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Abstract
Kriging or Gaussian Process Regression is applied in many fields as a non-linear regression model as well as a surrogate
model in the field of evolutionary computation. However, the computational and space complexity of Kriging, that is cubic
and quadratic in the number of data points respectively, becomes a major bottleneck with more and more data available
nowadays. In this paper, we propose a general methodology for the complexity reduction, called cluster Kriging, where the
whole data set is partitioned into smaller clusters and multiple Kriging models are built on top of them. In addition, four
Kriging approximation algorithms are proposed as candidate algorithms within the new framework. Each of these algorithms
can be applied to much larger data sets while maintaining the advantages and power of Kriging. The proposed algorithms are
explained in detail and compared empirically against a broad set of existing state-of-the-art Kriging approximation methods
on a well-defined testing framework. According to the empirical study, the proposed algorithms consistently outperform the
existing algorithms. Moreover, some practical suggestions are provided for using the proposed algorithms.

Keywords Kriging · Gaussian process regression · Fuzzy clustering · Clustering · Model trees · Time complexity

1 Introduction

Kriging, or Gaussian Process Regression [31] is a popu-
lar and elegant kernel based regression model capable of
modeling very complex functions. Kriging is used in many
fields e.g. engineering, mining and geology, as a tool for the
analysis of datasets, for prediction purposes and for Surro-
gate model based optimization [36]. Many other regression
models exist, such as parametric models, which are easy to
interpret but may lack expressive power to model complex
functions. On the other hand, Regression Tree based meth-
ods like Random Forests [3] or Gradient Boosted Decision
Trees lack the advantage of interpretation [11] but have more
expressive power. Another method is Linear Model Trees
[41], which uses a tree structure with linear models at the
leaves of the tree. There are also more complex algorithms
like Neural Networks, or Extreme Learning Machines [21],
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that are able to model very complex functions but are usu-
ally not easy to work with in practice. There are also
different kernel based methods such as Support Vector
Machines [43] and Radial Basis Functions [5]. The main
advantage of Kriging over other regression methods is that
Kriging provides not only the estimate of the value of a
function, but also the mean squared error of the estima-
tion, the so-called Kriging variance. The Kriging variance
can be seen as the uncertainty assessment of the model and
has been exploited in surrogate model based optimization
and many other applications. Despite the clear advantage
of the Kriging variance, Kriging suffers from one major
problem, the high training time and space complexity, which
are O

(
n3

)
and O

(
n2

)
, respectively. Where n denotes the

number of points. To overcome this complexity problem,
Kriging approximation algorithms such as [42] and [19] are
introduced. Unfortunately, these approximation algorithms
are usually less accurate than the original Kriging algorithm.

In this paper, a novel algorithmic framework, called Clus-
ter Kriging (CK), is proposed to reduce the time / space
complexity issue when fitting the Kriging model to a large
dataset. The Cluster Kriging framework consists of three
steps: 1) The whole dataset is partitioned into small clus-
ters; 2) Multiple Kriging models are trained, one for each
partition; 3) All Kriging models are combined to predict
unknown locations. Each of the steps can be realized using
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several alternative methods, resulting in a potential wide
set of instance algorithms under the Cluster Kriging frame-
work. Here, four instance algorithms are proposed and
empirically compared to the current state-of-the-art Kriging
approximation algorithms. A well-defined testing frame-
work for Kriging approximation algorithms [7] is adopted
for the comparison.

This paper is organized as follows. In Section 2, a concise
introduction is given on the Kriging method, along with
the time / space complexity thereof. In Section 3, the
current state-of-the-art approaches to reduce the complexity
issue are briefly reviewed and categorized. The Cluster
Kriging framework is then formulated in Section 4, which is
followed by a descriptions of four Cluster Kriging “flavors”
/ algorithm instances in Section 5. The experimental setup
as well as a detailed discussion on the results are provided
for Cluster Kriging and other state-of-the-art approaches in
Section 6. Finally, we conclude the paper and point out the
future research directions in Section 7.

2 Kriging

Notation Throughout this paper, we shall use n, k, d to
denote the number of data points, the number of clusters
and the dimensionality of the input space, respectively. In
addition, we consider a regression function f : Rd → R.
In complexity statements in this paper we ignore d since
Kriging is generally used on low dimensional datasets.
Without loss of generality, the column vector convention is
adopted as the notation used throughout this paper.

Loosely speaking, Kriging is a stochastic interpolation
method in which the output value of a stochastic process is
predicted as a linear function of the observed output values
[24, 40]. In particular, Kriging is the best linear unbiased
predictor (BLUP) and the corresponding mean squared error
of prediction is used for uncertainty qualification. Kriging
originates from the field of spatial analysis/geostatistics and
more recently is being widely used in Bayesian optimization
and design and analysis of computer experiments (DACE)
[22, 34]. The model features in providing the theoretical
uncertainty measurement of estimations.

When this stochastic process is assumed to be Gaussian,
Kriging is equivalent to Gaussian Process Regression
(GPR), where the posterior distribution of the regression
function (posterior Gaussian process) is inferred through
Bayesian statistics. In this paper, we shall consider this
special case and adopt the mathematical treatment of
the Gaussian process. Assume that input data points are
summarized in the set X = {

x(1), x(2), . . . , x(n)
} ⊆ R

d

and the corresponding output variables are represented as

y = [
y

(
x(1)

)
, y

(
x(2)

)
, . . . , y

(
x(n)

)]�
. Specifically, the

mostly used variant of Kriging, Ordinary Kriging, models

the regression function f as a random process, that is a
combination of an unknown constant trend μ with a centered
Gaussian Process ε. The response y is linked to f through
the homoscedastic Gaussian noise γ (namely the noises are
independent and identically distributed):

y(x) = f (x) + γ (x) = μ + ε(x) + γ (x),

ε(x) ∼ N (0, σ 2
ε (x)), γ (x) ∼ N (0, σ 2

γ ).

Note that the noise process γ is assumed independent
from ε. The centered Gaussian process ε is a stochastic
process which possesses zero mean everywhere and any
finite collection of its random variables has a joint
Gaussian distribution [31]. It can be completely specified
by providing function k : Rd × R

d → R to calculate the
pairwise covariance:

Cov[ε(x), ε(x′)] = k(x, x′).

The covariance function k(·, ·) is a kernel function which
implies a Reproducing Kernel Hilbert Space (RKHS) of the
regression function f . Moreover, the variance σ 2

ε (x) of a
Gaussian process ε is independent from the input x and
thus denoted as σ 2

ε in the following. In practice, a common
choice is the Gaussian covariance function (also known as
squared exponential kernel):

k(x, x′) = σ 2
ε

d∏

i=1

exp
(
−θi(xi − x′

i )
2
)

, (1)

where θi’s are called hyper-parameters, that are either
predetermined or estimated through model fitting, and σ 2

ε

is inferred by the maximum likelihood method, which is
omitted here for simplicity. Using the Gaussian kernel, the
stochastic process ε is stationary.

To infer output value y(t) = y
(
x(t)

)
at an unobserved

data point x(t), the joint distribution of y(t) and observed
outputs y are derived, conditioning on the input dataset X ,
x(t) and the unknown prior mean μ. Such a joint distribution
is a multivariate Gaussian and is expressed as follows;
[

y(t)

y

] ∣
∣∣∣ X ∼ N

(
μ1n+1,

[
σ 2

ε + σ 2
γ c�

c � + σ 2
γ I

])
, (2)

ci = k(x(t), x(i)), �ij = k(x(i), x(j)),

where 1n+1 denotes a column vector of length n + 1 that
contains only 1’s. The homogeneous variance σ 2

γ of the
noise can be either determined by the user or estimated
through the maximum likelihood method. The posterior
distribution of y(t) can be calculated by marginalizing μ

out and conditioning on the observed output variables y
[31]. Without any derivations, the posterior distribution for
Ordinary Kriging is again Gaussian [17]:

y(t) | X , y, x(t) ∼ N
(
m

(
x(t)

)
, s2

(
x(t)

))
(3)
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where the posterior mean and variance are expressed as:

m
(
x(t)

)
= μ̂ + c� (

� + σ 2
γ I

)−1
(y − μ̂1n) (4)

s2
(
x(t)

)
= σ 2

γ + σ 2
ε − c� (

� + σ 2
γ I

)−1
c

+
(1 − c�

(
� + σ 2

γ I
)−1

1n)
2

1�
n

(
� + σ 2

γ I
)−1

1n

μ̂ =
1�
n

(
� + σ 2

γ I
)−1

y

1�
n

(
� + σ 2

γ I
)−1

1n

(5)

Note that the estimation of the trend, μ̂ is obtained by the
maximum a posteriori principle (MAP). The posterior mean
function (4) is used as the predictor while the posterior
variance (5) is the so-called Kriging variance that measures
the uncertainty of the prediction.

3 Relevant research

Despite the theoretically sound development of the Kriging
model, it suffers from several issues when applied to large
datasets. The major bottleneck is the high time and memory
complexity of the model fitting process: The inverse of the
covariance matrix �−1 needs to be computed for both the
posterior mean and variance (4 and 5), which has roughly
O(n3) time complexity.1 Moreover, when optimizing the
hyper-parameters of the kernel function, the log likelihood
function of those parameters is again calculated through
�−1, resulting in a O(n3) computational cost per each
optimization iteration. Thus, for a large dataset, such a high
overhead in model fitting renders Kriging inapplicable in
practice. Various attempts have been made to overcome
the computational complexity issue of Kriging [31]. The
contributions towards solving this issue can be split into
three categories:

3.1 Subset methods

The first category of approximation algorithms uses only a
subset of the complete dataset to approximate a full Kriging
model. The idea behind these methods is to get a realistic
representation of the complete dataset by taking only a small
portion of the data points. The main issue with these subset

1There are asymptotically faster algorithms for matrix inversion,
e.g. Strasssen’s O(n2.807) and Stothers O(n2.373), but their practical
performance is worse than some methods with o(n3) time complexity.

approximation algorithms is how to identify a subset that
represents the complete dataset.

Subset of Data (SoD) [26] is a naive approach in reduc-
ing complexity by taking a subset of m < n data points.
The points are ussualy taken at random. The obvious dis-
advantage of such an approach is that possible valuable
information is lost in the process. Taking a representative
subset of data points is a non-trivial task.

Subset of Regressors (SoR) [35] approximates Kriging by
a linear combination of kernel functions on a set of basis
points. The basis points are linearly weighted to construct
the predictor. The choice of the basis points does
influence the final outcome significantly. As noted also
in [30], there are only m (number of basis points) degrees
of freedom in the model because the model degenerates
(finite linear-in-the-parameters), which might be too
restrictive.

3.2 Approximation using sparsity

The second category of approximation algorithms approx-
imate the covariance matrix using sparsity based methods.
Most of these algorithms also use a (relevant) subset of the
data like in the category mentioned above.

Sparse On-Line Gaussian Processes (OGP) [9] uses a
Bayesian on-line algorithm, together with a sequential
construction of a subsample of the data that specifies the
prediction of the GP model. The idea behind constructing
a subsample of basis vectors is very similar to The Fully
Independent Training Conditional mentioned next. The
advantage of OGP is that additional data points can be
added to the OGP model without always completely
retraining the model.

Fast Kriging with Gaussian Markov Random Fields [19] is
an algorithm that uses an approximation of the covariance
matrix with a sparse precision matrix. It uses Gaussian
Markov Random Fields (GMRF) on a reasonable dense
grid to exploit the computational benefits of a Markov
field while keeping the formula of Kriging weights. This
method reduces the complexity for simple and ordinary
Kriging, but might not always be efficient with universal
Kriging.

The Fully Independent Training Conditional (FITC) [28,
37]. Snelson and Ghahramani proposed what they called
Sparse Gaussian Processes using Pseudo-inputs. It uses
a more sophisticated likelihood approximation with a
richer covariance. It is a non-degenerate version of the
SoR algorithm. By providing a set of basis points (Pseudo
inputs), the model is fitted and validated on the training
data. As with SoR the choice of basis points is a problem,
this is usually either a subset of the training data or a
uniform distribution over the input space.
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3.3 Divide and conquer methods

The last category contains methods that divide a (big)
dataset into several smaller datasets and build a model for
each of them. How to split the dataset into smaller datasets
and how to combine the different models is what makes
these algorithms unique. The proposed Cluster Kriging
algorithms also belong to this category.

Bayesian Committee Machines (BCM) [42] is an algo-
rithm similar to the ones we propose, but developed from
a completely different perspective. The basic motivation
is to divide a huge training set into several relatively small
subsets and then construct Kriging models on each sub-
set. The benefit of this approach is that the training time
on each subset is satisfactory and the training task can be
easily parallelized. After training, the prediction is made
by a weighted combination of estimations from all the
Kriging models. BCM uses batch prediction to speed up
the computation even further. However, BCM does not
seem to correct for different hyper parameters per mod-
ule, neither for badly fitted modules, which becomes a
major problem when the number of modules increases.

Product of Experts (PoE) [20] and the Generalized vari-
ant (GPoE) [6] are aggregation methods that differs from
Bayesian Committee Machines in the following sense:
the predictive distribution is assumed as a product of the
posterior distribution of each local Kriging model. More-
over, Generalized Product of Experts (GPoE) imposes
individual exponents on each probability distribution in
the product, where the exponent stands for the reliability
of each local Kriging model at a particular point.

Generalized Robust Bayesian Committee Machine
(GRBCM) [27] generalizes BCM by introducing a so-
called global communication expert (Kriging model) that
is trained on a random (hence global) subset of data and
interacts with each local Kriging model. The rationale
behind it is: the local predictive distribution (on each
local Kriging model) can be improved by incorporating
information on the global communication expert into
each local Kriging model.

Nested Pointwise Aggregation of Experts (NPAE) [33]
considers the fact that local predictors as m(·) are again
Gaussian random variables. Under this consideration, it
is straightforward to express the covariance among all
local predictors and the unknown output y(t). Then, the
overall predictive distribution of y(t) can be obtained by
conditioning on all local predictors.

Several other attempts have been made to divide the
Kriging model in sub-models [8, 29], each solution for
different domains. In [8], a Bagging [2] method is proposed
to increase the robustness of the Kriging algorithm, rather
than speeding up the algorithm’s training time. In [29], a

partitioning method is introduced to separate the data points
into local Kriging models and combine the different models
using a distance metric.

All of these approximation algorithms have their
advantages and disadvantages and they are compared to our
Cluster Kriging algorithms.

For the empirical study, eight state of the art algorithms:
SoD, FITC, BCM, RBCM, GRBCM, PoE, GPoE and NPAE
are selected to be compared with the proposed approaches
in this paper, as they seem to be the most popular and
prominent in the field.

4 Cluster Kriging

The main idea behind the proposed approach, Cluster
Kriging, is to combine multiple Kriging models trained on
each partition of data, where the partitions are obtained
from clustering algorithms. Loosely speaking, if the whole
dataset is partitioned into clusters of similar sizes, Cluster
Kriging will reduce the time complexity by a factor of
k2 resulting in k

(
n
k

)3 (where k is the number of clusters)
if Kriging models are fitted sequentially. When exploiting
k CPU processes in parallel, the time complexity will be
further reduced to

(
n
k

)3. In practice this means that if we
take k depending on n our algorithm becomes quadratic
in time, and using k CPUs it even reaches linear time
complexity. For the output value y(t) at an unobserved data
point x(t), each Kriging model provides a (local) prediction
for y(t). To obtain a global prediction, it is proposed to
either combine the predictions from all the Kriging models
or select the most proper Kriging model for the prediction.

There are many options for the data partitioning, e.g.
K-means and Gaussian mixture models (GMM), and the
local Kriging models trained on the clusters can also be
combined in different manners. By varying the options in
each step of the Cluster Kriging procedure, many algorithms
can be generated. Four of them will be explained in the
next section. In this section, the options in each step of the
algorithms are introduced gradually.

4.1 Clustering

The first step in the Cluster Kriging methodology is the
clustering of the input data X (and the output variables) into
several smaller datasets. In general, the goal is to obtain a
set S containing k clusters on the input dataset X .

S = {X1,X2, . . . ,Xk}, where
k⋃

i=1

Xi = X . (6)

In addition, the output values y are also grouped accord-

ingly: y = [
y�

1 , y�
2 , . . . , y�

k

]�
. The clustering can be done
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in many ways, with the most simple and feasible approach
being random clustering. For our framework the following
three simple but effective clustering methods are used. Note
that, in principle, more sophisticated clustering method,
e.g., K-Medoids based methods [18], spectral-based method
[12] and density peaks clustering [13, 46] can also be
adopted here.

4.1.1 Hard clustering

Hard clustering splits the data into k smaller disjoint
datasets:
k⋂

i=1

Xi = ∅

This can be achieved by various methods, for instance the
K-means algorithm (7). K-means clustering minimizes the
within-cluster sum of squares, that is expressed as:

arg min
S

k∑

i=1

∑

x∈Xi

||x − μ(i)||2, (7)

where μ(i) is the centroid of cluster i and is calculated
as the mean of the points in Xi . The evaluation of the
within-cluster sum of squares takes O(nkd) execution time.

4.1.2 Soft clustering

Instead of using a hard clustering approach, a fuzzy
clustering algorithm can be used to introduce slight overlap
between the various smaller datasets, which might increase
the final model accuracy. To incorporate fuzzy clustering,
instead of directly applying cluster labels, the probabilities
that a point belongs to a cluster are calculated (8) and for
each cluster (n · o)/k points with the highest membership
values are assigned, where o is a user defined setting that
defines the overlap. o is set between 1.0 (no overlap) and
2.0 (completely overlapping clusters).

In principle, any fuzzy clustering algorithm can be used
for the partitioning. In this paper the Fuzzy C-Means (FCM)
[14] clustering algorithm and the Gaussian Mixture Models
(GMM) [32] are used. FCM is a clustering algorithm
very similar to the well known K-means. The algorithm
differs from K-means in that it has additional membership
coefficients and a fuzzifier. The membership coefficients
of a given point give the degrees that this point belongs
to each cluster. These coefficients are normalized so they
sum up to one. The algorithm can be fitted on a given
dataset and returns the coefficients for each data point
to each cluster. The number of clusters is a user defined
parameter. Fuzzy C-means optimizes the objective function
given in (8) iteratively. In each iteration, the membership
coefficients of each point being in the clusters are computed

using (9). Subsequently, the centroid of each cluster μ(j) is
computed as the center of mass of all data points, taking
the membership coefficients as weights. The objective of
fuzzy C-means is to find a set of centroids that minimizes
the following function:

n∑

i=1

k∑

j=1

wm
ij ||x(i) − μ(j)||2, (8)

where wij are the membership values (see (9)) and m is
the so-called fuzzifier (set to 2 in this paper). The fuzzifier
determines the level of cluster fuzziness as follows:

wm
ij = 1

∑k
c=1

(
||x(i) − μ(j)||
||x(i) − μ(c)||

) 2
m−1

(9)

The other fuzzy clustering procedure used is the
Gaussian Mixture Models. GMM are used together with
the expectation-maximization (EM) algorithm for fitting the
Gaussian models. The mixture models are fitted on the
training data and later used in the weighted combination
of the Kriging models by estimating cluster membership
probabilities of the unseen data points. The advantage of
this clustering technique is that it is fairly robust and
that the number of clusters can be specified by the user.
For the GMM method one could use the full covariance
matrix whenever the dimensionality of the input data is
small. However, when working with high dimensional data
a diagonal covariance matrix can be used instead. The
time complexity of GMM depends on the underlying EM
algorithm. In each iteration EM, it takes O(nk) operations
to re-estimate the model parameters.

4.1.3 Regression tree partitioning

The third method used is the partitioning by use of a
Regression Tree [4] on the complete training set. The
regression tree splits the dataset recursively at the best
splitting point using the variance reduction criterion. Each
leaf node of the Regression Tree represents a cluster of data
points. The number of leaves (or the number of samples per
leave) can be set by the user. By reducing the variance in
each leaf node and therefore the variance in each dataset,
the Kriging models can be fitted to the local datasets much
better as will be presented later on. The time complexity of
using a Regression Tree for the partitioning is O(n), given
that the depth of the tree or the number of leaf nodes is set
by the user.

The partitioning done by the regression tree depends
on the splitting criterion. For a faster execution of the
Cluster Kriging algorithm we could choose to use a
splitting criterion that splits the dataset in each node evenly,
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balancing the load for each of the local Kriging models
attached to the leafs. From emperical experience we know
that splitting using the standard variance reduction function
generally results in better performing models than using
such an evenly splitting criterion. This is likely due to the
fact that datasets with a lower variance can be more easily
fitted by a Kriging model.

4.2 Modeling

After partitioning the dataset into several clusters, Kriging
models are fitted on each of the smaller datasets. The
Kriging algorithm is applied on each cluster individually,
this way each model will be optimized on its own training
set and will have different hyper-parameters. For simplicity
we assume, in this paper, the kernel functions used on
each cluster to be the same. As for the regression tree
approach, the dataset, or more precisely the input space, is
partitioned by the tree algorithm and, for each leaf node,
a Kriging model is computed using the data belonging to
this node (Fig. 1). A similar technique is introduced in the
context of combining linear regression models [25, 41, 45].
For each cluster l = 1, 2, . . . , k, the predictive (posterior)
distribution of the response y(t) is:

y(t) | Xl , yl , x(t) ∼ N
(
ml

(
x(t)

)
, σ 2

l

(
x(t)

))
, (10)

where ml and σ 2
l are specified again by (4) and (5) except

that X , y are replaced by Xl , yl here. Note that building
the Kriging models can be easily parallelized, which gives
an additional speedup to Cluster Kriging. Another benefit
of building each model separately, is that each model has
usually a much better local fit than a single global Kriging
model would obtain.

4.3 Prediction

After training the various Kriging models, unseen data
points need to be predicted. For this prediction, there are

Fig. 1 Visualisation of a Model Tree. The top node is the root and the
bottom nodes are the leaves with attached models. Each record in the
data (on the left) is assigned to a leaf node of the regression tree

several options. Depending on the partitioning method used
before, the simplest approach to predict the unseen data
point is by using a single local model. When the partitions
are overlapping a combination of the different local models
into one global model is required.

4.3.1 Single model prediction

The simplest method is to pick just one local Kriging
model for each data point and use this local model for
the prediction. This does require the partitioning used to
create partitions based on locality like k-means clustering
or a regression tree. First the partitioning method is used
to predict which cluster the new data point belongs to,
then the Kriging model trained using this particular cluster
is used to predict the mean and variance at the new data
point.

In case of the Regression Tree procedure, the targets are
predicted from new unseen data points by first deciding
which model needs to be used, using the Regression Tree.
The target is then predicted using the specific Kriging model
assigned to the leaf node (Fig. 1). The main advantage of
this method is that there is no combination of different
predictions and only one of the local Kriging models needs
to provide a prediction. This results in a significant speed-up
for the prediction task. Disadvantages of this method are 1) a
potential lack of the global trend of the target function and 2)
discontinuities are created artificially. In Fig. 2, we visualize
a Cluster Kriging model using regression trees, in which the
intersections between the different local models are marked
by black dashed lines. It can be observed that the edges of
the local models are not completely matching, meaning that
the predictions near the border are not as smooth as they
would be in a global Kriging model. It can also be observed
that the area covered by each cluster is not the same,
this is due to the splitting criterion of the regression tree.
While the splitting criterion could be chosen in such a way
that it balances the cluster sizes, using variance reduction
as the splitting criterion generally gives better fitted local
models.

4.3.2 Optimal weighting procedure

Instead of using single model predictions, the multiple
local models can be combined into one global model using
various combination procedures. When the input dataset
is separated by hard clustering methods, the posterior
Gaussian processes on each cluster are independent from
each other. In this sense, it is possible to construct a global
Gaussian process model as the superposition of Gaussian
processes from all the clusters. In addition, a weighting
scheme is used to model how much “belief” should be put
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Fig. 2 The landscape of the two
dimensional Ackley function on
the left, and on the right are the
contours of the Model Tree
Cluster Kriging mean function,
with the tree partitionings
visualized by dashed lines. The
index of the clusters are shown
in the middle of each rectangle

on the prediction from each local model. The weighted
posterior processes is [38]:

y(t) | X , y, x(t) ∼ N
(

k∑

l=1

wlml

(
x(t)

)
,

k∑

l=1

w2
l σ

2
l (x(t))

)

.

Note that the prediction and its variance depend on the
weights. Therefore, the optimal predictor can be achieved by
minimizing the variance with respect to the weight, which
is formulated as follows:

minimize{w1,...,wk}

k∑

l=1

w2
l σ

2
l (x(t))

subject to
k∑

l=1

wl = 1, wl ≥ 0, l = 1, . . . , k.

The optimal weights are obtained by solving the problem above
(see the previous work of the authors [38, 39] for details):

w∗
l = 1/σ 2

l

(
x(t)

)

∑k
i=1 1/σ 2

i

(
x(t)

) . (11)

The optimal weights are then used to construct the
optimal predictor, which is the inner product of the model
predictions with the optimal weights.

4.3.3 Membership probabilities

For the GMM and other soft clustering approaches, the
membership probabilities can be used for unseen records to
define the weights for the combination of predictions. For
each unseen record, the membership probabilities that this
record belongs to the k clusters are calculated and directly

used as the weights in the weighted sum of predictions and
variances given by the Kriging models:

wl = Pr
(
C = l | X , x(t)

)
, for l = 1, . . . , k, (12)

where C is the cluster indicator variable ranging from 1 to k.
The rationale behind such a weighting scheme can be shown
from the following derivation. In general, the goal here is to
express the predictive distribution of variable y(t) that is the
conditional density function on the whole dataset X , using
the posterior densities from all clusters. By applying the
total probability with respect to the cluster indicator variable
C, such a density function p can be written as [39]:

p
(
y(t) | X , y, x(t)

)

=
k∑

l=1

p
(
y(t), C = l | X , y, x(t)

)

=
k∑

l=1

p
(
y(t) | Xl , yl , x(t)

)
Pr

(
C = l | X , x(t)

)
. (13)

In (13), the first term within the summation is the
predictive density function obtained from cluster l. The
second term represents the probability that data point
x(t) belonging to a cluster, which is the weight in (12).
Consequently, the overall predictive density function is
a mixture of predictive distributions of all the Gaussian
process models on clusters. To predict y(t), the expectation
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of the conditional density function p
(
y(t) | X , y, x(t)

)
is

calculated:

IE
[
y(t) | X , y, x(t)

]

=
k∑

l=1

∫ ∞

−∞
y(t)

k∑

l=1

g
(
y(t) | Xl , yl , x(t)

)

× Pr
(
C = l | X , x(t)

)
dy(t)

=
k∑

l=1

Pr
(
C = l | X , x(t)

)
IE

[
yt | Xl , yl , xt

]

=
k∑

l=1

wlml

(
x(t)

)
. (14)

Recall that ml(xt ) is the mean function as shown in (10).
Equation 14 suggests that the overall prediction made on the
whole dataset can be expressed as a convex combination of
the local predictions on each cluster of data, in which the
combination weights are membership probabilities of GMM
or similar clustering approaches. Furthermore, the variance
of the prediction (expectation) above is derived as follows:

Var
[
y(t) | X , y, x(t)

]

= IE
[
y(t)2 | X , y, x(t)

]
−IE

[
y(t) | X , y, x(t)

]2

=
k∑

l=1

wl

(
Var

[
y(t) |Xl , yl , x(t)

]
+IE

[
y(t) |Xl , yl , x(t)

]2
)

−IE
[
y(t) | X , y, x(t)

]2

=
k∑

l=1

wl

(
σ 2

l

(
x(t)

)
+ m2

l

(
x(t)

))
−

(
k∑

l=1

wlml(x(t))

)2

.

Note that σ 2
l

(
x(t)

)
is again the Kriging variance at point x(t)

from cluster l.

5 Flavors of cluster Kriging

Using the three stages and various components for each
stage of the Cluster Kriging methodology, various algo-
rithms can be implemented. In this paper we asses four
different flavors of Cluster Kriging:

Optimally Weighted Cluster Kriging (OWCK), which
uses a hard (K-means) clustering technique to partition
the data into k clusters. Subsequently, a Kriging model is
trained on each cluster and to predict unseen data points,
the predictions and variances of each model are combined
using the Optimal Weights Procedure (Section 4.3.2).

OptimallyWeighted Fuzzy Cluster Kriging (OWFCK),
which uses a soft clustering technique (Fuzzy C-Means)

to partition the data into k overlapping clusters and
also uses the Optimal Weights Procedure combining the
different predictions (Section 4.3.2).

Gaussian Mixture Model Cluster Kriging (GMMCK),
which uses Gaussian Mixture Models to partition the
data into k overlapping clusters and the trained Kriging
models are weighted using the membership probabilities
assigned on the unseen data by the Gaussian Mixture
Model (Section 4.3.3).

Model Tree Cluster Kriging (MTCK), the proposed
novel algorithm, uses a regression tree with a fixed
amount of leaf nodes to partition the data in the objective
space. A Kriging model is then trained on each partition
defined by the tree’s leaves. MTCK uses only one of
the trained Kriging models per unseen record to predict
(Section 4.3.1), depending on which leaf node the unseen
record is assigned to.

First a decision tree regressor is constructed using the
complete dataset. The tree is generated from the root
node by recursively splitting the training data using the
target variable and the variance reduction criterion. Once
a node contains less than the minimum samples needed
to split or the node contains only one record, the splitting
stops and the node is called a leaf. To control the number
of clusters, the user can set the maximum number of
leaves or the minimum leaf size. Next, each leaf node
is assigned a unique index and each record belonging
to the leaf is assigned to this index. For each leaf, a
Kriging model is computed using only those records
assigned to this leaf. Each Kriging model is now able
to predict a particular region defined by the Regression
Tree.

For the prediction of the target for unseen records, the
regression tree decides which Kriging model should be
used. The final predicted mean and variance is provided
by this Kriging model.

6 Experimental setup and results

A broad variety of experiments is executed to compare
all flavours of Cluster Kriging, e.g., Optimally Weighted
Cluster Kriging or Model Tree Cluster Kriging, to a wide
reference set of other Kriging approximation algorithms:
Bayesian Committee Machines, both standard BCM as
well as RBCM and GRBCM, Subset of Data (SoD),
Fully Independent Training Conditional (FITC), Product
of Experts (PoE and GPoE), Nested Pointwise aggregation
of Experts (NPAE), Optimally Weighted Cluster Kriging
(OWCK) using K-means clustering, Fuzzy Cluster Kriging
using Fuzzy C-means (OWFCK), Fuzzy Cluster Kriging
with Gaussian Mixture Models (GMMCK) and, finally,
Model Tree Cluster Kriging (MTCK).
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The above algorithms are evaluated on three different
datasets from the UCI machine learning repository [1]:

– Concrete Strength [47], a dataset with 1030 records, 8
attributes and one target attribute. The task is to predict
the strength of concrete.

– Combined Cycle Power Plant (CCPP) [23], a dataset of
9568 records, 3 attributes and one target attribute. The
target is the hourly electrical energy output and the task
is to predict this target.

– SARCOS [44], a dataset from gaussianprocess.org with
a training set of 44484 records, 21 attributes and 7 target
attributes. The task is to predict the joint torques of an
anthropomorphic robot arm. All 21 attributes are used
as training data but only the 1st target attribute is used
as target. The dataset comes with a predefined test set
of 4449 records.

In addition, 8 synthetic datasets with each 10.000 records,
20 attributes and one target attribute are used. The synthetic
datasets are generated using benchmark functions from
the Deap Python Package [16] and are often used in
optimization. The functions are Ackley, Schaffer, Schwefel,
Rastrigin, H1, Rosenbrock, Himmelblau and Diffpow.
As Cluster Kriging as well as most of comparison
algorithms are implemented in Python (except for BCM,
RBCM, GRBCM and NPAE, which are available in
MATLAB using the GPML toolbox), the experimentation is
performed in Python-2.7.5 on a CentOS 7 platform.
The parallelization mechanism of Cluster Kriging is
implemented based on the Python mpi4py package
[10]. For the BCM algorithms and the NPAE algorithm, the
execution is done in MATLAB version 2014a.

6.1 Hyper-parameters optimization

The hyperparameters in each local Kriging model are
optimized using the Maximum Likelihood Estimation
(MLE) method. As the constant trend μ is estimated using
the GLS (Generalized Least Square) formula, we use the so-
called profile log-likelihood as the objective function in the
optimization. As for the choice of numerical optimization
algorithm, we adopt a quasi-Newton method (BFGS) [15]
with restarting heuristic. Each of the Kriging approximation
algorithms has a hyper-parameter that can be tuned by the
user to define the number of data points, clusters or inducing
points, basically defining the trade-off between complexity
and accuracy. For each of the algorithms a wide range of
these hyper-parameters are used to see the effect and make
a fair comparison between the different algorithms. The
overlap for each of the Fuzzy algorithms is set to 10%,
since from empirical experience we know that 10% works
well. Although higher percentages (above 10%) usually
increase accuracy, the increase of accuracy is not significant

and costs additional training time as well. For the Model
Tree variant, the number of leaves is enforced by setting a
minimum number of data points per leaf and an optional
maximum number of leaves. For the Concrete Strength
dataset and all synthetic datasets: FITC is set to a range of
inducing points starting from 32 and increasing in powers of
2 to 512. SoD is set to the same range as FITC but for SoD
this means the number of data points. (GR)BCM, (G)PoE,
NPAE and all Cluster Kriging variants are set to a range
from 2 to 32 clusters, increasing with powers of 2. For the
Combined Cycle Power Plant dataset: FITC is set to a range
of inducing points starting from 64 and increasing in powers
of 2 to 1024. SoD is set to the a range from 256 to 4092 data
points. (GR)BCM, (G)PoE, NPAE and all Cluster Kriging
variants are set to a range from 4 to 64 clusters.

Finally, for the SARCOS dataset, the range of FITC’s
inducing points stays the same as for the CCPP dataset, for
SoD the range is from 512 to 8184 data points, and for
all cluster based algorithms and the model tree variant, the
range is set from 8 to 128 clusters.

6.2 Quality measurements

The quality of the experiments is estimated with the help
of 5-fold cross validation, except of the SARCOS dataset,
which uses its predefined test set. The experiments are
performed in a test framework similar to the framework
proposed by Chalupka et al. [7], i.e. several quality
measurements are used to evaluate the performance of
each algorithm. The Coefficient of determination R2 score,
Mean Standardized Log Loss (MSLL) (see [31] Chapter
8.1) and the Standardized Mean Squared Error (SMSE) are
measured for each test run. The Mean Standardized Log
Loss is a measurement that takes both the predicted mean
and the predicted variance into account. Penalizing wrong
predictions that have a small predicted variance more than
wrong predictions with a large variance. Given a validation
set of size n, MSLL is calculated as follows:

MSLL = 1

n

n∑

i=1

1

2
log

(
πσi + (yi − ŷi )

2/σi

)
− trivi ,

where σ t is the predicted variance for data point xi and
ŷi is the prediction. With trivi the trivial score simulating
a predictor that predicts the overall mean and standard
deviation:

trivi = 1

2
log

(
πσy + (yi − ȳ)2/σy

)

For MSLL and SMSE lower scores are better, for R2,
1.0 is the best possible score meaning a perfect fit and
everything lower is worse.
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Fig. 3 Quality measurements of each algorithm with increasing sam-
ple sizes for SoD, increasing inducing points for FITC, and decreas-
ing cluster sizes for the cluster based algorithms as explained in
Section 6.1. The results are shown for the Concrete, CCPP and Sarcos

datasets and the synthetic dataset of the H1 function. The training time
is given on the x axis and the R2 score on the y axis. The dashed green
line indicates the non-dominated set

Table 1 Average R2 score per dataset for each algorithm

Alg. concrete CCPP sarcos ackley schaffer schwefel rast h1 rosen. himmel. diffpow

OWCK 0.826 0.937 0.894 0.957 0.388 0.973 0.947 −0.082 0.997 0.995 0.991

GMMCK 0.839 0.968 0.996 0.951 0.369 0.977 0.948 0.527 0.997 0.995 0.991

OWFCK 0.696 0.916 0.570 0.954 0.406 0.947 0.932 −1.125 0.981 0.981 0.975

MTCK 0.851 0.968 0.999 0.981 0.672 0.999 0.998 0.977 1.000 1.000 1.000

SOD 0.784 0.948 0.964 0.952 0.321 0.990 0.973 0.676 0.999 0.997 0.995

FITC 0.675 0.890 0.941 0.260 0.208 0.006 0.322 0.165 0.000 0.291 0.001

PoE 0.789 0.942 0.975 0.943 0.498 0.924 0.532 0.576 1.000 1.000 0.997

GPoE 0.789 0.942 0.975 0.943 0.477 0.945 0.570 0.643 1.000 1.000 0.998

BCM 0.798 0.940 0.975 0.933 0.238 0.836 0.533 0.220 1.000 1.000 0.998

RBCM 0.830 0.939 0.975 0.934 0.363 0.909 0.557 0.465 1.000 1.000 0.998

GRBCM 0.831 0.942 0.975 0.942 0.491 0.941 0.528 0.583 0.160 0.160 0.998

NPAE 0.859 0.942 0.984 0.944 0.521 0.945 0.589 0.578 0.189 0.000 0.998
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Table 2 Average SMSE score per dataset for each algorithm

Alg. concrete CCPP sarcos ackley schaffer schwefel rast h1 rosen. himmel. diffpow

OWCK 0.174 0.063 0.106 0.043 0.612 0.027 0.053 1.082 0.003 0.005 0.009

GMMCK 0.161 0.032 0.004 0.049 0.631 0.023 0.052 0.473 0.003 0.005 0.009

OWFCK 0.304 0.084 0.430 0.046 0.594 0.053 0.068 2.125 0.019 0.019 0.025

MTCK 0.149 0.032 0.001 0.019 0.328 0.001 0.002 0.023 0.000 0.000 0.000

SOD 0.216 0.052 0.036 0.048 0.679 0.010 0.027 0.324 0.001 0.003 0.005

FITC 0.325 0.110 0.059 0.740 0.792 0.994 0.678 0.835 1.000 0.709 0.999

PoE 0.452 0.240 0.156 0.238 0.684 0.134 0.684 0.626 0.000 0.000 0.046

GPoE 0.453 0.241 0.155 0.238 0.706 0.105 0.632 0.531 0.000 0.000 0.040

BCM 0.446 0.245 0.156 0.259 0.861 0.216 0.674 0.880 0.000 0.000 0.041

RBCM 0.411 0.246 0.154 0.258 0.764 0.137 0.653 0.683 0.000 0.000 0.044

GRBCM 0.410 0.240 0.150 0.240 0.688 0.102 0.687 0.608 8.400 8.400 0.042

NPAE 0.375 0.240 0.124 0.236 0.657 0.095 0.604 0.623 15.039 10.771 0.037

6.3 Results

The results of the experimentation are two-fold. For all
datasets, the comparison is conducted with an increasing
size of the training set for SoD, increasing inducing points
for FITC, and a decreasing number of clusters for all cluster
based algorithms, as explained in detail in Section 6.1.
This in order to investigate how the performance of
each algorithm is scaled with respect to the size of the
training data (for each Kriging model). The result is
illustrated in Fig. 3, where two performance measures,
training time (measured in CPU time in seconds) and the
goodness of fit (measured in the cross-validated coefficient
of determination R2) are shown for each pair of algorithm
and dataset. Naturally, CPU time and R2 form two
conflicting objectives in the sense that it is difficult to
improve one without making the other deteriorate. Thus, a

good trade-off between those two performance measures is
of particular interest here. In the figure, the so-called Pareto
efficient frontier is drawn in green dashed lines, which
contains points that are superior in both CPU time and R2

to the points that are not on the front. It is clear that the
MTCK algorithm is constantly on the Pareto front for all
four datasets. On the other hand, SoD frequently dominates
the other algorithms. Although it yields a relatively poor R2

score, the training time of SoD is also very small, compared
to the other algorithms.

For both real-world and synthetic datasets, the R2 scores
averaged from cross-validation, are arranged in Table 1.
The best results for each dataset are marked by bold face.
It is clear that the MTCK algorithm outperforms in most
scenarios while the BCM algorithms are also competitive
on Rosenbrock and Himmelblau problems. In addition, the
MSLL scores are provided in Table 3. Here, a similar

Table 3 Average MSLL score per dataset for each algorithm

Alg. concrete CCPP sarcos ackley schaffer schwefel rast h1 rosen. himmel. diffpow

OWCK −0.946 −1.438 −1.371 −1.516 −0.073 −2.013 −1.686 −0.276 −2.915 −2.646 −2.548

GMMCK −1.100 −1.525 −3.147 −1.517 0.081 −2.162 −1.807 −0.540 −3.074 −2.790 −2.666

OWFCK −0.692 −1.109 −0.302 −1.462 −0.091 −1.944 −1.642 −0.060 −2.738 −2.553 −2.438

MTCK −1.140 −1.193 −3.429 −2.012 −0.514 −3.278 −2.901 −1.967 −4.054 −3.739 −3.744

SOD −0.837 −0.089 −1.926 −1.622 0.477 −2.554 −2.179 −0.766 −3.479 −3.204 −3.020

FITC −0.629 −1.165 −1.463 −0.104 −0.107 −0.002 −0.193 −0.059 * −0.193 *

PoE 5.822 3.083 15.953 2.303 3.883 −1.728 4.102 3.663 * * −0.130

GPoE −0.797 −1.424 −1.895 −1.429 −0.403 −3.291 −0.586 −1.100 −13.260 * −3.349

BCM 2.637 3.047 15.944 2.750 3.154 −0.821 3.019 3.788 −13.793 * −0.295

RBCM 1.591 7.294 40.446 2.983 0.313 −0.388 4.708 −0.198 −11.576 * 13.613

GRBCM −0.673 −1.426 −1.739 −1.417 −0.456 −1.736 −0.375 0.485 6.311 6.411 0.731

NPAE −0.986 −1.425 −2.056 −1.441 −0.555 −3.681 −0.721 −0.634 0.987 2.734 −3.351

A * indicates that the value was way above 1000 (very bad fit)
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comparison can be observed as in Table 1. Finally, the
SMSE scores are presented in Table 2.

6.4 Parameter setting recommendations

To use the Cluster Kriging algorithms, the minimum cluster
size or the number of clusters has to be set as a user defined
parameter. It is recommended to set this parameter in such
a way that each individual cluster contains between 100 and
1000 records. 1000 records is still computationally tractable
by Kriging in terms of execution time and 100 records is
in most cases still doable in terms of fitting the Kriging
model. Selecting smaller cluster sizes is likely to result in
poorly fitted models and selecting cluster sizes larger than
1000 will in most cases not increase accuracy but will only
increase execution time. These recommendations are purely
based on empirical observations and depend highly on the
dataset one is working with. For MTCK smaller cluster
sizes are usually still fine because of the low variance in
the records per leaf due to the splitting criterion of the
Regression Tree (Table 3).

7 Conclusions and further research

In this paper, a novel Kriging framework, Cluster Kriging,
is proposed to reduce the time and space complexity
of the Kriging method if it were trained directly on a
large dataset. Essentially, Cluster Kriging combines smaller
Kriging models that are trained on partitions of the whole
dataset. Four different algorithms using this methodology
are proposed and described in details. A broad comparison
between the novel algorithms and other state of the art
Kriging approximation algorithms is done. The results of
the experiments (as given in Section 6) clearly show that for
each dataset, the Gaussian Mixture Models Cluster Kriging
(GMMCK) and the Model Tree Cluster Kriging (MTCK)
outperform the other algorithms in all measurements. It
can also be observed that the Bayesian Committee Machine
algorithms, are unstable when the number of clusters is
above 8. This is most likely due to the poor recombination
of models with different hyper-parameters and the chance of
poor fitting of one of the clusters. In terms of training time,
Subset of Data is faster than any of the other algorithms
when setting the number of data points small. However, it
pays for this complexity reduction by a decrease in accuracy.
Both for SoD and FITC, the training time increases faster
with the number of data points than the training time of the
cluster based algorithms. For the GMMCK algorithm, it is
shown that the membership probabilities of the Gaussian
Mixture Model can be used as weights in the combination
of the various Kriging models’ predictions. It is also shown
that a Model Tree of Kriging models works very well in high

dimensional problems and requires less prediction time due
to the fact that only one Kriging model is used to predict an
unseen data point.

For future research it would be interesting to auto-
matically determine optimal cluster sizes for the different
algorithms and optimize the nugget parameter of the Krig-
ing models. The nugget plays an important role in the
fitting of the Kriging model as it determines the amount of
marginalization.
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30. Quiñonero-Candela J, Rasmussen CE (2005) A unifying view of
sparse approximate gaussian process regression. J Mach Learn
Res 6(1):1939–1959

31. Rasmussen C, Williams C (2006) Gaussian Processes for Machine
Learning. Adaptive computation and machine learning series.
University Press Group Limited

32. Reynolds D (2009) Gaussian mixture models. In: Encyclopedia of
Biometrics, pp. 659–663. Springer

33. Rullière D, Durrande N, Bachoc F, Chevalier C (2018)
Nested kriging predictions for datasets with a large number of
observations. Stat Comput 28(4):849–867

34. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and
analysis of computer experiments. Statistical science pp 409–
423

35. Silverman BW (1985) Some aspects of the spline smoothing
approach to non-parametric regression curve fitting. J R Stat Soc
Ser B Methodol 47(1):1–52

36. Simpson TW, Mauery TM, Korte JJ, Mistree F (2001) Kriging
models for global approximation in simulation-based multidisci-
plinary design optimization. AIAA J 39(12):2233–2241

37. Snelson E, Ghahramani Z (2005) Sparse gaussian processes using
pseudo-inputs. In: Advances in neural information processing
systems, pp 1257–1264

38. van Stein B, Wang H, Kowalczyk W, Bäck T, Emmerich M (2015)
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