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Abstract
Since December 2019, the novel COVID-19’s spread rate is exponential, and AI-driven tools are used to prevent further
spreading [1]. They can help predict, screen, and diagnose COVID-19 positive cases. Within this scope, imaging with
Computed Tomography (CT) scans and Chest X-rays (CXRs) are widely used in mass triage situations. In the literature,
AI-driven tools are limited to one data type either CT scan or CXR to detect COVID-19 positive cases. Integrating multiple
data types could possibly provide more information in detecting anomaly patterns due to COVID-19. Therefore, in this
paper, we engineered a Convolutional Neural Network (CNN) -tailored Deep Neural Network (DNN) that can collectively
train/test both CT scans and CXRs. In our experiments, we achieved an overall accuracy of 96.28% (AUC = 0.9808 and
false negative rate = 0.0208). Further, major existing DNNs provided coherent results while integrating CT scans and CXRs
to detect COVID-19 positive cases.
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1 Introduction

The recent outbreak of COVID-19 impacts public health
across the World. In Wuhan province of China [2], it was
first reported in December 2019 . As of now, COVID-
19 affected more than 5,204,508 people across the world
with more than 337,687 deaths death cases [3], Report #
125, dated May 24, 2020. Compared to other well known
coronavirus disease, such as Severe Acute Respiratory
Syndrome (SARS) and Middle East Respiratory Syndrome
(MERS) [4, 5], COVID-19 is found to be highly infectious
and contagious. COVID-19’s spread rate is exponential,
and its mortality rate has not been determined yet. It
is therefore required to prevent from further spreading.
AI-driven tool can be of a great use in mass triage
situations, where imaging techniques are more useful in
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understanding disease-related pathology. To detect COVID-
19 positive cases, multiple image modalities can be used,
such as Computed Tomography (CT) scans and Chest
X-rays (CXRs) [6] as they provide consistent COVID-
19 manifestations [7]. Therefore, referring to the reported
recent study, where the need of multimodal data has
been addressed [1]. in this paper, our goal is to observe
whether two different modalities (radiological image data)
can be trained/tested using one deep neural network.
For this, we engineered a Convolutional Neural Network
(CNN) -tailored Deep Neural Network (DNN) that can
collectively train/test both CT scans and CXRs.

2 Related works: COVID-19 detection using
CT scans and CXRs

In January 2020, Huang C et al. reported clinical and para-
clinical aspects of COVID-19. Where they stated that abnor-
malities (using 41 positive cases), such as Ground-Glass
Opacity (GGO) can be observed using chest CT scans [8]. CT
scans are widely used to identify unusual patterns in con-
firmed cases of COVID-19 [9–11]. To be precise, Li and Xia
[12] experimented on 51 CT scans (images) and in 96.1%
cases COVID-19 was successfully detected. Zhou S et al.
[13] experimented on 62 COVID-19 and Pneumonia, and
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their results showed diverse patterns that are visually like
lung parenchyma and the interstitial diseases. Also, Zheng
Ye et al. [12] stated that typical and atypical CT manifesta-
tions help and familiarize radiologists in decision-making.
In their study, GGOs, amalgamation, reticular marking,
and crazy surfacing mark are typical CT indication of
COVID-19. Emerging atypical CT indication that includes
changes in airway, pleural, nodules, and fibrosis were
demonstrated among COVID-19 patients. Fang et al. [11]
also reported that COVID is possibly better diagnosed using
radiological imaging. In their experiments, 81 patients were
used, where for 30 patients initial CT was not performed
within 3 days of Reverse Transcription Polymerase Chain
Reaction (RT-PCR) and 51 patients were with both initial
CT and RT-PCR. Chung et al. [14] reported that among 57%
patients the CT findings were mainly GGO whereas among
33% cases peripheral distribution was found. Among 14%
of the patients normal chest CTs were reported. Song et al.
[15], described predominantly GGOs opacities in 77%, but
a larger amount of peripheral distribution in 86% cases and
lower lobe involvement in 90% scenario. Furthermore, the
author reports that there was notable improvement during
follow up chest CT images in 54% cases, in contrast with
imaging progression found in 31% of the cases. Feng Pan
et al. [16] experimented on 21 patients, where their aver-
age age was ranging between 25 years to 63 years with
confirmed COVID-19 pneumonia presence. In their study,
authors concluded that in the case of patients who recovered
from COVID-19 without high difficulty in respiration, most
severe abnormalities were observed in the chest CT images
(lungs) after 10 days since first symptom.

Wang et al. [17] presented a deep learning-based approach
to detect COVID-19 cases from CT images. Experiments
were performed on a dataset of 453 COVID-19 positive cases.
They reported an accuracy of 82.9%. Further they reported
an accuracy of 73.1% with specificity and sensitivity values
of 67% and 74% on an external test dataset. Butt et al. [18]
studied different CNN models for identifying COVID-19
from CT images. They tested both 2D and 3D CNNs and
reported a AUC of 0.996. Further they calculated a sensitivity
of 98.2% and a specificity of 92.2%. Their experiments were
performed on a dataset of 219 COVID-19 CTs.

Like CT scans, CXRs are widely used to detect COVID-
19 positive cases [19–22]. Chen et al. [23] employed 99
cases, where bilateral pneumonia were observed in the
CXRs of those patients. Interestingly, Soon et al. [19]
observed the relationship between CXRs and CT images,
where 9 COVID-19 positive cases were used. Besides,
others were focused on the use of neural network-tailored
Deep Learning (DL) models, such as COVID-Net [20] and
ResNet50 [21]. COVID-Net was tested only on 31 COVID-
19 positive cases, while ResNet50 was tested on 25 COVID-
19 positive cases. Zhang et al. [22] used classical DL model

to detect COVID-19 positive cases, where 100 COVID-19
samples were used. As of now, the highest accuracy of 96%
was reported to detect COVID-19 positive cases [22].

Ozturk et al. [24] presented a deep neural network-
based approach to COVID-19 positive cases using CXRs
(125 COVID-19 positive cases) and reported the highest
accuracy of 98.08%. Further, they experimented with multi-
class scenario and reported an accuracy of 87.02%. Narin
et al. [25] used DNNs to detect COVID-19 from 50
COVID-19 positive cases, and reported accuracies of 97%,
98% and 87% from three DNN architectures: InceptionV3,
ResNet50, and Inception-ResNetV2, respectively.

Mangal et al. [26] presented a deep learning-based system
named CovidAID to detect COVID-19 cases from CXRs,
where an accuracy of 90.5% with a sensitivity of 100%were
reported on dataset size of 155 COVID-19 positive cases.

Wang et al. [27] presented a deep CNN named COVID-
Net to detect COVID-19 cases from 256 CXRs. They
worked with normal and both COVID-19 negative and
positive images. They reported sensitivity values 95%,
94% and 91% for the aforementioned types, respectively.
However, in the case of normal images, a higher sensitivity
of 98% was reported using VGG-19.

Zheng et al. [28] presented a deep learning-based
approach for detecting COVID-19 cases from CT images
with weak label. Their system was trained with 499 volumes
and tested with another 131 volumes and sensitivity,
specificity values of 0.907 and 0.911 respectively were
reported. Farooq and Hafeez [29] presented a deep learning-
based approach for distinguishing COVID-19 cases from
CXRs. They reported an accuracy of 96.23% with 41
epochs using ResNet50, where 8 COVID-19 positive cases
were used. Hall et al. [30] used a deep learning-based
approach for identifying COVID-19 cases from CXRs.
In their experiments, an overall accuracy of 89.2% was
reported with a true positive rate of 0.8039 along with an
AUC of 0.95 from 135 COVID-19 positive cases. Further,
an ensemble-based approach was used on test set of 33
CXRs and an accuracy of 91.24% was reported along with a
true positive rate and AUC of 0.7879 and 0.94, respectively.
Salman et al. [31] used a CNN-based approach to detect
COVID-19 cases.On 130 COVID-19 positive cases, an
accuracy of 100% was reported.

Zahangir et al. [32] presented a multi-task deep learning-
based technique to detect COVID-19 positive cases. They
experimented on both CT scans and CXRs and reported
accuracies of 84.67% and 98.78%, respectively. Not to be
confused, they used separate architectures for CT scans and
CXRs.

From AI-driven tool perspective, where imaging tech-
niques are used, COVID-19 does not have rich state-of-the-
art literature. Most of the existing tools were designed to
train on single data type, either X-rays or CT scans. Further,
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the reported works present separate models for handling
each data type. As integrating multiple modalities (data
types) can provide more information [1]; can we design an
architecture that can handle multiple modalities of data?
Inspired by computer vision and pattern recognition tech-
niques, where several different classes/objects are used to
train on an exact same architecture, in this paper, we pro-
posed a single architecture for CT scans and CXRs to detect
COVID-19 positive cases. The proposed architecture was
tested on publicly available datasets comprising of both data
types: CT scans and CXRs.

The rest of the paper is organized as follows. The
proposed DNN is explained in Section 3. We detail
experimental setup in Section 4. We provide results and
analyze them in Section 5. We also provide comparison
study in Section 6, and the paper concludes in Section 7.

3 Proposed deep neural network

Deep learning-based algorithms [33, 34] are the variant
of machine learning algorithms that work with networks
of multiple layers. The multiple layers are responsible for
gradually deriving distinguished features from the given
input, which are then passed on to classification stage.

Convolutional neural networks (CNNs) [35] are typically
composed of three main facets namely convolution layer,
pooling layer, and dense layer. A CNN consists of multiple
convolution and pooling layers that are followed by dense
layers. The convolution and pooling layers can be arranged
in several different ways; and their arrangements are
conventionally based on the complexity of the problem. The
typical final dense layer’s (output layer) dimension is equal
to the number of output classes.

The convolutional layer detects different features from
the input. This layer consists of a set of convolutional
kernels. The convolutional kernels split the image into
smaller chunks that aids in extracting feature patterns
or maps. The kernels convolute with the images based
on certain weights by multiplying its instances with the
corresponding instances of the particular domain. Simply,
the functioning of this layer can be expressed as,

f k
c (m, n) =

∑

d

∑

r,s

jd(r, s).ikc (v, w), (1)

where jd(r, s) is an instance of the input vector Jd , which is
multiplied by ikc (v, w) index of the kth kernel of the cthlayer.
The output mapping of the kth kernel can me measured as,

Fk
c = [f k

c (1, 1), . . . , f k
c (m, n), . . . , f k

c (M, N)]. (2)

The convolutional layer has the capability of distributing
weights that helps in extracting different features with
the same set of weights by sliding the kernel making

CNN parameters effective compared to the fully connected
architectures.

The pooling layer is arranged between two convolutional
layers, where it gets the feature vectors and performs the
pooling operation to each of the vectors. It reduces the
size of the vectors while keeping their relevancy intact.
It aggregates the related information in the region of the
receptive domain and outputs the feedback within that
region. This layer decreases the number of parameters
and computations, which enhances the effectiveness of the
architecture and avoids over-fitting: Y k

c = 0p(F k
c ), where

Y k
c determine the pooled feature map of the cth layer for kth

kernel and 0p determines the kind of pooling operation.
A dropout layer is also used before the dense layers,

which randomly discards neurons. It helps in preventing
from being overfitting. This layer aids towards learning of
robust features. Even though it increases the number of
iterations for convergence but the training time for each
epoch is brought down [36].

The generation of the final output equivalent to the
number of categories requires an application of a fully
connected layer. This layer accepts the input from the
previous stages and globally evaluates the output of all the
former layers. Therefore, it makes a non-linear combination
of specified features that are used for the classification
purpose. The output layer involves loss function: cross-
entropy to calculate the error in prediction. Once the
forward pass is completed, the back-propagation updates the
weight and biases for reducing the error and loss.

In the present experiment, a network consisting of 3
alternating convolution and pooling layers were used. The
convolution layers were of 32, 16, and 8 dimensions
with filter sizes of 5×5, 4×4 and 3×3, respectively. The
convolution layers used Rectified Linear Unit (ReLU)
activation function: f (x) = max(0, x), where x is the input
to a neuron.

The pooling window used a 2×2 filter size and
a maxpooling function. The stride value in both the
convolution and pooling layers were set to 1. This was
followed by a dropout layer whose output was passed
through 2 dense layers of 256 and 50 dimensions with
ReLU activation. The output was finally passed on to a 2
dimensional output layer with softmax activation, σ(z)j =

ezj

∑K
k=1 ezk

, where z is an input vector of length K.

The proposed network is illustrated in Fig. 1. In short,
the proposed network is limited to nine layers. The numbers
of layers in the network along with the different parameters
were set based on experimental trials i.e., empirically
designed (cf. in Table 3 in Section 5). Following the input
image size, dimensions and numbers of parameters vary in
our architecture. The parameters were tested for different
values whose results are presented in Table 3.
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Following Table 3, since 100 × 100 × 3 were chosen
(based on the performance), the dimension and number of
parameters (for convolutional layer) provided in Table 1 can
be explained as follows:

Dconv = (Hi − Hf + 1) × (Wi − Wf + 1) × Nf and

Pconv = ((Hf × Wf × Nfp) + 1) × Nf ,

where
Hi = Height of input image in present layer;
Wi = Width of input image in present layer;
Hf = Height of convolution filter in present layer;
Wf = Width of convolution filter in present layer; and
Nf = Number of filters in the present layer; and Nfp =

Number of filters in previous layer.
Using these aforementioned equations, for the convolu-

tional layer 1, we have Dconv = (100− 5+ 1)× (100− 5+
1) × 32 = 96 × 96 × 32 and Pconv = ((5 × 5 × 3) + 1) ×
32 = 2432, where convolution filter sizes were empirically
designed (as mentioned earlier). We followed exact similar
procedure for other convolutional layers. In case of dense
layer, the number of parameters can be expressed as,

Pdense = Os × (Is + 1),

where Os = output size and Is = input size. With this
equation, for dense layer 1, we have Pconv = (256× (800+
1)) = 205056. We followed exactly similar procedure for
other dense layers.

On the whole, we performed a series of tests and
selected the one that gave us the best performance. For
detailed tests, we refer to Table 3. The number of generated
parameters for the proposed network is presented in
Table 1. It is 0.009, 0.004, and 0.031 times the number of
parameters used in InceptionV3, ResNet, and MobileNet,
respectively (cf. Table 8 in Section 6). Moreover, after
every convolution the results are pooled, which ensures
computational complexity reduction. This makes the tool
computationally efficient, and is preferred in resource-
constrained regions. Importantly, the number of generated
parameters is less as compared to existing DNNs.

For a quick and better understanding, we provide a few
feature maps for CT scans and CXRs (both COVID-19
positive and negative) in Fig. 2. In Fig. 2, the highlighted

Table 1 Number of parameters for the different layers of the CNN
architecture

Layer Output dimension Parameters

Convolution 1 96 × 96 × 32 2432

Convolution 2 45 × 45 × 16 8208

Convolution 3 20 × 20 × 8 1160

Dense 1 256 205056

Dense 2 50 12850

Dense 3 (Output layer) 2 102

Total — 229,808

portions (in yellow) depict the areas of interest selected by
the network.

4 Experimental setup

4.1 Dataset collection

In our collection, since both CXRs and CTs were not
available from a single source, multiple sources were used.
This means that, to avoid possible bias that can happen
in DNN due to imbalance dataset, in our experiments, we
created two different datasets from different sources.

a) CXR collection [37, 38]:
Two different sources were used for COVID-19
frontal CXR collections. The first collection [37] was
composed of 168 COVID-19 positive cases and 65,
non COVID-19 cases. Non-COVID-19 cases included
several other lung diseases in the thick of MERS,
SARS, and ARDS. To balance the number of instances
in the non COVID-19 cases, other CXRs (50 normal
and 53 pneumonia cases) were added from another
collection [38]. Altogether, there were 168 COVID-
19 and 168 non COVID-19 cases. These images were
collected from different published papers available
online or from pdfs. These images were of different
qualities and sizes. Moreover, different images were
noisy, skewed and had different orientations. Handling
such characteristics was an extremely challenging task.

100 96
48 45

22 20
10

256

50

2

Fig. 1 The proposed CNN-tailored Deep Neural Network (DNN)
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Fig. 2 Feature maps using both
CXRs and CT scans by taking
both classes: COVID-19 and
non-COVID-19 cases

The system had to be robust enough and is not a surprise
when we address real-world scenario.

b) CT scan collection [37, 39]:
Like before, two different sources were used to collect
CT scans [37, 39]. The first collection was composed
of 22 COVID-19 positive cases and 1 non-COVID-
19 case [37]. As before, to ensure uniformity with
that of the CXR collections, CT images were added

(146 COVID-19 positive cases and 167 non-COVID-19
cases) from another dataset [39]. In total, we have 168
COVID-19 cases and 168 non-COVID cases. In this
collection, images were taken from disparate preprints
as well as other existing datasets. The COVID-19
positive cases were taken from preprints. The labels
were manually assigned using the figure captions.
However, the text bodies related to the figures were

Table 2 Dataset collections
Collections (Image modality) COVID-19 cases Non COVID-19 cases Total

CXR 168 168 336

CT 168 168 336

CXR + CT 336 336 672
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considered, where the category of the images were not
clear from the figure caption. A total of 349 COVID-
19 positive CT images were obtained with various sizes
and qualities. Moreover, the image quality also varied
across different images. The minimum and maximum
height of the images were 153 and 1853 pixels,
respectively. The minimum and maximum width of the
CT images were 124 and 1485 pixels, respectively.
The average height and width of the images were 491
and 383. These images were from 216 patient cases.
In the case of non COVID-19 cases, CT images were
collected from disparate sources encompassing LUNA,
MedPix, PubMed Central, and Radiopaedia website.
463 images were collected from these sources out of
which the aforementioned sources had 36, 195, 202,
and 30 images, respectively. Further, there were test and
validation sets whose details are presented in [40].

As a result, we created a mixed dataset (and balanced
dataset) by taking bot CXRs and CT scans, as provided in
Table 2. Few samples are shown in Fig. 3.

4.2 Evaluation protocol

To validate the proposed model, 10-fold cross validation
was used in the experiments. Cross validation ensures
that each instance of the dataset is subjected to testing
and training at least once. This in turn aids to avoid
biased modeling of outliers. In each fold, we computed

the following evaluation metrics: Accuracy, Precision,
Sensitivity (Recall), Specificity, F1 score, and Area under
ROC curve (AUC). They were computed as,

Accuracy = TP + TN

TP + TN + FP + FN

,

Precision = TP

TP + FP

,

Sensitivity (Recall) = TP

TP + FN

,

Specificity = TN

TN + FP

, and

F1 score = 2 × Precision × Recall

Precision + Recall
, (3)

where TP , TN , FP , and FN refer to true positive, true
negative, false positive, and false negative, respectively.

5 Our results and analysis

For the proposed DNN, the images were resized to 50×50
pixels, the batch size was 50 instances, and the number
of training epochs was 100. These values are required to
be tuned, since they vary from one dataset to another. In
other words, they are application dependent. For optimal
performance, training with the right parameters is the
must. To understand this, following Table 3, we computed
accuracies on different a) image sizes; b) batch sizes; c)
training epochs; and d) dropouts.

(a) (b) (c)

(d) (e) (f)

Fig. 3 Few samples of a-c: CT scans and d-f: CXR images
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Table 3 Accuracies (ACC, in %) on different a) image sizes; b) batch
sizes; c) training epochs; and d) dropouts

a)

Image size ACC (in %)

50×50 92.71

100×100 96.28

150×150 96.28

200×200 96.28

b)

Batch size ACC (in %)

50 92.71

100 88.39

150 81.85

200 81.85

c)

Epoch ACC (in %)

100 92.71

200 89.14

300 92.71

400 95.39

500 90.92

d)

Dropout (%) ACC (in %)

10 95.68

20 95.54

30 96.28

40 96.13

50 95.39

60 95.68

70 94.05

80 94.20

90 88.39

The figures in bold-face are best of all in that particular category

Table 4 Performance scores (using complete dataset: CXRs + CT
scans)

Metrics Scores

Sensitivity (Recall) 0.9792

Specificity 0.9464

Precision 0.9481

False positive rate 0.0536

False negative rate 0.0208

Accuracy (%) 96.28

F1 Score 0.9634

AUC 0.9808

a) Image size:
In our data collection, since raw image sizes were
varied, we resized them into fixed dimensions. For
our experiment, the resized dimensions were varied
from 50×50 to 200×200 with a step of 50 pixels. The
primary reason behind using different image sizes is to
check whether we can empirically fix the dimension for
rest of the experiments. Using mixed dataset (refer to
Section 4.1), the obtained results are provided in Table 3
(a). We observed that the best result was obtained
for 100×100 dimensions, and results remained to be
constant for higher dimensions. Since, smaller image
size implies lesser computational overhead, 100×100
pixel image size was considered.

With such image size, we were able to calculate
hyper-paramters used in our architecture as shown in
Table 1 in Section 1.

b) Batch size:
In a similar fashion, the batch sizes during training
were varied from 50 to 200 instances with a step of
50, whose results are listed in Table 3 (b). We observed
that performance gains were not remarkable on further
increasing the batch size. Instead, a steady performance
degradation was observed.
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Fig. 4 Training loss for the proposed architecture
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Table 5 a) Confusion matrix between COVID-19 and non COVID-19
categories and b) misclassified CXRs and CT scans in both categories:
COVID-19 and non COVID-19

a)

Non

COVID-19 COVID-19

COVID-19 329 7

Non COVID-19 18 318

b)

Non

COVID-19 COVID-19

X-Ray 1 0

CT 6 18

c) Training epochs:
Further, in our experiments, the training epochs were
varied from 100 to 500 with a step size of 100.
The obtained accuracies are presented in Table 3 (c).
The best performance was received from 400 training
epochs.

d) Dropout (in %):
Finally, the percentage of dropout was varied from 10
to 90%, and their corresponding results are presented
in Table 3 (d). In this experiment, we observed that
the best result was received from 30% dropout. The
performance was found to be decreases as the dropout
was increased up to 60%. In the case of 90%, the
accuracy dropped sharply by approximately 8.19%. The
inter-class confusions for the 30% dropout setup is
provided in Table 3 (d). In addition, the training loss is
provided in Fig. 4.

With these learned parameters (empirically designed, as
shown in Table 3), we computed performance scores for all
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Fig. 5 ROC curve using proposed DNN (using complete dataset:
CXRs + CT scans)

Table 6 Performance scores using CXRs and CT scans dataset
separately

Metrics CXR CT

Sensitivity (Recall) 0.9940 0.9345

Specificity 0.9286 0.9821

Precision 0.9330 0.9813

False positive rate 0.0714 0.0179

False negative rate 0.006 0.0655

Accuracy (%) 96.13 95.83

F1 Score 0.9625 0.9573

AUC 0.9908 0.9731

evaluation metrics (as mentioned in Section 4.2). In Table 4,
using the whole dataset, the proposed DNN was evaluated.

Confusion matrix, on the other hand, can help understand
misclassified cases that include important information, such
as false positive and true positive cases (see Table 5 (a)). We
observed that only 7 cases of COVID-19 were misclassified
as non COVID-19, and 18 non COVID-19 cases were
classified as COVID-19. This could primarily be due to
the inconsistency in data. In other words, images were not
having exact same resolution since they were collected from
different machines. In a few cases, multifarious images had
foreign bodies and texts. As a consequence, such an issue
impacted the model and led to the misclassification. The
number of false negatives were analyzed, and we found that
out of the 7 misclassifications, 6 were CT scans while 1 was
CXR. In the case of false positives, all 18 misclassification
cases were occurred for CT scans. For better understanding,
misclassified cases for both data types are provided in
Table 5 (b).

Further, to better understand the performance of the
proposed DNN, ROC curve is provided in Fig. 5.

Considering those performance scores (cf. Table 4),
confusion matrix (cf. Table 5), and ROC curve (cf. Figure 5),
the proposed DNN provides encouraging results. These
results demonstrated the fact that multiple modalities can be

Table 7 Confusion matrices: a) CXR dataset (ACC = 96.13%) and b)
CT scan (ACC = 95.83%)

a)

Non

COVID-19 COVID-19

COVID-19 167 1

Non COVID-19 12 156

b)

Non

COVID-19 COVID-19

COVID-19 157 11

Non COVID-19 3 165
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Fig. 6 ROC curves for separate
data types: a) CXRs and b) CT
scans, using the proposed DNN
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used to training and testing a single deep neural network to
detect COVID-19 positive cases. To prove such statement,
it is important to check whether there is any loss or
improvement in case CT scans and CXRs are separately
employed. Therefore, in what follows, we discuss on
separate experimental results from CXRs and CT scans. For
both data types: CXR and CT scans, note that experiments
were performed on exactly same architecture as before.

Using 10-fold cross validation, using CXR and CT
scans separately, we computed performance scores for all
evaluation metrics as in Table 4. For both data types,
separate results are provided in Table 6. As before,
confusion matrices are provided in Table 7. For better
understanding, separate ROC curves are shown in Fig. 6.
With these additional tests (cf. Table 6 and Fig. 6), we
observed that one DNN can be used to train/test, since we
did not find any remarkable interventions from one data
type to another. The statement can be checked by taking two
different experimental results in Tables 4 and 6.

6 Comparison with other DNNs

Instead of relying on the performance from the proposed
DNN, we further experimented by taking three different
DNNs to check whether it is possible to train/test
multimodal radiological image data: CT scans and CXRs.
The primary idea is to check; can one architecture be used
to train/test both CT scans and CXRs?

Table 8 Parameters used in different DNNs

Architecture Parameters

InceptionNet 26,522,146.00

MobileNet 7,423,938.00

ResNet 49,278,594.00

Proposed DNN 229,808.00

c) Inception [41]: It binds a sparse CNN with a normal
dense network. Due to the effectiveness of small
number of neurons, the number of the convolutional
filter for a specific kernel is kept small. Also, it
applies convolutions of varied dimensions to get the
information of different ranges. Another important
factor is that it has a bottleneck layer, which helps in
reducing possible heavy computation.

a) MobileNet [42]: It is a lightweight network designed to
use depth-wise distinct convolutions, which represents
using a single convolution on each channel instead of
combining all the convolutions. The network efficiently
enhances the performances of embedded systems
having limited resources.

b) ResNet [43]: This network is designed, where the
future layer is formed by merging the previous layers.
It is done in order to force the architecture to get
the knowledge about the surplus. This network also
applies skip connections similar to LSTM, where these
connections are drives through number of gates. The
amount of information pass through the skip connection
is estimated by the gates. It is capable of training
hundreds or even thousands of layers and attains
imperative performance.

Table 9 Comparison (using CXRs + CT scans): Existing DNNs and
the proposed DNN

Metrics InceptionV3 MobileNet ResNet Proposed DNN

Sensitivity (Recall) 0.6935 0.7708 0.9375 0.9792

Specificity 0.744 0.8869 0.878 0.9464

Precision 0.7304 0.8721 0.8848 0.9481

False positive rate 0.256 0.1131 0.122 0.0536

False negative rate 0.3065 0.2292 0.0625 0.0208

Accuracy (%) 71.88 82.89 90.77 96.28

F1 Score 0.7115 0.8183 0.9104 0.9634

AUC 0.8011 0.8951 0.9616 0.9808
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Fig. 7 ROC curves using a
InceptionV3, bMobileNet, c
ResNet, and d Proposed DNN
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For these experiments, as in Table 8, different numbers of

parameters were used. For a quick comparison, the number
of parameters used in the proposed DNN is provided, where
it is clear that the proposed architecture is computationally
efficient. Like before, we followed the exact same dataset
(complete dataset: CXRs + CT scans) and evaluation
protocol. In Table 9, a complete comparative study was
provided. In addition, the proposed DNN was compared.
Further, ROC curves from all DNNs are shown in Figure 7.

7 Conclusion

In this paper, we have addressed the usefulness of a
single CNN architecture for different data modalities (or
data types) to detect COVID-19 positive cases, where
we proposed a lightweight (9 layered) CNN-tailored deep
neural network. We have trained and tested both data types:
Chest X-ray and CT scan images, and have achieved an
overall accuracy of 96.28% (AUC = 0.9808, and false
negative rate = 0.0208). With these results, we have
observed that multiple radiological imaging data to one
architecture. Further, we have achieved coherent results in
detecting COVID-19 positive cases from major existing
DNNs, such as InceptionV3, MobileNet, and ResNet.

As mentioned state-of-the-art literature [1], our imme-
diate plan is to work on computationally efficient CNN-
tailored DNN by taking multimodal data, not just limited to
two data types.
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