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Abstract
Multi-Agent Planning deals with the task of generating a plan for/by a set of agents that jointly solve a planning problem.
One of the biggest challenges is how to handle interactions arising from agents’ actions. The first contribution of the paper
is Plan Merging by Reuse, PMR, an algorithm that automatically adjusts its behaviour to the level of interaction. Given a
multi-agent planning task, PMR assigns goals to specific agents. The chosen agents solve their individual planning tasks
and the resulting plans are merged. Since merged plans are not always valid, PMR performs planning by reuse to generate
a valid plan. The second contribution of the paper is RRPT-PLAN, a stochastic plan-reuse planner that combines plan reuse,
standard search and sampling. We have performed extensive sets of experiments in order to analyze the performance of PMR

in relation to state of the art multi-agent planning techniques.

Keywords Multi-agent planning · Plan reuse · Automated planning · Centralized planning · Distributed planning

1 Introduction

Consider a warehouse where everyday hundreds of orders
are received and have to be delivered into the shortest
period of time. First, the warehouse workers need to get
the corresponding products to complete each order. In
order to speed up the process, some robots are available
to fetch the products for them. Workers will only focus
on receiving the products and checking that the order has
been completed. After that, orders need to be delivered to
the clients’ addresses using trucks. When reasoning about
this scenario, some coordination systems are needed: (1) a
system should divide up the work into the workers; (2) also
robots should move autonomously and individually through
the warehouse avoiding collisions; and (3) each driver needs
to be assigned a set of deliveries based on the deliveries’
location or some other minimization cost feature to improve
efficiency. Automated Planning is the subarea of Artificial
Intelligence that reasons on how to synthesize sequences of
actions for solving tasks within this kind of scenarios. When
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multiple agents are involved (e.g robots, workers, drivers)
or some coordination is needed, we talk about Multi-Agent
Planning (MAP).

MAP aims at solving planning tasks for/by a set of
agents. Usually, it is assumed that these agents collaborate
to reach common goals. Two main approaches have
been commonly used: centralized and distributed. The
former builds a common plan for all agents by merely
considering the agents as another planning resource. This
was the usual way of dealing with MAP tasks in the
Automated Planning community until recently. When MAP
complexity was studied in [10], Brafman and Domshlak
showed that MAP’s complexity depends on the number
of agents, the difficulty of their individual planning tasks
and the number of interactions between agents (points
where some coordination is needed). Thus, centralized
planning is usually more efficient when computing a plan
with a reduced number of agents and goals. On the
other hand, in distributed planning, agents generate their
plans either synchronously with the rest of agents as in
FMAP [45] or MA-FS [40], or independently [36]. When
planning synchronously, agents need to share information
during planning. Thus, these approaches incur in a high
communication cost. Also, they require to modify the
code of an existing planner in order to accommodate the
communication among agents. In the case of planning
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independently, agents do not employ any communication
among agents while planning. Therefore, they have to later
merge their plans. In that case, some merging function is
applied to the set of plans to generate a joint plan [17, 35].
Planning domains can vary from loosely-coupled, where
there is almost no interference among the agents’ plans to
tightly-coupled, with higher interaction [10]. Plan merging
has been shown to work best in loosely-coupled domains.

Regarding MAP in real world scenarios, in most domains
the solution should be executed in the shortest possible
time. Hence, concurrent execution of agents’ actions is
needed. One way to deal with the task of finding the
plan that minimizes the number of concurrent execution
steps (makespan) consists of planning explicitly taking
into account that minimization criteria. Another alternative
consists of generating a sequential plan and convert it into
a parallel one. The parallel plan is partially-ordered, which
means that a set of actions that do not have dependencies
among them can be executed at the same time step. By doing
so, we can use any standard total-order planner in the state-
of-the-art to generate the set of sequential MAP plans, and
then apply some parallelization algorithm to improve the
makespan.

This paper focuses on classical deterministic planning
tasks, where a set of agents should find a common plan.
We describe a new MAP approach, whose objectives are
to: efficiently solve MAP tasks by combining distributed
and centralized MAP techniques; directly reuse existing
planning techniques without further code modification;
effectively apply factorization to divide the main task
into subtasks regarding some minimization criteria such
as plan length or makespan; and automatically adjust to
the interaction level among agents and goals. In order
to satisfy those objectives, we employ three off-the-shelf
planners inside our first contribution: a MAP algorithm
called Plan Merger by Reuse (PMR). Experimental results
show that our approach is competitive with state-of-the-art
techniques and planners, as the ones that participated in the
first Competition of Distributed and Multi-agent Planners
(CoDMAP).1

We also propose a novel use of planning by reuse as
plan repair for plan merging. Planning by reuse has been
widely employed in areas such as Case-Based Planning [7],
or replanning when plan execution fails [19]. A planning-
by-reuse planner works best when the invalid plan and
the final plan are similar, as only a small set of actions
need to be changed or added to the invalid plan for it to

1http://agents.fel.cvut.cz/codmap/

become valid. This situation is usually given on easy-to-
solve interactions e.g grabbing the same resource or passing
through the same door at the same time step. As a result, the
planner will be able to efficiently generate a valid solution
without generating an entire valid plan from scratch.

However, depending on the features of the given
problem, interactions might be harder to fix regarding plan
immutability e.g. when an agent drives to pick up a package
but another agent has already picked it up or when a
resource has been consumed and is not available anymore.
As a result, new actions are applied to fix the current state
of the problem, as agents’ original plans have been forcedly
changed. Usually, an alternative path has to be found for
those agents that still need to achieve some goals. Thus, the
final valid plan turns out to be completely different from the
invalid plan. Plan-reuse planners’ performance noticeably
decreases on this second scenario. They cannot reuse most
of the actions so they look up for new actions on the search
space closer to the invalid plan, but at the same time, they
are still reusing the old actions whenever possible.

In order for PMR to perform better on both scenarios,
we have also developed a new algorithm called RRPT-PLAN,
which is our second contribution. RRPT-PLAN is a stochastic
plan-reuse planner that combines search, sampling and plan
reuse, performing one of the three stochastically on each
iteration depending on the values of two parameters that
represent the probability of executing each one of the three
techniques. This contribution is inspired on two previous
works, ERRT-PLAN [6] and RPT [1]. Experiments not only
show how RRPT-PLAN can adapt itself to both scenarios but
also how it can be included inside PMR as its plan-reuse
planner, obtaining similar results as the other state-of-the-
art plan-reuse planners and adapting better to a wide variety
of scenarios.

A version of PMR was published in a workshop [33] in
2014, when the work was still into a very preliminary stage.
We also participated in CoDMAP (June 2015) using that
version. The main differences regarding the algorithm are
that in the workshop paper:

– RRPT-PLAN had not been yet designed; instead, we
were using LPG-ADAPT as plan-reuse planner.

– There was not a centralized phase in case the individual
planning phase failed.

– The individual planning phase was using LAMA with
Greedy-Best First Search (GBFS) and unitary costs
(LAMA-UNIT-COST), instead of using GBFS with costs
(LAMA-FIRST). Hence, the quality of individual plans
was worse in general, as LAMA-UNIT-COST cannot
minimize the cost metric.
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– The input invalid plan sent to the plan-reuse planner
(LPG-ADAPT) was the joined parallel plan instead of
the joined sequential plan. The input plan is read
sequentially in LPG-ADAPT and RRPT-PLAN. Thus,
altering the actions’ order before running a plan-reuse
phase did not benefit the success of plan-reuse. Sending
as input a parallel plan did not have any advantage.

The main contributions of this paper are:

– A new MAP system, PMR, whose main focus is on
improving the work load among the agents, resulting in
an improvement of the makespan.

– Development of a new plan-reuse planner, RRPT-PLAN,
that interleaves search, sampling and plan-reuse to solve
replanning tasks. It can be included as the plan-reuse
planner of PMR.

We have also contributed by modelling three domains to
test concrete features of PMR and RRPT-PLAN:

– Definition of a new domain, Hammers, as a proof-
of-concept to exemplify and analyze the impact of
different plan-reuse approaches to solve MAP tasks.
This domain is explained in Section 5.2.

– A variation of the classical IPC Rovers domain
called Rover-graph which changes the usual waypoints’
topology. This domain is explained in Section 5.6.

– New version of the Depots-Robots [5], inspired in the
Kiva-Amazon robots, which now contains the pods
organized in vertical columns. This domain is explained
in Section 5.6.

Finally, we contribute with an analysis on the per-
formance of PMR and RRPT-PLAN. We have identified
domains’ features that characterize when these two tech-
niques work well. This analysis has been performed from
the results obtained of an extensive experimental evaluation:

– A CoDMAP rerun using the new PMR version
jointly with RRPT-PLAN. We compared our contribution
against the CoDMAP winners.

– Evaluation of RRPT-PLAN parameters to choose the best
configuration. We created a benchmark of problems
where the number of goals was increased to analyze the
impact on RRPT-PLAN performance.

– Comparison of performance between RRPT-PLAN and
LPG-ADAPT.

– Evaluation of PMR jointly with RRPT-PLAN in loosely-
coupled and tightly-coupled domains.

This paper is organized as follows: Section 2 presents
a formal definition of the MAP task and its preprocessing.
Section 3 describes the PMR algorithm and its different
phases and properties. Section 4 presents our second

contribution, the RRPT-PLAN algorithm. Then, Section 5
shows the experiments and results of comparing both PMR

and RRPT-PLAN with other similar approaches. Section 6
presents related work. And, finally, in Section 7 we present
some conclusions and directions for future work.

2Multi-agent planning formalization

In this section, we first formalize the MAP task and briefly
mention some MAP languages that are being used to define
those tasks. Then, we also describe the way we handle the
agentification and factorization of the problem.

2.1 Multi-agent planning task

Here we first define the standard planning task, using
a propositional description. We also describe each of its
elements and its lifted representation, which is known as
the domain and problem representation in the planning
community. After that, we define the MAP task and its
components. In Automated Planning, the planning task is
defined as follows:

Definition 1 Planning Task (Single Agent). A single-agent
STRIPS planning task [16] is a tuple � = 〈F, A, I, G〉,
where F is a set of propositions, A is a set of instantiated
actions, I ⊆ F is an initial state, and G ⊆ F is a set of
goals.

Each action a ∈ A is described by (1) a set of
preconditions (pre(a)) that represent literals that must be
true in a state to execute the action; (2) and a set of effects
(eff(a)), which are literals that are expected to be added
(add(a) effects) or removed (del(a) effects) from the state
after the execution of the action. The definition of each
action might also include a cost c(a) (the default cost is
one).

A state s ⊆ F describes the current situation of the
environment. In order to transit to a different state s’, an
action a must be applicable to s. The application of an action
a in a state s is defined by the function γ (s, a) = (s\del(a))∪
add(a) if pre(a)⊆ s. Otherwise a cannot be applied in s.

The solution of a planning task is a plan, which is a
sequence of actions π = (a1, . . . , an) that, if executed in
order from the initial state, reaches another state sG where
all the goals in G are satisfied, G ⊆ sG. Thus, the execution
of a plan π from a state s can be defined as:

�(s, π) =
{

�(γ (s, a1), (a2, ...an)) if π �= ∅
s if π = ∅ (1)
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Our planning task is encoded in the propositional fragment
of the standard Planning Domain Description Language
(PDDL) [18]. It is automatically generated from the PDDL
description of a domain D and a problem P. The domain
in PDDL contains a hierarchy of types to characterize the
problem objects; a set of predicates and a set of functions,
respectively, whose instantiations generate the facts in F;
and a set of generalized actions, defined using variables—
parameters, par(a). The instantiations of those actions with
problem objects generate the actions in A. A planning prob-
lem in PDDL contains a set of objects (instances of types in
the domain); the initial state I ; the set of goals G; and an
optional metric to define the optimization criteria.

In order to work with multiple agents in Automated
Planning, we have to define the Multi-Agent Planning Task.

Definition 2 Multi Agent Planning Task. We consider
a multi-agent setting where a set of m agents, � =
{φ1, . . . , φm}, has to solve the task �. We define the MAP
task M as a set of planning subtasks, �i , one for each
agent. Thus, M = {�1, . . . , �m} being i = {1...m}. For
representation convenience, an alternative equivalent lifted
representation of each single-agent planning task in PDDL
would be a pair (domain, problem): �i = 〈Di, Pi〉.

Since there does not exist yet a standard to represent
MAP tasks, as PDDL for planning tasks, there have
been several proposals. MAP usually considers that
agents can have private information. Therefore, these
proposals also include a way of describing agents’ private
information. MA-STRIPS [9] takes as input a standard
PDDL description, as well as a list of agents, and
automatically extracts the public and private components.

MA-PDDL [29], which was used in CoDMAP [43],
is an extension of PDDL where agents and their private
knowledge are explicitly defined in the input files.

Therefore, when working on MAP, it is common to find
information that either belongs to the agents or belongs to
the elements of the environment. When maintaining agents’
privacy, the former is the one that should be hidden (total or
partially) to other agents. We prefer to attach the property of
privacy to the information available to agents (states, goals
and objects) as in [5].

In that work, the information is parameterized by the
user indicating the agent’s type and by setting the types
and predicates as private or public. We followed the
same procedure in our approach but omitting privacy
issues. In order to prevent confusions, we will refer to
agent’s information and public information. Thus, we have

considered the agent’s predicates as the elements that, when
instantiated, will generate the propositions that belong to
each agent. This process is applied during factorization to
transform the original planning task � into the MAP task
M .

Once the MAP task has been defined and agents’ and
public information described, this is our definition of the
individual planning task:

Definition 3 Individual agent task (�i). For each agent
φi ∈ �′ a specific task �i is generated, which is described
as a tuple �i = 〈Fi, Ai, Ii, Gi〉 where:

– Fi = (Fφi
∪Fpub) ⊆ F | Fφi

and Fpub are disjoint sets,
Fφi

∩ Fpub = ∅.
– Ai = (Aφi

∪ Apub) ⊆ A | Aφi
and Apub are disjoint

sets, Aφi
∩ Apub = ∅.

– Ii = (Iφi
∪ Ipub) ⊆ I is the initial state of agent φi ,

where Iφi
⊆ Fφi

and Ipub ⊆ Fpub.
– Gi ⊆ G is the set of φi’s assigned goals.

In Definition 3, the set of agent’s propositions is
identified as Fφi

and the set of agent’s actions as Aφi
.

Fφi
includes φi’s propositions that have been instantiated

through the generic agent’s predicates, i.e. the predicates
parameterized as private and the predicates that include
as argument either the agent or one of the object
types parameterized as private that belongs to the agent.
For example, agent’s location, agent’s features, agent’s
instrument, or agent’s instrument’s features.

Aφi
represents φi’s instantiated actions. They were

generated from the generic actions that included the agent
itself and/or the agent’s objects as argument. For instance,
in the Rovers domain, they could include actions as “take a
picture” that requires the rover, or “camera calibration” that
only mentions the camera of a given rover.

The set of public propositions is identified as Fpub and
the set of public actions as Apub. We assume that both the
complete initial state, I = ∪m

i=1Ii , and the set of goals,
G = ∪m

i=1Gi are consistent; that is, they are conflict-free
(there are no mutexes). In Automated Planning, a set of
propositions M ∈ F is mutually exclusive (mutex) if there
is no state s that may be reached from the initial state
by application of any sequence of actions in A, such that
M ⊆ s.

MAP planners need some preprocessing to generate the
set of planning tasks for each agent, �i . The process to
obtain the MAP task from the planning task as well as
the individual planning tasks is explained in the following
subsection.
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2.2 Agentification and factorization

In order to work on MAP environments, agentification and
factorization are two methods to simplify the planning task.
Agentification consists on identifying which are the agents
of the given problem. This identification can be done in
many different ways. If the planning task is defined using
MA-STRIPS, the agents are given as input to the planner
along with the domain and problem. Inside MA-STRIPS
there is no information that explicitly indicates which type
of agent can execute which action. Alternatively, if the
planning task is defined using MA-PDDL, the agents are
explicitly included on the domain and problem files. Each
action has a keyword :agent in order to know which type of
agents can execute the action.

Our approach works with both language definitions,
either by explicitly receiving the list of potential agents or by
getting the information through the :agent keyword of MA-
PDDL to create the agents’ list afterwards. It is important
to choose as agents the elements of the domain that suit
best the division of tasks. An advantage of dealing with
MAP domains is that, in most of them, agentification comes
naturally and the agents-to-be are immediately identified.

Factorization is the ability to divide a planning problem
into subproblems using some criteria. For instance, it
is common to apply factorization dividing the problem
regarding goals [3, 15]. In our approach, the problem is
first factorized from the agents’ point of view. The aim
is to transform the planning task into easier tasks so that
each agent can solve its factorized problem individually.
Definition 2 describes the factorization of the Planning Task
in terms of agents, which gives as a result the Multi-Agent
Planning Task.

Regarding goals, current MAP techniques in the Auto-
mated Planning community consider the MAP task M

where goals are considered achievable by the collaboration
of all agents [40, 45]. So goals are pursued by all agents
and no further factorization is applied. In other areas, as in
Multi-Agent Systems or robotics, some approaches first per-
form task allocation (assignment of each public goal to a
single agent) to improve the efficiency of problem solving
[13, 21]. Inspired by that, our approach has a second factor-
ization step, which consists on dividing the goals among the
agents by following some strategy. Specifically, some of the
goal assignment (GA) strategies defined in a previous work
[3] are included in PMR. In particular, we use:

– All, that assigns all goals to all agents;
– Best-cost (BC), where each goal g ∈ G is assigned to

the agent φi ∈ � that could achieve it with the least
cost; and

– Load-balance (LB) that first calculates k =
⌈ |G|

|�|
⌉

,

which will be the average number of goals per agent.
Then it assigns each goal g ∈ G to the best agent
φi ∈ � as in BC. This strategy avoids, if possible,
assigning more goals than k to each agent.

As in [3], in order to assign a goal g ∈ G to an agent
φi ∈ �, a relaxed plan is computed using the FF heuristic
[24]. Depending on the strategy selected, GA might leave
some agents without any assigned goal. Hence, the output of
goal allocation is a new MAP task, M ′, with goals assigned
to a set of n agents �′ ⊆ � [5]. If the agent’s cost of a goal
is infinite (it cannot be reached), the goal is not assigned
to that agent φi ∈ � but if there is some goal that cannot
be reached individually by any agent, the previous process
assigns that goal to all agents. Then, �′ = � since all agents
will have at least one goal assigned. Further details on the
consequences of this situation will be given on Section 3.

After the second factorization step has been applied,
each �i of the MAP task M ′ is formally described by
Definition 3. Also, M ′ can be defined in terms of �i or
using the lifted representation.

Definition 4 Factorized MAP task (M ′). Being � the tuple
described in Definition 4 and n = |�′|, the M ′ task is
defined as:

M ′ =〈�1, .., �n〉={〈F1, A1, I1, G1〉, ..., 〈Fn, An, In, Gn〉}

Definition 5 Lifted representation of the M ′ task. Consid-
ering the lifted representation of �i = 〈Di, Pi〉 and being
n = |�′|, the M ′ task is defined as:

M ′ = 〈�1, ..., �n〉 = {〈D1, P1〉, 〈D2, P2〉, ..., 〈Dn, Pn〉}

We now describe through a simple example how
agentification and factorization work before generating and
delivering to PMR the input M ′.

Example (Logistics domain) Given a Logistics domain
where trucks need to deliver packages to a set of locations,
our example contains three trucks and four goals (package-
delivery to its destination). Trucks initially located at CityA
can traverse any kind of road (lined, dotted). Trucks from
other cities can only traverse lined roads. Also, only
trucks marked with “F” can deliver fragile “F” packages.
The initial state of the problem is shown in Fig. 1. The
destination of each package is described inside the square
box of the figure. Costs of driving between each pair of
cities are shown over the lined/dotted city connections.
There is also a cost of 1 for loading and unloading a
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Fig. 1 Example of a simple Logistics problem where trucks (φ1, φ2,
φ3) have to deliver some packages to the destinations (g1, g2, g3, g4)
specified on the square box. Trucks marked with “F” (φ1, φ2) are the
only ones allowed to transport fragile packages (p1, p4). Trucks that
start in CityA can traverse any kind of road (lined, dotted). Trucks from
other cities can only traverse lined roads

package. Agentification comes naturally on this example,
as trucks are the ones performing the actions. As a result,
the first factorization generates the MAP task M , which
contains an individual planning task for each truck. Table 1
shows an example of the estimated cost per truck and goal
when delivering each package to its destination.

Taking the information presented on Table 1 and the three
GA strategies mentioned before, goals would be assigned to
each agent as follows:

– All: φ1(g1, g2, g3, g4), φ2(g1, g2, g3, g4), φ3(g1, g2,

g3, g4)

– Best-cost: φ1(g4), φ2(g1, g2, g3), φ3(∅)

– Load-balance: φ1(g4), φ2(g1, g2), φ3(g3)

The second factorization of the MAP task M varies
depending on which GA is chosen. The GA strategy All
assigns every goal to every agent even if the goal cannot
be reached (represented with ∞ cost). There are three cases
where ∞ cost is returned by hFF : Cost(φ1, g3) because the
truck φ1 cannot traverse dotted roads as it does not start at
CityA; Cost(φ3, g1) and Cost(φ3, g4) because the truck φ3

cannot transport fragile packages (marked with “F”). The
Best-cost (BC) strategy does not assign any goal to φ3 even
though it can reach two of the four goals. Instead, they are
assigned to φ2, who is the first on the list of agents that can
reach (g2, g3) with an estimated cost of 2. Finally, Load-
balance (LB) returns an average of k=2. Thus, it assigns two
goals per agent. After assigning g1 and g2 to φ2, φ2’s goal
capacity has been reached. Then, g3 is assigned to φ3 even
though φ2 could achieve it with less cost.

After this process is completed, the M ′ task is generated
and our algorithm PMR would receive the following as
input: (1) if LB or All were chosen, the MAP task M ′ =
{�1, �2, �3} (2) if BC was chosen, M ′ = {�1, �2}, as φ3

has no assigned goals.

3 PlanMerging by Reuse (PMR)

In this section, our first contribution, called PMR, is
presented in detail. A general description as well as the
description of each one of its components is included in the
following subsections.

3.1 Algorithm

Plan Merging by Reuse (PMR) receives as input a MAP task
(M ′). As shown in the pseudocode in Algorithm 1, M ′ is
formed by a number of �i tasks, each of them containing
the information included in Definition 3. In the first step,
each agent in φi ∈ �′ builds its plan individually (line 1).
Then, we find three different scenarios:

– If all agents failed at generating a plan (lines 2-4), a
centralized planner solves the MAP task M ′

joined from
Definition 6.

– Otherwise, the plans are merged. If the merged plan is
valid, PMR returns it as the solution to the MAP task
(lines 6-7).

– If the merged plan is invalid, PMR calls a plan-repair
planner that can perform plan reuse, sending the merged
plan and M ′

joined as input. The plan-repair planner will
try to find a solution based on the actions of the input
plan (lines 9-10).

Algorithm 1 High level description of the PMR algorithm.

Algorithm PMR( )

Inputs: : MAP task

: planner

: plan-reuse planner

Output: PMR: plan

1 Forall do plan( )

2 If =fail
3 Then = join-task(M’)

4 plan-centralized( )

5 PMR parallelize( )

6 Else merge( ) /* where */

7 If valid( )

8 Then PMR parallelize( )

9 Else = join-task(M’)

10 plan-reuse( )

11 PMR parallelize( )

12 If valid( PMR) Then return PMR

13 Else return no-solution

Given that we are dealing with MAP tasks, it is expected
that agents can execute the actions in their plans in parallel
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Table 1 Example of an estimated-cost matrix from the problem
pictured in Fig. 1

g1 g2 g3 g4

φ1 9 9 ∞ 2

φ2 2 2 2 9

φ3 ∞ 2 2 ∞

Each number represents the cost returned by hFF for an agent
φi when reaching goal gm. Cost(φi, gm)=∞ means goal gm is not
reachable by agent φi

when possible. Thus, the aim of PMR is to minimize
the makespan. In non-temporal domains, we refer to the
makespan as the length of the parallel plan (number of
execution steps, where several actions can be executed
at each execution step). Therefore, in any of the three
scenarios, if the plan is valid, it is parallelized to improve the
makespan of the solution as explained later on Section 3.5.

PMR contains three off-the-shelf planners: one for each
agent to plan individually, P (it can be the same or a
different planner); another one capable of applying plan
repair by reusing an invalid/incomplete plan (R); and the
third one, which is employed by PMR when all the individual
agents’ planning tasks fail. In this work we use the same
planner, P , used by individual agents to run the centralized
phase. In order to check the validity of the plans, VAL, the
validator from the International Planning Competition, has
been used [25]. The following sections explain in detail the
main steps and the properties of PMR.

3.2 Planning

In this first step, each agent φi ∈ �′ receives as input
the description of its domain and problem. The problem
includes the facts, actions and goals assigned to φi . Each
agent invokes a planner P to solve its planning task. As
a result, a partial solution πi to the overall MAP task is
obtained per agent. Any state-of-the-art planner can be used
for this task and each agent could use a different planner.

When the distributed phase fails If all agents fail to
generate a solution, it could mean that more than one agent
might be needed to achieve the goals. In those cases, PMR

resorts to a centralized planner. Centralized planners usually
receive as input the lifted representation of the planning task
(one domain and one problem file). Thus, the elements of
the MAP task M ′ should be first joined as follows:

Definition 6 The M ′
joined task.

M ′
joined =

〈
n⋃

i=1

Fφi
∪ Fpub,

n⋃
i=1

Aφi
∪ Apub,

n⋃
i=1

Iφi
∪ Ipub,

n⋃
i=1

Gi

〉

M ′
joined = {

n⋃
i=1

�i} = {Djoined , Pjoined}

= {
n⋃

i=1

Di,

n⋃
i=1

Pi}

The centralized planner receives as input M ′
joined and

finds a solution from scratch to the MAP problem (πcen).
In Algorithm 1, we have used the same planner for the

centralized phase as in the individual calls. However, since
PMR is planner-independent, we could have used any other
planner.

When distributed phase works If at least one agent
generates a solution to its task, PMR merges all the solutions.
We have implemented a basic merge strategy, which is
a simple concatenation. Other more elaborated techniques
could be used to improve the performance of PMR. The
output of the merge process is the plan πseq . PMR checks if
that plan is valid. If so, PMR will parallelize it as explained
below. Finally, if πseq was invalid, the plan reuse phase will
be executed, providing M ′

joined and πseq as input.

Example (Logistics domain) Following the example
explained at the end of Section 2, we want to illustrate what
would be the result after PMR’s individual planning phase.
The goal strategy chosen is still LB. The assignment of
agents and goals was GA = φ1(g4), φ2(g1, g2), φ3(g3).
Agents are ordered by name. φ1 is the first one to start
planning.

371



N. Luis et al.

3.3 Plan Reuse

We assume that often the current invalid plan does include
most of the actions that would make it a valid plan. Thus,
by using plan repair techniques we are expecting PMR

to generate a plan faster than planning from scratch. In
the worst case, plan repair is PSPACE-complete [38]. But,
in practical terms and under our assumption of closeness
between the invalid plan and the valid one, plan repair
techniques have shown good results [19].

Usually, planners that perform plan repair receive three
inputs: a domain, a problem and a plan. Examples of plan-
repair planners are LPG-ADAPT [19] and our contribution
RRPT-PLAN that will be explained on Section 4. We use
such a planner to transform an invalid input plan (πseq )
into a valid plan. In case the plan-repair planner solves the
planning task and the plan is valid (πreuse), PMR parallelizes
it to improve the makespan and returns it.

Example (Logistics domain) For instance, following the
example explained at the end of Section 2, two scenarios
could trigger PMR’s plan reuse phase. The first scenario
is given when solving the problem using the goal strategy
All. This implies that each agent has to plan individually
to deliver the four packages marked as goals. After
concatenation (πseq ), φ2 will not find any of the packages
at the original locations, as φ1 has already moved them.
The same happens to φ3. Thus, πseq is invalid and needs
to be fixed. PMR will call the plan-reuse phase. The second
scenario is given when two agents need the same resource.
For instance, suppose that trucks need drivers in order to
transport the packages. If there was only one driver per
city, trucks would need that driver to move from one city
to another. Each agent would need to pick up a driver, and
independently of the goal strategy selected, two trucks could
pick the same driver during the individual planning phase.
When concatenating the plans, φ2 could have picked up the
same driver as φ3 (as they are located at the beginning at the
same city). Thus, a failure would arise when φ3 needs the
driver as she is not at CityA.

3.4 Centralized planning

Centralized planning within PMR is only used when the
individual planning phase fails. For instance, a situation
where PMR would fail using the same example presented at
the end of Section 2 is the following: if the All GA strategy
was selected instead of LB or BC, as agents have to achieve
every goal from the problem individually, φ1 and φ3 would
not be able to make it because they cannot achieve all goals
(see Table 1). φ1 has an estimated cost of ∞ for g3 as well
as φ3 for g1 and g4. Additionally, if φ2 was not able to
transport fragile packages, g1 and g4 could not be delivered

either. As a result, πseq would not be generated and the
centralized planner would be called instead.

3.5 Parallelization

Most state-of-the-art planners return sequential plans, since
they do not usually consider minimizing the temporal
execution window. As said before, in order to benefit from
the existence of multiple agents executing in parallel a
plan, we parallelize either the sequential plans generated
by merging, the centralized plan, or the repaired plan. This
function transforms the plan received as input into a parallel
one.

It performs two steps: converting the input total-order
plan into a partial-order one by a similar algorithm to [47];
and parallelizing this partial-order plan by ordering actions
in the first time step that satisfies all ordering constraints
in the partial-order plan. The cost of the parallelization is
quadratic in the number of actions in the plan.

Due to the parallelization process, more than one action
might be executed at each plan step, as long as they are not
mutex. In loosely-coupled domains, parallelization usually
reduces the makespan of the solution plan proportionally to
the number of agents. As actions and predicates of one agent
are independent of those of the rest of agents, a considerable
amount of actions can be executed in the same time step.
However, as the level of interaction increases (e.g tightly-
coupled domains), parallelization will not cause such an
impact in terms of makespan.

Example (Logistics domain) Following the example, the
plan πseq described in Section 3.2 is validated by VAL.
As this was a simple example with no interaction among
agents, the plan is valid and the parallelization phase starts
by receiving πseq as input. The resulting plan, πPMR , will
be:

3.6 Properties

As most work on plan merging, PMR performs suboptimal
MAP. Even if we used optimal planners at each planning
step of the algorithm, the simple merging of individually
generated plans cannot assure optimality. Another reason
for being suboptimal is the GA step, but it can be solved
by using the All strategy. This GA strategy is the only
one that ensures that all agents are included in the process
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of planning. Thus, an optimal solution could be found. In
relation to soundness, each individual (agent) plan is valid,
when using sound planners. If the centralized planner is
invoked, soundness is ensured by using a sound planner.
However, after merging, soundness cannot be ensured
because each agent plans separately for a subset of goals
and the merged plan might not be valid due to the agents’
interactions within the elements of the domain. Thus, PMR

checks for validity, and if the plan is invalid, the soundness
depends on the plan repair step. In summary, PMR is sound
if the planners used are sound (both P and R).

In relation to completeness, PMR is complete if all goals
are assigned to all agents and the off-the-shelf planners
(planners and plan repair planner) used are complete too.
Under those conditions, the first planning step of each
agent (individual planning) is globally incomplete (since
there might be a joint plan that is not contained in the
space of each agent working separately), but it is locally
complete for each agent. Once the plans are generated, PMR

calls either a centralized planner or the plan repair strategy,
which are both complete if the chosen planners for P and
R are as well. The parallelization step does not affect the
completeness. Finally, PMR has the same complexity as
Automated Planning and MAP, which is PSPACE [9, 12].

4 RRPT-plan

As it was briefly mentioned in Section 1, among the
spectrum of different scenarios that can be given in trying to
repair a plan, the most frequent one is when the invalid input
plan is very similar to the final solution. Plan reuse will be
very efficient as most of the final plan’s actions are already
on the invalid input plan. Thus, the planner reuses most of
the invalid plan actions and has only to include a small set
of new actions to transform it into a valid one. However,
sometimes, the solution plan should be completely changed,
as when trying to solve the Rovers scenario described on
Fig. 2. In order to be more efficient, combining search and
plan-reuse would help any plan-reuse planner to better solve

a wide variety of scenarios: from the ones that are very
similar to the ones that look similar but they are not.

We have developed a stochastic plan-reuse planner,
called RRPT-PLAN, that combines search, sampling and plan
reuse. RRPT-PLAN means Reuse & Randomly exploring
Planning Tree and it is our second contribution on this paper.
We were inspired by two previous works that are explained
as follows.

The first previous work is ERRT-PLAN [6], which already
explored the behavior of a plan-reuse planner and proposed
a solution to adapt the algorithm to a broader set of plan
reuse scenarios. It builds a solution tree inspired on the
Rapidly-exploring Random Trees (RRTs) [32]. ERRT-PLAN

receives as input the domain and problem description, the
probabilities for node expansion and the solution (plan)
represented as an ordered set of pairs of actions and
their weakest preconditions. Given a plan π , the weakest
preconditions of any action ai ∈ π represent the set of
propositions that are required to be true before applying
ai in the current state si so that the goals can be achieved
from ai when applying the remaining actions of the plan;
the weakest preconditions act as subgoals of π . ERRT-PLAN

has a probability of p to expand the tree towards the goal, a
probability of r to expand towards an action of the input plan
and a third probability to expand towards one of the weakest
preconditions. ERRT-PLAN employs a reimplementation of
METRIC-FF [23] as the heuristic planner and EHC [24] as
the search algorithm.

The second work is RPT [1]. In order to implement RRPT-
PLAN, the RPT algorithm was taken as a basis for developing
our contribution. RPT was already able to combine two
different types of search: one towards the nearest goal and
another one towards a sampled state, which is any mutex-
free state of the search space. RPT builds the solution tree
inspired on the RRT’s structure.

Our contribution, RRPT-PLAN, emulates the ERRT-PLAN

behavior by receiving as input the invalid plan, the domain
and problem description and the set of probabilities; the
weakest preconditions that ERRT-PLAN stored are not
considered on our implementation. RRPT-PLAN combines

Fig. 2 Example of a simple Rovers problem. a depicts the initial state
of a Rovers problem where the Rover agent has to take the soil and
rock samples to later send them to the lander. b depicts the same prob-
lem as on the left, but now the Rover agent can directly traverse 0-10 to
reach the samples. As both problems are very similar, any plan-reuse

planner would usually choose the solution obtained from problem (a)
to solve problem (b). Unfortunately, that would not be efficient, as the
plan-reuse planner would ignore the existence of the new path 0-10.
Thus, the plan-reuse planner will return as a solution the same one
obtained on problem (a)
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search, plan reuse and sampling using the state-of-the-
art planner FAST DOWNWARD [22], which was the base
planner used by RPT. Details on RRPT-PLAN and the main
differences regarding RPT and ERRT-PLAN are explained
later on Section 4.6.

As a result, RRPT-PLAN has three parameters:

– ε: limits the number of expanded nodes of the local
search.

– p: probability of executing local search towards the
nearest goal.

– r: probability of executing plan reuse.

Depending on the initial values of the set of parameters
(explained later on detail), RRPT-PLAN performs either
search, sampling or plan reuse on each iteration. The result
will be a valid plan based on the input plan. RRPT-PLAN

works as outlined in Algorithm 2. The main steps are:
preprocessing, search-reuse-sampling and tracing back the
solution.

Algorithm 2 Description of the RRPT-PLAN planning

algorithm.

Algorithm RRPT-PLAN

Parameters: , p, r
Inputs: domain, problem, input-plan

Output: Plan (solution)

1 sas operators translate(input-plan)
2 tree
3
4 while goalReached() do
5 random() /*between 0 and 1*/
//Search towards the goal
6 if then
7 tree search( )

//Plan reuse
8 else if

then
9
10 pop()
11 tree reuse( , sas operators, tree)
//Sampling
12 else
13 sampleSpace( )

14 tree search( )

15 tree search( )

16 end while
//Tracing back the solution
17 solution traceBack( )

18 return solution

The following subsections explain in detail first the
current configuration of RRPT-PLAN and then each step of
the algorithm. Section 4.5 describes the planning properties
of RRPT-PLAN. Finally, Section 4.6 explains the differences
between RRPT-PLAN, ERRT-PLAN and RPT.

4.1 Configuration

RRPT-PLAN follows the same configuration as RPT. Thus,
the local planner FAST DOWNWARD was configured with
greedy best-first search choosing lazy evaluation as its local
search algorithm. The heuristic used is the hFF heuristic
[24].

As both RPT and RRPT-PLAN are inspired on RRTs, a tree
structure is built during the planning process. RPT originally
had local search and sampling phases. We have added the
plan reuse phase. Details on the implementation of the tree
are explained in [1].

As it was mentioned before, RRPT-PLAN has three
parameters (p, r , ε). Parameters p and r set the probability
of performing search, reuse or sampling on each iteration;
except for the first iteration, in which plan reuse will
be performed. Parameter ε sets the maximum number of
expanded nodes per iteration.

In order to build the solution tree, we have to describe the
node structure that stores the information on each iteration:

– Every node of the tree (we refer to them as q in
Algorithm 2), contains: a state (si), a pointer to the
previous node (parent ρi), the sequence of actions that
reaches si from the parent (subplan τi), the number of
the last reused action of the input plan (it is zero when
none of the input plan’s actions has been reused yet) and
the cached best supporters for every proposition q ∈ F .

– We refer to cached best supporters as the implementa-
tion previously included in RPT [1] where the actions
that first achieve a given proposition in the reachability
analysis are stored in order to compute hFF efficiently.

The following subsections explain in detail the prepro-
cessing, the loop search-reuse-sampling of the RRPT-PLAN

algorithm and some key details.

4.2 Preprocessing

The first step of the preprocessing translates the PDDL
domain and problem to the SAS+ language [2] by calling
and using FAST DOWNWARD’s Translate module [22]. This
module also returns a list of operators, which contains
every valid combination of actions and parameters that can
be generated from the given domain and problem. Our
algorithm RRPT-PLAN uses that list to translate the input
plan to the SAS+ language. Thus, for each action of the
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plan, the algorithm looks for the equivalent SAS+ operator
on that list (line 1, Algorithm 2). As a result, the input
plan is transformed into a sequence of SAS+ operators
instead of instantiated PDDL actions. For simplicity, along
the following sections we will use the word action when
referring to these SAS+ operators.

4.3 Search-reuse-sampling

After preprocessing is completed, RRPT-PLAN executes a
loop (lines 4-16, Algorithm 2) that launches either the
search, reuse or sampling phase until a valid solution is
found. The algorithm only returns that no solution was
found after all the search space has been explored. At each
iteration, a random number (n) is generated. Depending on
the value of the random number and the values set on p and
r, one of the following scenarios is executed.

Algorithm 3 Description of the search process of RRPT-

PLAN. Last expanded node ( ) is added to the and

is set as its parent.

Function search of RRPT-PLAN

Inputs: , tree,

1 findNearest(tree, )

2 join( , )

3 addNode(tree, , )

4 return tree

4.3.1 Search

When n < p, RRPT-PLAN runs the local search scenario
(lines 6-7, Algorithm 2). Algorithm 3 describes the local
search algorithm and Fig. 3 shows the process inside the
tree. The algorithm receives as input the node (identified as
q). The local search can only expand a maximum of ε nodes.
In order to differentiate each node on Fig. 3 and Algorithm
3, a brief description of them is given below:

– qinit : first node on the tree. It contains the initial state
of the problem.

– qnear : last expanded node of the tree before applying
local search towards the goal.

– qnew: last expanded node after applying local search
towards the goal.

– qgoal : node that contains the goal state of the problem.
When it is reached, it means that a plan has been
found.

Before explaining the process, some general remarks and
data structures are presented:

– After running local search, RRPT-PLAN only adds a
single node to the final tree structure, which is the last
expanded node of the local search.

– A node can be expanded during search only once.
– There is an open list to store the unexpanded nodes for

the local search. That list is ordered: nodes closer to the
goal first, for efficiency reasons. The algorithm always
extracts the first node on the list.

The search function is called (line 7, Algorithm 2), so
the local search is performed towards the goal state, qgoal .
The algorithm takes the first node of the open list (qnear -
Algorithm 3, line 1), which is the closest expanded node
found towards the goal state (qgoal). Thus, the initial state
of the local search is the one stored on qnear . Local search
is then executed until the solution is found or ε number of
nodes are expanded. Finally, the last expanded node from
the local search (qnew - Algorithm 3, line 2) is stored on the
tree (Fig. 3). As it was previously said, this node contains
a pointer to its parent, qnear , and also the subset of actions
that were instantiated during the local search to reach the
node’s current state from its parent qnear .

Algorithm 4 Description of the plan reuse process of RRPT-
PLAN. The node , which contains the reused actions

from , is added to the tree and is set as

its parent.

Function reuse of RRPT-PLAN

Inputs:

1 last action reused(
2 getCurrentState(
3 createNewNode
4 reuseSuccess false
5 applicable true
6 while ( sizeof(sas operators) applicable) do
7 current get( )
8 if isApplicable( ) then
9 reuseSuccess true
10 updateState(state,

)

11 insert( )

12 if (goalReached()) then
13 tree addNode(tree, )

14 return tree
15 + 1

16 state
17 else applicable false
18 if reuseSuccess then
19 tree addNode(tree,
20 return tree
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Fig. 3 The first step of RRPT-PLAN search towards the goal is shown
on the left. Local search is run from qnear , which is the closest
expanded node found to the goal so far. The second step is shown on

the right. After expanding ε number of nodes, qnew is the closest node
to qgoal . The node qnew stores the plan to reach qnew’s state from qnear .
Finally, qnew is stored into the tree

4.3.2 Reuse

When p ≤ n < (p + r), RRPT-PLAN runs the plan reuse
scenario (lines 8-11, Algorithm 2). During the first iteration,
the algorithm always performs plan reuse regardless of the
values of p and r . This decision is further justified on
Section 5. Algorithm 4 describes the steps to run plan reuse.
Figure 4 shows the process inside the tree. In order to
differentiate each node on Fig. 4 and Algorithm 4, a brief
description of them is given below.

– qinit : first node on the tree. It contains the initial state
of the problem.

– qreuse: first node of the plan reuse open list. Its state is
is checked when trying to reuse the first action.

– qreuse′ : node created after the first action is reused. Its
state and its plan are being updated during the plan
reuse process as long as new actions can be reused. At
the end of the process it is added to the tree as child of
qreuse.

– qgoal : node that contains the goal state of the problem.
When it is reached, a plan has been found.

Before explaining the process, some general remarks and
data structures are presented:

– Plan reuse can be applied to a node as long as the
number of the last reused action does not reach the last
action of the input plan.

– There is an open list to store and provide the nodes
to whom plan reuse is applied. The algorithm always
extracts the first node on the list. When local search
or sampling add new nodes to the tree, they are also
automatically added to the plan-reuse open list.

The algorithm takes the first node of the plan reuse open
list (qreuse, line 1 Algorithm 4) and gets the position of the
last action reused (stored on the node; by default 0 when
none of the actions has been yet reused). Then, it iterates
over the sequence of actions of the input invalid plan. For
each one of them it checks if the action can be applied to the
current state of the node (Fig. 4a). If this is true, the action
(current) is added into the plan and the current state and
index i are updated (lines 10-11, Algorithm 4). In addition,
when an action is added to the new plan, the algorithm
checks if the goal state has been reached as well (line 12,
Algorithm 4). The reuse process will be repeated until an
action cannot be applied (Fig. 4b). In that case, the position
of the last reused action, the current state and the sequence
of the reused actions are stored into the node qreuse′ . Also,
the previous node qreuse is set as parent.

4.3.3 Sampling

When (p + r) ≤ n < 1, RRPT-PLAN runs the sampling
scenario. Lines 13-15 of Algorithm 2 describe the steps to
run the sampling process. Figure 5 shows the process inside
the tree. In order to differentiate each node on Fig. 5, a brief
description of them is given below.

– qinit : first node on the tree. It contains the initial state
of the problem.

– qrand : node that contains a random valid state from the
search space.

– qsampling: closest node from the tree to the sampled
state.

– qnew: last expanded node towards qrand .
– qneargoal : last expanded node towards the goal.

Fig. 4 The first step of plan reuse in RRPT-PLAN is shown on Fig. 4a.
The state of qreuse is evaluated to see if the first action from the input
plan can be directly applied. The second step of plan reuse in RRPT-
PLAN is shown on Fig. 4b. As long as there are actions that can be

applied to the current state, they will be stored inside a new node
qreuseprime which at the end of the process, when no more actions can
be reused, will be the child of qreuse
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Fig. 5 The first step of sampling in RRPT-PLAN is shown on the left.
Once the sampled node qrand is obtained, a local search is run from
qsampling towards that node. qsampling represents the closest node from
the tree to the sampled node. The second step of sampling in RRPT-
PLAN is shown on the right. After local search is performed, qnew is

added into the tree. Now a local search towards the goal (qgoal) is run.
The third step of sampling in RRPT-PLAN is shown below the previous
steps. After expanding ε number of nodes, qneargoal is the closest node
to qgoal so it is stored into the tree

– qgoal : node that contains the goal state of the problem.
When it is reached, it means that a plan has been found.

Before explaining the process, some general remarks and
data structures are presented:

– A new node is added to the tree at every iteration. If
the solution is not reached during sampling, the last
expanded node is added to the tree.

– After sampling, when the new node is obtained (qnew),
a new local search is performed towards the goal until
the limit ε is reached. This is equivalent to the Extend
phase of RRTs.

First, the algorithm obtains a random valid state (qrand )
after sampling the search space (S). Then, the closest
node to the sampled state is found (qsampling , Fig. 5a) by
computing hFF . Details about how the random state and the
distance are computed can be found in [1]. After qsampling

is identified, a local search is performed from there towards
qrand . However, qrand might not be reached because of the
limit ε. If this happens, the last expanded node is stored
on the tree (qnew). The next step is to perform a new local
search from qnew towards the goal (qgoal , Fig. 5b). This is
the Extend phase, already implemented in RPT[1]. The last
expanded node from the Extend local search is then stored
into the tree (qneargoal , Fig. 5c).

The search-reuse-sampling phase is repeated once per
iteration, independently of the strategy (search, reuse,
sampling) used. The following subsection explains how the
algorithm is capable of tracing back the solution through the
tree.

4.4 Tracing back the solution

In order to retrieve the solution plan π , the algorithm has to
check if qgoal’s state sgoal satisfies every proposition in G,
so that G ⊆ sgoal . If so, RRPT-PLAN starts tracing back the

solution plan from the node qgoal . From qgoal , RRPT-PLAN

obtains the link (ρgoal) to the parent’s node and repeats
the process until the initial node (qinit ) has been reached.
Figure 6 illustrates the process. Solution nodes are stored
into a list called T reesol = {qinit , ..., qgoal} where qinit ’s
state sinit = I and qgoal’s state G ⊆ sgoal . Nodes’ subplans
are concatenated to obtain π = {τinit ⊕ τ2 ⊕ ... ⊕ τgoal}.
Each τi contains at least one action of the solution plan.
The concatenation gives as a result the solution plan π =
{a1, a2, ..., am}.

4.5 Properties

RRPT-PLAN is an algorithm that performs suboptimal
planning. Optimality is out of the scope of this work.
Also, RRPT-PLAN is incomplete, as it cannot assure that a
solution will always be found. For instance, extreme cases
where p = 1.0 (only search) or r = 1.0 (only plan-
reuse) or both have 0.0 values (only sampling); these are
some configurations where RRPT-PLAN could fail to find a
solution - specially if there exist some timeout. Regarding
only search (p = 1.0 r = 0.0), RRPT-PLAN can get stuck
after exploring and expanding every existing node of the

Fig. 6 Tracing back the solution in RRPT-PLAN. The algorithm starts
on qgoal and goes backwards on the Tree, obtaining on each step a new
solution node through the link ρi . Black nodes of the Figure represent
the solution nodes. They are stored in order on a list called T reesol
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search space and still not being able to obtain a solution.
Regarding only plan reuse (p = 0.0 r = 1.0), if no action
of the input plan can be reused or every action has been
reused but it is not enough to solve the problem, RRPT-PLAN

will constantly enter into the reuse phase and will never
obtain a solution to the problem. Regarding only sampling
(p = 0.0 r = 0.0), it is the same case as only applying
search. Sampling explores the search space randomly, but
after exploring and expanding every node of the search
space, the solution might still not be found.

Finally, the plans generated by RRPT-PLAN are sound.
First, when performing local search, actions are only applied
to valid planning states. Second, when reusing actions, the
successors of the current state are generated to obtain the list
of applicable operators that reach those successors. Before
including the action into the plan, it is verified that the
equivalent operator of the action-to-be-reused appears on
the list of applicable operators. Third, when performing

sampling, the random node will be valid, as RPT included a
procedure to only consider valid states. Fourth, we formally
demonstrate �(sinit , π) |= sgoal to proof the soundness of
RRPT-PLAN. Given qinit as the first node on the Tree, which
contains sinit = I ; and qgoal as the last expanded node
which contains the goal state G ⊆ sgoal . Given the list
T reesol , which contains the sequence of nodes starting on
qinit that reaches the goal state; and given plan π which
contains the sequence of actions to reach sgoal from sinit ,
where τinit = ∅ as the initial node does not contain any
action of the plan yet.

π = {τinit ⊕ τ2 ⊕ ... ⊕ τgoal}

= {
τ2︷ ︸︸ ︷

a1, a2, ..., ak,

τ3︷ ︸︸ ︷
ak+1, ...ap, ...,

τgoal︷ ︸︸ ︷
ar+1, ..., am} (2)

From the set of nodes of T reesol and the actions from π ,
using the function γ (si, ai) = si+1 we can generate every
intermediate state (sj

i ) between the qi nodes as follows.

S =
〈
sinit︸︷︷︸
qinit

,

τ2︷ ︸︸ ︷
(s1

init , s
2
init ...s

k−1
init ), s2︸︷︷︸

q2

,

τ3︷ ︸︸ ︷
(s1

2 , s2
2 ...sp−1

2 ), s3, ...,

τgoal︷ ︸︸ ︷
(s1

r , s2
r ...sm−1

r ), sgoal︸︷︷︸
qgoal

〉
(3)

Thus, when the subplan τ2 is applied to sinit following (1),
the resulting state is s2.

�(sinit , τ2) |= s2 (4)

Theorem 1 RRPT-PLAN is sound

Proof By induction: Base case: sinit = I is reachable from
the initial state by qinit construction.

Inductive step: if si is reachable from sinit , si+1 is a
reachable state from sinit .

By construction:

�(sinit , τ2 ⊕ τ3... ⊕ τi) |= si (5)

�(sinit , τ2 ⊕ τ3... ⊕ τi︸ ︷︷ ︸
si

⊕τi+1) |= si+1 (6)

Thus, sgoal is reachable from the initial state sinit and G is
satisfied.

�(sinit , τ2 ⊕ ... ⊕ τgoal︸ ︷︷ ︸
π

) |= sgoal, where G ⊆ sgoal (7)

4.6 Differences of RRPT-PLAN regarding previous
works

Apart from the obvious difference in implementation
(ERRT-PLAN code was based on a reimplementation of

Metric-FF in Lisp), RRPT-PLAN presents some differences
with respect to the previous works.

– First, RRPT-PLAN presents a more clear bias towards
search than ERRT-PLAN. While ERRT-PLAN considered
the search step as adding one more node to the tree,
RRPT-PLAN search algorithm works by expanding ε

nodes in the same step, where we have found that ε

should take big values.
– Second, ERRT-PLAN sampling of goals was directed

by the computation of weakest preconditions from
the input plan, while RRPT-PLAN sampling uses RPT

sampling procedure instead. However, RRPT-PLAN does
not use RPT’s computation of h2 mutexes for that task.
By avoiding that computation, the aim is to speed up the
process.

– Third, ERRT-PLAN and RPT considered the goal
sampling step as equally relevant. On the contrary,
RRPT-PLAN assigns a very small role to goal sampling
by assigning a very low probability of using sampling.

All these differences are due to the diverse uses
of ERRT-PLAN, RPT and RRPT-PLAN. In the case of
ERRT-PLAN, we were studying the effects of different
strategies of plan reuse (replanning from scratch vs. eager
use of the previous plan) in a wide variety of scenarios.
In RRPT-PLAN we are interested in a very particular kind
of plan reuse scenario, where in most cases, the reuse
strategy is a mixture between the two extremes. Finally, the
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obvious difference with respect to RPT is that RRPT-PLAN

can partially reuse a previous plan and that the sampling
phase is not considered as important as the other two.

5 Experiments

This section presents some experiments on the performance
of our two contributions, PMR and RRPT-PLAN, and their
comparison with other state-of-the-art planners. We have
divided the experiments and results in six different sections
structured as follows.

First, Section 5.1 describes metrics and configuration
environments. Section 5.2 presents some experiments
specifically designed to explain the flexible behavior of
RRPT-PLAN in different plan-reuse scenarios. Section 5.3
analyzes RRPT-PLAN in terms of parameters to select the
best configuration. Section 5.4 shows the results of running
the CoDMAP competition with different configurations of
PMR and other state-of-the-art, multi-agent and centralized,
planners. Also, Section 5.5 shows the performance of
PMR when scaling the number of agents. Section 5.6
shows the performance of PMR against the same set of
planners previously used on Section 5.4. However, the set of
problems is harder to solve, containing a reasonable amount
of agents and goals to reach. We have also included three
new domains specifically designed to evaluate the makespan
metric in order to show PMR’s potential. Finally, Section 5.7
describes some general remarks and conclusions extracted
from the extensive set of experiments.

5.1 Experimental setup

For each set of experiments described in the following
sections, results of coverage (number of solved problems),
quality (cost and makespan) and planning time are shown.
In order to compute these metrics, we have used the scores
of the International Planning Competition (IPC)2. Coverage
is computed increasing by one each time a planner solves
a given problem of a given domain. Makespan refers to the
number of execution steps, where several actions can be
executed at each execution step. Cost refers to the sum of
costs of all the actions contained in the plan. For computing
both metrics, makespan and cost, we use Qbest /Q, where
Qbest is the cheapest value obtained for a specific problem
by the set of planners and Q is the value obtained for the
same problem by one of those planners. In order to compute
the time score, we use 1/(1+log10(T /Tbest ), where Tbest is
the lowest time in which a specific problem has been solved
by any planner and T is the time in which one of those
planners has solved the specific problem. The time bound

2ipc.icaps-conference.org

to solve each problem is 1800s. The quality/makespan/time
score of a planner is the sum of its scores for all problems.
For every domain presented on the tables, 20 problems were
run, except for the ones of Section 5.3 where 15 problems
per domain were run instead (the reason is explained on
that Section). All the experiments were run on an Intel(R)
Xeon(R) X3470 2.93GHz with 8 GB RAM.

In order to distinguish among the different configurations
of PMR that appear on the experiments, the notation used in
the next sections is the following.

– Every configuration of PMR is using LAMA-FIRST as the
planner P of the algorithm. LAMA-FIRST corresponds to
the first search that LAMA performs, using greedy-best-
first with unit costs for actions [41]. We have also used
LAMA-FIRST for the centralized planning step.

– We have used LPG-ADAPT [19] and RRPT-PLAN for
the plan reuse experiments. When they have been used
inside PMR we refer to them as PMR-LPG-ADAPT

or PMR-RRPT-PLAN. Otherwise it means they were
executed outside PMR. LPG-ADAPT has always been run
in the speed mode. Additionally, we have compared
RRPT-PLAN against ERRT-PLAN [6] and RPT [1], as
our contribution is an evolution of those approaches
combined. RPT has been configured with p=0.3 and
ERRT-PLAN with p=0.3 and r=0.6. The reason is
explained on Section 5.3.

– RRPT-PLAN has three additional parameters set on each
configuration. We refer to them as p, r and ε. The
way these parameters affect RRPT-PLAN is explained on
Section 4.

– Our configurations of PMR have been evaluated using
different goal assignment strategies. We refer to them as
BC (Best-cost), LB (Load-balance) and ALL i.e. PMR-
LPG-ADAPT-BC means that PMR was executed using
Best-cost as goal assignment and LPG-ADAPT as plan
reuse planner.

– We have tested our PMR configurations against two
centralized planners, LAMA-FIRST and YAHSP [48].

– Also, we have compared our configurations with three
multi-agent planners (CMAP-T [4], ADP-L [14] and SIW

[37]). They will be later explained in Section 5.4. They
were chosen because of their remarkable performance
on some metrics of CoDMAP.

5.2 Results of PMR-RRPT-PLAN and PMR-LPG-ADAPT
when solving different plan-reuse scenarios

The aim of this section is to analyze in detail the behavior of
RRPT-PLAN. A simple multi-agent scenario was designed to
force PMR to use its plan reuse planner to fix the plan (either
RRPT-PLAN or LPG-ADAPT on these experiments). The
Load-Balance (LB) strategy was chosen for this experiment
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in order to assign goals using as many agents as possible
and balancing the number of assigned goals per agent at the
same time.

We are calling this domain Hammers, for which we have
generated a set of problems. The aim was to show how
interactions are handled when a set of agents has to share a
set of resources. Thus, the designed domain contains robots
(agents), hammers, nails and paintings. The robot needs first
to find and grab a hammer and a nail. It is not allowed for
robots to grab more than one hammer and nail at the same
time. Once the robot has grabbed the pair hammer-nail it
should go to some room that contains a painting and hang
it up. Each scenario is completely solved when all paintings
are hanged up.

The ideal multi-agent situation (reflected on Fig. 7a) has
as many robots, hammers and nails as paintings. Thus, each
robot will be in charge on hanging one painting up when
goals are divided among the set of agents. However, the
bottleneck of the problem is the number of hammers; if the
robots need to share the hammer(s), many interactions arise
and need to be fixed by a plan reuse planner. As agents
(robots) plan individually on PMR’s first step, all of them are
forced to use a hammer on their individual plans.

Through these experiments we are able to explain
the potential of our plan reuse contribution, RRPT-PLAN,
when used inside PMR. We compare PMR- RRPT-PLAN

configuration results with the ones obtained with PMR-LPG-
ADAPT. Also we show a comparison with PMR-LAMA at the
end in order to show how PMR-RRPT-PLAN performs better
in these situations as it is in the middle of two extremes:
PMR-LPG-ADAPT (plan-reuse) and PMR-LAMA(centralized
planning).

The first scenario presents six robots starting in a
common room, C, plus a hammer and a nail per room
(Fig. 7a). When computing this ideal scenario for MAP
with either PMR-RRPT-PLAN or PMR-LPG-ADAPT using the
LB strategy, the planner will assign to each robot one of
the goals. Thus, each robot will move to a different room,

pick up the hammer and the nail and hang the painting on
the wall. As a result, after the individual planning step, the
concatenation and parallelization of the resulting plan will
return a valid plan. There is no need for replanning in this
first case as there is no interaction among agents.

The second scenario is the same as the previous one but
the difference lies in the number of hammers: it has just one
hammer in C (Fig. 7b). This reflects a common MAP issue
on how agents deal with a shared resource (hammer) and
how the planner deals with agents’ interactions.

Each robot will plan individually to take first the hammer
from C and then move to some room to grab the nail and
hang the painting up. As a result, the concatenation of plans
is not entirely valid. Some actions need to be included into
the plan such as dropping the hammer so that the next robot
can pick it up later, if necessary. This issue is fixed on the
plan reuse step of both PMR-LPG-ADAPT and PMR-RRPT-
PLAN but following different approaches. The LPG-ADAPT

version takes as input plan the non-valid concatenation of
plans and adds the following actions between each robot’s
set of actions: move robot to C and drop hammer. Thus,
from the planning point of view, the actions from the input
invalid plan were easily reused, as only some new actions
were added to the final plan to share the hammer. On the
other hand, RRPT-PLAN directly reuses the set of robot1’s
actions (first agent on the list). Then, when it is time to
reuse actions from robot2, the process fails because the
hammer is not in C anymore. Thus, RRPT-PLAN changes to
the search phase and decides to finish the plan using only
robot1. As a result, PMR-RRPT-PLAN returns a plan of length
24 while PMR-LPG-ADAPT returns a plan of length 34. As
there is only one hammer available, agents cannot solve
their goals in parallel. Therefore, the makespan metric on
both configurations has the same value as plan length.

We can see in this example that calling a pure plan-reuse
planner to fix a plan might not always be a good choice. It
will always either reuse as many actions as possible from the
input invalid plan, or, when this is not possible, it generates

Fig. 7 a presents the first scenario (6 robots, 6 nails, 6 hammers, 6
paintings). This problem is an ideal multi-agent planning scenario.
There are as many hammers as robots. Thus, they do not need to share
any resource during planning. In the second scenario (b) there is only
one hammer for six robots. Paintings and nails are placed as in case

(a). Interactions arise when merging the robots’ plans as they all use
the hammer in their individual plans. The third scenario (c) not only
shows hammer interaction issues, but also interactions caused by nails.
Nails are grouped into two rooms. Thus, multiple robots could have
used the same nail in their individual plans
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new ones to be later reused. This issue can generate noise
on the plan’s actions, later explained on the third scenario.
If the aim is to obtain an efficient valid plan fast, plan
reuse needs to be combined with search to solve these
specific multi-agent scenarios. Also, when a shared resource
is limiting the number of agents that can perform actions,
the best solution will probably be to involve a number of
agents close to the number of available shared resources.

The third case presents six robots starting in C, six
nails and paintings equally divided among two rooms and
one hammer at Room 6 (Fig. 7c). After obtaining the
concatenated plan and checking that it is not valid, several
parts of the plan need to be fixed. Not only the actions
related with grabbing and dropping the hammer must be
fixed, but also the ones related with looking for nails
(Table 2).

This time, as nails are grouped into two different
rooms that have the same distance to C and robots plan
individually, the robots pick up the hammer and the
same nail on its individual plan. Thus, to transform these
sequences into a valid plan, robots only need to look for
the nails that are still available and the hammer. PMR-LPG-
ADAPT reuses as many actions as possible from the invalid
plan. It also decides to use the set of six robots to hang
up all the paintings (as suggested in the input invalid plan).
As a result, the final plan has redundant actions. PMR-
LPG-ADAPT adds redundancy when reusing actions that are
always valid regardless of the current state of the problem.
They are supposed to help each agent to reach its goal;
e.g (1) a robot moves to a room, (2) a robot grabs a nail,
and (3) a robot drops a nail. These situations are given
quite often while the set of six robots is being forced to

look for the same hammer in order to hang up the assigned
painting. Some of them even grab and drop several nails
until they finally can hang the painting up. For instance,
it might happen once a robot grabs a nail, as heuristics
consider it is one step closer towards the goal. However, the
robot might enter into some room where there is another
robot that already grabs the hammer, but it does not grab
any nail. Usually, the first robot drops the nail when there
are no other available nails in the room. As a consequence,
the other robot can grab it and hangs the painting up. From
the point of view of planning, even though there were parts
of the input plan that could be reused, they only cause
PMR-LPG-ADAPT to return a worse plan (more actions).

On the other hand, when using the PMR-RRPT-PLAN

approach, the set of actions performed by robot1 will be
directly reused until it finishes hanging the first painting.
When moving robot2 to room6 and realizing that the
hammer is not there, the plan-reuse phase ends and the
search phase starts, discarding the rest of the actions from
the input plan. As a result, again only robot1 is used to
hang all the paintings up and redundant actions are avoided
except for the one action from robot2 moving to room6.
Even though only one robot is used to execute the whole
plan, the plan length is 43. That value is still lower than
the one from PMR-LPG-ADAPT, which returns a plan of
length 149. Regarding makespan, PMR-LPG-ADAPT returns
118 and PMR-RRPT-PLAN, 38.

In Table 2, the first three rows are related to the three
cases explained above. The following rows represent new
problem-variations generated from the Fig. 7c scenario
where paintings and nails are equally divided into two sets
of different rooms and hammers’ location vary. The aim is

Table 2 Besides the three problems previously generated to explain three different cases of plan-reuse, a set of four problems were generated
based on Fig. 7c’s distribution to show the impact of increasing the number of paintings and hammers while having the same number of rooms
and agents

Agents Paintings Hammers Rooms Hammers’ distribution

Fig. 7a 6 6 6 7 1 per room

Fig. 7b 6 6 1 7 Same room

Fig. 7c 6 6 1 7 Same room

Prob 1a 12 12 2 7 Room 1, 4

Prob 1b 12 12 2 7 Room 6

Prob 2a 12 24 3 7 Rooms 1, 4, 6

Prob 2b 12 24 3 7 Room 6

Prob 3a 12 36 4 7 Room 1, 4, 6

Prob 3b 12 36 4 7 Room 6

Prob 4a 12 48 5 7 Rooms 1, 4, 6

Prob 4b 12 48 5 7 Room 6

The main difference between a and b versions is where the hammers are placed: (a) hammers are equally divided in the set of rooms 1, 4, 6; (b) all
hammers are placed in room 6. Paintings are equally divided between rooms 1 and 4 as in Fig. 7c. Nails are also grouped into two rooms (rooms
2 and 5)
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Table 3 This table shows the plan length (L) and makespan (M) obtained for every scenario of the Hammer domain with multi-agent planners
PMR-RRPT, PMR-LPG-AD, PMR-LAMA, CMAP-T, ADP-L, SIW and centralized planners LAMA, YAHSP and RPT

PMR-RRPT PMR-LPG-AD PMR-LAMA CMAP-T ADP-L SIW LAMA RPT

L M L M L M L M L M L M L M L M

Fig. 7a 24 3 24 3 24 3 24 3 24 23 24 3 24 3 24 3

Fig. 7b 24 24 34 34 24 24 24 24 24 24 24 24 24 24 24 24

Fig. 7c 38 38 159 133 43 38 43 38 38 38 34 32 43 38 43 38

1a 76 46 122 119 85 74 − − 74 74 96 49 − − 85 76

1b 89 84 121 85 − − − − 74 74 96 49 − − 79 32

2a 148 82 235 235 157 146 157 146 146 146 134 91 157 146 157 146

2b 161 150 − − − − − − 146 146 95 68 − − 157 146

3a 221 118 380 371 229 218 229 218 218 218 184 45 229 218 229 218

3b 233 223 − − − − − − 218 218 180 74 − − 241 111

4a 294 154 497 491 301 290 301 290 − − 237 30 301 290 303 292

4b 299 163 − − − − − − 290 290 226 51 − − 280 131

Results of YAHSP were not included as it was not able to solve any problem. Makespan values of ADP-L and SIW were obtained after paralellizing
their resulting plans with our parallelization algorithm

to show the evolution of plan length, makespan and time
when increasing number of paintings and hammers. Due to
this fact, the complexity of the problem increases depending
on where the hammers are initially placed and the number
of interactions that have arisen.

Tables 3 and 4 show the plan length, makespan and
time obtained for each PMR configuration, other multi-
agent and centralized planners on each Hammer problem.
As Table 3 shows, PMR-LAMA and PMR-LPG-ADAPT are
not able to solve most of the problems where all hammers
are placed on the same room (version b problems). PMR-
LAMA gets lost on the search space as there is a huge
number of possible combinations of movements with the
same heuristic estimation (known as plateaux) to solve the

problem. On the other hand, PMR-LPG-ADAPT gets lost
when reusing the actions of the invalid plan, as most of them
are valid, but they still do not solve the problem. This ends
up generating redundancy and causes the planner to search
for new actions, while always looking up at the ones on the
invalid plan again on each iteration. However, PMR-RRPT-
PLAN performs better than the other two configurations,
as it has the opportunity to change between plan reuse,
search and sampling to solve the problem and this has
an impact on the number of problems solved as well as
on the makespan metric. PMR-RRPT-PLAN is more flexible
and in summary obtains the best performance on the three
metrics regarding the three PMR configurations. Regarding
multi-agent planners CMAP-T, ADP-L and SIW, the best

Table 4 Time in seconds that each configuration of PMR, CMAP-T, ADP-L, SIW, LAMA and RPT took to solve the Hammer domain scenarios

PMR-RRPT PMR-LPG-AD PMR-LAMA CMAP-T ADP-L SIW LAMA RPT

Fig. 7a 1.80 2.25 1.79 1.00 1.00 1.00 1.00 1.00

Fig. 7b 1.00 1.66 1.64 1.00 1.00 1.00 1.00 1.00

Fig. 7c 1.08 1.63 1.12 1.00 1.00 1.00 1.00 1.00

Prob 1a 43.84 4.40 40.05 2.83 1.24 2.48 2.07 2.67

Prob 1b 4.01 39.20 − − 1.23 4.54 − 3.91

Prob 2a 107.15 16.81 115.97 13.16 6.47 14.18 10.55 16.71

Prob 2b 14.37 − − − 6.37 14.27 − 22.11

Prob 3a 159.07 43.89 140.42 48.30 22.43 43.00 39.02 91.75

Prob 3b 59.81 − − − 30.69 65.66 − 110.62

Prob 4a 173.96 90.48 182.78 136.98 − 94.81 110.20 329.29

Prob 4b 126.81 − − − 77.31 103.73 − 329.18

YAHSP results are not shown as it was not able to solve any problem. Time limit per problem was 1800s. When (-) appears on a cell means that
the problem was not solved by the planner on time. Problems solved in less than 1 second are all considered as 1.00s
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configuration is SIW. SIW’s serialization of goals allows
the planner to use efficiently most of the agents resulting
in the improvement of makespan at the same time. ADP-L

and CMAP-T behave very similar to LAMA, the centralized
planner. These planners (except for SIW) try to solve the
problem with the smallest possible number of agents, as a
consequence of minimizing the plan length. ADP-L is the
only one able to avoid the plateaux of the search space and
does not get lost on version b problems. The centralized
planner YAHSP was run as well, but it was not able to solve
any of the problems.

When hammers are distributed among rooms 1, 4 and 6
(version “a” problems) the interactions are easier to solve
by all planners. On PMR configurations, when agents plan
individually, they choose the hammer that is closer to the
set of paintings they have to hang up. Thus, less number
of interactions arises and agents are better self-organized.
Same effect is given on the rest of the planners.

Regarding times on Table 4, PMR-LPG-ADAPT is faster
when it is capable of solving the problems but PMR-RRPT-
PLAN is more regular on performance.

5.3 Analyzing the impact on performance
of RRPT-PLAN’s parameters

After explaining the difference between the performance
of RRPT-PLAN and a classical plan reuse planner, such as
LPG-ADAPT, we wanted to test both of them outside of
PMR. We have compared both plan reuse planners against
a centralized planner, LAMA-FIRST, and the two planners,
ERRT-PLAN and RPT, in which RRPT-PLAN was inspired.
This experiment is divided into two parts. Firstly, we present
an analysis of RRPT-PLAN’s performance depending on a
set of values assigned to its parameters p, r and ε. The
aim is to find the best parameter configuration for RRPT-
PLAN. Secondly, after choosing the best configuration for
RRPT-PLAN, we compare the results obtained in coverage,
quality and time against the ones obtained by LPG-ADAPT,
LAMA-FIRST, ERRT-PLAN and RPT. In order to compare
RRPT-PLAN’s performance, RPT and ERRT-PLAN were run
using the same values as RRPT-PLAN’s best configuration,
which will be explained later on this Section. Both parts
of the experiment share the same benchmark, which was
created as follows: first, a set of hard planning problems
was generated (Rovers, Zenotravel, Driverlog, Depots,
Elevators and Logistics) per domain. These domains were
chosen because they have different levels of interaction and
dependency among the different elements of the domain,
which is a feature that directly affects the difficulty of
reusing a previous plan. Any agent’s decision from Rovers
or Zenotravel seldom interfere the decisions taken by the
other agents. There are not common resources either. This
is the easiest scenario to be solved by a plan reuse planner,

as interactions, if any, are easy to solve. However, Driverlog
and Depots’ agents share partially the domain resources, as
most of them need to be delivered to some concrete places.
On Elevators and Logistics the level of interaction is similar
but dependency increases, as the problem goals usually need
collaboration among two agents besides dealing with the
sharing of common resources.

We made three versions of each problem; the first one
contains one more goal than the original problem; the
second contains five more and to the third, ten more
goals were added. For each domain we took three original
problems per domain so we created nine new problems
based on the originals.

The original problems were first run with LAMA-FIRST

in order to obtain the resulting plans. These plans were
later used as input plans for RRPT-PLAN, ERRT-PLAN and
LPG-ADAPT for each one of the modified problems. As the
number of added goals gets increased, the resulting plans
should be very similar at the beginning but more different
as more goals are added to the original version. Also, as
LAMA-FIRST and RPT are not able to reuse, they had to run
each modified problem from scratch.

As it was mentioned in Section 4, RRPT-PLAN has three
parameters that change the behaviour of the algorithm.
Parameters p and r control the probability of running local
search, plan reuse or sampling, e.g. values p = 0.6, r = 0.3
cause RRPT-PLAN to have a probability of 0.6 to run the
local search phase, 0.3 to run plan-reuse and 0.1 to run the
sampling one. In addition, the parameter ε limits the number
of expanded nodes per iteration during local search, e.g a
value of ε = 1000 means that 1000 nodes will be expanded
at most per local search iteration.

We have tested eight different configurations of RRPT-
PLAN in this experiment explained as follows.

1. p = 0.3, r = 0.3; this configuration gives equal
probability to search and reuse and 0.4 to sampling.

2. p = 0.3, r = 0.6; this configuration benefits plan-reuse
over search and leaves a probability of 0.1 to sampling.

3. p = 0.3, r = 0.7; same to the previous one but
RRPT-PLAN will not perform the sampling phase.

4. p = 0.6, r = 0.3; this configuration benefits local
search over plan-reuse and leaves a probability of 0.1 to
sampling.

Each of these parameter configurations was tested for ε =
1000 and ε = 10000 to analyze the impact on the solution
when allowing a smaller or greater number of nodes to be
expanded during search. For this experiment, the execution
of plan reuse on the first iteration of RRPT-PLAN is avoided
in order to focus on the impact of these probabilities.
We also show the comparison against LAMA-FIRST, LPG-
ADAPT, ERRT-PLAN and RPT. Results of ERRT-PLAN are not
shown on the tables below, as it was not able to solve any
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of the problems in 1800 seconds. ERRT-PLAN uses Enforced
Hill Climbing (EHC) as the search method [24]. Since EHC
performs a form of hill climbing without backtracking, the
heuristic can guide the search towards dead-end states, big
plateaux, or very long paths. Therefore, ERRT-PLAN could
not solve any problem.

Results of this experiment are shown on the following
tables. Table 5 shows the number of problems solved per
configuration. Table 6 shows the summary of the obtained
quality score per configuration. Finally Table 7 shows the
summary of the time scores per configuration.

Table 5 shows that coverage is very similar between
RRPT-PLAN and LPG-ADAPT. LAMA-FIRST and RPT per-
form a bit worse, especially on high-interaction domains
(e.g. depots, logistics, driverlog). As they do not reuse a
previous plan, they had to run each modified problem from
scratch and those domains are harder to solve. RRPT-PLAN

(p = 0.6, r = 0.3) is the best configuration followed by
RRPT-PLAN (p = 0.3, r = 0.6).

Quality results show that RRPT-PLAN and LPG-ADAPT

results are similar. The small difference between them
was given on the Depots domain, where LPG-ADAPT

performs slightly better. The best configuration is LPG-
ADAPT followed closely by RRPT-PLAN (p = 0.6, r = 0.3)
and (p = 0.3, r = 0.6).

On the other hand, regarding time, the fastest configu-
ration is LPG-ADAPT. If we considered only planning time,

RRPT-PLAN results would be similar to those of LPG-
ADAPT. Before starting to plan, our planner, first trans-
lates the domain and the problem and computes mutexes
and disambiguation (which is useful for search and sam-
pling). Thus, our planner’s performance is worse than
LPG-ADAPT in time (not in quality). LPG-ADAPT’s pre-
processing phase only translates the domain and problem.
LAMA-FIRST applies the same translation process as RRPT-
PLAN but it does not compute mutexes and disambiguation.
RPT performs an exhaustive computation of mutexes and
disambiguation, which is why its time results are the worst
ones. As it can be seen on Table 8, the fastest preprocessing
is performed by LPG-ADAPT. Also, the impact on comput-
ing mutexes and disambiguation can be seen by comparing
RRPT-PLAN, RPT and LAMA-FIRST preprocessing results.
On the other hand, even though it is not explicitly reflected
on Tables 7 and 8, the harder the problem, the closer the
time score gets RRPT-PLAN to the one of LPG-ADAPT. The
reason is the following: when the number of added goals
to the problem increases, plan reuse performance decreases,
as the input plan is not similar anymore. On the other
hand, search becomes more useful. In Table 7 is shown the
poor performance of a centralized planner (LAMA-FIRST,
RPT) in comparison with plan-reuse ones. When the prob-
lems are similar, reusing input plans is faster than planning
from scratch. Table 8 shows the average time employed on
preprocessing by each planner on each domain.

Table 5 Coverage score obtained on each domain

Problem RRPT-PLAN RPT LAMA-FIRST LPG-ADAPT

ε 0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Elevators 1000 9 9 8 9 9 9 6

10000 9 9 8 9 9

Logistics 1000 9 8 9 9 9 5 9

10000 9 8 9 9 9

Depots 1000 8 7 4 8 9 4 9

10000 8 8 4 7 6

Zenotravel 1000 9 9 9 9 9 9 9

10000 9 9 9 9 9

Rovers 1000 9 9 9 9 9 9 9

10000 9 9 9 9 9

Satellite 1000 9 9 9 9 9 9 9

10000 9 9 9 9 9

Driverlog 1000 7 9 7 9 4 7 9

10000 7 9 9 9 9

Total 1000 60 60 55 62 58 52 60

10000 60 61 57 61 60

Planners: RRPT-PLAN with eight different configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT (plan reuse). The columns
represent the values obtained using the set of probabilities (p, r) and ε limit of expanded nodes. The “Total” row refers to the addition of the
scores of each configuration. Nine problems per domain were run
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Table 6 Quality score obtained on each domain

Problem RRPT-PLAN RPT LAMA-FIRST LPG-ADAPT

ε 0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Total 1000 42.88 55.26 52.75 56.11 45.28 49.26 56.85

10000 36.16 54.49 54.19 55.84 51.73

Planners: RRPT-PLAN with eight different configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT (plan reuse). The ‘Total’
row refers to the addition of the scores of each configuration

In order to choose the best configuration of RRPT-
PLAN to later compare itself against other planners in the
following experiments, we decided to choose (p = 0.3,
r = 0.6, ε = 1000). There was a minimal difference
regarding the p = 0.6, r = 0.3 configuration. We realized
that it was due to the execution of the plan reuse phase on
the first iteration on both configurations. The stochasticity
of RRPT-PLAN on this experiment turned out to discover
the following: in order to stabilize the performance and
commitment of RRPT-PLAN inside and outside of PMR, it
is essential to always first execute plan reuse on the first
iteration. This is also why we chose a higher probability on
r (0.6 instead of 0.3).

5.4 Results in CoDMAP problems

In this Section the results of the CoDMAP benchmark are
shown. CoDMAP was a preliminary version of what could
be a multi-agent planning competition in the future, that
took place in 2015. Here we have rerun the competition
with our contributions to compare ourselves against two
centralized planners (LAMA-FIRST, YAHSP) and three of
the best multi-agent planners that participated in the
competition (ADP-L, CMAP-T, SIW). There are 12 domains
with 20 problems each. The time limit to solve each
problem was 1800 seconds. We have also used the same
agentification as it was explicitly noted on the MA-PDDL
files (official language of the competition).

Tables 9 and 10 show the obtained results in coverage
(number of problems solved). We have used the three diffe-
rent goal allocation strategies: Best-cost (BC), Load-balance

(LB) and All. Since PMR can solve each problem in three
different ways, we show the coverage obtained on each one
separately: merge (M , when plans are valid after merging),
centralized planning (C, when no agent could generate any
plan) or plan reuse (R, when the merged plan was invalid).
The configuration PMR ALL was added in order to make
PMR complete. It shows a similar behavior as a centralized
algorithm. Thus, when PMR ALL fails in the M and R steps,
it usually solves the problems in the C step. On the other
hand, PMR LB and BC solve more problems in the M and
R steps than PMR ALL. The aim of PMR is to solve as many
problems as it can executing the M and R phases.

The best configurations of our contributions in cover-
age are PMR-LPG-ADAPT-ALL and PMR-RRPT-PLAN-ALL
followed by PMR-RRPT-PLAN-BC. In general, all our contri-
butions are similar in terms of coverage, they all have passed
the barrier of 200 problems solved (over 240). Our contri-
butions had very good coverage in all domains, except for
Wireless that was the hardest domain in CoDMAP; none of
the planners obtained good results on it.

Analyzing the coverage results of PMR in relation to
which phase solved the problems allows us to classify the
domains in three groups. This classification reflects in turn
the interaction level among agents and goals: low, medium
and high.

Low interaction domains Zenotravel, Rovers and Satellites.
PMR often solves problems in these domains by merging
the individual agents’ plans, because these plans are
mostly independent. However, it depends on the type of
goal allocation strategy selected. Take, for instance, the

Table 7 Time score obtained on each domain

Problem RRPT-PLAN RPT LAMA-FIRST LPG-ADAPT

ε 0.3 0.3 0.3 0.6 0.3 0.7 0.6 0.3

Total 1000 26.25 37.18 34.02 38.22 22.33 29.33 58.50

10000 26.01 36.71 35.93 37.12 23.83

Planners: RRPT-PLAN with eight different configurations, RPT (centralized), LAMA-FIRST (centralized) and LPG-ADAPT (plan reuse). The ‘Total’
row refers to the addition of the scores of each configuration
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Table 8 Average time (in
seconds) spent on
preprocessing each problem
per planner and domain

Problem RRPT-PLAN RPT LAMA-FIRST LPG-ADAPT

Elevators 38.22 217.41 42.12 2.96

Logistics 107.93 667.03 121.82 14.43

Depots 3.38 6.51 3.43 0.2

Zenotravel 86.21 484.21 102.49 4.01

Rovers 63.68 463.38 70.14 2.2

Satellite 23.81 103.56 32.33 1.2

Driverlog 18.58 173.05 24.09 1.59

Zenotravel domain. Both BC and LB assign only one agent
to each goal. Since the plans generated by agents can solve
all their individual goals and do not interfere with other
agents’ plans, the merge step solves all problems. But, in
the case of the ALL strategy, it will assign each passenger
to all airplanes. The first agent will move all passengers,
the second agent will also move all of them, and so on.
Therefore, the merged plan will be invalid (all airplanes
will try to move all passengers). These problems are easily
solved then by plan repair.

Medium interaction domains Driverlog, Blocks and
Depots. In these domains, when the goal assignment strat-
egy selects several agents for planning, problems are mostly
solved in the plan repair step. So, individual agents are able
to solve their problems, but the merged plans are invalid due

to interaction among the plans to achieve the goals. Then,
the plan repair step can generate a valid plan by solving the
negative interactions.

High interaction domains Elevator, Logistics, Sokoban,
Taxi, Wireless and Woodworking. In these domains, a single
goal might need the collaboration among two or more
agents. For instance, in the Logistics domain, most packages
need at least two trucks and one airplane to reach their
destination. In those cases, PMR individual plans will fail
and the centralized planning solves most problems.

A key related issue is how domains are modeled. For
instance, if the only agents considered in the Logistics
domain are the airplanes, then BC and LB would solve
all problems just by either merging the resulting individual
plans or by plan repair. Similarly, in the case of Elevator and

Table 9 PMR with LPG-ADAPT and RRPT-PLAN configuration in combination with up to three goal assignments: BC (Best-cost); LB
(Load-balance) and All

PMR-LPG-ADAPT PMR-RRPT-PLAN p = 0.3 r = 0.6 ε = 1000

BC LB ALL BC LB ALL

M R C M R C M R C M R C M R C M R C

Driverl. 19 1 0 8 12 0 0 20 0 19 1 0 8 12 0 0 20 0

Zenotra. 20 0 0 20 0 0 0 20 0 20 0 0 20 0 0 0 20 0

Elevators 1 0 19 1 0 19 0 0 20 1 0 19 1 0 19 0 0 20

Logistics 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20

Rovers 20 0 0 19 0 0 9 3 8 20 0 0 19 0 0 9 3 8

Satellites 20 0 0 20 0 0 16 0 4 20 0 0 20 0 0 16 0 4

Sokoban 1 3 7 0 4 7 0 0 17 1 3 7 0 2 7 0 0 17

Taxi 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20

Blocks 20 0 0 0 20 0 0 20 0 20 0 0 0 20 0 0 20 0

Wireless 0 0 2 0 0 2 0 0 5 0 0 2 0 0 2 0 0 5

Depots 0 0 17 0 0 17 0 0 17 0 0 17 0 0 17 0 0 17

Woodw. 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20 0 0 20

Partial 101 4 105 68 36 105 25 63 131 101 4 105 68 34 105 25 63 131

Total 210 209 219 210 207 219

In PMR, M: merging; R: plan-reuse; C: centralized. Partial is the total score in coverage of each step in PMR. Each domain has 20 problems. It is
the same set of problems used on CoDMAP

Bold represent the best configuration
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Table 10 IPC scores in Coverage per configuration in CoDMAP domains

PMR-RRPT-PLAN

BC LB ALL CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Driverlog 20 20 20 20 20 18 20 16

Zenotravel 20 20 20 20 20 20 20 12

Elevators 20 20 20 20 20 20 20 2

Logistics 20 20 20 20 20 20 20 20

Rovers 20 19 20 20 20 20 19 4

Satellites 20 20 20 20 20 20 19 10

Sokoban 11 9 17 13 17 17 17 7

Taxi 20 20 20 20 20 20 20 20

Blocks 20 20 20 20 20 20 20 17

Wireless 2 2 5 5 9 7 5 18

Depots 17 17 17 17 17 19 16 14

Woodworking 20 20 20 17 20 18 20 2

Total Coverage 210 207 219 212 223 219 216 142

Total Cost 181.61 165.33 181.87 184.17 188.34 179.05 189.22 128.27

Total Makespan 127.60 139.02 136.24 140.12 146.66 - 149.72 140.90

Total Time 186.87 173.48 175.86 201.72 207.59 191.84 197.14 126.69

Bold represent the best configuration

Taxi, one could define fast elevators or taxis respectively as
the only agents and PMR would solve all problems without
the centralized planner.

We have compared our contributions against the winner
of CoDMAP in coverage, ADP-L [14]. Note that ADP-L

does not preserve privacy and it uses a different agents’
configuration than the one proposed in the competition. We
also compare against CMAP-T [4] that obtained the best
coverage and time score from the planners that preserved
privacy. Finally, we also included SIW [37] as it was one
of the best planners of the competition. Results of this
comparison are shown on Table 10.

Regarding Table 10, ADP-L obtains the best coverage
followed up by SIW and PMR-ALL (both with LPG-ADAPT

and RRPT-PLAN). YAHSP coverage is the worst. Related to
coverage in the official CoDMAP, after the summer-run3

PMR-ALL would share the first position with ADP-L, which
was 219.

Regarding time scores (Table 13 in the Appendix), the
fastest planner is ADP-L followed very closely CMAP-
T. The performance on time of PMR configurations is
homogeneous. The time score in PMR was computed using
the total amount of time spent by the whole process. Since
the individual agents’ planning processes were executed in
sequence, the total time is computed as the sum of all these
processes. However, considering that the merging phase
could be implemented fully distributed, the total time would

3http://agents.fel.cvut.cz/codmap/results-summer/

be less by using the maximum planning time among all
agents instead of the sum.

In relation to quality scores, Tables 14 and 15 (in the
Appendix) show the results of makespan and cost of plans,
respectively. As LAMA and ADP-L did not compute the
makespan metric, our parallelization algorithm was applied
to their resulting plans to fairly compare the results of
makespan. SIW makespan results are not shown in the table
because our parallelization algorithm could not support the
use of constants that they include in the PDDL domain and
problem to respect the privacy of objects and fluents after
they transform the MA-PDDL files into PDDL [37]. This
issue does not happen when the domain and problem are
directly given in PDDL.

Regarding PMR configurations, it can be seen how BC is
better in cost and LB in makespan. The difference between
these numbers lies in the number of agents involved in the
planning process. BC often includes the minimum necessary
number of agents to plan (the ones that expectedly achieve
goals with the minimum cost), so the plans’ cost will usually
be low (good score). In the extreme, some problems were
solved using only one agent. However, the makespan is
penalized given that the same agent is achieving all goals,
so many actions cannot be executed in parallel. On the
other hand, LB tries to include as many agents as possible,
as long as they can solve at least one of the goals of the
problem. The makespan will be better than that of BC,
because actions can be easily parallelized. But, the cost is
penalized when choosing LB, as it uses agents whose plans
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are worse in terms of cost. Potentially more interactions
need to be solved (causing an increase in the number of
plans solved by R instead of M).

PMR-RRPT-PLAN configurations perform better on qual-
ity and PMR-LPG-ADAPT configurations, better on time.
Moreover, PMR-LPG-ADAPT-ALL, which was one of the
best configurations in coverage, is the worst of our config-
urations in quality scores. The All strategy uses all agents
in the problem to plan leading to long merged plans.
PMR-RRPT-PLAN-ALL performs better in quality than PMR-
LPG-ADAPT-ALL because it obtains better results mainly
in Driverlog and Blocks thanks to the combination of plan-
reuse and search. Although ADP-L obtains a better value
in makespan than all PMR-LB configurations, it is mainly
due to the difference in solved problems in Wireless and
Sokoban. It is also remarkable the result obtained by LAMA-
FIRST (best configuration in cost and makespan) because
it is just a centralized planner. This clearly shows that the
CoDMAP problems are not hard to solve even for classical
planners, as there is no huge impact during the planning pro-
cess even when agents try to solve all goals at once because
goals are not assigned specifically.

5.5 Results scaling the number of agents

In order to analyze how PMR configurations scale with
the number of agents, we generated one medium-sized
problem in the Zenotravel domain. It has 63 goals. Then,
we increased the number of agents. For each instance of the
Zenotravel problem, agents were increased by 10 starting on
10 agents and stopping at 70. The configuration used for this
experiment was PMR-RRPT-PLAN. Zenotravel belongs to the
low interaction group identified in Section 5.4. The domains
that belong to these groups are the ones where generally
PMR performs better, as most problems are solved during
merging or plan-reuse phases, avoiding the centralized
planning step. Thus, we were interested in exploring in
detail the evolution of makespan and plan length when
increasing the number of agents. Results are shown in Fig. 8.
X axis represents the maximum number of agents that can
plan per problem. In Zenotravel, BC uses 10, 16, 18, 21,
21, 22 and 23 agents per problem while LB uses 10, 20,
30, 34, 37, 59 and 62. As Zenotravel belongs to the low
interaction level group, the bigger the number of agents is,
the better the makespan obtained by LB. The performance
decreases drastically using ALL (only 3 problems out of 7
were solved in 1800s), because all goals are assigned to all
agents in the problem, which makes the process of solving
the interactions harder during plan-reuse.

When solving a MAP problem with PMR, our goal is
to obtain the makespan effect shown on Zenotravel. This
will not be possible in every domain, as it will mainly
depend on the number of interactions (coupling), but it is

the ideal scenario to follow regarding the potential of our
contributions.

5.6 Multi-agent hard problems

One of the key goals when working on multi-agent
environments consists on improving the distribution of
the work load among agents, which directly improves the
makespan of the resulting plans. Also, ideally, one would
expect multi-agent planners that maximize the work-load
distribution to scale up as the number of agents increases.

In this section we show some experiments on eight
domains whose problems are harder to solve than the ones
used on previous experiments. Tables 11 and 12 show
the IPC scores on coverage and makespan respectively.
Table 12 also contains the summary of time scores. For
these experiments we have used the same planners and
configurations shown on the CoDMAP experimentation
(Section 5.4). In order to select the domains on this
experimentation, we decided to include some domains
from the group of low interaction (Zenotravel, Satellite,
Rover), and some from the group of medium interaction
(Driverlog, Blocks). We excluded the ones that had higher
interaction (Elevator, Logistics) as they were only solved on
the centralized phase, so the work-load distribution of PMR

would not affect the result.
Additionally, we show on the same tables the results

obtained on three domains that were specifically chosen
to show the strength of PMR on Makespan. Two of
those, Rover-graph and the new version of Depots-robots,
are contributions of this work. After all the previous
experiments, we realized that the MAP problems that fitted
PMR best were those where the initial state can be easily
divided in regions for the agents to “work” on a specific part
of the search space. The lower the number of interactions
between them the better.

The Rover-graph domain is an evolution of the usual
Rover domain where two huge grids of waypoints are
generated independently and then joined by an edge
between those grids. This simulates environments where
there is a bottleneck in the connection between two areas.
The aim was to test how the planners’ performance changes
when a different configuration of the environment penalizes
the use of a single agent to solve the whole problem. The
number of goals in the set of problems oscillates between
150-200. The minimum number of predicates per problem
is 5100. Goals are the same as in the classical Rover
domain (e.g. communicate soil, image, rock data etc.).
The number of agents varies from 2 to 6. The two grids
contain around 400 waypoints in total. On this variation of
the usual Rover domain, planners (centralized-based ones
specially) get lost because of the size of the search space.
Instead of applying factorization to alleviate the agents’
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Fig. 8 Evolution of Cost and Makespan in a Zenotravel problem when increasing the number of agents gradually (x axis). The configuration used
was PMR-RRPT-PLAN with Best-cost (BC), Load-balance (LB) and All

individual planning process, those planners employ the
smallest possible number of agents to solve the problem. As
a result, an agent has to deal with almost all the goals, which
makes its planning task harder to solve.

Depots-Robots is the planning version of a warehouse
environment inspired on the Kiva Robots[49] where robots
have to deliver to humans a list of products from the storage
pods to complete a list of delivery orders. This new version
works over a grid of waypoints where pod storages follow
a classical structure of a warehouse by being stored in
columns. There is an empty column between each pair of
pod-occupied columns for robots to move. The first and last
rows of the grid are empty. The last row is where humans are
situated for the reception of products. The original version,
where restrictions on the placements of pods and empty

rows are not applied, is described in [5]. Robots are spread
through the grid. Thus, PMR can indirectly assign a specific
zone of the grid to a robot to pick up the nearby packages.
As a result, planners that factorize the problem for each
robot regarding human goals and pods’ locations will obtain
better results.

VPR is the usual Vehicle Routing Problem where trucks
need to deliver packages to some cities. The aim is to reduce
the cost as much as possible. Here, again the problem can
be easily divided as trucks will only care of delivering
the packages by themselves. Usually, when goals are well-
balanced among the agents, a different portion of the grid of
waypoints is assigned to each of them. Thus, the problem is
easier to solve for PMR; factorization again is key to simplify
the planning tasks.

Table 11 Coverage results in hard and specific problems

PMR-RRPT-PLAN

BC LB CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Zenotravel 20 20 20 20 1 20 0

Satellite 20 20 20 20 1 20 0

Rover 20 20 20 20 0 20 0

Driverlog 0 3 6 6 0 8 0

Blocks 16 16 16 15 13 14 14

Rover-graph 18 18 20 20 19 8 0

VRP 20 19 17 20 5 17 0

Depots-robots 13 13 11 9 12 11 0

Total 127 129 130 130 51 118 14

Bold represent the best configuration
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Table 12 Makespan score in hard and specific problems

PMR-RRPT-PLAN

BC LB CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Zenotravel 10.09 20.00 14.03 8.51 0.53 15.36 0.00

Satellite 6.93 20.00 10.78 3.98 0.97 11.76 0.00

Rover 2.52 20.00 4.25 2.49 0.00 3.88 0.00

Driverlog 0.00 2.84 4.85 5.94 0.00 6.85 0.00

Blocks 4.59 2.36 6.57 6.57 7.10 6.04 14.00

Rover-graph 16.66 19.44 13.81 11.40 9.66 6.90 0.00

VRP 6.28 19.00 1.83 4.45 0.15 3.49 0.00

Depots-robots 9.48 11.11 10.00 6.37 9.55 9.27 0.00

Total Mkspn 56.57 114.75 66.12 49.72 27.97 63.55 14.00

Total time 97.89 79.68 88.53 113.27 31.92 97,47 7.57

Bold represent the best configuration

Coverage results on Table 11 show how a planner
like SIW that had promising results on CoDMAP now
cannot solve more than half of the problems due to
their complexity. The rest of the planners, including our
configurations, except for YAHSP have a similar coverage.

Table 12 shows that our LB configuration outperforms
the rest of the planners regarding makespan. These
planners were again multi-agent (CMAP-T, ADP-L, SIW) and
centralized (LAMA, YAHSP) planners. Hence, even though
our configurations might be slower, they are still capable
of solving harder problems by involving multiple agents.
Dividing the number of goals as much as possible among
the agents has a direct impact on makespan. In VRP, Rover-
graph and Depots-robots domains, PMR-RRPT-PLAN-LB
increases the makespan score more than the other planners;
problems can be easily divided, creating balanced subtasks
for each agent. In VRP, PMR-RRPT-PLAN outperforms the
rest of planners, as it is a good example of domain, where
multi-agent planning can improve through factorization.
This can also be seen on Rover-graph with CMAP-T and
LAMA. The main difference between them is factorization.
CMAP-T is able to solve every problem while LAMA cannot
scale enough to solve a task of 200 goals. Domains such as
Zenotravel, Satellite and Rover, that have a low number of
interactions, are also good for our LB configuration.

Table 16 in the Appendix shows the time score, where
ADP-L and LAMA are the fastest ones. PMR is slower, because
of the goal assignment phase, as our algorithm spends some
time on identifying which agent solves best each goal. The
fastest configurations usually assign all goals to all agents
by default. This strategy works well when optimizing for
time or coverage. However, we claim that the makespan
score should be the main performance criteria if the goal is
to generate plans in a real multi-agent environment, where a
big number of agents is available to work.

5.7 Discussion on the experiments’ results

After describing the results of six different sets of conducted
experiments some specific conclusions and remarks can be
extracted from them:

– The performance of PMR and its adaptability cannot be
appreciated on easy MAP tasks. For instance, results
on CoDMAP (Section 5.4) reflect that the centralized
planner LAMA was able to solve more problems than
PMR’s BC, LB and CMAP-T; even its coverage results
are very close to those of ADP-L and SIW. This indicates
that MAP planners do not usually have a remarkable
advantage over centralized approaches on easy MAP
tasks.

– Regarding interactions among agents, PMR works best
on low and medium interaction domains. Those are
generally identified as loosely-coupled domains by
the planning community. Some of those domains are:
Rovers, Satellite, Zenotravel, Depots, Hammer and
VRP.

– PMR biases towards optimizing the makespan metric,
independently of the MAP task received as input. Thus,
the more the task can be factorized and work equally
distributed among agents, the better the makespan
obtained will be. Usually, those tasks are the loosely-
coupled ones.

– PMR scales well on hard loosely-coupled planning
tasks, and also in those that contain a topology that can
be factored for the agents to work independently. This
can be appreciated on the results from Rovers-graph or
VRP.

– The goal assignment strategy Load-Balance works best
for loosely-coupled domains, as it balances the amount
of goals among the agents. In turn, this has a direct
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impact on improving the makespan. Best-cost biases
towards improving the plan length and works best for
tightly-coupled domains. As less agents are used during
planning, it will reduce the number of conflicts to solve.

– RRPT-PLAN behaves very similar to LPG-ADAPT, which
is important regarding that LPG-ADAPT is considered
the state-of-the-art replanner.

In addition, RRPT-PLAN covers the full range of reuse
scenarios from the best case for reuse (when the input
incorrect plan is very similar to the final correct one)
and the worst case (when the input and final plans are
very different).

– The plan-reuse phase of RRPT-PLAN is more useful
when it is selected first. If we assume that the input plan
is similar to the final plan, running plan-reuse first will
automatically include most of the input plan actions into
the final plan, boosting the performance of RRPT-PLAN

as a result. However, in case the input plan is completely
different from the final plan, we expect that the plan-
reuse will fail fast and RRPT-PLAN will switch to the
search phase. This issue was tested on the experiments
with increasing number of goals in Section 5.3.

Also, some limitations have been identified:

– The main issue that faces PMR with tightly coupled
domains is the number of interactions to solve. If the
planning task presents many interactions, the plan-reuse
phase could be potentially solved better by planning
from scratch. Examples of such planning tasks are
the ones defined in the IPC for the Driverlog or
Sokoban. However, one must take into account that
the distribution of problems generated by the IPC
organizers for each domain, albeit randomly generated,
usually focus on a specific subarea of the set of potential
problems that can be generated. Therefore, it is easy
to see that even in these two tightly-coupled domains,
one can generate problems with lower interaction. For
instance, one could have several rooms in Sokoban,
each with its own set of robots, or one could have
different network subgraphs in Driverlog, each one with
its own set of drivers and vehicles. So, the property of
being tightly-coupled is connected to the planning task
(domain and problem) and not only to the domain.

– There exists a bottleneck on the goal assignment
process. When the MAP task contains a considerable
amount of goals, the time spent on estimating the
cost per goal-agent can be heavily increased if the
search space of the problem is big. In real-life environ-
ments, this issue can be solved by including external
information to boost the cost estimation process.

– Given that our objective was to focus on loosely-
coupled tasks, PMR cannot deal with joint actions

(actions that require more than one agent to be executed,
as moving a table by using two agents).

6 Related work

MAP lies between the automated planning and multi-agent
communities, with strong implications in other areas, as
robotics. As it was discussed in the introduction, approaches
range from centralized to distributed planning. In case
of distributed planning, some papers employ a distributed
coordinated approach when generating plans [26, 39, 42,
46], while others delay coordination and perform plan
merging after generating the individual plans [17].

MAP is an active topic within the planning community
as shown by the organization of the CoDMAP competition
and the wide range of planners that participated [43].
The planners vary from strong privacy preservation to no
privacy preservation, from fully distributed to centralized;
there are many ways of classifying MAP algorithms.
Different classifications are explained in the survey [44].
PMR automatically changes its behavior from a purely
distributed planner to a centralized planner depending on the
input planning task. It is also capable of maintaining weak
privacy.

In relation to plan merging, Mali devised algorithms
for performing plan merging by removing or rearranging
actions [35], while PMR can also modify the input merged
plan by adding actions. Furthermore, PMR can handle
plans where the same action appears in several individual
plans. Britanik and Marefat proposed to perform plan
merging within HTN planning [11]. Merging appears at
different levels of abstraction by decomposing a plan into
subplans. Our approach, PMR, does not work on HTN
planning and neither has different levels of abstraction.
Instead of decomposing a plan into subplans, we focus
on decomposing the problem into subtasks. In the field
of temporal planning, Mudrova et al. [36] propose an
algorithm that merges partial order plans with durative
actions for solving robotic tasks. A different approach close
to plan merging is conflict solving. Jordan presents one
such approach where conflicts are identified while agents
generate the solution [27]. The algorithm works at the same
time on a joint plan and penalizes the agents that generate a
conflict.

Regarding factorization on MAP, some works in MAP
deal with plan decomposition. Brafman and Domshlak
propose a decomposition method of the planning domain
[8]. Crosby et al. present a centralized total ordered
planning algorithm that decomposes, with the help of
heuristics, a loosely coupled problem into agents and
subtasks [15]. In a recent work, Mali and Puthiyattil
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transform a MAP task into a set of subplans encoded in SAT
to be later assigned to the agents [34]. Our approach, PMR,
decomposes the problem into subtasks by assigning goals
to agents. Then each subtask is given to a different agent.
We are also helped by heuristics to proceed with the goal
assignment.

Plan Reuse has also been studied in Automated Planning.
Gerevini et al. define a new domain-independent planning
system in [20]. They use two techniques: the first one
divides the actions of the plan to repair in subgroups
to later solve the conflicts with a Planning Graph; the
second technique uses Action Graphs to reduce the number
of inconsistencies reflected in the plan that needs to be
adapted. Related with MAP, van der Krogt et al. apply
a plan repair system to a MAP problem so that agents
can adapt their plans iteratively by exchanging goals in an
auction until all plans generated are valid [30]. The main
difference with respect to our work is that we use a plan
reuse phase after all plans from agents are merged and
parallelized and plan reuse is executed only once. Krogt
et al. also presented an extension of the VHPOP planner
called POPR [31]. Their approach computes a set of partial
plans similar to the given input plan. Then, it analyzes the
dependencies of predicates and actions of those plans by
generating removal trees and uses a heuristic to compute the
most promising candidate. Finally, once the candidate plan
is selected, plan reuse is applied to it. As it can be seen, the
procedure is very different from RRPT-PLAN, but it is one of
the first works that combines search and plan reuse on the
same planner. The first plan reuse planner that incorporated
heuristic search inside the replanning process was SHERPA
[28]. It stores knowledge about both previous plans and
previous plan-construction processes. RRPT-PLAN does not
use heuristic search inside the plan reuse phase. We just try
to reuse as many actions as possible from the input plan but we
do not modify them. If plan reuse is not applicable anymore,
classical heuristic search is performed from that point.

7 Conclusions and future work

We have presented PMR, an algorithm capable of solving
a MAP task by merging individual plans and applying
plan-reuse techniques, if needed. A key feature of PMR is
that it automatically adapts to the interaction level among
agents and goals, varying its behavior from distributed to
centralized. It generates many valid plans in the merge phase
(M) with a low computational effort if the domain has a
low degree of interaction. Otherwise, it uses plan reuse (R)
in domains with more interaction and resorts to centralized
planning (C) in case of domains with strong interactions.

Another advantage of PMR is that it only includes off-
the-shelf planners in its three phases (M , C and R). Hence,

we can trivially improve the performance of PMR by just
changing the planners used by better ones once they are
developed. Moreover, PMR can easily be configured to
target coverage, cost or makespan by just changing its goal
allocation strategy.

When testing the set of planners against the last
benchmark of hard problems, the results of PMR-RRPT-
PLAN have shown that it easily adapts to any type of
MAP problem, independently of the problem’s features (e.g.
number of agents, goals, interactions). PMR-RRPT-PLAN

maintains good results on coverage and time and remarkable
results on makespan, specially in combination with the
Load-balance strategy.

Regarding plan reuse, we have presented another
contribution, RRPT-PLAN, which is an algorithm that
combines plan reuse, sampling and local search to solve
a planning problem. RRPT-PLAN receives the domain, the
problem and an input plan (usually invalid) from which it
will try to reuse actions to include in the final plan. We have
shown in the experiments that RRPT-PLAN adapts to diverse
plan reuse scenarios, including the ones that are not usually
considered by state-of-the-art plan reuse planners. Also, we
have shown experiments of RRPT-PLAN outside of PMR and
the results were very similar to the state-of-the-art planner
LPG-ADAPT.

As future work, we would like to define new techniques
for plan repair, improving the way probabilities change the
behavior of RRPT-PLAN and also to work on different plan
merging strategies for PMR to merge more efficiently the
individual plans obtained from the agents. A third option
would be to make more efficient, in terms of time, the
goal-assignment process.
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Appendix

A CoDMAP extra results

The following tables show specific results on Time,
Makespan and Cost obtained on the CoDMAP experiments
from Section 5.4.
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Table 13 IPC scores in Time per configuration in CoDMAP domains

PMR-RRPT-PLAN

BC LB ALL CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Driverlog 18.92 17.44 16.54 19.66 17.29 16.04 18.40 14.53

Zenotravel 19.31 18.00 15.74 19.84 18.80 18.75 18.64 10.71

Elevators 16.78 16.73 16.45 19.40 20.00 19.32 18.48 1.58

Logistics 20.00 19.65 19.07 20.00 20.00 20.00 20.00 20.00

Rovers 17.16 15.56 16.26 19.87 19.34 17.68 18.10 2.97

Satellites 18.54 17.70 17.04 20.00 19.31 17.96 17.18 7.46

Sokoban 8.82 6.56 11.32 12.13 15.16 15.52 13.14 5.76

Taxi 19.84 19.83 17.77 20.00 20.00 20.00 20.00 19.03

Blocks 20.00 15.25 14.98 20.00 18.42 16.56 18.19 14.88

Wireless 0.77 0.75 1.77 1.79 8.95 3.24 3.35 15.17

Depots 13.48 12.75 13.01 14.27 12.73 15.03 12.91 12.60

Woodworking 13.26 13.26 15.91 14.76 17.59 11.75 18.75 2.00

Total 186.87 173.48 175.86 201.72 207.59 191.84 197.14 126.69

Bold represent the best configuration

Table 14 IPC scores in Makespan per configuration in CoDMAP domains

PMR-RRPT-PLAN

BC LB ALL CMAP-T ADP-L LAMA-FIRST YAHSP

Driverlog 11.82 12.65 8.86 10.99 13.84 12.43 16.00

Zenotravel 11.22 17.03 17.03 11.08 10.62 12.88 12.00

Elevators 16.25 16.41 16.41 17.96 16.30 17.44 2.00

Logistics 15.09 15.09 15.09 15.39 15.28 16.14 20.00

Rovers 10.56 9.86 9.75 17.51 11.06 16.39 4.00

Satellites 7.68 16.01 15.95 9.82 7.31 9.08 10.00

Sokoban 7.78 6.50 6.50 11.43 13.64 14.36 7.00

Taxi 13.37 13.37 13.37 13.37 13.43 13.32 20.00

Blocks 8.38 6.02 6.95 7.79 11.10 9.69 17.00

Wireless 1.89 1.89 1.89 4.52 7.21 4.55 18.00

Depots 10.13 10.76 11.00 9.49 7.19 10.00 14.00

Woodworking 13.43 13.43 13.43 10.80 19.67 13.43 0.90

Total 127.60 139.02 136.24 140.12 146.66 149.72 140.90

Bold represent the best configuration

Table 15 IPC scores in Cost per configuration in CoDMAP domains

PMR-RRPT-PLAN

BC LB ALL CMAP-T ADP-L SIW LAMA-FIRST sYAHSP

Driverlog 16.90 15.57 14.28 17.27 18.30 14.40 17.92 14.64

Zenotravel 19.38 16.31 18.26 17.07 18.09 13.64 18.61 10.06

Elevators 15.95 15.87 15.11 14.25 15.23 14.59 15.74 2.00

Logistics 18.91 18.91 18.94 19.17 19.34 13.34 19.60 19.82

Rovers 18.64 16.87 18.10 19.43 19.11 16.94 18.41 3.75

Satellites 16.44 14.17 13.26 19.51 17.29 18.54 18.21 7.98

Sokoban 8.54 6.64 15.06 11.65 13.61 16.39 14.54 6.71
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Table 15 (continued)

PMR-RRPT-PLAN

BC LB ALL CMAP-T ADP-L SIW LAMA-FIRST sYAHSP

Taxi 18.94 18.94 18.94 18.94 18.67 16.03 18.62 16.11

Blocks 13.35 8.00 13.35 12.62 12.81 18.98 12.54 14.52

Wireless 1.93 1.93 4.44 4.44 9.00 6.39 4.47 17.44

Depots 15.07 14.54 14.54 14.62 9.05 14.66 12.97 13.25

Woodworking 17.57 17.57 17.57 15.20 17.85 15.18 17.57 2.00

Total 181.61 165.33 181.87 184.17 188.34 179.05 189.22 128.27

Bold represent the best configuration

B Hard problems extra results

Table 16 shows results on the time score obtained on the Hard
problems experiments from Section 5.6.

Table 16 Time score score in hard and specific problems

PMR-RRPT-PLAN

BC LB CMAP-T ADP-L SIW LAMA-FIRST YAHSP

Zenotravel 16.66 15.37 14.03 17.15 0.40 15.63 0.00

Satellite 16.61 15.58 15.53 19.86 0.53 18.72 0.00

Rover 10.34 10.25 10.22 19.40 0.00 19.87 0.00

Driverlog 0.00 2.05 4.37 5.22 0.00 7.56 0.00

Blocks 14.37 4.46 15.13 10.13 7.54 9.19 7.57

Rover-graph 8.33 8.33 9.60 20.00 11.73 6.23 0.00

VRP 20.00 12.16 10.79 13.57 1.56 11.03 0.00

Depots-robots 11.57 11.48 8.86 7.94 10.16 9.23 0.00

Total 97.89 79.68 88.53 113.27 31.92 97.47 7.57

Bold represent the best configuration
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