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Abstract
The aim of this work is to produce and test a robustness module (ROB-M) that can be generally applied to distributed,
multi-agent task allocation algorithms, as robust versions of these are scarce and not well-documented in the literature. ROB-
M is developed using the Performance Impact (PI) algorithm, as this has previously shown good results in deterministic
trials. Different candidate versions of the module are thus bolted on to the PI algorithm and tested using two different task
allocation problems under simulated uncertain conditions, and results are compared with baseline PI. It is shown that the
baseline does not handle uncertainty well; the task-allocation success rate tends to decrease linearly as degree of uncertainty
increases. However, when PI is run with one of the candidate robustness modules, the failure rate becomes very low for
both problems, even under high simulated uncertainty, and so its architecture is adopted for ROB-M and also applied to
MIT’s baseline Consensus Based Bundle Algorithm (CBBA) to demonstrate its flexibility. Strong evidence is provided to
show that ROB-M can work effectively with CBBA to improve performance under simulated uncertain conditions, as long
as the deterministic versions of the problems can be solved with baseline CBBA. Furthermore, the use of ROB-M does not
appear to increase mean task completion time in either algorithm, and only 100 Monte Carlo samples are required compared
to 10,000 in MIT’s robust version of the CBBA algorithm. PI with ROB-M is also tested directly against MIT’s robust
algorithm and demonstrates clear superiority in terms of mean numbers of solved tasks.

Keywords Heuristic algorithms · Multi-agent systems · Distributed task allocation · Auction-based scheduling · Robust
optimization

1 Introduction

The ability to assign tasks well in the light of intrinsic
uncertainty is very valuable for multi-agent task allocation
systems. However, despite the advantages of distributed
systems [1] very few robust algorithms have been developed
with this architecture. To date, centralized systems have
dominated research focus. This is not surprising since
distributed task allocation for multi-agent systems operating
in uncertain environments is a challenging problem [2].
One of the main difficulties is that the scheduling system
must run independently on each agent but must generate the
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same schedule in each case. This can be problematic if the
agents record different values for the same variable because
of sensor differences, limited or changed connectivity, or
unreliable, imprecise or vague measurements from mixed
sources. These situations typically arise in Search-and-
Rescue (SAR) missions where each agent may record a
different location for each survivor because of inaccuracies
in sensor readings, and none of the locations may be
exact. Furthermore, measurements of the agents’ positions
and velocities may also be uncertain and different for
each agent. The uncertainties must be dealt with in some
way, as SAR missions are time-critical and demand a low
probability of failure; it is vital that the task assignment
is reached quickly and that it represents a robust, conflict-
free solution, where every survivor is rescued within the
given time-frame. The main aim of this work is to address
some of these challenges by designing, creating and testing
a module that can be attached to general, distributed, multi-
agent task allocation algorithms to make them more robust
to uncertainty.
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To achieve the aim, three different candidate robustness
modules (A, B, and C) are trialed with the Performance
Impact algorithm (PI) [3] as this has demonstrated better
results than CBBA [4] when solving deterministic model
SAR problems, but lacks any mechanism for handling
uncertainty. Candidate A uses the expected value metric [5]
to determine task costs and candidate B uses the worst-
case scenario metric. These metrics are selected based on
the two extremes of approaches to handling calculated risk.
Pursuing choices with the highest expected value is sensible
when the payoff appears to be both high and probable
(task deadlines are not so tight), but the worst-case option
makes more sense when the payoff might be lower and
less likely (there are some tight task deadlines). As both
situations may be encountered in the type of task allocation
problems considered, a third candidate (C) is created, which
uses a hybrid combination of the expected value and worst-
case scenario metrics, in a bid to match the time cost
estimates with the degree of risk, and thus improve overall
robustness.

For each candidate, key uncertain variables are modeled
using a Gaussian distribution. This common continuous
probability distribution is selected because of the central
limit theorem, i.e. it is assumed that many different
sources simultaneously contribute to the uncertainty in
these key variables, see Section 4.2. As the number of
sources approaches infinity the distribution function of
the measurement of an uncertain variable approaches a
Gaussian one, regardless of the underlying distribution
functions of the contributing sources of uncertainty. In
fact, the resulting distribution function begins to approach
Gaussian when there are only between three and five
contributing sources [6]. Thus, Gaussians are often used for
variables with unknown distributions.

Working in conjunction with PI, the hybrid candidate C
consistently demonstrates a very low failure rate and a low
number of unallocated tasks in simulated uncertain model
SAR problems, and so is adopted as the architecture for
the general robustness module, which is named ROB-M.
When used with PI, ROB-M does not appear to compromise
the mean task time; in the experiments conducted it shows
either a significantly faster mean task time when compared
to the baseline PI algorithm or no significant difference. It
also requires only 100 samples compared with the 10,000
needed in Ponda’s robust CBBA model [7], and is tested
using higher numbers of tasks and agents. ROB-M can
also be bolted on to baseline CBBA, and it is shown
that, for uncertain problems, the failure rate and number
of unallocated tasks also reduces, as long as the CBBA-
ROB-M algorithm is solving a problem that baseline CBBA
can solve deterministically; CBBA generally has difficulty
when time constraints are tight or the task to vehicle ratio is
too high [8]. PI with ROB-M is also compared directly with

Ponda’s robust CBBA algorithm and demonstrates clear
superioriority in terms of mean numbers of solved tasks.

2 Related work

There is an extensive body of work related to multi-
agent task planning, task allocation, and scheduling with
many solutions proposed. These include clustering graph
methods [9], the Contract Net method [10], Markov
Random Fields (MRFs) [11], auction-based methods [12],
and Distributed Constraint Optimization methods (DCOPs)
[13]. In addition, there are many variants on each theme, for
example, the stochastic clustering auction with simulated
annealing represents a particular type of auction-based
solution [1]. Solution methods can also be sub-divided
into optimization and heuristic types, online and offline
types, and centralized and distributed communication
architectures. A good review of the different approaches is
presented in [14].

2.1 Summary of approaches

Time-critical, multi-agent, task allocation problems are NP-
hard [15] and are thus difficult to solve using optimization
approaches such as linear programming (LP), mixed integer
linear programming (MILP), MRFs, and DCOPS. A MILP
solution to the coordination of mutiple heterogeneous robots
has been attempted, but the problem is not time-constrained;
the only constraints are that the robots avoid obstacles and
do not exceed the speed capabilities [16]. Moreover, only
eight robots and six targets are tested and the authors state
that scalablity is a major drawback to their method. Pujol-
Gonzalez applies an MRF-based solution to UAV online
routing using a novel problem encoding and the max-sum
algorithm [11], but the problem is also not time-constrained
and empirical tests restrict the number of UAVs to ten
surveying a limited area of 100 km2. In general, when
the number of tasks and agents increases sufficiently, the
optimization approach becomes intractable because of the
exponential number of constraints in the model [17].

Heuristic-based methods provide an alternative as
scalability is not such a problem. Popular heuristic methods
include Tabu-search [18], genetic algorithms [19], and
auction-based techniques [20]. In general, heuristic systems
are less complex and demonstrate relatively fast execution
times, although the trade-off is that they often provide
sub-optimal solutions.

Distributed architectures are also a frequent choice for
this type of problem as they have many advantages over
centralized techniques; the communication overhead is
generally lower, the agents do not need to be limited to the
communication range of a central server, fewer resources
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are required, and the reaction times to local information
changes are generally faster [7]. Many existing centralized
solution architectures can be adapted to an equivalent
distributed paradigm, but distributed solution architectures
are slightly more complex to implement and tend to run
slower as a consensus processing stage is usually required
to ensure that agents have identical information. However,
conversion of robust centralized approaches to distibuted
equivalents, especially those that require a consensus phase,
has proved non-trivial, see Sections 2.3 and 2.4.

2.2 Auction-based approaches

Auction-based heuristic algorithms, a subset of market-
based approaches [21] have been widely used as an alternative
to optimization for solving time-critical, multi-agent, task
allocation problems [22]. In the centralized version of this
approach, one agent is selected as the auctioneer and has
responsibility for coordinating bids on tasks from all agents
so that the highest bidder wins the task assignment. The method
is easily adapted to a decentralized architecture, where
there is no centralized auctioneer, although this can increase
complexity and communication overheads [23]. However,
auction-based approaches have many benefits including
high efficiency, good scalability [24], and robustness when
implemented within a decentralized paradigm.

When the agents bid on bundles rather than individ-
ual tasks, the method is known as a combinatorial auction
method. Such methods have been shown to exhibit supe-
rior performance to single-item auctions and have gener-
ated good results when compared to optimal centralized
approaches [25]. Two particular combinatorial auction-
based algorithms lend themselves to the solution of the
problems of interest in this paper - CBBA [4] and the PI
algorithm [3]. It has been shown empirically that the base-
line PI algorithm performs better than the baseline CBBA
algorithm [3, 8, 26] for deterministic task allocation prob-
lems with tight task deadlines, with PI demonstrating a
much better success rate with different numbers of tasks
and agents, and different network topologies. However, the
papers mentioned do not examine PI’s handling of uncer-
tainty. The lack of a robust solution is a major shortcoming,
as time-critical missions (such as SAR) demand a low prob-
ability of failure. Reassignment, as discussed in [8], can deal
with some of the problems, but it can be hard to recover from
a situation where rescue vehicles have already been sent in
the wrong direction.

2.3 Incorporating uncertainty into task allocation
algorithms

Optimization techniques for solving time-critical, multi-
agent task allocation problems are not easily extended to

the uncertainty domain, as they require the uncertainty to
be represented within the system. Probability models of
each uncertain variable could be embedded within the score
functions, but this is difficult to achieve within an optimiza-
tion framework, as many uncertainty distributions cannot
be expressed analytically. Thus, Bayesian frameworks [27]
cannot be used practically unless the distributions are of
very specific types, e.g. Gaussian, Bernoulli etc.[7]. In
addition, as mentioned earlier, combining probability distri-
butions increases the dimensionality of the problem space
exponentially. Yang uses a distributed robust optimization
technique for solving control problems in communication
networks [28]. However, the technique is limited to a par-
ticular set of optimization problems that have concave
objective functions and linear constraints.

To account for uncertainty, many researchers use Monte
Carlo sampling techniques to allow the approximation of
complex distributions. A popular choice is the Markov
Chain Monte Carlo (MCMC) method [29], as complex,
high-dimensional systems can be simply and efficiently
modeled [7]. However, MCMC methods generally require
a large number of samples to represent the uncertainty,
and most have been applied to trajectory optimization
rather than task allocation optimization. Undurti and How
formulate the problem as a Constrained Markov Decision
Process (C-MDP) [30]. Their method allows risk, defined
as the probability of violating constraints, to be kept below
a threshold value while optimizing the reward. Simulation
results show that the algorithm performs well, but the
experiments are limited to only two agents to enable
comparison with centralized MDP approaches. An online
MDP method is used in [31], but results are inferior to basic
reactive approaches and testing is based on a much simpler
problem.

Maheswaran et al. enable users to encode their intuition
as guidance for the system [32]. This approach simplifies
a scheduling problem by decomposing it into simpler
problems that can be solved in a centralized fashion with
a single agent allocating the tasks. The work of Ramchurn
et al. follows a similar approach, where human decisions are
encoded as additional constraints for the optimization [33].
However, in the work presented here attention is restricted
to solutions that do not involve human intervention.

Lui and Shell postulate an alternative method that
assesses the robustness of any given solution to uncertainty
given a measure of it, for example, a probability distribu-
tion [34]. They propose an extension to the Kuhn-Munkers
Algorithm [35, 36], called the Interval Hungarian Algo-
rithm. This provides a tolerance-to-uncertainty metric for a
given allocation. In particular, the authors compute a set of
inputs that yield the same output schedule, providing a reli-
able method for assessing the tolerance of the allocation to
uncertainties.
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2.4 Robust auction-based approaches

Distributed approaches to task allocation that include a
consensus phase (for example auction-based methods) are
not easily extended to include uncertainty models as the
uncertainty needs to be represented locally in each agent’s
planning process and convergence must still be guaranteed.
However, market-based task allocation systems have been
adapted for uncertain environments by updating the cost
estimates over time and reallocating the tasks online when
necessary [37].

Creation of a solution with good robustness properties,
that can hedge against uncertainty from the onset, is an
alternative technique to online reallocation, and has the
advantage that agents are less likely to become improperly
positioned as a result of constant re-routing. Ponda
implements this by adding probabilistic models of uncertain
variables, Monte Carlo sampling, and stochastic metrics
(such as the expected-value and worst-case scenario) to
baseline CBBA to improve its robustness [7]. Simulation
results showed improved performance over the baseline
CBBA algorithm, achieving results similar to centralized
approaches. However, the experiments involved a maximum
of only six agents and 10,000 samples were required. In
addition, beyond about twelve tasks the robust algorithms
began to fail. This suggests that further research in this area
is needed to address the problems.

3Methodolody

3.1 Problem definition

The problem of interest is documented fully in [3, 8, 26]
and [38]. It is the optimal, conflict-free assignment of a
set of n heterogeneous agents V = [v1, . . . , vn]T to an
ordered sequence of heterogeneous tasks from an m-sized
set T = [t1, . . . , tm]T. Each task k has a fixed location
Ωk , a duration Dk , and a maximum (latest) start time gk ,
i.e., the problem is time-critical. Each agent i has a variable
location ϒi and a fixed velocity Θi . Each task requires only
one agent to service it, and each agent can complete only
one task at a time, although it can complete other tasks
afterwards, if there is time. The objective function ϕ is the
minimization of mean individual task cost c over all tasks
rather than mean completion time for each agent, as the
former takes into account the number of tasks that benefit
from the time saving. This is important in applications such
as SAR, where the tasks involve saving lives. The objective
function is expressed mathematically in (1) as:

ϕ = 1

m

n∑

i=1

ρi∑

k=1

ci,k(ai ), (1)

where ai represents the set of tasks allocated to agent i and
ρi represnts the number of tasks in the set ai of agent i. In
addition, a compatibility matrix H with entries hi,j defines
whether agent i is able to perform task j (the value is 1 if it
is able, 0 otherwise).

The constraints in the optimization are as follows:

ai ≤ m, (2)

n⋃

i=1

ai = T, (3)

ai ∩ aj = ∅ ∀i �= j, (4)

ci,k(ai ) ≤ gk, (5)

hi,k ∈ [0, 1]. (6)

In order, the equations (2) to (6) above denote that the
number of tasks assigned to a particular agent must be less
than or equal to the total number of tasks, that each ordered
sequence of allocations is a subset of the whole set of tasks
T and all tasks must be assigned to some agent, that tasks
cannot be assigned to multiple agents, that an agent must
complete a task before its latest start time, and that the
elements of the compatibility matrix must be either 0 or 1 in
value.

3.2 The PI algorithm

The candidate robustness modules are initially tested by
integrating them with the PI algorithm [3]. This is a
distributed, multi-agent task allocation system that runs
simultaneously on each agent. As in CBBA, the tasks
are grouped into bundles that are continuously updated
as the auction proceeds. In CBBA, the agents bid on the
bundles rather than individual tasks and the bundles are
formed by logically grouping similar tasks. In contrast,
the PI algorithm uses a novel concept called performance
impact to score and organize the task bundles. These are
incrementally built and updated by systematically swapping
tasks between agents, and then measuring the benefit over
all tasks using special metrics. The removal performance
impact (RPI) measures the benefits of removing a task
from a bundle and the inclusion performance impact (IPI)
measures the benefits of adding a task. Full details of
the metrics and the PI algorithm are presented in [3, 8,
26, 38]. The details are not reproduced here as, for the
purposes of this paper, the reader only needs to know that
there is a consensus phase, when the agents agree on the
schedule, and that the RPI and the IPI are calculated using
the time costs ci,k associated with each agent i and task
k; the candidate robustness modules are created by using
different robust versions of those costs (see Section 3.3).
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Furthermore, the aim here is to create a robustness module
that can work with any distributed task-allocation algorithm
that employs task costs; the module should not be limited to
working with the PI algorithm.

3.3 The candidate robustness modules

The computed task costs in task allocation algorithms
are frequently underestimated. A simplistic approach to
addressing this issue is to introduce risk costs, i.e.,
a percentage addition to each task cost. However, the
practical implementation of this is difficult as the accurate
assignment of percentage additions to each task cost is
very problem specific [7]. Moreover, the task costs are
compound variables, calculated from a number of uncertain
variables; nonlinear cost functions, complex coupling and
interdependencies between these variables, and constraints
can all affect the uncertainty in unpredictable ways.

A much better strategy is to use probabilistic sampling,
provided the uncertainty distributions in the key variables
are known. Here, we make the assumption that the key
uncertain variables are the agent velocities �, agent
locations in each of the three dimensions ϒx , ϒy , and ϒz,
fixed task locations in each of the three dimensions �x ,
�y , and �z, and task durations D. In any rescue situation
it is obvious that task locations, i.e. the whereabouts of the
survivors, have a degree of uncertainty. Task durations are
also uncertain as they are only estimates of how long the
rescue operation will take at each location. Agent velocities
and agent positions can also be unreliable because of
instrumentation, interference and communication problems.
Section 4.2 provides a fuller discussion of the causes of
uncertainty in these variables, and attempts to estimate the
errors.

Each uncertain variable is modeled as a Gaussian
distribution, given the central limit theorem (see Section 1)
and the fact that there are a number of different sources
that contribute to the uncertainty in each variable, see
Section 4.2. Thus, each candidate robustness module creates
robust time cost values ri,k for an agent i and task k by
sampling these uncertain variables N times from a Gaussian
distribution, defined by a mean equal to the measured
value, and a standard deviation determined by the estimated
level of uncertainty, see Section 4.2. Simple time-distance-
velocity relations are used to calculate the time costs ci,k

associated with a particular agent i and task k.
Three candidate modules, i.e. three methods of calculat-

ing robust task costs are selected. Candidates A and B are
based on the two extremes of approaches to handling calcu-
lated risk, see Section 1. The third method, C, uses a hybrid
combination of these metrics to try to align the time cost
estimates with the tightness of the task deadlines, and thus
improve overall robustness.

In Candidate A, the expected values of the actual time
costs ci,k are taken as the robust time costs ri,k . The expected
value of a variable can be defned as the probability-
weighted average of all possible values of that variable, i.e.
each conceivable value the variable can take is multiplied by
its probability of occurring, and these products are summed.
The expected value E(ζ ) of an uncertain variable ζ defined
by a discrete set of N samples can thus be expressed
mathematically as follows:

E(ζ ) =
N∑

s=1

ζs ||Ps ||. (7)

In (7), Ps is the probability of the sample value ζs and ||Ps ||
is the normalized value of this given by:

||Ps || = Ps

N∑
l=1

Pl

. (8)

Thus, in Candidate A, the robust time costs are given by:

ri,k = E(ci,k) =
N∑

s=1

ci,ks ||Ps ||. (9)

In (9), the scalar expected value of ci,k is calculated based
on the vectors of samples from its component uncertain
variables, i.e. the agent velocity �, agent location in each of
the three dimensions ϒx , ϒy , and ϒz, fixed task locations
in each of the three dimensions �x , �y , and �z, and task
durations D. In addition, the probability Ps of sample s

is taken as the combined probability of these component
uncertain variables. Calculating the expected value of ci,k

using the set of sample vectors for each component variable
is equivalent to minimizing the mean expected time cost
over all tasks. Computing the time costs deterministically
using the pre-calculated mean values of the component
variables is not equivalent, as it does not take the coupling
between the variables into account and this can lead to a
poor solution [7]. The former method calculates a time cost
ci,ks s = 1 . . . N for each of the N samples, multiplies it
with its probability, and sums to generate the scalar expected
value. This provides a much more robust estimate of the
time costs as the coupling between variables is reflected
in each sample. To illustrate the difference, the robust
calculation of each ci,ks , the time cost for each sample, can
be expressed mathematically as:

ci,ks = f(Υx,i s , Υy,i s
, Υz,i s , Ωx,ks, Ωy,ks

, Ωz,ks, Dks, Θis).

(10)

In contrast, the deterministic case, which deals with the
mean ci,k would be calculated using:

c̄i,k = f(Ῡx,i , Ῡy,i , Ῡz,i , Ω̄x,k, Ω̄y,k, Ω̄z,k, D̄k, Θ̄i). (11)
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Candidate B makes use of the worst-case scenario metric
to calculate the robust time costs so that:

ri,k = N
max
s=1

ci,k . (12)

The maximum (worst case estimate) time cost occurring
in the sample is taken, which is a very conservative
strategy. For the problems considered here, the method
never underestimates the time taken to complete a task.
However, using an overestimate for every single task could
be dubitable, because each task has its own latest start time;
an agent may think, falsely, that a task is unreachable within
this time frame.

As Candidate B uses a very pessimistic and risk
averse strategy that could be potentially problematic when
used with the task-allocation scenarios described here, an
alternative method is proposed. Candidate C uses a hybrid
technique that attempts to match the time cost estimates
to the maximum start times, and thus improve overall
robustness. The method places a buffer value ψ on the
difference between the expected time cost and the maximum
(latest) start time of the task gk . If

gk − E(ci,k) < ψ (13)

is true then the worst case time cost (12) is used for ri,k;
the deadline for the task is tight so it pays to be pessimistic.
In other words, candidate C is simply more cautious about
accounting for uncertainty in its estimate. However, if (13)
is false then the deadline is more flexible and the expected
time cost can be used for ri,k as in (9).

The candidate modules are not task allocation algorithms
in their own right. They are simply a means for estimating
robust task costs in a given task allocation problem. Thus,
they could be used in any algorithm that deals with
calculating task costs. However, in the tests described in
Section 4, that aim to establish the best candidate, they
are used with the PI algorithm only, and each candidate is
integrated into PI using the equations described above to
calculate robust time costs ri,k , instead of measured ones
ci,k , for working out the RPI and IPI metrics. Effectively,
the same essential objective function is used in the resulting
PI-candidate algorithm, but the robust time costs are used
instead of the measured ones, i.e.

ϕ = 1

m

n∑

i=1

ρi∑

k=1

ri,k(ai ). (14)

As stated above, this is equivalent to minimizing the
mean expected time cost over all tasks in the case of
Candidate A.

Apart from sampling and calculating the robust time
costs in order to determine the RPI and IPI, the procedural

details for the resulting PI-candidate algorithms are almost
exactly the same as baseline PI, see [3, 8, 26] and [38].
However, there is another important difference between
the baseline and the PI-candidate architecture; when using
a candidate module, each agent i communicates its own
estimate of the relevant, local uncertain parameters to the
others (these include estimates of its own velocity Θi and
location Υx,i , Υy,i , and Υz,i , and its estimates of all the task
locations �x,i , �y,i , and �z,i , and durations Di). During
the consensus phase of the PI algorithm, see [3, 8, 26]
and [38], where the agents reach agreement upon the task
allocations, each agent is thus aware of the other agents’
estimates, and can use these values when calculating the
other agents’ robust time costs (and hence the resulting
IPI and RPI values). These metrics, along with those of
the agent itself, ultimately determine the agreed schedules.
This method ensures that consensus takes account of each
agent’s information; it is not biased toward the data from
any particular one.

4 Experimental design

Each of the candidate robustness modules is tested using
the scenario described in Section 4.1 and its performance
is measured using the metrics discussed in Section 4.3.
Baseline PI is included to compare performance with and
without the use of the candidate modules.

4.1 Scenario

Testing is based on a scenario that focuses upon on the
rescue aspect of a SAR mission. It is fully described in [3,
8, 26], and [38] and it represents a particular application of
the problem described in Section 3.1. There are a number of
heterogeneuos agents (rescue vehicles) that must complete
tasks, and a number of tasks (disaster survivors needing
to be rescued, i.e. requiring either food or medicine to
be despatched to them) that need servicing by the agents.
The agents in the scenario are UAVs (carrying food) and
helicopters (carrying medicine), and their mission is to
rescue the disaster survivors by delivering the supplies;
despatch of the food or medicine constitutes the completion
of a task.

The start locations of the UAVs and helicopters ϒx , ϒy ,
and ϒz are known in advance, as are the 3-dimensional
locations �x , �y , and �z, and requirements of the
survivors. The vehicles travel at a constant velocity �,
which is 50 m/s for the UAVs, and 30 m/s for the helicopters.
In addition, the task durations D are fixed at 350 s and
300 s for food and medicine respectively. As specified in
Section 3.1, a latest start time g is specified for a particular
task. This models the fact that the supplies must be delivered
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before the condition of a survivor begins to deteriorate to
such an extent that they are at risk of death.

Initially, to establish the best candidate module, two sets
of experiments based on the above scenario are conducted
(set 1 and set 2). In experiment set 1, for consistency, the
particular parameters used in [3] and [26] are adopted, hence
the world x and y coordinates range from − 5000 to 5000
m, the z coordinates range from 0 to 1000 m, the mission
time limit is set at 2000 s, the earliest start time for each task
is 0 s and the latest start time g is generated using a random
fraction of 2000 s, which means that the constraints upon
the task times can be very tight in some cases. A 16-vehicle
fleet is considered comprising 8 UAVs and 8 helicopters and
there are 32 tasks, i.e. 16 survivors needing food and 16
needing medicine (n = 16, m = 32). Experiment set 1 thus
has tight constraints but a low task to vehicle ratio of 2.

The above scenario has been used to test task allocation
algorithms in earlier work but it is not representative of
a realistic SAR mission as the task-to-vehicle ratio is too
low. In reality, there would be fewer vehicles searching
for more survivors. In fact, it is the problem structure
that tends to limit the task-to-vehicle ratio, in particular,
the stringent requirement that the mission is completed in
2000 s or under (about half an hour). The search area is
100 km3, but a helicopter traveling at 30 m/s can cover only
60 km in the alloted time. Furthermore, each task k has its
own critical time limit for commencement gk , which varies
between 0 s and 2000 s; this places further constraints on
the solution and is unrealistic as it includes the possibility
of a task that must be started as soon as the mission
begins. For these reasons, a further set of experiments
(set 2) is conducted in which the problem parameters are
adapted to suit more realistic task-to-vehicle ratios and time
constraints. In experiment set 2, the search area is reduced
to 25 km3 (the z coordinate range remains the same, but the
x and y coordinate ranges are changed to ± 2500 m). The
mission completion time is also extended to 5000 s, with
individual task time limits gk ranging from 1500 s to 5000 s.
This allows for higher task-to-vehicle ratios, and a ratio of 8
is selected, with forty tasks, five vehicles (n = 5, m = 40).
Experiment set 2 thus has more relaxed constraints but a
higher task to vehicle ratio than experiment set 1.

It is important to note that both of the problems
(experiment sets) represent artificial situations. However,
they have been chosen to cover conditions that will test the
candidates, i.e. they are not problems that are easily dealt
with (they have a mixture of tight constraints and high task
to vehicle ratios), but they have also demonstrated that they
are solvable with baseline PI in their deterministic form, i.e
they are not so difficult that no solutions will be found. In
addition, both experiment sets consider higher numbers of
tasks than the failure limit of 12 in [7], and set 1 uses more
vehicles than in [7].

4.2 Uncertainty models

Three levels of uncertainty (low, medium and high) are
considered, which vary according to prescribed errors in
the key uncertain variables - task location �x , �y , and
�z, vehicle location ϒx , ϒy , and ϒz, vehicle velocity �

and task duration D. The levels are chosen so that the low
uncertainty case models the lower error bounds that one
might expect for these variables, i.e. a situation where there
is reasonably high confidence in the instrumentation and the
data provided. By the same token, the high uncertainty case
models the upper error bounds in the uncertain variables
- the potential extremes in their variance. In this situation
there is low confidence in the readings and intelligence.

Thus, the uncertain variables are modeled as Gaussian
distributions centered on a known mean (the measured
values) with standard deviation equal to the estimated error
ε appropriate for each uncertainty level. For each variable
(apart from vehicle velocity, which is modeled with the
same error for each level), the bell curves have the same
mean but the low uncertainty curve is narrower than the
medium uncertainty curve, and the medium uncertainty
curve is narrower than the high uncertainty curve. Relatively
large percentage errors (50% for the low level and 200% for
the high level) are modeled for each dimension of the task
location, as information relies upon intelligence from mixed
external sources, for example word of mouth estimates
of position, inaccurate GPS readings or grid references
estimated using maps and compasses. Most UAVs carry
satellite positioning (GNSS) receivers, which, for military
purposes, should conform to sub-meter accuracy. However,
a fixed, higher error of 15 m in each dimension (for all
three uncertainty cases) is modeled for the coordinates
of the vehicles as GNSS signals can be weak and are
vulnerable to interference from many sources such as radio
signals and power systems. UAVs generally use airspeed
indicators to measure their velocity [39], but these can
demonstrate instrument errors of up to about 7 m/s [40]. As
the vehicle speeds are 30 m/s and 50 m/s, an upper limit
of about 20% seems sensible. Task durations are the most
uncertain parameters since many sources contribute to them,
including earlier delays servicing other tasks, and innacurate
estimates for other variables, such as vehicle velocity. For
this reason, relatively large percentage errors (10% for the
low level and 50% for the high case) are modeled, but the
uncertain values are not allowed to fall below their real
values by more than 50 s as it is assumed that there is
a minimum duration for each task. The errors ε for each
uncertain variable and uncertainty level are summarized in
Table 1. Monte Carlo sampling is used to allocate a value
from the distribution to each uncertain variable and, as
discussed in Section 3.3, this is carried out separately for
each vehicle.
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Table 1 Uncertainty levels used in the experiments

Uncertainty level Task Vehicle Vehicle Task

Location Location Velocity Duration

Error (m) Error (m) Error (%) Error (%)

εΩ εΥ εΘ εD

Low 50 15 5 10

Medium 100 15 10 25

High 200 15 20 50

4.3 Parameter settings andmetrics

Preliminary trials with parameter ψ set between 5 s and 40
s confirmed that the best value to use for this in candidate
C is about 20 s, although the algorithm does not appear to
be very sensitive to its change. The size N of the samples
is maintained at 100 throughout all the experiments as
pretrials showed that increasing the sample size to 500 did
not improve the results much, but increased computation
time. For each scenario, the algorithm is run 100 times
to obtain a percentage failure rate. Other numbers were
trialed between 50 and 500, but not much variation in the
results was enountered, and using more than 100 runs would
have increased computation time. Indeed, there will always
be variation in performance based on the actual scenario,
but examining the results over 100 runs provides a good
indication of the failure rate and allows t-tests to be carried
out on the objective function values.

Success is measured by selecting random real values
for the uncertain parameters from the known probability
distributions and calculating the actual number of tasks
allocated to vehicles using the robust solution. If any tasks
are unassigned then the run is counted as a failure; a run is
only successful when all tasks are allocated. The percentage

of unassigned tasks across all runs is also of interest as a run
might fail, for example, because all the tasks are unassigned
or because only one is unassigned. In addition, a solution
where the tasks are completed faster i.e., one in which
the make-span is minimized, is preferable. For this reason,
the mean objective function value ϕ̃ across all successful
scenarios is also recorded for each algorithm to provide
further comparison.

4.4 Network topology

Both sets of experiments are conducted using a randomly
generated mesh network topology. This is similar to a
circular topology where vehicles are connected in a ring and
each communicates with the next and previous vehicle only,
except that in a mesh other communication pairs may also
be connected. In these experiments, only half of the other
connection pairs are set as communicable, which means
that some vehicles cannot communicate directly with each
other. The resulting topology thus represents a realistic
communication structure as it is not fully connected and is
not as simplistic as a row or circular structure.

5 Results

Figures 1 and 2 show the results for the first experiment
set across all 100 runs and for each algorithm and each
uncertainty case. Figure 1 displays the percentages of
unassigned tasks (the maximum number of unassigned tasks
possible in this case was 3200) and Fig. 2 shows the
percentages of failed runs, i.e. runs where the algorithm
was unable to allocate all of the tasks. Figures 3 and 4
repeat this information for experiment set 2 (the maximum
number of unassigned tasks possible in set 2 was 4000).
Table 2 highlights the mean objective function values for
each algorithm and experiment set.

Fig. 1 Percentage of
unallocated tasks for each
algorithm and each uncertainty
case in experiment set 1
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Fig. 2 Percentage of failed runs
for each algorithm and each
uncertainty case in experiment
set 1

Fig. 3 Percentage of
unallocated tasks for each
algorithm and each uncertainty
case in experiment set 2

Fig. 4 Percentage of failed runs
for each algorithm and each
uncertainty case in experiment
set 2
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Table 2 Mean objective function values ϕ̃ across successful runs

Algorithm Experiment Set 1 Experiment Set 2

High Med Low High Med Low

Baseline PI 282 264 261 1378 1340 1321

PI + candidate A 276 262 257 1354 1338 1333

PI + candidate B 268 263 259 1342 1348 –

PI + candidate C 262 267 262 1340 1322 1316

The results for baseline PI show that failure to allocate
tasks is a serious drawback when uncertainty is modeled,
and the problem scales linearly with the level of uncertainty.
For high uncertainty the failure rate is 66% for experiment
set 1 and 84% for experiment set 2, with the figures reducing
to 27% and 39% respectively for the low uncertainty case.
The total number of unallocated tasks across all 100 runs
was 299 (about 9%) for experiment set 1 and 420 (about
11%) for experiment set 2 when uncertainty was high.
These figures reduced to 51 (about 2%) and 68 (about
2%) respectively for the low uncertainty case. These failure
rates and unallocated task figures are unacceptable for SAR
missions, as all survivors need to be rescued.

When candidate robustness module A is used with PI
there is some improvment upon the baseline performance,
especially in the case of experiment set 2, but the algorithm
still fell short of producing an acceptable failure rate or
a low enough number of unassigned tasks. For example,
for high uncertainty its failure rates were 49% and 31%
respectively, and the total number of unallocated tasks were
93 (about 3%) and 74 (about 2%) respectively.

The performance of PI with candidate robustness module
B was worse than the baseline in terms of the failure rate for
high uncertainty in both experiment sets, and for all levels of
uncertainty in experiment set 2 where it demonstrated a near
100% failure rate. In terms of total number of unassigned
tasks its performance bettered baseline PI in most cases, but
it was still not as good as module A when uncertainty was

high. It proved 100% capable of predicting its performance
but, unfortunately, it was just predicting its own failure in
most cases.

Candidate module C, which combines the expected-
value metric and the worst-case metric, showed a low
failure rate and low total number of unassigned tasks for
both experiment sets. For the high uncertainty case the
failure rate was reduced to 10% and 2% for sets 1 and 2
respectively, and decreased further to 0% and 1% when the
uncertainty level was low. The number of unassigned tasks
was also very low in all the uncertainty cases and across
both experiment sets compared to baseline performance.
The reduction in failures can be attributed to the more
‘cautious’ design of the algorithm. When the time margin
for task completion is tight it acts pessimistically, selecting
the worst-case metric to calculate the robust task costs.
However, when there is plenty of slack in the time margin,
the expected value is used. In addition, t-test results (at
the 99% level) comparing the mean objective function for
baseline PI and PI with module C revealed that the latter
has a significantly faster mean task completion time in
experiment set 2 for all of the uncertainty cases. This
was also true in experiment set 1 for the high uncertainty
case. For the medium and low uncertainty cases in this
experiment set, there was no significant difference between
the two results. This strongly suggests that module C
enables PI to produce reliable solutions under uncertain
conditions without compromising the solution quality, and
may even improve the solution quality in some cases. For
these reasons, module C is adopted as the architecture for
the robustness module, which is now referred to as ROB-M.

There is a trade-off between a fast run-time and a
robust solution; the modules that use expected time-
costs (Candidate A and ROB-M) take about 30 times
(experiment set 1) and 50 times (experiment set 2)
longer to run than the baseline. In the baseline, the IPI-
calculation dominates, taking up about 85% of execution
time. Examination of the individual run times for each part
of these composite algorithms shows that about 78% of

Fig. 5 Percentage of
unallocated tasks for each
algorithm and each uncertainty
case in experiment set 3
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run-time is devoted to the MATLAB statistical functions
associated with determining the expected time costs and
the probabilities of the uncertain variables. This is the key
factor underlying the longer run-times. However, the IPI
calculation still dominates the remaining routines, taking
around 20% of total run-time, with actual time spent in the
IPI routine longer than for equivalent problems solved with
the baseline. Between 7 and 12 seconds are added to run-
time, which may be attributed to the increase in complexity
associated with computing the expected time costs and
probabilities of the uncertain variables.

6 Intergrating ROB-Mwith CBBA

It has been shown that ROB-M works well with PI in
both of the experiment sets. However, neither of the model
problems is suited to CBBA as the problem in set 1 has
very tight constraints and the task to vehicle ratio for the
problem in set 2 is too high. Baseline CBBA fails to solve
both of these problems, even in their deterministic form,
and when 100 uncertain runs of the problems are attempted,
baseline CBBA demostrates a 100% failure rate. Bolting
ROB-M onto CBBA and solving the uncertain problems
does not help as the underlying CBBA task allocation
mechansim appears to be flawed for these problem types;
the uncertainty is a secondary problem. However, one of the
aims of the work here is to show that ROB-M can work
with another distributed task allocation algorithm. Thus, a
problem that baseline CBBA can solve deterministically is
selected for experiment set 3. This problem has the same
time constraint parameters as experiment set 2, so it is a
more relaxed problem. In addition, 10 vehicles and 50 tasks
are selected to produce a more reasonable task to vehicle
ratio of 5. This experiment set also uses more vehicles than
in [7], and many more tasks than the failure limit of 12 in

Table 3 Mean objective function values ϕ̃ across successful runs

Algorithm Experiment Set 3

High Med Low

Baseline CBBA 743 738 736

CBBA + ROB-M 747 738 736

Baseline PI 784 759 739

PI + ROB-M 752 740 735

[7]. The new experiment set is trialed with baseline CBBA
and CBBA with ROB-M. It is also solved using baseline PI
and PI with ROB-M for comparison.

6.1 Experimental design

As in the previous experiment sets, 100 uncertain runs
are made, this time using baseline CBBA, baseline PI,
CBBA with ROB-M, and PI with ROB-M. The percentage
of failures, the percentage of unallocated tasks and the
mean objective function values (ϕ̃) for successful runs are
recorded, as before.

6.2 Results and discussion

Figures 5 and 6 show the percentage of unassigned tasks
(the maximum number of unassigned tasks possible was
5000), and percentage failures respectively (across all 100
runs and for each algorithm and each uncertainty case) for
experiment set 3. Table 3 highlights the mean objective
function values for each algorithm.

The first observation is that baseline CBBA appears to be
more robust to uncertainty than baseline PI in this problem.
In the low uncertainty case baseline CBBA did not fail in
any of the 100 runs. This compares to an 8% failure rate

Fig. 6 Percentage of failed runs
for each algorithm and each
uncertainty case in experiment
set 3
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Fig. 7 Comparison with
Ponda’s results. Mean number
of solved tasks versus total
number of tasks

for PI, which demonstrated 8 unallocated tasks in total (less
than 0.2%). When uncertainty was high, baseline CBBA
failed in 20% of the runs (64 total unallocated tasks, about
1%) in contrast to PI, which failed in 70% of the runs
(369 total unallocated tasks, about 7%). When ROB-M was
bolted on, the failure rate for the high uncertainty case was
reduced to 1% (1 total unallocated task) for CBBA and 0%
(no unallocated tasks) for PI. In fact use of ROB-M with PI
resulted in zero failures for all uncertainty cases. There were
also zero failures for CBBA with ROB-M in the medium
and low uncertainty cases. It appears that ROB-M works
well with CBBA to reduce the effects of uncertainty, as long
as baseline CBBA is capable of solving the deterministic
version of the task allocation problem.

There were no significant differences (99% level) between
the mean completion times for CBBA with and without
ROB-M. However, PI with ROB-M showed a significantly
faster mean completion time than baseline PI. Again,
this strongly suggests that the use of ROB-M does not
compromise the performance of the algorithm in terms of
the objective function.

7 Comparing PI-ROB-M to Ponda’s robust
CBBA algorithm

In a final set of experiments, PI with ROB-M is compared
directly to results published in [7] using Ponda’s robust
CBBA algorithm - the version that uses the expected value
of the task costs. In these runs, consistent with the published
work, six heterogeneous vehicles (three helicopters and
three UAVs) must rescue an increasing number of survivors,
first 20, then 40, then 60. The problem used in experiment
set 2 is chosen, the high uncertainty model described in
Section 4.2 is adopted, 100 runs are completed for each
combination of tasks and vehicles, and the mean number of
solved tasks over the 100 runs is recorded. The results are
shown in Fig. 7.

For PI with ROB-M, the 20 task and 40 task scenarios
demonstratred a 100% success rate. The success rate
reduced to 47% when the number of tasks increased to 60,

but the number of unallocated tasks in each run remained
low, with the mean number of solved tasks equal to 59.
These results compare to mean numbers of solved tasks of
16 (20 total tasks) 25 (40 total tasks) and 30 (60 total tasks)
for Ponda’s robust CBBA algorithm, and provide strong
supporting evidence that PI with ROB-M copes better under
uncertain conditions.

8 Conclusions

Baseline PI does not handle uncertainty well; in all three
experiment sets with the baseline, a high percentage of the
solutions fail to allocate all of the tasks when simulated
uncertainty is high, and the number of unallocated tasks is
also relatively large. These figures tend to decrease linearly
as the degree of modeled uncertainty is reduced, but the
problem is still apparent. Taking the expected value of the
time costs in PI reduces the failure rate and the numbers
of unallocated tasks, but the method is still not reliable
enough for time-critical problems. When the worst-case
scenario metric is used, the algorithm demonstrates poor
performance, especially for high uncertainty, as it always
overestimates the time costs; this provides evidence that
this strategy is not suited to problems that have individual
task time constraints. However, when a combination of
the expected value and the worst-case scenario metric is
used, the results are greatly improved, in terms of both
a more robust solution (a 0 to 10% failure rate and low
number of unallocated tasks) and a significantly smaller
objective function value for most of the uncertainty cases
tested. For this reason, the hybrid worst-case-expected value
method is adopted for the ROB-M robustness module. In
addition, only 100 samples are required for ROB-M to
achieve this low failure rate, which compares very favorably
to the 10,000 samples used by Ponda [7] for the robust
version of CBBA; the experiments performed here have
also demonstrated success using more tasks and agents than
those reported in [7].

It has also been shown that ROB-M can easily be bolted
on to CBBA, and can reduce the effects of uncertainty, as
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long as baseline CBBA is capable of solving the deter-
ministic version of the task allocation problem attempted.
Furthermore, t-test analysis has shown that the solution
quality is not compromised when ROB-M is used, either
with CBBA or PI. The final set of experiments compared
the PI-ROB-M combination to results published in [7] and
provided strong evidence that the architecture is able to
cope better under uncertainty than Ponda’s robust CBBA
alorithm, as much-improved mean numbers of solved tasks
were obtained.

Despite the small sample size, scalability in the numbers
of agents and tasks is still a problem, with robust versions of
the PI algorithm displaying a higher run time compared to
the baseline equivalents. For the model problems tested, one
run still completes in a relatively short time compared to the
mission length, but there is a limit to usability in terms of
the numbers of tasks and agents because of the increased
computation time.

Future work will aim to improve the efficiency of the
core PI algorithm and the ROB-M bolt on by refactoring
both algorithms. Experiments will then provide empirically-
derived estimates of how the robust agorithm scales as the
number of samples, tasks and agents increases. The effects
of reducing and increasing network connectivity will also
be examined in relation to both algorithm performance and
run-time efficiency. Experiments will also be carried out
to test whether performance can be enhanced by tailoring
the size of the buffer ψ to the individual time limits for
each task. In addition, there are other risk-averse strategies
besides using a buffer, for example using different estimates
of the sample standard deviation; these methods will be
examined and compared to the existing one in order to
determine whether ROB-M’s performance can be improved.
Finally, for these time-critical problems, the benefits of
using ROB-M are tied to the time limit to complete the
tasks; it would thus be worth exploring whether there is any
time limit threshold over which the success of the bolt on
begins to pay off compared to the baseline solution.

The study of distributed robust optimization remains
wide open. Most methods designed for the types of problem
discussed in this paper do not consider uncertainty in their
solutions. Thus, the main contribution here is the successful
design and implementation of a robustness module for use
with general, distributed task allocation algorithms.
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