Appl Intell (2018) 48:966-991
DOI 10.1007/s10489-017-1032-y

@ CrossMark

Predictive intelligence to the edge through approximate

collaborative context reasoning

Christos Anagnostopoulos! - Kostas Kolomvatsos?

Published online: 7 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract We focus on Internet of Things (IoT) environ-
ments where a network of sensing and computing devices
are responsible to locally process contextual data, reason
and collaboratively infer the appearance of a specific phe-
nomenon (event). Pushing processing and knowledge infer-
ence to the edge of the IoT network allows the complexity
of the event reasoning process to be distributed into many
manageable pieces and to be physically located at the source
of the contextual information. This enables a huge amount
of rich data streams to be processed in real time that would
be prohibitively complex and costly to deliver on a tradi-
tional centralized Cloud system. We propose a lightweight,
energy-efficient, distributed, adaptive, multiple-context per-
spective event reasoning model under uncertainty on each
IoT device (sensor/actuator). Each device senses and pro-
cesses context data and infers events based on different local
context perspectives: (i) expert knowledge on event rep-
resentation, (ii) outliers inference, and (iii) deviation from
locally predicted context. Such novel approximate reason-
ing paradigm is achieved through a contextualized, collab-
orative belief-driven clustering process, where clusters of
devices are formed according to their belief on the presence
of events. Our distributed and federated intelligence model
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efficiently identifies any localized abnormality on the con-
textual data in light of event reasoning through aggregating
local degrees of belief, updates, and adjusts its knowledge to
contextual data outliers and novelty detection. We provide
comprehensive experimental and comparison assessment of
our model over real contextual data with other localized and
centralized event detection models and show the benefits
stemmed from its adoption by achieving up to three orders
of magnitude less energy consumption and high quality of
inference.

Keywords Collaborative event inference - Federated
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theory - Adaptive vector quantization - Type-2 fuzzy logic
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1 Introduction

We envisage an IoT environment, where things at the edge
of the network convey locally inferred knowledge to the
IoT applications. We focus on a setting that involves net-
works of distributed wireless devices (e.g., sensor nodes
and actuators, smart meters) capable of sensing and locally
processing & reasoning about events. Each node performs
measurements and locally extracts and infers knowledge
over these measurements in light of event reasoning, e.g.,
wireless sensors spread on a geographical area are respon-
sible for inferring fire or flood incidents. The fundamental
requirement to materialize predictive intelligence at the
edge of the network is the autonomous nature of nodes to
locally perform data sensing & inference, and disseminate
only inferred knowledge (e.g., minimal sufficient statis-
tics) to their neighbors and concentrators. Nodes convey
intelligence to concentrators for event inference.
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Many critical IoT applications have been developed on
top of contextual data streams captured by nodes for events
identification and reasoning. Events are related to critical
aspects, e.g., security issues or violations of predefined con-
straints. For instance, in security and environmental moni-
toring applications, a monitoring infrastructure is imperative
to apply an efficient mechanism to derive alerts when spe-
cific criteria are satisfied [1, 8, 10, 12, 23]. We can identify
two main orientations in terms of data acquisition, transfer
and contextual reasoning:

— Orientation 1: Centralized Context Reasoning. Nodes
transfer their measurements to a concentrator, e.g., a
sink node, back-end-system, Cloud center, which the
latter processes data and possesses the intelligence to
infer events, and

—  Orientation 2: Collaborative Context Reasoning. Nodes
locally process data, locally infer knowledge, and have
the intelligence for event reasoning in a collaborative
manner.

In this paper, we elaborate on the second orientation
through a collaborative, intelligent, and adaptive model
for local data processing and event reasoning. This fed-
erated reasoning among nodes involves three perspectives
of the captured information: (i) predicted context, (ii) con-
textual inference of outliers, and (iii) context fusion based
on expert knowledge. These different Context Perspectives
(CPs) are aggregated into a Type-2 Fuzzy Sets inference
engine, which locally concludes on an event. Then, through
a proposed knowledge-centric nodes clustering scheme in
a federated way, nodes disseminate only pieces of inferred
knowledge among them to unanimously reason about an
event based on their local view. In turn, representative
nodes of such collaborating clusters locally reason about
context and then report the aggregated inference to the
concentrators. The concentrators form a contextual event
map and apply strategies to handle the inferred events, e.g.,
warn/trigger flood first responders. The key excellence is
that our model combines local context processing & infer-
ence to the network edge with knowledge-centric nodes
clustering. The challenge is to collaboratively process &
infer events by minimizing the false alarms / erroneous
inference that affect decision making, i.e., unsuitable deci-
sions of handling hazardous phenomena.

1.1 Related work

Event processing & inference is adopted to support the
development of IoT applications [8]. From the sensing
and processing perspective, normally in the literature, the
sensing devices monitor a specific area and deliver the
captured data to a back-end system for processing, event
inference, and alerts/decision making [10, 24]. Analysis on

architectural solutions and case studies on event inference
mechanisms is discussed in [3]. The back-end system in [18]
adopts aggregate methodologies for event inference, while
in [17] it supports IoT applications for air quality monitor-
ing in indoors environments. Such system collects contex-
tual data from temperature, humidity, light, and air quality
sensors and then centrally infer events. Moreover, the cen-
tralized context reasoning systems in [6, 12], and [23]
provide early inference of forest fire events based on vision-
enabled sensors, home monitoring based on the received
signal strength of sensors, and surveillance of critical areas,
respectively. In wireless sensors network deployments, e.g.,
[2, 5, 11, 16], the back-end systems centrally provide event
inference for specific areas by minimizing false alerts.

From the quality of inference perspective, event infer-
ence utilizing the principles of approximate reasoning like
Fuzzy Logic (FL) is proved a useful technique for deliv-
ering high quality of inference. The model in [7] predicts
the peak particle velocity of ground vibration levels. Such
model adopts a FL-based inference scheme and utilizes the
parameters of distance from blast face to the vibration mon-
itoring point. The FL-based context reasoning model in [22]
estimates the radiation levels in the air. The adoption of FL
aims to handle missing values and, thus, deriving a mech-
anism capable of delivering alerts. The FL-based fusion
model in [35] reduces uncertainty and false-positives within
the process of fault detection. In [4], a specific FL-based
inference system is proposed for ambient intelligence envi-
ronments. Such system learns the users’ behavior in light
of being adapted to the users’ profiles. In [13, 14], the
authors propose a centralized reasoning system that derives
immediate identification of events based only on univari-
ate data. Such system adopts data fusion and prediction
for efficiently aggregating sensors measurements. Then, the
system adopts FL for handling the uncertainty on the event
reasoning.

In all the aforementioned efforts, the edge devices trans-
fer their data to a back-end system, where the latter based
on certain computing and reasoning paradigms, e.g., data
aggregation, FL-based reasoning, infers events and provides
alerts/warnings to IoT applications. The clear major dif-
ference of our collaborative machine learning mechanism
compared to the aforementioned efforts is the localized
event processing & inference at the network edge instead
of a centralized reasoning approach. In all research efforts,
the back-end system centrally undertakes the responsibil-
ity of event reasoning [15] and alerts generation once all
contextual data are delivered throughout the network [19].

Our federated reasoning approach drastically departs
from the centralized predictive intelligence paradigm to a
fully distributed intelligence perspective. Our challenge is
to push the intelligence for event processing & inference
to the edge nodes equipped with computing and sensing
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capabilities provide partial awareness on an event. By
enhancing this local event inference with different CPs, our
mechanism (i) avoids raw data transfer from IoT nodes
to a back-end system, (ii) favors of conveying the min-
imal inferred knowledge from the edge to concentrators
by introducing a knowledge-centric nodes clustering, (iii)
minimizes the false alarm rate by introducing advanced
approximate inference over the CPs, and (iv) reduces the
communication overhead induced by transferring humon-
gous data volumes from sensors to concentrators through
localized inference. In our orientation, the edge nodes do
not share and/or relay contextual information. Instead, they
conditionally transfer inferred prices of knowledge, if nec-
essary, in light of high quality of inference. Furthermore,
from the quality of inference perspective, our mechanism
adopts Type-2 Fuzzy Sets over multivariate contextual data
instead of univariate data Type-1 Fuzzy Sets as e.g., in [13],
to cope with the induced uncertainty of event knowledge
representation.

1.2 Research excellence & contribution

To the best of our knowledge, our collaborative machine
learning mechanism is a first attempt to materialize the
concept of federated reasoning by conveying predictive
intelligence for real-time event inference to the edge of
the network. This is achieved by exploiting at most the
computing & sensing capabilities of IoT nodes based on
different CPs. Our vision of intelligent edge computing is
materialized by conditionally deliver inferred knowledge
from the network edge with high quality of inference and
not transferring data to the back-end-system. In combination
with the proposed knowledge-centric clustering scheme, our
novel mechanism is robust in terms of erroneous event infer-
ence (false alerts) and reduces the communication overhead
between nodes and back-end system. The obtained outcome
of this research is: (i) accurate event inference close to the
source of the contextual information, (ii) significantly low
communication overhead by localized belief-centric group-
ings, thus, avoiding data transfer to the back-end systems,
and (iii) energy-efficient and robust inference in terms of
imprecise and faulty data streams.
The major technical contributions of this research are:

— A temporal nearest-neighbors exponential smoothing
model for localized context prediction;

— A conditionally growing adaptive vector quantization
model for localized context outliers inference based on
the Adaptive Resonance Theory;

— A time-optimized stochastic novelty detection & adap-
tation model based on the Optimal Stopping Theory.
We provide the theoretical analyses for the above-
mentioned statistical learning and optimization models;
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— A collaborative knowledge-centric nodes clustering
scheme and a Type-2 FL-based event inference combin-
ing predicted and fused context with outliers identifica-
tion;

— Asymptotic time and space complexities of the proposed
algorithms and collaborative methods and a comprehensive
evaluation of the nodes energy consumption in terms of
communication and computation/processing cost;

— Performance and comparative assessment of our mech-
anism with: (i) the local voting scheme and (ii) the
centralized aggregation-based event detection schemes
achieving up to three orders of magnitude less energy
consumption in an [oT environment.

1.3 Organization

The paper is organized as follows: Section 2 presents the
rationale and overview of our federated reasoning approach.
Sections 3 and 4 introduce the local context prediction
and outliers detection, respectively. Section 5 proposes a
novelty & adaptation mechanism, while Sections 6 and 7
introduce context fusion and Type-2 FL-based inference.
Section 8 discusses on the collaborative knowledge-centric
nodes clustering. Section 9 reports on the asymptotic time
and space complexities of the proposed algorithms and
methods and discusses the nodes energy consumption in
terms of communication and computation/processing cost.
Section 10 presents a comprehensive performance and com-
parative assessment with other event identification mecha-
nisms. Section 11 concludes the paper.

2 Overview & rationale
2.1 Overview

We model the topology of an edge network of sensing and
computation nodes (nodes) by an undirected communica-
tion graph as shown in Fig. 1 (left). Let G = (£, N) denote
an undirected graph with vertex set A" = {1,2, ...,n} and
edge set £ C {{i, j}li, j € N}, where each edge {i, j} is
an unordered pair of distinct nodes. A graph is connected
if for any two vertices i and j there exists a sequence of
edges (a path) {i, k1}, {k1, k2}, ..., {ks—1, ks}, {ks, j} in E.
Let NV; = {j € N|{i, j} € £} denote the set of neighbors of
node i. Let also a set of concentrator nodes C = {1, ..., c}
that act as sink nodes for a specific subset of nodes in
N Concentrators gather (digested) context knowledge from
certain nodes in order to provide to the IoT applications the
corresponding reasoning results by those nodes on the pres-
ence of an event of interest. The concentrators could directly
connect to a fixed Internet infrastructure, e.g., cloud plat-
form for predictive analytics.
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Fig. 1 (Left) Overall architecture: IoT nodes locally process data and infer events, where cluster heads (CHs) report the aggregated degree of
belief concentrators; (right) Internal context processing and reasoning on an IoT node: from context sensing to local event inference

The nodes monitor a specific area by sensing multi-
ple contextual variables like ambient temperature, humidity,
wind speed, and perform local reasoning to infer on an event
of interest, e.g., a fire or flood event. We assume that nodes
observe the same phenomenon. The degree of occurrence
or degree of belief of an event, notated by w;, is locally
inferred by node i. This belief is disseminated by node i to
its neighbors A; to further enhance the contextual knowl-
edge of its neighborhood. This leads to a clustering of nodes
according to their view, thus contributing to distributed
event reasoning.

The nodes clustering is achieved by the election of a
node, referred to as Cluster Head (CH), based only on the
disseminated degrees of belief. Groups of nodes are formed
each one involving a unique CH. Each CH aggregates its
members’ degrees of belief and communicates with its con-
centrator delivering an inference result. In this case, no
centralized process is adopted for clustering and data aggre-
gation on event identification. The CHs convey aggregated
knowledge to concentrators, thus, minimizing the messages
circulated in the network. Note, the messages exchanged
among members and CHs are not raw data. Instead, they
are pieces of inferred context represented by the degrees of
belief as it will be elaborated later. The overall proposed
architecture is shown in Fig. 1 (left).

2.2 Rationale

Our multi-perspective collaborative context reasoning
model for each node builds on top of a local FL-based

inference engine (Type-2 FL System; introduced later) that
combines three perspectives of context: (i) current fused
context, (ii) predicted context, and (iii) outliers context.
This model locally derives the degree of belief y; for node
i each time a vector of contextual values is captured; here-
inafter, referred to as context vector. A node i orchestrates
the following reasoning processes to infer an event:

Context Fusion evaluates the event inference rule
defined by experts from the current context vector.
Context Prediction utilizes the trend of historical con-
text vectors experienced on node i for a short-term
forecast of context.

Context Outliers & Novelty incrementally evaluates
and revises its belief that the currently context vec-
tors significantly deviate from their statistical patterns
experienced on node i.

Fuzzy Context Inference, which is realized by a Type-
2 FL System (T2FLS), combines predicted and outliers
context vectors with the current fused context. T2FLS
derives the u; for node i as a local inference.

Assume a discrete time domainr € T = {1,2,...}. A
context (row) vector X = [xq,...,xq] € R4 consists of d
variables x; € R corresponding to sensor measurements. A
node i at time ¢ captures context vector x(¢) and combines
the Context Perspectives (CPs):

(CP1) the current belief of an event by evaluating the
expert’s knowledge over x(¢).
(CP2) how much x(#) is deviated from the predicted
context given a short history,
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— (CP3) in what degree x(¢) is considered as an outlier
given the statistical distribution of patterns. Figure 1
(right) shows the all context processing and reasoning
processes for node i: from context sensing to local event
inference.

Concerning CP1, our model evaluates the belief of event
from the current context. Since CP1 constitutes a rule-based
baseline solution for event inference, we move a step further
to incorporate knowledge from CP2 and CP3. As we show
in our evaluation, the fusion of these CPs results to more
sophisticated event reasoning.

Concerning CP2, node i stores the most recent m vec-
tors x(t — m),x(t —m + 1),...,x(t — 1). Based on this
history, node i predicts the context vector at time ¢, X(¢)
with respect to the conditional expectation conditioned on
the recent observed history, i.e.,

k() = E[x(®)|x(t = 1), ..., x(t —m)]. 1

Node i then captures the actual context x(¢) and the predic-
tion error is e(t) = ||x(¢) — X(¢)||, where ||-|| denotes the
Euclidean norm. The rationale in CP2 is that the prediction
error gives an insight of how the actual vector is deviated
from the expected vector based on a short-term history expe-
rienced on node i. If the current context deviates from the
expected context then this instantaneously indicates that the
observed recent normal state changes. However, we should
take into consideration the statistical patterns from the entire
history of context vectors to enhance our belief on event
inference.

Concerning CP3, node i incrementally estimates the
probability distribution of context p(x). This unknown dis-
tribution is approximated by specific pattern vectors wy €
RY k e [K ],1 which represent the so-far observed vec-
tor space D C RY. The number K of those patterns is
not necessarily fixed and is initially unknown. Each pat-
tern wy is the representative of the (convex) vector subspace
Dy C D. The p(x) is approximated by patterns based on
the probability p(x|wy) of observing x being derived from
subspace Dy represented by wy. As it will be discussed,
this probability depends on the distance between x and wy.
The rationale in CP3 is that node i infers whether current
x deviates significantly from the (so far) statistical patterns.
In turn, node i assesses whether x lies outside or not the
observed vector space utilizing the assignment probability
p(W¥|x) o p(x|w*) p(w*), with respect to its closest pattern
w* ie.,

w* = arg min ||x — wi||. 2
gke[K]” kll 2

As will be discussed, the assignment probability p(w*|x)
quantifies the instantaneous belief that context is (i)

'k € [K]is a compact notation for k = 1, ..., K adopted in the paper.
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either outlier, (ii) or novelty, thus, expanding our current
knowledge, (iii) or a normal instance of the space D, thus,
updating our current knowledge. Node i, to support such
reasoning, is equipped with a time-optimized mechanism
to incrementally update/adjust to possible novel vector sub-
spaces identified, thus, augmenting its current knowledge.
This augmentation is achieved by increasing the number
of patterns to better reflect the new vector subspaces, thus,
minimizing the risk of false consideration of outliers, which
correspond to false alarms under event inference. Before
proceeding with the three CPs, we provide some preliminar-
ies on unsupervised statistical learning and optimal stopping
theory adopted in our analysis.

2.3 Preliminaries
2.3.1 Adaptive vector quantization

Adaptive Vector Quantization (AVQ) refers to an unsuper-
vised learning (clustering) algorithm [31] that partitions a
d-dimensional space R? into a fixed number of K sub-
spaces. AVQ distributes K patterns wy, ..., Wg in RY, A
pattern wy represents a subspace of R?. AVQ learns as wy
changes in response to random vector x € R?. Competi-
tion selects which wy the vector x modifies. The k-th pattern
‘wins’ if wy is the closest to x. During partition, vectors X
are projected onto their closest patterns and patterns adap-
tively move around the space to form optimal partitions
(subspaces of R?) that minimize the Expected Quantization
Error (EQE):

J(wih) = E [n;{innx —~ w;ﬂ : 3)

2.3.2 On-line machine learning & stochastic gradient
descent

Stochastic Gradient Descent (SGD) [27] is widely adopted
in on-line machine learning as an optimization method
for incrementally minimizing an objective function 7 (a),
where a € A is a parameter from a parameter space .4 and
a* € A minimizes 7. SGD leads to fast convergence to a*
by adjusting the estimated a so far in the direction (negative
gradient —V 7), which improves the minimization of 7.
SGD gradually changes a upon reception of a new training
sample. The standard gradient descent algorithm updates a
as: Aa = —nV,4E[J (a)], where the expectation is approx-
imated by evaluating 7 and its gradient over all training
pairs and n € (0, 1). On the other hand, SGD simply does
away with the expectation in the update of a and computes
the gradient of 7 using only a single training sample at step
t =1,2,.... The update of a; at step ¢ is given by:

Aa; = = Vg, T (ar). 4)
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In SGD, the learning rate {n;} € (0, 1) is a step-size
schedule, which defines a slowly decreasing sequence of
scalars that satisfy:

o0 o
Zntzooand Zn,2<oo. 5)

t=1 t=1
Choosing the proper learning schedule is not trivial; a
practical method is the hyperbolic schedule: n; = z-+1 [27].

2.3.3 Optimal stopping theory

The Optimal Stopping Theory [28] (OST) deals with the
problem of choosing the best time instance to take the deci-
sion of performing a certain action. This decision is based
on sequentially observed random variables in order to maxi-
mize the expected reward. For random variables X1, X», ...
and measurable functions Y; = (X1, X2,..., Xs), t =
1,2,...and Yoo = ¥o(X1, X2, ...), the problem is to find
a stopping time 7 to maximize E[Y;]. The t is a random
variable with values in {1, 2, .. .} such that the event {t = t}
is in the Borel field (filtration) F; generated by X1, ..., X;,
i.e., the only available information we have obtained up to ¢:
F;, = B(Xy, ..., X;). The decision to stop at ¢ is a function
of X1, ..., X; and does not depend on future observables

Xi+1, - ... The problem is to find the optimal stopping time

t* such that the supremum E[Y;] is attained: i.e.,

t* = inf{r > 1|¥; = esssup E[Y;|F,]}. 6)
>t

The (essential) supremum ess sup, ., E[Y|F;]} is taken
over all stopping times 7 such that T > 1. The optimal
stopping time #* is obtained through the principle of opti-
mality [30]. The theorem in [39] refers to the existence of
the optimal stopping time.

Theorem 1 (Existence of Optimal Stopping Time) If

E[sup, Y;] < oo and lim;,oosup,Y; < Y« almost
surely then the stopping time t* = inf{t > 1|Y; =
esssup,, E[Y;|F]} is optimal.

Proof See [39]. O

3 Context prediction

The major concept of this CP is to interpret the deviation
between the excepted context and the actual context on node
i as a reliable indication of an event. Context prediction
(Fig. 1(right)) involves a multidimensional time-series vec-
tor forecast at node i to locally predict the upcoming context
x(t + 1) given a sliding history window of m observed
vectors x(t — m), ..., X(t — 1) and the current context x(z).

We enhance the multivariate Holt-Winters Double Expo-
nential Smoothing (DES) with a h-Nearest Neighbors
smoothing (ANN) at time #, 1 < 2 < m. DES takes into
account the possibility of a time series exhibiting some form
of trend with an updated slope component. In our case, we
attempt to capture the temporal correlation of the noisy con-
textual data by exploiting the values of the temporal data
nearest neighbors. The proposed temporal smoothing func-
tionality over DES encapsulates the correlation of values
ahead of time, which aligns with our idea of event reasoning
using instantaneous context deviation. This deviation should
involve the trend and slope, already captured by DES, and
the temporal correlation of consequent contextual values.
By involving this temporal correlation between recent past
and future values, we enhance event reasoning.

Our idea is to substitute each value x; with the average x/
of the ANN backward and forward values, Vi. That is given
the values x; (k),k =t—h+1,...,t—1, the corresponding
temporal ANN smoothed values x; (k) are:

h—1
e+

xi(7) (N

Once xlf values are smoothed then the forecast of the i-th
variable at time ¢, x;(¢) is achieved using DES, Vi. Evi-
dently, when 4 = 1, then our approach is reduced to DES,
i.e., without dealing with the temporal NN smoothing. In
turn, we obtain:

yi(t) = 8x[() + (1 = &) (yi(t = 1) +ui(t — 1)) ®)
ui(t) = k(i) = yit = 1)) + A —u;(t = 1) ®

where x/(¢) is the actual smoothed value from our ANN
method at 7 as in (7), y; (¢) and y; (r — 1) are the intercepts at
time ¢ and ¢ — 1, respectively. The u; (¢) and u; (¢ — 1) are the
slopes (time series trends) at time ¢ and r — 1, respectively.
The § and « are smoothing constants in (0,1). The § value is
used to smooth the new actual and trend-adjusted previously
smoothed intercept, while the « value is used to smooth the
trend. The smoothing constants determine the weight given
to most recent past values and control the weight of smooth-
ing. Values close to 1 give weight to more recent values and
near to 0 distribute the weights to consider values from the
more distant past within the window. We set § = 0.7 and
k = 0.9 asin [32].

The expected context vector X(¢) = [X], ..., Xg] at time ¢
is predicted by the intercept vector y(¢) = [y1(¢), ..., ya(t)]
and slope vector u(¢t) = [u1(¢),...,uq(t)] and then we
obtain the deviation e(¢) € [0, 1]:

&(t) = y(O) +u(r) and e(t) = d 2 |R(1) — x(1), (10)
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L, .
where the factor d~2 is a normalization factor over the
Euclidean norm ||-|| to get a value in [0,1] given that x €
[0, 119, i.e., each x; value is scaled in [0,1].

4 Context outliers inference

This CP infers whether the current context is an outlier,
which highly impacts the event reasoning (Fig. 1 (right)).
We study the case where outlier context deviates signifi-
cantly from the up-to-now statistical patterns learned locally
on a node. If this deviation occurs regularly, then our model
considers the possibility of a novelty, thus, to adapting new
knowledge; see Section 5.

4.1 Conditionally growing context vector quantization

Consider a node i, which captures context vectors X drawn
from a space D). Based on those vectors, we identify the
vector subspaces D, k € [K], estimate their patterns wg
and their number K, where p(x) can be approximated. This
is achieved by incrementally partitioning the space D =
U,le]D)k. We study an incremental AVQ for partitioning D
into K (unknown) subspaces D;. The quantization of D
operates as a mechanism to project x to the closest pattern
wi. Node i incrementally minimizes the EQE:

J(wih) = E [ngnnx - w;ﬂ (11)

We seek the best possible approximation of vectors x out of
a set {Wk}f:1 of (finite) K patterns such that x is projected
to its closest pattern w* € D* C {x € D : ||x — w¥|| =
ming ||x — wi||}. We incrementally minimize 7 in (11) with
the presence of a random x and update only the closest
pattern w*. However, the number of subspaces (and, thus,
patterns) K > 0 is completely unknown and not necessarily
constant. The key problem is to decide on an appropriate K
value to minimize (11).

In the literature a variety of AVQ methods exists which
are not suitable for incremental implementation, because
K must be supplied in advance. We propose a condition-
ally growing AVQ algorithm (i) in which the patterns are
sequentially updated and (ii) is adaptively growing, i.e.,
increases K if a criterion holds true. Given that K is not
available a-priori, our algorithm minimizes J with respect
to a threshold p. Initially, the vector space has a unique
(random) pattern, i.e., K = 1. Upon the presence of x, our
algorithm (i) finds the closest pattern w* and (ii) updates w*
only if the condition ||q — w*|| < p holds true. Otherwise, x
is currently considered as a new pattern, thus, increasing K
by one. This conditional quantization leaves random vectors
to self-determine the resolution of quantization. Evidently,
high p would result to coarse space quantization while low
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p yields fine-grained quantization. The parameter p is asso-
ciated with the stability-plasticity dilemma also known as
vigilance in Adaptive Resonance Theory [29]. In our case,
p represents a threshold of similarity between vectors and
patterns, thus, guiding us in determining whether a new pat-
tern should be formed. To give a physical meaning to p, we
express it through a set of percentages a; € (0, 1) of the
value ranges of each x;. Then, p = ||[a1, ..., a4]|| and if we
let a; = a, Vi, then p = (ad)l/z. High a over high dimen-
sional space results in a low number of patterns and vice
versa. The outcome is a set of K patterns W = {Wk},le.

The incremental minimization in (11) given a series of
x(t),t € T, is achieved by SGD. Our algorithm processes
successive x(¢) until a termination criterion I"(t) < y. I'(t)
refers to the distance between successive estimates of the
patterns at steps t — 1 and ¢. The algorithm stops at the first
t where:

K
F(I)EVIF(I)=Z||Wk(t)—Wk(t—1)||' 12)
k=1

The update rules of patterns wy are provided in Theorem 2.

Theorem 2 Given context X and its closest pattern w* €
W, the patterns {wk}f:] converge to the optimal estimates
if updated as:

Awt — | 1= W) il =Wl < p
0 , otherwise.

Each wi € W\ {W*} is updated as: Awy, = 0; rate n €
(0, 1) is defined in Section 2.3.

Proof For proof, see Appendix A.1. O

A fundamental characteristic of our quantization algo-
rithm is that each pattern wy € W corresponds to the
centroid E[x|x € Dy] of those vectors x assigned to wy.
This is utilized for estimating the probability of an outlier as
discussed in Section 5.

Theorem 3 (Centroid Convergence) If X is the centroid of
the vector subspace Dy and pattern wy, is the closest pattern
of those x € Dy, P(wr =X) — 1 at equilibrium.

Proof For proof, see Appendix A.2. O

Our Algorithm 1 processes a (random) context vector one
at a time. In the initialization phase, there is only one pattern
wi,l.e., K = 1, which is the first vector. For the 7-th context
x(t) and onwards, ¢t > 2, the algorithm: (i) updates the clos-
est pattern to x(¢) (out of K patterns) given that the distance
is less than p, otherwise (ii) a new pattern is added (increas-
ing K by one). The algorithm stops updating the patterns at
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the first step ¢+ where I'(#) < y. At that time and onwards,
the algorithm returns the set of patterns ¥V and no further
modification is performed.

Algorithm 1 Conditionally growing context vector quan-
tization
Input: vigilance p, convergence threshold y
Result: patterns set W

begin
Observe context vector X, w; = x, W <« {w},
K < 1;
repeat
Observe next context vector w and find closest
pattern w* = arg Ir£n||wk —x|;
if ||[w* — x|| < p then
| Update w* using Theorem 2.
else
| K<« K+1,wg <x, W< WU {wg};
end
Calculate I" ;
until I” < y;
end

4.2 Outliers inference

We study how CP detects a change in the patterns space
Dy, Vk, based only on {wy} from Section 4.1. Consider an
incoming x to node i. The CP rationale lies in two compo-
nents: First, decide whether X is an outlier with respect to the
current quantization of . Second, track overtime the num-
ber of such outliers and decide that subspaces have changed
when this number becomes high.

Consider the probability assignment p(wg|x) of X to a
pattern. Since we do not have any prior knowledge about
p(wi|x), we apply the principle of maximum entropy:
among all possible probability distributions, we choose the
one that maximizes the entropy [34] given an optimal quan-
tization of ID. Specifically, p(w|q) conforms to the Gibbs
distribution:

p(xIwi) o< exp(—BlIx — wi %), (13)

where § > 0 will be explained later. Assuming that each
wj has the same prior p(wy) = %, through the Bayes’ rule

p(Wi|x) = % we obtain that:
exp(—BlIx — we %)
pP(WklX) = —¢ (14)

i exp(=pBlx —wi?)
Note, p(wg|x) explicitly depends on the distance of
context with patterns. By varying the parameter §, the prob-
ability assignment p(wy|x) can be completely fuzzy (8 = 0,
each vector belongs equally to all patterns) and crisp (8 —
oo, each vector belongs to only one pattern, or precisely

uniformly distributed over the set of equidistant closest pat-
terns). As § — oo this probability becomes a delta function
around the pattern closest to x. The probability p(w*|x)
quantifies the belief that x is an outlier with w* being its
closest pattern in the quantized space.

5 Context novelty & adaptation
5.1 Context space change detection

The probability assignment p(w*|X) is reconsidered if x
is far distant from w*. The distance ||x — w*|| quantifies
the likelihood that x is expected to be drawn from p(x|w*)
given that x is assigned to w*. To decide whether x can be
properly represented by w*, we associate w* with a dynamic
vigilance p* > 0, which depends on the distance of the
assigned x to w*. This vigilance is a normalized distance
ratio of ||x — w*||2 out of the average distances of all context
vectors X¢, £ = 1, ..., L, that were assigned to w*:

Ix — w2

T I~L :
T Yo llxe — w12

*

0

s)

Based on this ratio, if p* is less than a threshold ,0—r >0,
x is properly represented by its closest pattern. Otherwise,
x is deemed to be an outlier. A p' value normally ranges
between 2.5 and 5 [33]. Hence, for x, which is assigned to
w*, we define as outlier indicator of x with respect to w* the
random variable:

i x = w2 > p T R lIxe — w2
1) = {0 , otherwise. (16)

Let us now move to keeping track of the outlier indica-

tors 1 (x(1)), ..., I(x(t)) overtime focusing on their closest
pattern w*: w* = arg ming ||x(#) — wg/||, V¢. To simplify the
notation, we set I; = I(x(¢)). A cumulative sum of I;’s

with a high portion of 1’s causes node i to consider that
p(x|w*) might have changed. Upon observation of x, node
i observes for pattern w* the random variables {/1, ..., I;}.
Node i detects a change in p(x|w*) based on the cumulative
sum S; of the Iy, I», ..., I; up to ¢-th assigned vector:

Si=Y I (17)

I; is a discrete random process with independent and
identically distributed (i.i.d.) samples. Each I; follows an
unknown probability distribution depending on the distance
of x to w*. I, has finite mean E[;] < oo, ¢t =1, ..., which
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depends on [x(r) — w*||? and the expectation of an outlier
indicator is:

E[l]=0-P{I=0H+1-P({I=1}) =P{I =1}(18)

Our knowledge on that distribution, which is not trivial
to estimate, will provide insight to judge whether p(x|w*)
has changed in the subspace determined by w*. We should
‘follow’ the trend of that change by either updating w*, to
continuously represent its subspace or, create a new pattern
in the novel vector subspace.

By observing /; and sum S; up to ¢, the challenge here is
to decide how large the sum should get before deciding that
p(x|w*) has changed. Should we decide at an early stage
that p(x|w™*) has changed, this might correspond to ‘prema-
ture’ decision; a relatively small number of ‘outliers” might
not correspond to change in p(x|w*). Should we ‘delay’ our
decision then we might get erroneous event inference (high
false alarm rate), since we avoid adapting w* to ‘follow’ the
trend of the vector subspace change.

The rationale for this CP has as follows: To decide when
p(xX|w*) has changed we could wait for an unknown finite
horizon #* in order to be more confident on a change. Dur-
ing the ¢* horizon, we only observe the cumulative sum
S;,T = 1,...,t* We propose a stochastic optimization
algorithm that postpones a vector space change decision
through additional observations of I;. At time ¢*, a decision
on a possible p(x|w*) change has to be taken. The problem
is to find the optimal stopping time 7, in order to ensure that
p(x|w*) has changed from those x(¢) assigned to w* at¢ > ¢*.

We define our confidence Y; of a decision on a change
of p(x|w*) based on the cumulative sum S; in (17). Y; is
directly connected to the performance improvements that a
timely decision yields. ¥; is a random variable generated by
the sum of I; up to ¢, §; = Zizl I, discounted by a risk
factor a € (0, 1):

Yl = (YIS[. (19)

Our algorithm has to find #* in order to (i) either start
adapting w* after considering that p(x|w*) has changed or
(ii) create a new pattern, with respect to vigilance p (see
Section 4) for those vectors arrive at ¢t > t,. If we never
start this adaptation, our confidence that we follow the new
trend (patterns) is zero, Yoo = 0. This indicates that we
do not ‘follow’ the trend of a possible change over the
subspace and/or do not augment further our knowledge on
possibly new vector subspaces. Furthermore, we will never
start adapting w* at some ¢ with §; = 0, since there is no
piece of evidence of any outlier up to #. As I; assumes unity
values for certain times then S; increases at a high rate,
thus indicating a possible change due to a significant num-
ber of outliers. Our problem is to decide how large the S;
should get before we start adapting w* or augment our cur-
rent knowledge on the underlying vector space distribution
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by adding extra patterns. We have to find a time ¢t > O that
maximizes our confidence, i.e., when the supremum

sup E[Y] (20)
t

is attained. The semantic of the risk factor o has as fol-
lows. High « indicates a conservative adaptation model; it
requires additional observations for concluding on a change
decision. This, however, comes at the expense of possi-
ble outliers prediction inaccuracies during this period, since
the w* might not be a representative of its corresponding
assigned vectors. Low « denotes a rather optimistic model,
which reaches premature decisions on a p(x|w*) change.
This means that once we concluded on a change, we have
to adapt w* by actually exploiting every incoming vector
assigned to w* and/or considering x as a new pattern. This
continues until the updated w* converges.

We propose a solution for the problem in (20). Firstly,
we prove the existence of 7, in our case, then report on the
corresponding optimal stopping time, and finally elaborate
on the optimality of the proposed solution. A decision taken
at time ¢ is:

— either to assert that a change on p(x|w*) holds true and,
then, start the adaptation of w* or inserting x as a new
pattern,

— or continue the observation process at time ¢t + 1 and,
then, proceed with a decision.

Based only on §; = Z;: 1 Iz we determine a stopping time
that maximizes (20).

Theorem 4 An optimal stopping time t* for the problem in
(20) exists.

Proof For proof, see Appendix A.3. O

In our case, I, are non-negative, thus, the problem is
monotone [28]. This means that ¢*, since it exists by The-
orem 4, is obtained by the /-stage look-ahead optimal rule
(1-sla) [28]. That is, we should start adapting w* at the first
stopping time ¢ at which Y; > E[Y;41|F;], i.e.,

t* = inf{t > 1|Y; > E[Y;41|F,]}. 2y

For our monotone stopping problem with observations
I1, I, ... and rewards Y1, Ya, ..., Y, the 1-sla is opti-
mal since sup, Y; has finite expectation (E[/ ]%) and
lim;—, oo sup; ¥; = Yoo = 0 (see Theorem 4).

Theorem 5 The optimal stopping time t* for the problem in
(20) is t* = inf{t > 1|8, > % E[1]}.

Proof For proof, see Appendix A.4. O
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To derive t* from Theorem 5 we need to estimate the
expectation E[/] = P({/ = 1}). Empirically, the prob-
ability P({I = 1}) can be experimentally calculated by
those assigned vectors whose ratio of the distances from
their closest patterns out of the total variance of the dis-
tances is at least p; refer to (15). Moreover, we provide an
estimate for P({/ = 1}) based on our quantization algo-
rithm in Section 4. The probability of {I; = 1} refers to the
conditional probability of x(#) being an outlier given that
it is assigned to w* with p(w,|x(¢)). The P({I; = 1}) is,
therefore, associated with the probability that the distance
Ix(t) — w*||? > 6, with scalar:

L
1
0 =p" 2> lIxe— w2 (22)
=1

If we define the vector z(t) = x(t) — w* then we seek
the probability density distribution of its squared Euclidean
norm ||z(¢) ||2. Therefore, based on the centroid convergence
in Theorem 3, w* refers to the centroid: w* = E[x|x € D*].
Hence, the squared distance of z = [z1,...,24] = [x1 —
wy,...,Xxq — wj] under the assumption of normally dis-
tributed random components follows a non-central squared
x? distribution x2(d, ¢) with d degrees of freedom and
non-centrality parameter { = Zfl:l(w;")z. We approxi-
mate P({I = 1)) = P(lz*> 6) = 1 — P(lz|*< 6)
by the cumulative distribution function CDF w200 =
P(||lz||*< 6) of x2(d, ¢). Let O, (k2, k3) be the monotonic,
log-concave Marcum Q-function, with parameters «1, k2,
and k3. Then, we obtain that CDF,24(0) = P(llz|*<

0) =1 = Qi (K2, &3):
PUI=1) = 1= CDFpy®) = 04 (VE.¥0) (23)

by substitution in the Q function: k1 = %, ky = 4/C, and
K3 = /0. For an analytical expression of (23), refer to
Appendix A.7. Hence, the optimal stopping time is obtained
once we substitute [E[/] in Theorem 5 by the P({I = 1})
estimated in (23).

5.2 Context adaptation

Once node i has detected a change in at least one vector
subspace then it initiates a process that adapts the patterns
by modifying w* as follows. A change in a vector sub-
space indicates that new patterns can be formed or existing
patterns should be updated. Node i for every incoming x
appearing at ¢ > t* updates either w* to follow the trend or
create a new pattern wWg 4 = X as described in Algorithm 1.

Algorithm 2 shows the change detection and adaptation
process.

Algorithm 2 Context change detection & adaptation
Input: Risk factor o € (0, 1), patterns set W
Output: Updated patterns set W
Calculate 6 <« ,oTLLk ZzLil lIxe — wi %, Ex[1] using
(23),t < 0, S5 < 0,Vk € [K];
begin
/+ optimal change detection time
by incremental outliers
indicators */

repeat
Observe context x(¢) and assigns x(¢) to its

closest pattern wy;

Calculate the outlier indicator /; for wi using
(16);

Sk Sk 1kt —1t+1;

until ¥ > ;% F[1];

/* adaptation: either updating
closest pattern or expand
patterns set x/

if |w; — x|| < p then

| Update wi using Theorem 2.

else

| K< K+1,wg <x, W< WU{wg};

end

end

6 Expert knowledge context fusion

This CP evaluates the belief of an event based on experts’
knowledge (Fig. 1 (right)). Consider the context x at node
i. Each variable x;, j = 1, ..., d in x affects the event rea-
soning in a different way, as interpreted by human expert
knowledge. For instance, consider the identification of a fire
event. A fire event can be inferred based on temperature
x1, humidity x», and (ionization) smoke x3 measurements,
ie., X = [xq, x2,x3]. A human expert can express a fire
event through an increment on temperature and smoke, with
humidity remaining at relatively low levels. Let the row vec-
tor xp be constructed by variables from x that proportionally
affect the presence of an event, i.e., the event is expressed
by an increment on the values for those variables. Simi-
larly, let the row vector xy be constructed by the variables
from x that do not proportionally affect the presence of the
event, i.e., the event is expressed by a decrease on the val-
ues of those variables. In this case, we obtain X = [Xp; Xy],
where in our example we have that xp = [x1, x3] and
Xy = [x2]. This classification of the x; variables into
the xp and xpy vectors is provided directly by the human
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interpretation of an event. Based on this representation,
we introduce a vector fusion function that produces a uni-
fied view on the event identification. We introduce the
normalized ‘state’ v; € [0, 1] of each x; from xp and xy:

.__ ,Min
X] Xj
max __ .min ?

T Xj € Xp
vj = fr_nax_/ (24)

x; X
Xj € XN

max min
X —X
J J

The state v; indicates whether x; € xp (or € xy) has
reached its maximum (or minimum) value and, thus, it
partially expresses the existence of an event. Define v =
[vi,...,vq] € [0, l]d, which contains the states of all vari-
ables from x. Motivated by the sigmoid function from neural
computation for activating the impact of each neuron input
(the states variables in our case), we adopt the sigmoid prod-
uct fusion function f : [0, 1]d — R*, which returns the
entire state of vector X, i.e., the existence of an event if
f(v) = 1,ornotif f(v) — 0, with:

1

d
= . 25
fw ]]:[1 ey Ev sy (25)

Function f fuses the current context vector into a scalar
indicating the presence of an event through the normalized
states v;. The A1, A, € R parameters are application spe-
cific. Through the adopted sigmoid function, we can either
eliminate or pay more attention on the value of a given
variable x; to the fusion result. For instance, we count a
high impact of v; when its value is only above threshold
A1 by setting Ao — O (tuning the steepness of the sigmoid
function).

7 Event inference under uncertainty
7.1 Fuzzy contextual knowledge base

Based on the CPs in Sections 3, 4, and 6, node i locally
achieves event inference at time ¢ by considering (i) the cur-
rent context fusion f(v(¢)) in (25), (ii) the current assign-
ment probability p(w*|x(7)) in (14) w.r.t. to closest pattern
w*, and (iii) the current deviation e(¢) in (10) for x(z). We
attempt to fuse these CPs through a finite set of Fuzzy Infer-
ence Rules (FIR). Each FIR reflects the degree of belief for
a specific event inferred locally on node i. For instance, a
FIR is: ‘when the local sensed temperature is high then the
degree of belief for a fire event might be also high’. We pro-
pose a T2FLS, which defines the fuzzy knowledge base of
FIRs for node i. In this work, we do not rely on a Type-1
FLS (T1FLS) as such an inference model has specific draw-
backs when applied in dynamic environments and, more
interestingly, when the construction of the FIRs involves
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uncertainty due to partial knowledge in representing the
output of the inference result [21]. In our case, this corre-
sponds to the uncertainty of defining the occurrence of an
event based only on the local available knowledge: current
context, predicted context, and possible outliers. The limi-
tation in a T1FLS is on handling uncertainty in representing
knowledge through FIRs [9, 21]. In a T1FLS, the experts
define exactly the membership degree of the involved input
and output variables in a FIR, e.g., the characterization of
a value as ‘high’ or ‘low’. However, when even the defi-
nition of a membership function involves uncertainty, the
experts cannot be certain about the membership grade. In
such cases, uncertainty is observed not only on the environ-
ment of the examined problem, e.g., we classify a value as
‘high’ or ‘low’ or the degree of belief as ‘high’, but also on
the description of the term e.g., ‘high’, itself in a FIR.

In a T2FLS, the membership functions that characterize
the terms of the three CPs are themselves ‘fuzzy’, which
leads to the definition of FIRs incorporating such uncer-
tainty [21]. This approach seems appropriate in our case
as FIRs cannot explicitly reflect knowledge on whether
incoming measurements correspond to the occurrence of
an event. Our FIRs take into consideration the uncer-
tainty in the definition of an event by the human expert
enhanced with the CPs: deviation of predicted context and
outliers inference. Such FIRs refer to a non-linear map-
ping F(f(v), p(w*|x), e) between the three CPs (inputs)
and one output, i.e., the degree of belief u; € [0, 1]. The
antecedent part of a FIR is a linguistic conjunction of the
CPs and the consequent part is the degree of belief that event
actually occurs. The structure for a FIR is as follows:

IF f(v)is Aix AND eis Ay AND p(w*|x) is Az
THEN pu; is By,

where A1y, Ak, A3k and By are membership functions for
the k-th FIR mapping the values of f(v), e, p(W*|x) and
Wi into unity intervals, respectively, by characterizing these
values through the linguistic terms: low, medium, and high.
If a linguistic term, e.g., ‘high’, was represented through
one fuzzy set in a TIFLS then we would use one mem-
bership function g(x) € [0, 1] mapping the real value
(input) x € [0, 1] to a discrete set of pairs (x;, g(x;)), e.g.,
{(0,0); (0.25,0.1); (0.5,0.75); (1, 1)}, where (0.25,0.1)
means that the value x = 0.25 has a membership degree
g(x) =0.1.

In a T2FLS, each term Ay, A, A3x and By in FIRs
is represented by two membership functions correspond-
ing to lower and upper bounds [20]. For instance, the term
‘high’, unlike in a T1FLS, whose membership for each
x is a number g(x), is represented by two membership
functions. That is, each value x is assigned to an inter-
val [gr (x), gu(x)] corresponding to a lower and an upper
membership function g; and gy, respectively. E.g., the
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membership of x = (.25 is the interval [0.05, 0.2]. The
interval areas [g7 (x;), gu (x;)] for each input x; reflect the
uncertainty in defining the term, e.g., ‘high’, which is useful
when it is difficult to determine the exact membership func-
tion for each term or in modeling the diverse opinions from
different CPs in defining the occurrence of an event, in our
case. If g7 (x) = gy (x), Vx, we obtain a FIR in a T1FLS.
Following the above FIR structure, each Ay, j = 1,2, 3,
and By, for each k-th FIR, corresponds to a set of inter-
vals. The interested reader could also refer to [20] for fuzzy
reasoning in T2FLS.

7.2 Determination of local degree of belief

A p; value close to unity denotes the case where the belief
is at high levels, i.e., there is a high belief that a hazardous
phenomenon, like fire or flood, occurs in the area of interest
based on the agreement of the three CPs (all of them assume
values close to unity). The opposite stands when p; tends to
zero. We consider three fuzzy linguistic terms for the FIRs:
Low, Medium, and High. Low represents that a variable
(input or output) takes values close to 0, while High depicts
the case where a variable takes values close to 1. Medium
depicts the case where the variable takes values around 0.5.
For instance, a Low fuzzy value for e indicates that the cur-
rent and predicted context are close enough, thus, current
context follows the trend of its recent historical context. A
High fuzzy value for p(w*|x) denotes that the current con-
text does not significantly deviate from its regular statistical
pattern. A High fuzzy value for f(v) indicates a positive
inference on the presence of an event as represented by an
expert’s knowledge. For each fuzzy term, human experts
define the upper and the lower membership functions. Here,
we consider triangular membership functions g; and gy
as they are widely adopted in the literature. Our T2FLS
is generic, thus, any type of membership functions can be
adopted to better suit to the application domain.

Table 1 shows the proposed fuzzy knowledge based for
event inference.> Upon receiving the current context x(t),
node i produces its corresponding (i) fused context f(v),
(ii) deviation e(r) and (iii) assignment probability p(w*|x).
Then, the T2FLS is activated as follows: (Step 1) calcula-
tion of the interval (based on the membership functions) for
each input; (Step 2) calculation of the active interval of each
FIR; (Step 3) performance of ‘type reduction’ to combine
the active interval of each FIR and the corresponding con-
sequent. Step 3 produces the interval of the consequent, and
accordingly, the defuzzification phase® determines a scalar

2Any’ in FIRs refers to fuzzy values: ‘Low’, ‘Medium’, ‘High’.

3Defuzzification is the process of producing a quantifiable result in
FL, given fuzzy sets and corresponding membership degrees.

value for the local degree of belief p; at time ¢. The most
common method for ‘type reduction’ is the center of sets
type reducer [21], which generates a Type-1 Fuzzy Set as
output, which is then converted in a scalar value for the
w; after defuzzification. When the p; is over a pre-defined
belief threshold € € [0, 1], the T2FLS engine infers locally
an event occurrence with degree of belief u;.

8 Belief-centric clustering

In our federated reasoning approach, groups of nodes are
formated based on their local degrees of belief u;, i €
N. The clustering process is repeated at a clustering era
T,,7,,T5,..., T, € T. The T, is a variable time index
in T, which is triggered by node i which locally believes
in an event presence in the first instance (i.e., u; > €),
thus, asking for the opinions of its local neighbors before
reaching a conclusion. In each group, a node is elected as
the Cluster Head (CH) and is responsible to exchange the
aggregated degrees of belief (discussed later) with a con-
centrator from set C after a belief revision/update of the
initial opinion on an event presence. Hence, the number of
messages circulated in the network is reduced as it is not
necessary for each node to relay messages to a concentra-
tor. The election process concerns a node i to become a
CH if it experiences the highest u; related to an observed
phenomenon among its neighbors N;. The aim of the CH
is to notify its members about its appointment as a CH,
thus, avoiding redundant message dissemination. The CH
node, after its appointment, aggregates the degrees of belief
of its neighbors resulting to an enhanced neighborhood
contextual knowledge by unanimously inferring a possible
event.

The primary objectives of the federated election process
are:

— (i) Appointment of a subset of nodes as CHs respon-
sible for determining and disseminating an unanimous
(aggregated) degree of belief to the concentrators.

— (i) Dynamically changing the CH appointment to
nodes. Evidently, this prolongs the network lifetime by
changing CH appointments and, thus, balancing energy
consumption for the event inference process and trans-
mission of message to the members and concentrators.

—  (iii) Termination of the election process within a con-
stant number of iterations (exchanged messages).

It should be noted that the description of the CH replace-
ment process (i.e., objective (ii)) is beyond the scope of
this paper. It is also worth noting that we do not make any
assumption about the spatial distribution of IoT nodes in
the area. Every node can act as either CH or member. This
requires the need for an efficient CH election algorithm.
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Table 1 T2FLS fuzzy

knowledge base Context perspectives Local degree of belief

FIR f e p(W*[x) i

1 Low Any Low Medium

2 Low Any Medium or High Low

3 Medium Any Any Medium

4 High Low or Medium Low or Medium High

5 High Low High High

6 High Medium High Medium

7 High High Any Medium

8.1 Belief-centric cluster-head election

A baseline solution for the election process involves nodes
exchanging their u; to all neighbors. The node with the
highest u; is elected to become the CH of the neighbor-
hood. However, this solution requires a significant number
of messages exchanged among nodes. Moreover, since the
election process is re-initiated after a time interval T, then
a high energy budget is required for that type of communi-
cation. There are certain election algorithms which could be
adopted. In our case, neighboring nodes exchange their u;
values and then ‘elect’ the CH. To this end, we follow the
concept of the CH election algorithm in [37] by modifying
the election criteria to reflect the knowledge exchange over
a neighborhood.

At each node, the election process requires a number of
iterations L > 0. In every iteration, nodes send and receive
specific small-sized messages from neighbors containing
their degrees of belief. Before node i starts the election pro-
cess, it configures a local probability of becoming a CH
&;, hereinafter referred to as Election Probability (EP), as a
function of w;, i.e., & = max (Enin, 1i), Where &, is a
minimum EP for each node: &; is not allowed to fall below
the &min, €.2., 1073. This restriction is essential for termi-
nating the election process in L = O(1) iterations; see
Lemma 1. Node i with a high EP §; starts the following pro-
cess: it sends announcement messages of the form (&;, i)
to the A; neighbors to be a CH. A node j with a low EP
&; delays the transmission of announcement messages and
considers itself ‘non-CH’ if it has heard from (§;, i) with
& > &;. Duringiteration £, 1 < £ < L, every node i decides
to become a CH with EP &;. Through the process, node i can
either be elected to become a CH according to its EP &; or
remain at the same status (i.e., non-CH) according to over-
heard announcement messages within its neighborhood ;.
A node j selects its CH node i to be the node with the high-
est u;; this is achieved by the comparison of §; and &;. Every
node i then multiplies its EP &; with a factor of x > 1, and
goes to the next step £ + 1 and so on, i.e.,

£ (£ + 1) = min(x§;(€), 1). (26)
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If node i decides to become a CH since its EP &; has
reached unity, it sends an announcement message ‘CH i’
to its neighbors A;. A node j € M, then, considers itself
‘non-CH” if it has heard from node i a ‘CH i’ message and
terminates the election process. Note, this election process
is completely distributed. Node i either decides to become
a CH since u; is the highest among its neighbors, or be a
member which awaits a message by its unique CH.

Lemma 1 The belief-centric election process requires O(1)
iterations.

Proof For proof, see Appendix A.5. O

The number of iterations for each node does not depend
on the number of neighbors and is bounded by a constant.
Indicatively, when &,,;, = 1073 and X = e then a node
needs at most eight iterations to elect or be elected as a CH.

Lemma 2 The message exchange complexity in the belief-
centric election process is O(1) per node and O(|N|) for
the network.

Proof For proof, see Appendix A.6. O

8.2 Aggregated degree of belief & federate event
reasoning

Once node i is appointed as a CH, it locally determines the
average degree of belief of its members j € N;:

_ 1
i = e 2 27)
UjeN;

The @; reflects a degree of consensus of the neighbor-
hood on event inference. CH i, based on the pair (u;, [;),
determines an aggregated degree of belief [i;. We adopt
a reward-idle methodology to reason on the aggregated
degree of belief [i;, which will be delivered by CH i to its
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concentrator. If CH i and its neighbors unanimously agree
on the presence of an event, i.e., if the logical expression:

(i =€) A (i =€) (28)

holds true then we reward CH i’s belief on the event by
sending to the concentrator i; = w;. When CH i and its
neighbors unanimously agree on the absence of an event,
i.e., if it holds true that:

(i <€) A (fi <€) (29)

then fi; is the average value of all degrees of belief:

- 1
= e [ D0 ] (30)
Wil+1\ -
JeN;

and the CH i does not notify the concentrator. If there is a
disagreement between CH i and its neighborhood, i.e., if it
holds true that:

(i > €) A (i <€) €29

then CH i notifies its concentrator after regulating its local
opinion by a factor of r € (0, 1) towards the neighbors’
average belief, i.e.,

Ri = pi +r(ii — @) (32)

The concentrator then acquires knowledge for a specific
region of the area of interest about the appearance of an
event and to what extend this local inference from nodes
{i, NV;} is of high belief by receiving [i;. Note, since u; >
max ;e A7 {14}, there will be never the case: (u; < €)A(i; >

€).

9 Computational complexity, energy
& communication cost

In this section we present the time and space computational
complexities for both Algorithms 1 and 2 and the energy
and communication cost of the processes for each node i:
(1) event inference (local derivation of degree of belief u;,
(ii) election and clustering era (appointment of cluster-heads
CH and cluster members), (iii) derivation of aggregated
degree of belief from the CHs fi;, and (iv) report to the
concentrators from CHs.

9.1 Computational complexity

We report on the time and space complexities of the pro-
cesses that are needed for each node i to locally infer the
degree of belief. such processes include: (i) context vector
quantization for patterns derivation, (ii) change detection of
the quantized data subspace, (iii) context adaptation, and
(iv) degree of belief inference including context prediction
and fuzzy inference.

9.1.1 Time & space complexity for context vector
quantization

The Algorithm 1 is an incremental partitioning algorithm
which updates its closest current pattern w* based on the
incoming context vector x(¢) at time instance ¢. The clos-
est pattern update stops when the algorithm has converged
with respect to a convergence threshold y. That is, the pat-
terns’ updates are stopped at the first time instance (vector
observation) ¢’ such that:

t = iItlf{t >0:I@) <y} (33)

During the training phase, at every observation x(¢) at
time instance ¢, the algorithm finds the closest pattern w* to
the context vector x(¢). This requires O (d K) time per obser-
vation for searching for the closest pattern out of the current
K patterns {Wk}le. The whole training process requires
O(dKt') time. After convergence, i.e., at time instance ¢ >
t’ the structures of the patterns are used for outliers detection
and, in certain cases, for adaptation based on the optimal
stopping time methodology in Section 5. In this phase, the
calculation of the probability p(w*|x) requires O(d log K)
given a k-d tree structure for searching the closest pattern.
The space complexity of Algorithm 1 refers to the storage
of the K d-dimensional patterns wy, which is O (dK).

9.1.2 Time & space complexity for change detection and
adaptation

The Algorithm 2 is an incremental algorithm, which pro-
cesses the sensed context vector x(¢) at time instance ¢ to
determine whether there is a context change detection after
several observations. Algorithm 2 requires a pre-calculation
of the K scalars 6,k € [K] using (22). Those scalars
derive from the variances of the data subspaces represented
by the patterns wy from Algorithm 1. This requires O (dK)
time for the K variances ;. The Algorithm 2, at every
time instance 7, calculates the outlier indicator I; using (16),
which requires O(1), given the closest pattern w*, which
requires O (d log K). When the optimal stopping criterion
holds true, which is determined in O (1) time, then the clos-
est pattern w* is either updated or a new pattern is inserted
in the pattern set V in O(1). In the adaptation, the dynamic
vigilance p* is updated in O(dK). The space complexity of
Algorithm 2 refers to the storage of the K scalars (variances)
6k and the K dynamic vigilances p;’, which is O (K).

Table 2 shows the asymptotic time and space complexi-
ties for the Algorithms 1 and 2.

9.1.3 Time & space complexity for degree of belief inference

Each node i upon sensing a d-dimensional context vector
x(t) at time instance ¢ performs event inference to derive

@ Springer
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Table 2 Asymptotic time & space complexities per node

Process Time Space
Vector Quantization (training) O(dKt) 0(dK)
Vector Quantization (probability assignment) O (d log K)

Change Detection (scalars 6;) 0(dK) O(K)
Change Detection (outlier indicator) o)

Context Adaptation o) 0(K)
Context Prediction O(dm) O (dm)
Context Fusion o) o)
Fuzzy Inference O(R) O(R)

locally the degree of belief w;. Specifically, context predic-
tion scales linearly with the number of the temporal nearest
neighbors 7 < m for smoothing, thus, requiring O (dm)
time to predict context. In addition, concerning the outliers
detection, upon reception of a context vector, node i per-
forms a nearest neighbor search over the K patterns to find
the closest one. By adopting a d-dimensional tree struc-
ture (a k-d tree) over the prototypes, we require O (d log K)
for evaluating the probability of assignment. In the case of
adaptation after the outliers detection, node i adapts its clos-
est pattern in O (1). Moreover, the context fusion is achieved
in O(d) to evaluate the vector state, that is, it depends
only on the data dimensionality. Finally, the FIRs are fixed
and provided by the experts. Hence, the fuzzy-based event
inference takes O (R), where R is the number of FIRs.

Overall, based on Table 2, a node i requires O (d(m +
log K) + R) to provide the degree of belief i; on a event
including any possible adaptation. It is worth noting that,
node i requires O(d(K + m)) space to store the patterns
and the most recent context vectors. Given the belief-centric
clustering, a node i after local inference can initiate a clus-
tering era for determining the aggregated degree of belief.
In each clustering era, every node i requires O (1) messages
to either be appointed as a CH or not (member of the clus-
ter); see Lemmas 1 & 2. For a CH node, the calculation
of the aggregated degree of belief depends on the cardinal-
ity of its neighborhood, i.e., number of cluster members,
which requires O(JN|) using (30). Every CH node then
transmits to its concentrator the aggregated degree of belief
requiring O (1) message (network communication). Table 3
summarizes the overall asymptotic complexities per node
for the engaged processes: event inference, belief-centric
election and report of the aggregated degree of belief to the
concentrator.

9.2 Communication cost & computation energy
consumption

The nodes must accomplish their assigned sensing and
inference tasks by using the limited energy resources carried
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by them. The energy refers to a number of operations: (i)
wireless communication, (ii) sensing the environment, and
(iii) local computation. In our study, the energy and com-
munication model reflects three facets: energy for commu-
nication required for the belief-centric clustering process,
energy for computation, i.e., event inference and degree of
belief derivation, and communication energy of the cluster-
heads to report the aggregated degree of belief to their
assigned concentrators.

Each node i consumes processing power for locally infer-
ring the degree of belief w; of a possible event as described
in Section 7.2. We notate with &, the energy cost in
Joule per CPU instructions corresponding to the executable
inference algorithm for local degree of belief per node i.
Moreover, when nodes initiate a clustering era, then some
nodes are appointed as cluster-heads computing their EP
values. During a clustering era, a node is either dynamically
appointed as a CH or acting as a member. In a clustering
era, the energy for in-cluster communication &, ; in Joules
per bit transmission (TX) and reception (RX) is the energy
consumption incurred on node i by transmitting (TX) and
receiving (RX) election messages. After the election, each
CH node has to calculate its neighbors’ aggregate belief [i;
with energy cost £, in Joule per CPU instructions and then
transmit (TX) this value to its assigned concentrator, thus,
incurring an additional communication cost Ec g ;.

Let the CH indicator J; = 1 if node i is appointed as
a CH after clustering era; otherwise J; = 0 when node i
is a cluster member. Then, we define the total cumulative
energy consumption C; per node i as the cumulative com-
putation consumption for event inference and/or aggregated
degree of belief, and communication consumption for clus-
tering and transmitting the aggregated degree of belief to the
concentrators (in the case of CHs only) up to time instance
t, that is:

Ci=Cp; +C¢;, (34)
where
t
Cpi=Y_ (&, + %€, +&5). (35)
=0
and
t
Cei=Y (EL+Tilqn; + &) (36)
=0

where & is the energy cost for node 7 transiting from idle to
standby operational modes [36]. Up to time instance ¢, the
communication and computation costs for all nodes and the
overall cost are, respectively:

I Y
Ce=)Y CeinCp=> Cpi.C=Cp+Ce (37)

i=1 i=1
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Table 3 Asymptotic

complexities for each process Process Node type Computation Communication
per node; ‘-’ means ‘not
applicable’ Election member O (1) (election probability) O (1) (clustering era)

cluster-head

Event Inference

cluster-head

Concentrator Report

cluster-head

member

O (1) (election probability)
O(d(m+1logK)+ R) -
O(d(m +1logK)+ R) -

O (1) (clustering era)

member - -

O(IN)) (aggregated f1) o)

For the sensing, communication and computation energy
consumption, we adopted the energy model from the Mica2
sensor board.* This energy model assumes an energy of
two AA batteries that approximately supply 2200 mAh with
effective average voltage 3V. It consumes 20mA if running
a sensing application continuously. The communication cost
for transmitting (TX) a bit is 720 nJ/bit and receiving (RX) a
bit is 110 nJ/bit. Moreover, the packet header of the commu-
nication protocol adopted by Mica2 is 9 bytes (MAC header
and CRC) and the maximum payload is 29 bytes. Therefore,
the per-packet overhead equals to 23.7% (lowest value). For
each transmitted data value, i.e., a value component x of
a d-dimensional vector x and the EP value in an election
message, the assumed payload is set to 4 bytes (floating
point number) and 2 bytes, respectively. Finally, the energy
cost for single CPU instructions (energy per instruction) is
4 nJ/instruction in Mica2. Table 4 shows all the energy con-
sumption in nJ per bit, for communication, and in nJ per
CPU instruction, for computation.

10 Performance evaluation
10.1 Performance metrics

We assess the performance of our mechanism in terms of: (i)
probability of false (erroneous) event inference ¢ € [0, 1],
(ii) event time index T € T of recognizing an event, (iii)
communication overhead (number of aggregated degree of
belief messages) M required for CHs to inform the con-
centrators for event inference, (iv) energy consumption for
event inference C, and communication cost C. per node
i and the total IoT environment, and (v) efficiency of our
mechanism in delivering event inference with a low false
rate being communication and energy aware.

The false probability ¢ represents the rate of erro-
neous inference (false alerts) that the mechanism generates
defined as the ratio of the number of false alerts out of a
total number of inference results. Note, event inference is
obtained at every time ¢ € T corresponding to the recep-
tion of context vector x at any node i. A value of ¢ — 1

“http://www.tinyos.net/scoop/special/hardware#mica2platform

indicates high rate of false alerts, thus, no conclusion can be
drawn for the true state of the phenomenon.

The event time index 7 € T refers to the time index of the
measurement that actually corresponds to an event. Through
that metric, we assess how ‘close’ to the real case an event
is inferred by our mechanism; not at early stages in order to
avoid false alerts and not many stages after the real event.
The 7 is evaluated by the rate of the identification for real
events.

The number of messages M refers to the total number of
messages (&t values) sent from CHs to their concentrators
including the total number of messages sent for the belief-
centric clustering. The lower the M is, the lower energy
resources in terms of communication are spent. Let us notate
the lifetime of the entire network as 7 (in terms of energy)
and Ncg be the set of CHs, ie., [Ncg| <« |N]|. Since
at each clustering era 71, 15, ..., our mechanism assigns
certain nodes as CHs then, in the network lifetime, L%—J
clustering eras are realized, where T is the expected number
of clustering initiations out of the total number of observa-
tions. By adopting our belief-centric clustering, only N¢ g
messages of i values are delivered to the concentrators to
keep the concentrators up-to-date about the event inference
along with O (|NV]) messages circulated locally for building
the clusters as proved in Lemma 2. Hence, it holds true that:

T
M = L7 (INcul + O(ND) .

Without clustering, all nodes would send their us to the
concentrators, thus, in this case we would obtain M =
LF 1IN

The energy consumption C), refers to the energy con-
sumed for computational processing per node i to locally
infer the degree of belief after observing a d-dimensional
context vector. The energy consumption C, refers to the

Table 4 Energy parameters

Parameter Default values
Transmitting a bit energy consumption 720 nJ/bit
Receiving a bit energy consumption 110 nJ/bit

CPU energy consumption per instruction 4 nJ/instruction

@ Springer
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communication overhead cost for nodes during the clus-
tering eras due to messages exchange for CH election.
These messages include the EP values. Moreover, this cost
includes the energy consumption for the appointed CHs to
transit the aggregated degrees of belief (from their neigh-
borhood) to their concentrators. The energy model for
computation and communication derives from the Mica2
energy model presented in Section 9.2. Finally, we define
as efficiency the total amount of energy consumed from
our mechanism C = C, + C, to deliver event inference
with a low false rate ¢. We desire to obtain a low energy
expenditure along with a low false rate. We compare our
mechanism with other mechanisms in terms of energy con-
sumption (communication and computation) and efficiency,
as shown in Section 10.5.

10.2 Experiment setup

We experiment with a real multivariate dataset [38] adopted
from the Microsoft research open datasets.> The dataset
contains meteorological data retrieved in the cities of Bei-
jing and Shanghai. The collected context variables are: tem-
perature, humidity, barometer pressure and wind strength. In
our experiments, we adopt 2-dim. context vectors with x; =
‘temperature’ and x, = ‘humidity’ recorded by |N| = 50
nodes deployed in the field and observe 50,000 context
vectors. We consider one observation at each discrete time
instance ¢ € T and assume one concentrator acting also as
the back-end system for those nodes. All vectors are scaled,
ie.,x e [0,1] x [0, 1].

In the dataset, no hazardous events are identified, i.e.,
the probability of a true event is zero. To define an event,
we exploit the expert knowledge in [25] stating that: a
high temperature, e.g., around 600 Celsius, along with a
low humidity, e.g., below 30%, defines a fire incident.
Firstly, we consider injecting ‘faulty’ values to examine
whether our mechanism produces erroneous inference/false
alerts. Our target is to obtain ¢ — 0. To simulate a set-
ting where nodes deliver faults/outliers, we randomly inject
faulty measurements as indicated by the ‘faulty rules’ in
[26] with some fault probability pr > 0. On a node i,
an actual temperature value x; at time ¢ will be replaced
as x;1 < (I 4+ ap)x; and for humidity x, <« lj’r—’;sz,
with ar € {2, 3,5} and assume different faulty probabil-
ities pr € {5%, 10%, 20%, 40%, 60%, 80%}. In addition,
we inject a set of fire events represented by a state tempera-
ture value vp close to 1 and a state humidity value v, close
to zero as depicted in [25]. Note, we increase the tempera-
ture value and decrease the humidity value corresponding to

Shttp://research.microsoft.com/en-us/projects/urbancomputing/
default.aspx#datasets
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the same context vector. The event time index 7 of a prede-
fined fire event Ej is pre-recorded. We define 10 fire events
randomly spanned in the dataset where: the time duration
of an event is drawn from the Exponential distribution with
average time event-duration 10 time units. Through this
setup, we examine whether our mechanism is capable of (i)
inferring the events Ej given fault probability pr and (ii)
producing a time index of Ej as close to tj as possible, i.e.,
if the proposed mechanism identifies Ej at the right time.

The parameter values are presented in Table 5 and,
specifically the default values are: belief threshold € = 0.7,
convergence threshold y = 0.001, context history m = 10,
h =5 in ANN DES, vigilance percentage a = 0.1 and vig-
ilance threshold is p = (ad)'/? = 0.44 for 2-dim. context,
initial learning rate n = 0.5, assignment probability factor
B = 0.1, risk factor « = 0.95, opinion factor » = 0.5, and
the number of FIRs is R = 27. The justification of those
values is discussed in the remainder.

10.3 Comparison models

We compare our mechanism, hereinafter referred to as
Model (M), with the local Voting Scheme (VS) and the
centralized Aggregation Scheme (AS).

In the local VS model, a node i locally infers an event at
time ¢ based only on the expert knowledge fusion function,
i.e., when it holds true that:

fvi(0) = €, (38)

thus, neglecting all other CPs to reason about the final deci-
sion. Then, each node i transmits only its inference result
(event vote) to a central node gathers, which centrally infers
an event based on the majority of votes.

In the centralized AS model, each node i transmits its
current context data vector x;(¢) to the central node. The
central node, then, aggregates all the received context data

Table 5 Experimental parameters

Parameter Values
Number of nodes || {5, 10, 50}
Number of actual events 10

Number of observations per node 7" 10,000
Data Faulty Probability pr {5%,10%, 20%, 40%, 60%, 80%}
Belief threshold € {0.5,0.7, 0.9}

Convergence threshold y 0.001

Context history for prediction (m,4) (10,5) hANN DES
{0.05,0.1,0.3,0.5,0.7, 0.9}

Assignment probability factor 8 0.1

Vigilance percentage a

Risk factor o 0.95
Opinion factor r 0.5
Number of FIRs R 27
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Table 6 Model M: false rate ¢ vs. pr and |\

even w.r.t. the three CPs and shares its local view/degree of
belief with its neighbors through our CH-based consensus

¢ approach. Then, by voting among those aggregated degrees

PF IN|=5 N =10 IN] =50 of belief i, which actually related to an event (sent only by
CHs), the back-end system clearly concludes on that event

5% 0.001 0.000 0.000 with high accuracy. Model M takes into consideration the
10% 0.005 0.000 0.000 groups’ perspectives, i.e., an event is locally agreed on a CH
20% 0.011 0.002 0.000 only when a large percentage of neighboring nodes support
40% 0.013 0.004 0.000 that event presence. When |\/| increases, the team is more
60% 0.014 0.004 0.000 ‘compact’ meaning that much more nodes support an event
80% 0.015 0.005 0.003 presence with more certainty in contrast to the case where

vectors from the |N| nodes and centrally infers an event
based on:

FevitNy > e,

(39
where v; (1) is the state context vector corresponding to node
i’s context and g{-} is the average operator.

10.4 Performance evaluation
10.4.1 Quality of event inference

We analyze the event inference performance of model M
for different values of nodes ||, faulty probabilities pp,
fusion parameter Aj, belief threshold €, and vigilance p. In
Table 6, we examine the robustness of model M in terms
of false rate ¢ for different values of faulty probability pr,
5% < pr < 80%, and number of nodes |[A|. Model M
is robust assuming a very low ¢ (less that 1.5%) even for
data streams involving a huge number of faulty values i.e.,
pr = 80%. This indicates the capability of model M to
reason under uncertainty as treated by the involvement of
the three CPs. Moreover, the knowledge fusion of the local
degrees of belief depends on the number of opinions, i.e.,
the number of nodes involved in the event reasoning. The
higher the |\ is, the lower the ¢ becomes. The reason
is that each node i locally process context and infers an

|A] is small. In the case where only one node i is present,
model M is based on node i’s belief, thus, false alerts could
arise more easily (as node i could have a faulty view on an
event presence).

In addition, we examine the impact of |[A/| on the time
lag 7 from the actual event time index and the identi-
fied/inferred time index. Model M obtains an average time
lag T = 2.2 time units with standard deviation o; = 0.77 for
5 < |N| < 50. This indicates that all events are identified
in very near real-time.

Table 7 presents the effect of the expert knowledge fusion
(CP1) on producing false alerts. Recall that expert knowl-
edge fusion depends on parameters A; and A, that affect the
result for f(v). From these two parameters, A1 ‘defines’ the
threshold value of the fusion function as provided by the
expert, while A, defines the steepness of the function. We
experiment with the steepness A, € {2.0, 4.0, 6.0} for fixed
threshold A{. We observe in Table 7 that a high A, results
to a high false rate ¢, while when A, = 2.0, false rate ¢
is limited (equal or very close to 0). A high A, leads to
a more ‘relaxed’ identification of the event. However, this
leads to an increased number of false alerts by overestimat-
ing the CP1 f(v) at the expense of the other two CPs (error
e and assignment probability p(w*|x)), which is passed to
the T2FLS engine. A low A; value regulates the impact of
CP1 on the other two CPs, thus, model M exploits all CPs
to avoid high rate of erroneous inference results.

We also examine the impact of the belief threshold € on
model M in terms of false rate ¢. Table 8 shows the results

Table 7 Model M: false rate ¢ vs. pr and |[N/| for A, € {2.0, 4.0, 6.0}

# with A, = 2.0 & with A, = 4.0 ¢ with 2, = 6.0
Pr V=5 IV =10 IV =50 N =5 N =10 N =50 V| =5 IV =10 IV =50
5% 0.000 0.000 0.000 0.157 0.046 0.001 0.370 0.252 0.010
10% 0.000 0.000 0.000 0.164 0.075 0.001 0.476 0.359 0.031
20% 0.000 0.000 0.000 0.175 0.116 0.005 0.488 0.472 0.172
40% 0.001 0.000 0.000 0.182 0.210 0.072 0.496 0.483 0.548
60% 0.003 0.001 0.001 0.208 0.217 0.080 0.570 0.650 0.609
80% 0.003 0.002 0.001 0.301 0.357 0164 0.662 0.801 0.817
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Table 8 Model M: false rate ¢

vs. pr and |\ for ¢ withe = 0.5 ¢ withe = 0.9

€ € {0.5,0.9}
PF INl=5 N =10 IN| =50 INT=5 V] =10 V| =50
5% 0.881 0.819 0.773 0.001 0.000 0.000
10% 0.887 0.921 0.933 0.003 0.000 0.000
20% 0.947 0.971 0.972 0.005 0.001 0.000
40% 0.942 0.982 0.986 0.010 0.004 0.000
60% 0.945 0.980 0.982 0.011 0.008 0.001
80% 0.926 0.993 0.993 0.012 0.008 0.001

when € € {0.5, 0.9} for different values of |A/| and pr. A
low € leads to an optimistic and sensitive event identifies
compared to high € values. Evidently, this corresponds to
an increased number of false alerts ¢. In such cases, model
M is also affected by an increased number of messages M
sent from CHs to the back-end system, which reaches the
theoretical maximum M: the centralized approach, where
all nodes send their observations to a back-end system. In
addition, in Table 8 we observe results for € = 0.9. In this
case, ¢ is minimized especially when |A/| > 5. A high
€ makes event inference more insensitive and difficult to
discriminate, thus, a limited number of nodes agree on an
event presence. This behavior has obvious consequences on
the identification of real events as 7 is getting high. We set
€ = 0.7 in our experiments as explained later.

In addition, we experiment with the average number of
context patterns K per node that are required to quantize the
vector data space to materialize the CP2 and CP3. Table 9
shows the number of K patterns (mean value avg(K) and
standard deviation ok out of || = 50 nodes) that quantize
the context spaces needed for outliers and novelty detec-
tion against the vigilance percentage a, i.e., p = (ad)'/?.
A low a value, which corresponds to low p, results in high
quantization resolution in terms of patterns; a high num-
ber of patterns are generated to better represent the vector
space. This, however, comes at the expense of a high num-
ber of patterns that are needed to be stored on a node. But,
even in the case of a = 0.1, this number is significantly
low (K ~ 49). Hence, to achieve highly accurate inference
results and maintain the model M up-to-date w.r.t. novelty
vector subspaces, we seta = 0.1.

10.4.2 Communication & computation cost

In terms of communication overhead (number of messages
circulated in the IoT environment), we examine the capa-
bility of model M to achieve low false rates by avoiding
transferring context data to the concentrator, but only the
minimal sufficient knowledge for event reasoning in terms
of belief threshold €. Table 9 shows the impact of belief
threshold € on: (i) the number of messages M, (ii) the aver-
age number of CHs |N¢p| per clustering era, and (iii) the
number of clustering eras 7. A value of € close to the cut-
off value of 0.5 results to many clustering eras (T > 1000),
thus, many messages are sent between clusters and from
CHs to concentrators along with high ¢ value (see Table 8).
Evidently, a value € > 0.5 is adopted to ‘narrowing’ and
clarifying the inference results. On the other hand, with a
high €, model M increases its tolerance to assess an event
presence thus being communication efficient. However, in
this case, events are difficult to identify, which does not
reflect the actual situation on the IoT network. To balance
between communication load, accuracy of inference, and
capability of event identification, we set a belief threshold
€ = 0.7 in our experiments. For € = 0.7, model M initiates
T = 10 clustering eras in which 9% of nodes (CHs) trans-
fer their aggregated knowledge to concentrators achieving
a low ¢ value. In all these 10 clustering eras, the nodes
successfully detect all 10 events.

In terms of energy consumption due to the computa-
tional cost of local inference and communication cost for
each clustering era, we present in Fig. 2 (left) the total
cost Cy in nJoule and its breakdown in the processing

Table 9 Model M: patterns K

per node vs. p(a); Messages a p(a) avg(K) oK € M avg(INcr|) T
M, average number of cluster
heads |NCH |, and Clustering 0.05 0.31 72.18 8.76 0.50 1.20 104 19.20 1247
eras T vs. belief threshold €; 0.10 0.44 49.12 5.64 0.60 8.11-103 11.67 284
V] =50 0.30 0.77 13.56 321 0.70 3.42.103 4.65 10
0.50 1.00 08.77 2.42 0.75 1.76 -103 3.87
0.70 1.18 05.54 1.02 0.80 5.12 -10% 2.33
0.90 1.34 01.47 0.74 0.90 2.49 -10% 1.46
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Fig. 2 (Left) Total energy “107

consumption Cyy in nJ and its
breakdown to the 8t
processing/computation cost C),
and communication cost C, for
|| = 50 nodes vs. number of 61
observations; (right) the

processing and communication
ratios out of the total consumed
energy 3r

Processing cost C,
Communication cost C,
Total cost Cyf
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! !
Processing ratio C,/Cir
Communication ratio C,/Cy
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0.4

0.2
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(computation) cost C, and communication cost Cc, as
defined in (34) and (37), respectively, for |[N° = 50|
nodes, after observing 10,000 context vectors each. We
can observe that the computational consumed energy is the
lowest energy expenditure compared to the communication
cost, which indicates the advantage of the distributed infer-
ence, thus reducing the network overhead. This is attributed
to the fact that the energy required for TX and RX pieces
of data is higher than the energy consumed for local com-
putations in each node. Moreover, our proposed Algorithms
1 and 2 are on-line, incremental learning algorithms, thus
providing a lightweight solution for localized context infer-
ence, which is our major goal: ‘to push on the intelligence to
the edge of the network’, reducing unnecessary data trans-
fer to the back-end system and/or to the concentrators. Since
each node i can locally reason about contextual event then,
instead of transmitting actual sensed contextual multidi-
mensional data towards a centralized system (as it will be
discussed later in the comparative assessment Section 10.5),
it transmits only if needed the local inference results, i..e,
the degree of belief. Moreover, the proposed clustering
scheme involves localized message exchange among neigh-
boring nodes, which further reduces the network overhead
by avoiding transiting data values from the edge of the

Fig. 3 (Left) Total energy 107
12

10000 00

4000 6000 8000

Time instance ¢

8000 2000 10000

network to the concentrators. Even in this localized informa-
tion dissemination process, the nodes are transmitting only
inferred knowledge, i.e., local degrees of belief and not data
values. The appointed CHs are the only responsible ones to
transmit the aggregated degrees of belief to the concentra-
tors, where they corresponds to the 9% of the total number
of nodes in the network. By pushing this intelligence to the
edge, the computational cost consists of 30% of the total
consumed energy, while the remaining portion is devoted to
localized communication during the clustering eras plus the
communication of the CHs with the concentrators, as shown
in Fig. 2 (right).

Figure 3 (left) shows the total consumed energy Cjys
for different number of nodes |N/|, while Fig. 3 (right)
illustrates the impact of the vector quantization (vigilance
percentage a) in each node i on the processing/computation
cost C), out of the total cost Cy for different number of
nodes. It is worth mentioning that when we increase the
resolution of the vector quantization, i.e., the number of
patterns K that can be estimated during the vector quanti-
zation process (Algorithm 1) then the node i spends more
energy for computation. This corresponds to identifying the
closest pattern and to calculate the assignment probabil-
ity. Obviously, the more patterns each node derives from

I
IS

consumption Cyy in nJ for - i P C‘ = r(]‘ Processing ratio (JN] = 50)
different number of nodes || otal cost Cy(IN'] = 50) Processing ratio (|| = 10)
| | —— Total cost Cy/(|N| = 5) 0.35- . s
nodes vs. number of 10 Processing ratio (V] = 5)
N - Total cost Cy/(JNV] = 10)
observations; (right) The 03
processing/computation cost 8
ratio C,,/Cp vs. the quality of E % 0.25|
vector quantization (vigilance f 6 z
. 172 7]
percentage a) for different 3 S 02
number of nodes |\ 4t
0.15
2r 0.1
I'_"_,’_,——-——/—/—'i e
— \
oL ‘ ‘ ‘ ‘ 0.05— ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2000 4000 6000 8000 10000 01 02 03 04 05 06 07 08 09

Time instance ¢

Vigilance percentage a
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the quantization process the higher the quality of inference,
however, at the expense on the computational energy con-
sumption. Nonetheless, the quality of inference is related
with reducing the false rate ¢. By achieving a significant
low ¢ value, ie., ¢ < 0.001, our mechanism requires a
vigilance percentage a = 0.35. In this case, the processing
ratio is approximately 30% of the total energy consumption.
There is then a trade-off between quality of inference (due
to high quality of vector quantization) and required energy
for achieving this high quality. Our mechanism is flexible
to tune this trade-off (as shown in Fig. 6) and attempts the
lowest false rate by being energy efficient (in both: commu-
nication and computation) compared with the VS and AS
models described in Section 10.5.

10.5 Comparative assessment

We compare model M with the models VS and AS, where
their inference policies are provided in (38) and (39),
respectively, focusing on: (i) quality of event inference, (ii)
energy consumption in terms of computational cost and
communication overhead, and (iii) efficiency.

10.5.1 Comparison in quality of inference

In the quality of inference we evaluate the false rate for each
model given a probability of faulty data values to examine
their robustness. In the comparison experiments, we take
N € {5,10,50}. Table 10 shows the false rate ¢ for
|IN| € {5, 10, 50} and different pg values. We observe that
model M outperforms VS and AS models when pr > 40%.
This is interesting as it shows that model M achieves a
bounded erroneous inference probability even when nodes
experience multiple faulty measurements. For pr = 80%
indicating high uncertainty, model M achieves 80.00% and
82.76% fewer false alerts compared to VS and AS, respec-
tively. We can also observe from Table 10 the comparison
results for || € {10, 50}. In general, the increased number
of nodes leads to a low number of false alerts (i.e., low ¢),
close to zero. For [A/| = 10, model M outperforms VS and

AS when pr > 40%. For pr = 80%, model M achieves
88.10% and 84.85% fewer false alerts compared to VS and
AS, respectively. In any case, model M keeps ¢ close to
zero. This indicates the capability of model M to exploit all
CPs to reason about event in a robust way along with tak-
ing into account the local degrees of belief of neighboring
nodes. For |NV| = 50, model M produces alerts with very
high accuracy, i.e., low ¢, compared with models AS and
VS, for all pr values.

10.5.2 Comparison in energy consumption, cost &
efficiency

Model M obtains significant low false rates with a signifi-
cant low number of messages sent from CHs to the back-end
systems, compared to the VS and AS models. Specifically,
for model M there are T = 13 clustering eras out of the
total 5 - 10% observations, and we obtain number of mes-
sages M = (2.32-10%,24.6-10%, 3.42-10%) for model AS,
model VS and model M, respectively (we obtain, on aver-
age, [INcy| = 4.65 cluster heads per clustering era). This
indicates that, for even uncertain and faulty data streams,
ie., pr > 40%, model M achieves 83.67% lower false
rate from both AS and VS models by requiring three and
one less orders of magnitude in communication overhead,
respectively.

In terms of energy consumption in computation and com-
munication, Fig. 4 (left) show the total cost Cys, Cys, and
C s for model M, VS, and AS, respectively, for |N| = 50
in logarithmic scale. It is obvious that our model saves
energy by at least two orders of magnitude compared to the
localized inference model VS and the centralized inference
model AS. This indicates the vision of pushing intelligence
to the edge of the network with exploiting the computing
capability of the nodes to infer events, thus avoiding data
transfers from the source of information to the back-end-
systems. Moreover, even in the case of the localized VS
model, our model requires significantly less energy (two
orders of magnitude) since the ‘instant’ inference achieved
by a node executing the VS model appears to be in many

Table 10 Comparison: model M, VS, and AS for ¢ vs. pr, [N € {5, 10, 50}

N =5 N =10 IN] =50

DF om dvs das om Pvs Pas oM dvs das

5% 0.001 0.001 0.000 0.000 0.007 0.005 0.000 0.007 0.004
10% 0.005 0.000 0.000 0.000 0.011 0.015 0.000 0.012 0.010
20% 0.011 0.002 0.002 0.002 0.018 0.016 0.000 0.019 0.015
40% 0.011 0.012 0.011 0.004 0.028 0.018 0.000 0.023 0.019
60% 0.014 0.042 0.038 0.004 0.038 0.029 0.000 0.035 0.026
80% 0.015 0.075 0.087 0.005 0.044 0.039 0.003 0.055 0.029

@ Springer



Predictive intelligence to the edge through approximate collaborative context reasoning

987

Fig. 4 (Left) Total energy

consumption for models M, VS,
and AS vs. number of
observations; (right) the cost
ratios Cps/Cys and Cyy/Cys of
the model M out of the models
AS and VS, respectively vs.
number of observations;

IV =50

Cost in nJ

104

Time instance ¢

times erroneous compared to our model. We capture this
by introducing intelligent context reasoning processes such
that the CHs will only infer an event if the neighboring
nodes reach a consensus, thus minimizing the false rate.
This, however, requires some additional computational cost
and communication. But, as illustrated in Fig. 4 (right), the
ratio of the consumed energy by our model is ~ 107> and
~ 1072 of the consumed energy by the centralized and
localized models, respectively.

In Fig. 5 (left) we examine the scalability capability of
our model in terms of the number of CHs as a percentage of
the total number of nodes comparing with the AS and VS
models. Specifically, we present the total consumed energy
(computation and communication) starting from a CH per-
centage [Ny | of 10% to 100% of the total number of nodes
|A]. We can observe the significantly low impact on the
total cost compared with the other models. Moreover, the
case where |[Ncg| = || depicts the capability of inferring
an event as accurately as possible by each of the nodes, thus

1012

10'°

Cost in nJ

Cur(Nen| = 25%|N1)
- Cor([New| = 50%|N1)
———— Cu(Neu| = 10%|NV)
Cir(WNen| = 100%|N])
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0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time instance ¢
Fig. 5 (Left) Scalability: total energy consumption for models M, VS,

and AS vs. number of observations. For model M the cost Cj; is shown
for different percentages of the number of CH nodes |N¢ | out of the

10" \ ‘
Cost ratio Cyr/Cas
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2
o)
109; .
Total cost Cyy | |
—— Total cost Cyg
Total cost Cas
. . ! ! 4 . . . .
0 2000 4000 6000 8000 10000 10 0 2000 4000 6000 8000 10000
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minimizing the ¢ value. It is worth comparing this scalabil-
ity performance with the VS model, where all the nodes are
acting independently based on the inference policy in (38).
This indicates the capability of our model not only to scale
with the number of CHs but also to deliver inference results
corresponding to high quality of inference.

Figure 5 (right) shows the impact of the belief threshold
€ on the consumed energy for all the models with || = 50.
The higher the € value the less insensitive each model is
to accurately inferring an event. However, this comes at a
lower cost, since both the model M and model VS avoid
inferring events, thus, reducing the communication with the
back-end-system (transmitting the inference results from the
CH nodes in model M and from the individual nodes in
model VS). Evidently, the model AS is not influenced by
this threshold since the nodes just deliver the sensed con-
textual vectors and do not perform any computations. On
the other hand, this results to a high impact on the quality
of inference, which is quantified by the ¢ value. Given a

10"
1010,
-
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=]
Z 10°
oo}
]
)
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10 Total cost Cyy
Total cost Cyg
Total cost Cyg
7 1 1 1 1 1 L L
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Belief threshold e

total number of nodes || = 50; (right) total energy consumption for
models M, VS, and AS vs. the belief threshold € with [N = 50
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Fig. 6 Efficiency: total energy consumption for models M, VS, and
AS vs. false rate ¢ for different faulty value probabilities pr with
number of nodes |N| = 50

significant low value of ¢, we set € = 0.7, which results to
three orders and two orders of magnitude less energy con-
sumption achieved by our model, comparing with the AS
and VS models, respectively. In that case, we define the effi-
ciency indicator to examine the consumed energy of each
model and its corresponding performance in terms of quality
of inference.

Figure 6 shows the total energy consumption for all mod-
els against false rate ¢ for data faulty probability pr €
{40%, 80%}. It is worth noting the efficiency of our model
compared to the other models AS and VS, which achieves
very low false rate with significantly the lowest total energy
consumption. The AS model appears to be the least efficient
in terms of energy consumption and the achieved false rate,
while model VS is moderate efficient for pr = 40%. When
the faulty probability is high, then the model VS increases
significantly its false rate, due to the lack of any reason-
ing algorithm to deal with high faulty data values, while
it also consumes significantly more energy than model M.
The model AS cannot reduce its energy consumption even
if the data faulty probability decreases since that model does
not take into consideration any characteristic of the captured
contextual data streams (it only forwards data vectors to the
back-end-system). Our model appears very robust in terms
of efficiency even if the pr is high. Overall, our concept
of pushing predictive intelligence and data processing to the
edge devices benefit: (i) accurate event inference close to
the source of the information, (ii) significantly low com-
munication overhead by localized belief-centric groupings,
thus, avoiding data transfer to the back-end systems, and
(iii) energy-efficient and robust inference in terms of data
faulty probability.

@ Springer

11 Conclusions

We propose a novel federated event reasoning scheme by
pushing predictive intelligence to the edge of the IoT net-
work. This is achieved by an energy-efficient, real-time
event reasoning mechanism, where data processing and pre-
dictive intelligence is pushed to the edge devices equipped
with sensing and computing capabilities. Edge predictive
intelligence and collaborative reasoning is materialized by
the autonomous nature of nodes to locally perform data
sensing & inference, and convey only inferred knowledge
to their neighbors and concentrators. Nodes possess intel-
ligence to reason about events, thus avoiding transferring
raw data, while the complexity of inference is physically
distributed to the sources of contextual information. Nodes
are capable of locally processing and inferring events from
contextual data streams enhanced with different context per-
spectives: predicted context, outliers context inference, and
context fusion. The approximate event inference of each
node is derived through Type-2 Fuzzy Logic inference to
handle uncertainty. Finally, a knowledge-centric cluster-
ing scheme is introduced, where the clusters of nodes are
formed according to their degrees of belief. The cluster
heads are then disseminate the minimal sufficient knowl-
edge to the concentrators / systems for event inference.

We provide mathematical analyses of our the statisti-
cal learning and stochastic optimization models, asymptotic
complexities and energy consumption models for com-
putation and communication cost, evaluate the model’s
performance and provide a comprehensive comparative
assessment with other local & centralized event inference
mechanisms. It is evidenced that the idea of exploiting the
computing and sensing capabilities of nodes to ‘intelligence
at the edge’ is deemed appropriate for real-time applications
in IoT environments.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

Appendix
A.1 Proof of Theorem 2

J is minimized by updating wy in the negative direction
of the sum of gradients, thus, obtaining Awy = —n% =
n(x — wy) by conditionally updating the closest wy. The
wy converges when E[Aw;] = 0 given that ||x — wi|| <

p. We require at the convergence that x is assigned to its
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closest wy with probability 1, thatis, P(||x—wg| < p) =1,
which means that no other patterns are generated. Therefore,

P(x—will = p) < —E[”X;w"l” or:

E[][x — w1
P

based on Markov’s inequality. To obtain P(||x — wi| <
p) — 1 we have either p — oo or E[[|x—w;||] — 0. How-
ever, p is a real small number, since it interprets the concept
of neighborhood, then we require that E[||x — w;||]] — O,
ie., E[(x — wi)] = 0 or E[Awg] = 0, which completes the
proof.

Px—will =p)=1—

A.2 Proof of Theorem 3

Let the pattern wy reach equilibrium, i.e., Aw; = 0, which,
in this case this holds with probability 1. Then, from the
update rule in Theorem 2 by taking the expectation of both
sides of Aw; = 0 at equilibrium we have that:

E[Aw]= / (x—wp) p(x)dx = /
Dy

Dy

xp(x)dx—wy / p(x)dx.

Dy
By solving E[Aw;] = 0, wy = X = ka xp(x)dx i.e., the
centroid of all vectors in Dy.

A.3 Proof of Theorem 4

We have to prove that the optimal stopping time ¢* exists
and is derived from the principle of optimality: i.e., prove
that (i) lim;—, o sup; ¥; < Yoo a.s. and (ii) E[sup, ¥;] < oc.

Note that I; are non-negative and from the strong law of
numbers (1) Y%, I — E[I] = P({I = 1}), so that:

t
Y, =ta! (S /1) < ta' (1/1) Z I ~ ta'E[I] — 0,
=1

with lim;_, o sup, ¥; = Yo = 0. In addition,

t ¢ 00
sup Y; =supa’S; <supa’ er §supZaTI, 520{’&.

! ! ! =1 =1 =1
Hence, E[sup, ¥;] < > 72, «"E[/] = E[I]{%; < oo. This
completes the proof.

A.4 Proof of Theorem 5

Consider the indicators Iy, I, ... with finite expectation
E[1] and the random variables Z{, Z5, ... such that P(Z, =
1) =aand P(Z; =0) =1 —a,a € (0,1). We can then
express our confidence as: ¥, = [[L_, Z; - 3" _, I, with
Yoo = 0. Taking the expectation given A, =[] _, Z; = 1,
ie.

t+1 t
HEHWJZE[%HE:G}ZQ< u+EuO,
=1 =1

then, the one-stage look-ahead rule from Theorem 4 is:

t t
t*:min{tz 1:21, za<ZIT+E[1]>}

=1 =1

ort* =min{r > 1: Y _, I > 1%-E[I])}. This completes
the proof.

A.5 Proof of Lemma 1

Consider a multiplication factor x > 1 and that node i starts
with the minimum EP of being a cluster head, i.e., § =
&min > 0. Since at each iteration step the node just multiplies
its current EP &; with x then, in the worst case, that node will
be either a cluster head or a member when the process stops
at the first iteration step L such that XL’]émin > 1. That is,
the maximum number of iteration steps are L = min{{ >
0: x“ '&min > 1}. Hence, the required number of iterations
is L = [log, snlm] + 1, which maps to O(1) iterations. Now,
if node i starts the election process with & > &, then O (1)
iterations are the maximum number of steps for the election
process.

A.6 Proof of Lemma 2

In the election process, a node which is about to become
a cluster head generates at most L = O(1) messages. On
the other hand, a node which is about to become a member
delays in sending messages and sends one message to just
join its cluster head after considering itself as ‘non-cluster
head’. Obviously, the number of those messages (member
messages) is strictly less than |, since at least one node
will decide to be a cluster head. Hence, the number of mes-
sages exchanged in the network is upper-bound by L - |\,
which is O (V).

A.7 Analytical expression of P ({I = 1}) using the
Marcum Q-function

We have that: P({I = 1}) = Qu (ﬁ ﬁ). Accord-
ing to [40], the Q, (2, k3) is exprezssed in infinite series
w.r.t the lower incomplete I" function by substituting the
(k1, k2, k3) = (%, VT, +/0) in our case, we obtain:

_500
VROETRDY

k=0

K re+4.9
2%k (k4 4)

where the lower incomplete function I'(z,x) =
fxoo e 't°7dr is defined in [41]; equation (6.5.3) and
Euler function I'(z) = fooo t*~le~'dt. Note, the discussed
generalized Marcum Q-function is approximated using the
Matlab function marcumg (k2, k3, k1) using the algorithm
developed in [42].
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