsof t,k) =

{
sgn

(
ûk

) (∣∣ûk

∣∣ − λsof t,k

) ∣∣ûk

∣∣ > λsof t,k

0
∣∣ûk

∣∣ ≤ λsof t,k

(15)

where k = 1, 2, . . . , K is the k-th mode, λhard,k and
λsof t,k denote the hard and soft threshold for the k-th
sub-signal respectively. Modes ûk and their modifications

u∗
k are represented as vectors in R

N , i.e. ûk ∈ R
N , and

u∗
k ∈ R

N .
In hard thresholding, each value of k-th IMF is compared

against the threshold value and lower value is replaced by
zero. However, the hard threshold leads to abrupt changes in
processed signals and it generates artifacts in the estimated
signal.

On the other hand, in the soft thresholding approach each
value of the IMFs, which are larger than the threshold value,
are modified by subtraction with the threshold value.

The soft threshold operator-based signal denoising tends
to smooth the signal.

4 The proposed approach

The signal denoising is one of the fundamental and classical
tasks in signal processing. Due to the imperfections present
in the measurements, the obtained signals are deteriorated
by unwanted components. Thus, the main challenge of
signal denoising is to preserve and enhance the desirable
features of the collected signals.

In the proposed method, we assume the observation
discrete-time model in the form of (8).

4.1 Problem formulation

The problem considered in the paper is to design an
algorithm that attenuates the noise ξ in given measurements
y and keeps the signal s as intact as possible, i.e., minimize
difference ε = ŝ − s (ŝ stands for estimate of s).

4.2 Sparse optimization-based signal denoising

We now apply the approaches described in the previous
section (2) to the formulated problem of signal denoising
(4.1).

As we mentioned in Section 3, both hard and soft
thresholding operators introduce to the estimated signal
some artifacts that deteriorate estimation outcomes there
is still a need to improve the performance of VMD-based
denoising algorithms. For example, in our previous work,
we proposed the method to attenuate the noise which
combines VMD with Total Variation Denoising [31].

Inspired by the BPD formulation we propose a SALSA-
based algorithm to modify modes extracted from measure-
ments y(n) with the use of Variational Mode Decomposi-
tion. The general idea is as following: modes extracted ini-
tially by applying the VMD method are iteratively improved
by the SALSA algorithm.

When the fixed number of iterations is reached, the
denoised signal is estimated based on the improved modes
applying (2).
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To improve the initial estimation of modes extracted
by applying VMD we propose the reformulation of BPD
problem in the form

u∗
k = arg max

uk

∥∥∥T −1(uk) − y
∥∥∥

2
+ λBPD ‖uk‖1 (16)

where k = 1, 2, . . . , K , T −1 represents recomposition of
the signal, i.e., y = T −1(uk) (see eq. 2). We named T −1

as inverse operator. In turn, variable uk represents the k-th
mode acquired from VMD, i.e., uk = T (y). It means that T
denotes VMD-based signal decomposition and we named it
forward operator.

By applying variable splitting we define the constrained
optimization problem based on (12)

{u∗
k, r

∗
k} = arg max

uk,rk

∥∥∥T −1(uk) − y
∥∥∥

2
+ λBPD ‖uk‖1

s.t. rk − uk = 0.
(17)

In order to solve (17) we propose SALSA based
algorithm presented in the form of pseudo code as
Algorithm (1).

Finally, estimated modes u∗
k are used to estimate signal

from the measurements by applying

ŷ =
K∑

k=1

u∗
k . (18)

The formula (18) is used to recompose original signal.
The flow chart of the proposed methods is presented

in Fig. 1. In the first step the processed signal y(t)

is decomposed into the set of K modes (denoted as
u1, u2, . . . , uK ) with the use of VMD-based algorithm
described in Section 2.1. Subsequently, each sub-signals is
modified by SALSA-based method (see Algorithm 1). The
last stage is reconstruction phase, i.e., modified sub-signals

Fig. 1 The flow chart of the SALSA-based algorithm to improve
VMD-based sub-signals

(u∗
1,u

∗
2, . . . ,u

∗
K ) applied to estimate denoised signal with

the use of formula (18).

4.3 Parameters settings

The value of parameter λBPD,k for each mode can be
determined with the use of universal formula [32]:

λBPD,k = Ek

√
2 ln N (19)

where N is the number of data points, k = 1, 2, . . . , K ,
while Ek is determined with

E1 = median(|û1|)
0.6745

(20a)

Ek = E2
1

γ
ρ−k, k = 2, 3, . . . , K (20b)
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where values of ρ and γ have to be estimated. In [33] the
authors proposed γ = 0.719 and ρ = 2.01.

The second parameter (μ) is positive. Typically, its value
is initially low, but as the solution converges, its value is
progressively increased [34].

The performance of the proposed algorithm also depends
on the predetermined parameters of the VMD method. One
of the most important parameters to be fixed is the number
of modes K . It is important since an inaccurate number
of modes will affect the efficiency of denoising [35].
Predetermining the number of modes is still considered as
an open problem for the VMD method [15]. The number
of modes in most cases is selected based on experience
[15]. However, in [35] the authors present preliminary
studies in which selection of mode number is based on
Detrended Fluctuation Analysis. In our work parameter, K

was determined by trial and error method.

5 Experiments

In order to quantitatively evaluate the denoising perfor-
mance of the proposed method we performed experiments
based on both synthetic and real-world signals.

5.1 Results on synthetic signals

In this study we test the performance of the proposed
method based on simulated signals (i.e. noise-corrupted
synthetic signals). We consider Doppler (see Fig. 2), bumps
(Fig. 3), blocks (Fig. 4), and heavisine (Fig. 5) signals of
length 4096 samples. In [30] these functions have been
chosen to represent a large variety of signals. In our
investigations they are generated by the Wavelab function
MakeSignal [36].

Fig. 2 The clear Doppler signal

Fig. 3 The clear bumps signal

Fig. 4 The clear blocks signal

Fig. 5 The clear heavisine signal
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All generated signals, used in our studies, are corrupted
by noise. The signals have different SNR (0, 5, 10,
and 15 [dB]). Whereas the noise has various short and
long dependencies. To simulate different short and long
dependencies, we added to the synthetic signals the
fractional Gaussian noise (fGn) with Hurst exponent equals
to 0.2, 0.5, and 0.8. For illustration purposes, in Fig. 6,
we display the Doppler signal with SNR = 10 [dB]. In
this case, the fractional Gaussian noise has the value of
Hurst exponent equals 0.8. In turn, Fig. 7 we present the
bumps signal with SNR = 10 [dB]. The value of Hurst
exponent is also equaled 0.8. The last synthetic signals, used
in presented studies, are blocks and heavisine signals (Fig. 8
and 9). The example blocks and heavisine signals also have
SNR = 10 [dB] with Hurst exponent equals 0.8.

In this part of our investigations to measure the
performance of the presented algorithm we applied the
signal-to-noise-ratio

SNR = 10 log10

( ∑N
n=1 s(n)∑N

n=1

(
s(n) − ŷ(n)

)2

)
(22)

where N is the number of data points, s(n) is the noise-free
(original) signal and ŷ(n) stands for denoised signal.

SNR is a typical measure of the quantitative performance
of denoising algorithms. The SNR can be used to measure
the quality of the original signal and the signal after noise
reduction. The greater SNR is, the better the denoising
performance of the method is achieved.

The proposed approach is compared with, among others,
two types of VMD-based denoising methods, i.e. hard and
soft thresholding. Variational Mode Decomposition-based
signal denoising with the use of hard thresholding we named
VMD-HT, while the algorithm based on soft thresholding is
denoted VMD-ST. The algorithms were described in detail,
e.g. in [16].

Fig. 6 The noised Doppler signal (SNR = 10 [dB], H = 0.8)

Fig. 7 The noised bumps signal (SNR = 10 [dB], H = 0.8)

To perform in-depth analysis, additional reference
methods were used. In the presented studies we applied the
Non-local means algorithm, Median filter, Savitzky-Golay
filter, and two wavelet-based denoising methods. In the
further part of the works Non-local means algorithm, we
denoted as NLM. In our studies, we used its implementation
taken from [37]. NLM algorithm’s parameters, i.e., the
bandwidth, the patch half-width, and the neighbourhood
half-width are determined empirically [10].

The implementation of the Savitzky-Golay filter (SG
filter for short), is taken from Matlab’s function sgolayfilt.
While Median filter is Matlab’s function medfilt1.

In turn, wavelet-based approaches based on hard and
soft thresholding. An approach based on hard thresholding
is denoted as DWT-HT, while an algorithm based on soft
thresholding is represented by DWT-ST. In our studies,
wavelet-based approaches (DWT-HT and DWT-ST) utilized
Matlab’s function wden.

Fig. 8 The noised blocks signal (SNR = 10 [dB], H = 0.8)
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Fig. 9 The noised heavisine signal (SNR = 10 [dB], H = 0.8)

To verify the effectiveness of the proposed method, we
carried out 30 trials for noisy synthetic signals (i.e., Doppler,
bumps, blocks, and heavisine).

5.1.1 Experimental results

The results of conducted experiments on synthetic data are
presented in Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. We
tested Doppler, bumps, blocks, and heavisine signals with SNR
varying from 0 to 15 [dB]. The noise was additive and was
generated with the Hurst exponent equals 0.2, 0.5, and 0.8.

As it can be seen, the proposed method is always
better than other methods, including VMD-related methods
(VMD-HT and VMD-ST), only for bumps signal. The best
results are obtained for all pre-defined SNR levels as well
as for varying values of Hurst exponents. In this case, the
proposed method predominates over other methods.

For Doppler and blocks signals the results are not straight
forward. For example, analyzing the results of denoising
Doppler signal with Hurst exponent equals 0.2 we can see
that VMD-related methods give the best results. However,
for the proposed method we obtain the best result only for
SNR = 0 [dB]. For SNR equals 5, 10 15 [dB] the best
outcomes are obtained from VMD-ST and VMD-HT. In
the case of Hurst exponent equals 0.5 the best results are
acquired from SG Filter (for SNR equals 0 and 5 [dB]). The
other successful algorithm for this case are VMD-HT (for
SNR = 10 [dB]) and DWT-HT when SNR = 15 [dB]. When
Hurst exponent is equal 0.8 the proposed algorithm gives
the best result only for SNR = 0 [dB]. The other methods
performing better than others are VMD-HT (for SNR equals
5 [dB]) and NLM for SNR equals 10 and 15 [dB].

The results obtained for heavisine are better than for
Doppler and blocks, and slightly worse than for bumps
signal. In this case, for H = 0.5 and different levels of

Table 1 The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.2

SNR

0 5 10 15

NLM mean 8,68 13,61 17,24 21,72

std 0,19 0,15 0,26 0,24

Median Filter mean 11,10 13,86 16,92 19,57

std 0,31 0,30 0,27 0,18

SG Filter mean 13,73 16,26 19,01 21,69

std 0,22 0,34 0,26 0,18

DWT-HT mean 13,66 16,36 19,22 22,39

std 0,70 0,56 0,38 0,85

DWT-ST mean 13,90 16,46 18,50 20,53

std 0,45 0,30 0,23 0,48

VMD-HT mean 13,30 17,23 19,63 22,66

std 0,19 0,37 0,35 0,22

VMD-ST mean 13,78 17,26 19,71 22,59

std 0,24 0,37 0,35 0,20

Proposed mean 14,47 17,22 19,63 22,52

std 0,31 0,37 0,35 0,19

signal degradation the proposed algorithm is always better
than other methods. In turn, when H = 0.2 and SNR is
equal to 15 [dB] the best method is Non-local mean . In
all other cases, the proposed approach has an advantage
over reference methods. In the case of H = 0.8 and SNR
equals 10 and 15 [dB] the best results we obtained for
VMD-ST and Median filter respectively. For the low-quality
heavisine synthetic signals (with SNR equals 0 and 5 [dB])
the proposed algorithm once more gives the best outcomes.

In the case of blocks signal, we also observe that
for different values of Hurst exponent and SNR various
methods give the best results. VMD related algorithms
(VMD-HT and VMD-ST) are successful when Hurst
exponent is equal 0.2, 0.5 and 0.8 when SNR is lower (i.e.,
0 or 5 [dB]). For higher values of SNR better results are
acquired from NLM, Median filter, and SG filter (only when
Hurst exponent H = 0.2 and SNR = 0 [dB]). The proposed
method for blocks signal in all cases gives weaker results
than other methods used in our studies.

For validation of the proposed algorithm to signal
denoising, we used four test signals which have the
following properties. Doppler signal serves as an example
of a high-frequency signal. In turn, bumps express signals
with local high variation. Blocks signal represents piece-
wise signals. Finally, heavisine imitates a combination of
sinusoidal functions.
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Table 2 The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.5

SNR

0 5 10 15

NLM mean 8,27 12,73 15,49 20,88

std 0,50 0,34 0,25 0,38

Median Filter mean 8,04 12,06 15,18 18,40

std 0,47 0,39 0,26 0,23

SG Filter mean 10,01 12,91 15,95 19,39

std 0,41 0,31 0,28 0,20

DWT-HT mean 8,53 12,82 16,94 21,08

std 0,45 0,45 0,37 0,38

DWT-ST mean 8,61 12,82 16,43 19,73

std 0,43 0,38 0,32 0,27

VMD-HT mean 7,97 12,38 17,45 20,04

std 0,62 0,43 0,42 0,27

VMD-ST mean 7,92 12,28 16,55 19,59

std 0,50 0,46 0,38 0,30

Proposed mean 7,37 12,11 15,76 19,72

std 0,50 0,44 0,27 0,23

Table 3 The denoising results for the Doppler signal, fractional
Gaussian noise H = 0.8

SNR

0 5 10 15

NLM mean 4,84 9,39 13,34 17,99

std 1,03 0,28 0,56 0,44

Median Filter mean 4,78 8,73 12,15 16,23

std 0,93 0,19 0,35 0,26

SG Filter mean 4,76 8,71 12,38 16,54

std 0,91 0,46 0,41 0,19

DWT-HT mean 3,12 8,13 12,79 17,74

std 0,44 0,28 0,41 0,39

DWT-ST mean 3,37 8,36 12,82 17,38

std 0,48 0,30 0,40 0,35

VMD-HT mean 5,07 9,86 13,34 16,84

std 0,79 0,61 0,60 0,25

VMD-ST mean 5,21 9,14 13,10 16,98

std 0,81 0,25 0,53 0,27

Proposed mean 5,33 8,84 12,74 16,86

std 0,90 0,27 0,42 0,26

Table 4 The denoising results for the bumps signal, fractional
Gaussian noise H = 0.2

SNR

0 5 10 15

NLM mean 7,86 9,18 17,38 21,46

std 0,29 0,25 0,33 0,34

Median Filter mean 7,32 9,66 12,98 15,78

std 0,28 0,26 0,32 0,27

SG Filter mean 7,76 8,23 14,42 18,12

std 0,12 0,07 0,19 0,17

DWT-HT mean 8,11 10,33 14,37 18,51

std 0,23 0,45 0,49 0,61

DWT-ST mean 8,11 9,27 11,53 14,42

std 0,12 0,20 0,29 0,30

VMD-HT mean 9,99 11,06 11,42 11,54

std 0,22 0,11 0,06 0,04

VMD-ST mean 10,18 11,00 11,29 11,38

std 0,20 0,12 0,07 0,04

Proposed mean 12,56 15,48 18,86 21,25

std 0,55 0,28 0,24 0,22

Table 5 The denoising results for the bumps signal, fractional
Gaussian noise H = 0.5

SNR

0 5 10 15

NLM mean 8,07 9,22 17,36 21,49

std 0,48 0,44 0,39 0,43

Median Filter mean 5,31 6,85 12,00 13,81

std 0,24 0,17 0,18 0,20

SG Filter mean 6,25 8,36 13,00 16,74

std 0,24 0,14 0,18 0,14

DWT-HT mean 6,09 9,84 13,90 18,27

std 0,26 0,40 0,36 0,55

DWT-ST mean 6,06 8,68 11,61 14,83

std 0,23 0,23 0,27 0,38

VMD-HT mean 7,81 10,15 11,05 11,37

std 0,65 0,27 0,12 0,06

VMD-ST mean 7,69 9,60 10,92 11,32

std 0,43 0,26 0,11 0,06

Proposed mean 8,65 12,26 16,52 19,57

std 0,57 0,42 0,41 0,49
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Table 6 The denoising results for the bumps signal, fractional
Gaussian noise H = 0.8

SNR

0 5 10 15

NLM mean 5,57 7,99 15,64 19,17

std 0,85 0,92 0,88 0,75

Median Filter mean 2,38 5,27 10,61 14,31

std 0,40 0,34 0,18 0,09

SG Filter mean 2,56 5,64 10,88 15,31

std 0,43 0,29 0,13 0,14

DWT-HT mean 2,51 7,20 11,92 16,97

std 0,37 0,30 0,28 0,21

DWT-ST mean 2,60 6,82 10,95 15,35

std 0,40 0,31 0,27 0,33

VMD-HT mean 4,50 8,00 10,25 11,15

std 0,64 0,49 0,26 0,12

VMD-ST mean 5,13 7,53 9,35 10,46

std 0,80 0,72 0,56 0,32

Proposed mean 5,36 9,20 12,86 16,00

std 0,83 0,87 0,50 0,66

Table 7 The denoising results for the blocks signal, fractional
Gaussian noise H = 0.2

SNR

0 5 10 15

NLM mean 8,08 12,67 13,98 23,57

std 0,18 0,19 0,13 0,39

Median Filter mean 11,33 14,58 17,80 21,69

std 0,36 0,32 0,29 0,38

SG Filter mean 13,57 15,53 16,93 19,69

std 0,26 0,21 0,12 0,15

DWT-HT mean 13,06 15,17 16,63 19,87

std 0,55 0,30 0,33 0,43

DWT-ST mean 13,22 15,29 16,33 18,02

std 0,39 0,20 0,14 0,24

VMD-HT mean 13,28 16,55 17,85 18,26

std 0,76 0,32 0,13 0,07

VMD-ST mean 13,25 16,36 17,60 18,26

std 0,60 0,27 0,12 0,07

Proposed mean 12,86 16,27 17,72 17,60

std 0,60 0,27 0,14 0,08

Table 8 The denoising results for the blocks signal, fractional
Gaussian noise H = 0.5

SNR

0 5 10 15

NLM mean 8,05 12,31 16,78 22,74

std 0,31 0,22 0,36 0,53

Median Filter mean 9,63 12,70 16,76 21,83

std 0,52 0,41 0,41 0,47

SG Filter mean 10,31 12,44 15,28 17,91

std 0,41 0,25 0,23 0,16

DWT-HT mean 8,31 12,15 15,43 19,34

std 0,44 0,33 0,35 0,39

DWT-ST mean 8,39 12,21 15,03 17,72

std 0,41 0,31 0,23 0,30

VMD-HT mean 10,76 12,22 15,50 16,82

std 0,53 0,59 0,21 0,12

VMD-ST mean 10,34 12,60 15,44 16,82

std 0,39 0,37 0,23 0,12

Proposed mean 9,47 12,61 15,54 16,80

std 0,36 0,37 0,23 0,10

Table 9 The denoising results for the blocks signal, fractional
Gaussian noise H = 0.8

SNR

0 5 10 15

NLM mean 5,85 9,10 13,69 18,99

std 0,47 0,63 0,47 0,30

Median Filter mean 5,63 9,34 13,96 19,33

std 0,17 0,73 0,60 0,24

SG Filter mean 5,28 8,67 12,10 15,80

std 0,59 0,65 0,34 0,17

DWT-HT mean 3,14 7,73 12,35 17,30

std 0,28 0,39 0,31 0,16

DWT-ST mean 3,47 7,94 12,26 16,57

std 0,29 0,43 0,37 0,13

VMD-HT mean 5,44 9,03 12,22 16,18

std 0,76 0,72 0,30 0,19

VMD-ST mean 6,42 9,45 12,47 16,22

std 1,55 0,72 0,33 0,21

Proposed mean 5,96 9,13 12,42 16,21

std 1,16 0,70 0,53 0,24
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Table 10 The denoising results for the heavisine signal, fractional
Gaussian noise H = 0.2

SNR

0 5 10 15

NLM mean 19,39 24,03 30,02 33,76

std 0,24 0,11 0,19 0,20

Median Filter mean 21,42 24,23 27,06 30,65

std 0,53 0,40 0,34 0,39

SG Filter mean 25,78 28,35 29,63 32,21

std 0,33 0,23 0,13 0,13

DWT-HT mean 25,22 26,69 29,40 31,62

std 1,64 0,93 0,63 0,81

DWT-ST mean 25,78 27,00 29,60 30,65

std 0,28 0,12 0,16 0,15

VMD-HT mean 26,66 28,58 29,49 32,85

std 0,30 0,16 0,12 0,16

VMD-ST mean 26,62 28,51 29,37 32,77

std 0,30 0,17 0,12 0,15

Proposed mean 26,94 28,85 30,19 33,07

std 0,31 0,19 0,11 0,15

Table 11 The denoising results for the heavisine signal, fractional
Gaussian noise H = 0.5

SNR

0 5 10 15

NLM mean 17,55 21,74 25,74 28,34

std 0,60 0,42 0,51 0,49

Median Filter mean 18,78 22,27 25,26 28,41

std 0,75 0,63 0,47 0,44

SG Filter mean 19,99 23,25 25,36 28,11

std 0,90 0,63 0,49 0,30

DWT-HT mean 19,93 22,44 25,12 29,37

std 1,05 0,78 0,55 0,60

DWT-ST mean 20,10 22,13 25,00 27,82

std 0,96 0,58 0,43 0,37

VMD-HT mean 19,88 23,08 25,47 28,18

std 1,02 0,81 0,37 0,36

VMD-ST mean 20,28 23,14 25,28 28,12

std 1,01 0,88 0,40 0,37

Proposed mean 20,75 23,29 26,19 28,56

std 0,98 0,88 0,48 0,37

Table 12 The denoising results for the heavisine signal, fractional
Gaussian noise H = 0.8

SNR

0 5 10 15

NLM mean 8,57 13,19 17,13 21,50

std 1,24 1,48 1,32 1,01

Median Filter mean 8,84 13,83 17,64 22,22

std 1,43 1,64 1,23 1,13

SG Filter mean 8,53 13,58 17,81 21,20

std 1,38 1,59 1,32 0,92

DWT-HT mean 5,38 10,21 15,08 19,87

std 0,70 0,70 0,64 0,61

DWT-ST mean 8,90 13,68 18,22 21,43

std 1,30 1,59 1,42 0,96

VMD-HT mean 8,60 13,54 18,56 21,94

std 1,23 1,81 1,61 1,14

VMD-ST mean 9,22 13,91 18,57 21,96

std 1,42 1,84 1,62 1,15

Proposed mean 9,29 13,93 18,49 22,06

std 1,53 1,82 1,56 1,14

Based on our investigation tabularized in Tables 1–12
we can see that the proposed algorithm is suited for signals
having properties of bumps signals. It must be emphasized
that the proposed algorithm has the best performance for
different levels of signal degradation.

Our proposal can be also used with the signals having
attributes similar to the heavisine signal. However, the
proposed algorithm is recommended only for low-quality
signals (with low values of SNR).

5.2 Results on real-world signals

5.2.1 Signals details

The gyroscope is a popular device uses to measure the
angular velocity of a moving object. It is a kind of sensor
widely used in, e.g., human motion tracking and detection
due to its small size, low cost, long lifespan, and no
moving parts. Gyroscope sensor has some disadvantages
related to its vulnerability to inferences such as temperature,
vibration, and pressure [32]. These phenomenons result in
different noise effects that degrading the accuracy of the
data and limiting its applications.

In general, the gyroscopic signal includes quantization
error (QE), angle random walk (ARW), bias instability (BI),
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rate random walk (RRW), rate ramp (RR) [4]. Quantization
error is related to the digital nature of today’s measurements.
Since analog signals of the real world have to be discretized
during the measurement process. It leads to the deviation
of the quantized output signal from the analog input signal.
In turn, angle random walk, in gyroscopic measurements, is
connected with angle or attitude measurements. The origins
of angle random walk noise can be traced back to the
spontaneous emission of photons [4]. The source of bias
instability is the electronics that are susceptible to random
flickering. It is low-frequency noise referred to as bias
fluctuations in the measurements. Rate random walk is a
random process of uncertain origin. One of the explanations
is a limiting case of an exponentially correlated noise with
a very long correlation time [38]. While rate ramp is a very
low-frequency drift in the sensor’s measurements. It should
be treated as deterministic error for long, but finite, time
intervals, much like the way constant bias is treated as a
deterministic error [4].

The problem of denoising the gyroscopic signal has
been considered in many papers. For example, in work
[39] the wavelet transform was applied to suppress noises
in gyroscopic data. In turn, Neural Networks and Kalman
filter were used, for example, in [40] and [41] respectively.
While, in [42], [32], [43] Empirical Mode Decomposition
was used to remove unwanted components of the gyroscopic
measurements.

To verify the feasibility and effectiveness of the pro-
posed signal denoising algorithms, practical experimental
data were collected from the three-axis gyroscope. The
experiments were performed in static conditions. It means
that during the tests the gyroscope is kept stationary. The
measurements were collected by the MPU-6050 [44] unit
under the gradually change temperature from 3 to 41◦ C
with the sample frequency equal to 40 [Hz] (Fig. 10). The
angular rate was recorded for x-, y-, and z-axis. The dataset
was taken from [45].

The results of the gyroscopic signal denoising are
analyzed quantitatively with the use of the Allan Variance
(AV). The Allan Variance is a method of representing
the root means square (RMS) random-drift error as a
function of correlation time. It is a time-domain-analysis
technique originally developed to study the frequency
stability of precision oscillators. Because of the close
analogies to inertial sensors, this method has been adapted
to the random-drift characterization of a variety of
devices [46].

AV characterizes the noise in sensor signals (e.g.
from gyroscope) by quantifying the variance observed in
measurements across various correlation times. Hence it
helps to analyze the various noise types based on their
typical correlation times. For example, the quantization
error is located in high-frequency bandwidth and thus

has the shortest correlation time among all noise types
previously mentioned. In turn, the rate ramp is low-
frequency noise and thus has a large correlation time.

The Allan Variance can be described by a log-log curve
called the Allan Variance curve (AVC). The properties of
various noises such as QE, ARW, BI, RRW, RR is reflected
in the curve.

In our study, we utilize the described above property of
the Allan Variance to analyze the effectiveness of denoising
algorithms. To this end we determine noise parameters (for
QE, ARW, BI, RRW, RR) and, based on these parameters,
the Allan Variance curve [4] for original and enhancement
measurements. When the value of one of the calculated
noise parameters decreased, after applying the denoising
algorithm, it means that the respective noise was reduced
[47], [48]. A similar analysis can be conducted for AVC,
however, in this case, we have to analyze the respective part
of the curve. When AVC declines to some degree for the
denoised signal it means that the respective noise decrease
[49], [38].

5.2.2 Experimental results

A quantitative comparison of the results obtained by the
Allan Variance is pictured in Figs. 11, 12 and 13 and
tabulated in Tables 13, 14 and 15. From the Allan Variance
plots of the gyroscopic signal, we can observe three
different scales −1/2, 0, and +1/2. It indicates that the
measurements contain the angle random walk, the bias
instability, the rate random walk, as well as, quantization
and rate ramp noise [38]. In our analysis, we take into
account all of these noise terms and their influence upon the
precision of gyroscope. All components of the gyroscopic
signals are determined based on the code accompanying the
paper [4].

The Allan Variance plots show that all of applied
methods are able to remove the inertial sensor related noise.
The results of comprehensive experiments are presented
in Figs. 11–13 (AV plots) and tabulated in Tables 13–15
(numerical value of QE, ARW, BI, RRW, RR).

Based on the presented results we can see that the pro-
posed method in all cases (for x-, y-, z-axis of a gyro-
scope) gives better results. Comparing obtained outcomes
with other methods we can see that our method outperforms
other algorithms an order of magnitude.

5.3 Time complexity

The performance of the denoising algorithm is one of its
aspects. The other is the time complexity which is important
in practical application.

In this section, we analyzed the estimated time com-
plexity of the proposed algorithm. The obtained results are

K. Brzostowski and J. S´wia¸tek2324



Fig. 10 The original signals from gyroscope

Fig. 11 The Allan Variance plot
of original and denoised
gyroscopic signal for x-axis
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Fig. 12 The Allan Variance plot
of original and denoised
gyroscopic signal for y-axis

Fig. 13 The Allan Variance plot
of original and denoised
gyroscopic signal for z-axis

Table 13 The Allan Variance results of x-axis gyroscope denoising specified by five noise terms

QE [arcsec] ARW [deg/h1/2] BI [deg/h] RRW [deg/h3/2] RR [deg/h2]

NLM 0, 0014 · 10−7 0, 0088 · 10−7 0, 0002 · 10−7 −0, 0000 · 10−7 0, 0000 · 10−7

Median Filter 0, 1190 · 10−9 0, 0457 · 10−9 0, 0030 · 10−9 −0, 0002 · 10−9 0, 0000 · 10−9

SG Filter 0, 7625 · 10−10 0, 5361 · 10−10 −0, 1323 · 10−10 0, 0090 · 10−10 −0, 0002 · 10−10

DWT-HT 0, 4711 · 10−9 −0, 1665 · 10−9 0, 0401 · 10−9 −0, 0027 · 10−9 0, 0001 · 10−9

DWT-ST 0, 4709 · 10−9 −0, 1622 · 10−9 0, 0388 · 10−9 −0, 0026 · 10−9 0, 0001 · 10−9

VMD-HT 0, 0056 · 10−9 0, 0085 · 10−9 0, 0020 · 10−9 −0, 0002 · 10−9 0, 0000 · 10−9

VMD-ST 0, 0979 · 10−10 0, 1009 · 10−10 0, 0134 · 10−10 −0, 0013 · 10−10 0, 0000 · 10−10

Proposed 0, 0059 · 10−11 0, 0028 · 10−11 −0, 0008 · 10−11 0, 0001 · 10−11 −0, 0000 · 10−11

Original signal 0, 0357 · 10−8 0, 3054 · 10−8 0, 4728 · 10−8 −0, 0211 · 10−8 0, 0052 · 10−8
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Table 14 The Allan Variance results of y-axis gyroscope denoising specified by five noise terms

QE [arcsec] ARW [deg/h1/2] BI [deg/h] RRW [deg/h3/2] RR [deg/h2]

NLM 0, 0054 · 10−7 0, 1002 · 10−7 0, 0017 · 10−7 −0, 0001 · 10−7 0, 0000 · 10−7

Median Filter 0, 0740 · 10−9 0, 6660 · 10−9 −0, 0038 · 10−9 0, 0006 · 10−9 −0, 0000 · 10−9

SG Filter 0, 5139 · 10−10 0, 2531 · 10−10 −0, 0609 · 10−10 0, 0041 · 10−10 −0, 0001 · 10−10

DWT-HT 0, 3244 · 10−9 −0, 1371 · 10−9 0, 0347 · 10−9 −0, 0024 · 10−9 0, 0000 · 10−9

DWT-ST 0, 3244 · 10−9 −0, 1371 · 10−9 0, 0347 · 10−9 −0, 0024 · 10−9 0, 0000 · 10−9

VMD-HT 0, 0277 · 10−9 0, 2670 · 10−9 0, 0127 · 10−9 −0, 0010 · 10−9 0, 0000 · 10−9

VMD-ST 0, 3587 · 10−10 0, 4886 · 10−10 0, 0650 · 10−10 −0, 0042 · 10−10 0, 0001 · 10−10

Proposed 0, 1842 · 10−11 0, 0172 · 10−11 −0, 0047 · 10−11 0, 0003 · 10−11 −0, 0000 · 10−11

Original signal 0, 0128 · 10−8 0, 2836 · 10−8 0, 2499 · 10−8 −0, 0335 · 10−8 0, 0491 · 10−8

compared with the results of a similar analysis performed
for the reference methods.

The most demanding part of the proposed method is the
process of signal decomposition. Analyzing the proposed
algorithm (1), we can expect higher time complexity. It
is related to the nature of the SALSA method. SALSA
algorithm is fast when we have the fast implementation of
decomposition and recomposition algorithm. In our case,
it is the VMD method. Recomposition is fast however
decomposition algorithm is complex and may affect the
final complexity of the SALSA based algorithm.

We have performed a series of experiments to verify the
time complexity of the specified signal denoising methods.
The test signal was the bumps signal with the length ranging
from 256 to 4096, where H = 0.5 and SNR = 10 [dB].

The experiments were performed with the following
computer: Intel CoreTM i7-7700 HQ @2.80 [GHz] and
32.00 GB RAM memory running Windows 10. The
execution times is shown in Table 16.

The lowest time complexity (i.e. from 0, 0006 ± 0, 0014
seconds for the signal of length 256 to 0, 0008 ± 0, 0016
seconds for the signal of length 4096) we obtain form
Median Filter. However, as we compare the results for the
synthetic signals (see Tables 1 – 12) the performance of
the algorithm is average. In turn, when we compare the

performance of the Median Filter on denoising the raw
gyroscopic data we can see that the results are weak.

The low time complexity we can also observe for SG
Filter, DWT-HT, and DWT-ST. Moreover, the time of
computation increases slowly when the number of signal
samples increases. NLM has always low time complexity,
however, it is higher than the previously analyzed method.
Moreover, the time of computation increases importantly
faster comparing to the Median Filter, SG Filter, DWT-HT,
and DWT-ST.

VMD-related methods demand more computations than
other methods investigated in our research. On the one hand,
the time of computation is higher in comparison to other
reference methods. Furthermore, the times increase faster
when the number of samples increases.

In this list, the proposed method has a higher complexity
time in comparison to other methods, including VMD-HT
and VMD-ST. It is not surprising. The VMD decomposition
algorithm has high time complexity. Moreover, the SALSA
algorithm is an iterative method. In each iteration, we
have to decompose the current signal. Thus the final time
complexity depends on VMD time complexity and the
number of iteration in the SALSA method.

The results clearly show that it is possible to design a
very efficient denoising algorithm by combining the VMD

Table 15 The Allan Variance results of z-axis gyroscope denoising specified by five noise terms

QE [arcsec] ARW [deg/h1/2] BI [deg/h] RRW [deg/h3/2] RR [deg/h2]

NLM 0, 0007 · 10−7 0, 0006 · 10−7 −0, 0000 · 10−7 0, 0000 · 10−7 −0, 0000 · 10−7

Median Filter 0, 0755 · 10−9 0, 0113 · 10−9 −0, 0019 · 10−9 0, 0001 · 10−9 −0, 0000 · 10−9

SG Filter 0, 4804 · 10−10 0, 3677 · 10−10 −0, 0960 · 10−10 0, 0067 · 10−10 −0, 0001 · 10−10

DWT-HT 0, 3201 · 10−9 −0, 1270 · 10−9 0, 0334 · 10−9 −0, 0024 · 10−9 0, 0000 · 10−9

DWT-ST 0, 3201 · 10−9 −0, 1270 · 10−9 0, 0334 · 10−9 −0, 0024 · 10−9 0, 0000 · 10−9

VMD-HT 0, 0163 · 10−9 0, 0013 · 10−9 −0, 0005 · 10−9 0, 0000 · 10−9 −0, 0000 · 10−9

VMD-ST 0, 1722 · 10−10 0, 0146 · 10−10 −0, 0068 · 10−10 0, 0007 · 10−10 0, 0000 · 10−10

Proposed 0, 0158 · 10−11 0, 0022 · 10−11 −0, 0009 · 10−11 0, 0001 · 10−11 −0, 0000 · 10−11

Original signal −0, 0021 · 10−8 0, 4114 · 10−8 −0, 0138 · 10−8 −0, 0059 · 10−8 0, 0159 · 10−8
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Table 16 Relationship between
the sample number and the
excution time (The bumps
signal, fractional Gaussian
Noise H = 0.5, SNR = 10 [dB])

Number of samples

Time (s) 256 512 1024 2048 4096

NLM mean 0,0198 0,0367 0,0816 0,1920 0,5723

std 0,0045 0,0072 0,0087 0,0128 0,0351

Median Filter mean 0,0006 0,0006 0,0006 0,0006 0,0008

std 0,0014 0,0014 0,0014 0,0015 0,0016

SG Filter mean 0,0012 0,0014 0,0013 0,0013 0,0017

std 0,0038 0,0040 0,0038 0,0037 0,0056

DWT-HT mean 0,0083 0,0097 0,0086 0,0081 0,0088

std 0,0301 0,0357 0,0290 0,0280 0,0288

DWT-ST mean 0,0027 0,0033 0,0027 0,0030 0,0037

std 0,0057 0,0062 0,0053 0,0054 0,0064

VMD-HT mean 0,3262 0,6414 1,2720 2,8673 5,1082

std 0,0268 0,0102 0,0314 0,2603 0,1834

VMD-ST mean 0,3221 0,6398 1,2747 2,7983 5,1377

std 0,0163 0,0096 0,0265 0,1334 0,2094

Proposed mean 1,6096 3,2025 6,3577 12,9995 25,7462

std 0,0257 0,0272 0,1535 0,6473 1,6221

algorithm with the SALSA approach, however at the cost of
time complexity.

The obtained outcomes also indicate that one of the
future directions of our works should be focused on the
reduction of the time complexity of the proposed algorithm.
It could be accomplished by applying faster implementation
of the Variational Mode Decomposition algorithm.

6 Conclusions

In the paper, we proposed the new algorithm applying Split
Augmented Lagrangian Shrinkage Algorithm to Variational
Mode Decomposition-based signal denoising. The method
is an alternative to existing approaches combining the VMD
algorithm with hard and soft thresholding. Our investiga-
tions show that the results for the raw gyroscopic signal
are one order of magnitude better than the results obtained
from methods based on VMD combined with hard and soft
thresholding. The proposed algorithm predominates over
reference methods in removing unwanted components from
raw gyroscopic signals.

The results for synthetic signals (Doppler, blocks, bumps,
and heavisine) are not explicit. For the bumps signals, the
proposed algorithm gives the best results for different values
of signal-to-noise ratios and noise with different short

and long dependencies. While for the Doppler and blocks
synthetic signals the other methods give better results.

In turn, the outcomes for heavisine are not straightfor-
ward. On the one hand, when H = 0.5 the proposed method
predominate over each reference method used in our studies.
On the other hand, when H is equal to 0.2 and 0.8 and SNR
is high the proposed approach gives worse results. While,
when SNR is low, i.e. equals 0 or 5 [dB] our algorithm
predominate over reference methods.

The weak point of the presented in the paper algorithm
is its time complexity. Since the algorithm is based on
the SALSA method the time of computation strongly
depends on the number of iterations. The crucial element
of the algorithm is the VMD method. It is possible to
reduce the time of computations when we applied the fast
implementation of the Variational Mode Decomposition
method. Thus, the fast implementation of VMD can be one
of the directions for further works.

The time complexity of the algorithm is a weak point of
the presented algorithm. Since Split Augmented Lagrangian
Shrinkage Algorithm is an iterative optimization method
the time of computation strongly depends on the number
of iterations. Thus, the possible area of application the
proposed in the work denoising algorithm relating to the
problem in which time complexity is not a crucial factor,
i.e., off-line processing of measurement signals.
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