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Abstract Dempster-Shafer evidence theory is an efficient
tool in knowledge reasoning and decision-making under
uncertain environments. Conflict management is an open
issue in Dempster-Shafer evidence theory. In past decades,
a large amount of research has been conducted on this
issue. In this paper, we propose a new theory called gener-
alized evidence theory (GET). In comparison with classical
evidence theory, GET addresses conflict management in
an open world, where the frame of discernment is incom-
plete because of uncertainty and incomplete knowledge.
Within the presented GET, we define a novel concept called
generalized basic probability assignment (GBPA) to model
uncertain information, and provide a generalized combina-
tion rule (GCR) for the combination of GBPAs, and build
a generalized conflict model to measure conflict among
evidences. Conflicting evidence can be effectively handled
using the GET framework. We present many numerical
examples that demonstrate that the proposed GET can
explain and deal with conflicting evidence more reasonably
than existing methods.
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1 Introduction

Methods for handling uncertainty have been extensively
studied for many real world applications such as approxi-
mate reasoning and decision making. The first and key step
is to reasonably describe and model the uncertain informa-
tion. One of the most common theories is Dempster-Shafer
evidence theory, which is also called Dempster-Shafer the-
ory or evidence theory. Since it was first proposed by
Dempster [6] and then developed by Shafer [46], it has con-
tinually attracted an increasing amount of interest [2–4, 7,
8, 13, 15, 16, 19–21, 23, 27, 29–31, 34, 36–39, 41, 50, 52,
53, 55–58, 60, 63].

One open issue in evidence theory is conflict man-
agement when evidence is highly conflicting. A famous
example was illustrated by Zadeh [62]. Since then, hundreds
of methods have been proposed to address this issue [14, 17,
25, 32, 33, 35, 40, 42, 44, 45, 59, 61]. The Dempster com-
bination rule is important to Dempster-Shafer theory, but,
in its classical form, it is incapable of dealing with highly
conflicting evidence.

Many researchers have investigated the Dempster combi-
nation rule and conflict management. Yager [54] pointed out
that the normalization step in Dempster combination rule is
questionable, and that it should be deleted so as to assign the
conflict to the whole set under the closed-world assumption
where the frame of discernment is exhaustive. The transfer-
able belief model (TBM) [47, 48] was proposed to represent
quantified beliefs based on belief functions. TBM was con-
structed using two levels: the credal level, where beliefs are
entertained and quantified by belief functions; and the pig-
nistic level, where beliefs can be used to make decisions
and are quantified by probability functions. Compared with
Yager’s rule of combination that concerns the assignment
of the conflicting mass, Dubois and Prade [22] proposed a
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new combination rule that is more adaptable and specific.
Lefevre et al. [33] reviewed existing work and proposed a
unified model for handling conflicting evidence. They noted
that the main idea behind previous methods was to deter-
mine which hypothesis the conflict will be assigned to, and
how it will be assigned.

Essentially, the idea of assigning the conflict to differ-
ent hypotheses has changed Dempster combination rule,
which was questioned by Haenni [24]. When a model X
with method Y leads to a counter-intuitive result Z, Haenni
argued that is not appropriate to modify method Y, because
a counter-intuitive result may be caused by model X. Some
methods coincide with Haenni’s opinion. For example,
Murphy [40] averaged the conflict evidence and then com-
bined the averaged evidence itself several times. A weighted
average method was proposed by Deng et al. [14], which
had a better convergence rate. In the weighted average
method, the evidence distance function presented in [28]
(instead of the commonly used conflict coefficient in evi-
dence theory) was used to model the conflict degree. More-
over, Liu [35] noted that the commonly used conflict coeffi-
cient in evidence theory is not appropriate for representing
the degree of conflict between two pieces of evidence.
To address this issue, we propose a two dimensional con-
flict measure, which is combined with the classical conflict
coefficient and the pignistic betting distance. We also inves-
tigated the applicability of Dempster combination rule, and
the present three cases according to the two-dimensional
conflict measure.

Although various methods have been proposed by either
introducing new combination operators or modifying the
data models, there is lack of systemic and comprehen-
sive analyses and explanations on the origin of conflict in
conflict management. Conflict management can only be
effectively conducted if it is based on reasonable explana-
tions on the cause of conflict. Based on this, we propose
a novel theory called generalized evidence theory (GET).
GET concludes that there are two main causes for evidence
conflicts. One is questionable sensor reliability caused by
disturbances or the condition of equipment. The other is
that the system is in open world where our knowledge
is not complete. In contrast with a closed world, open
world means that the frame of discernment in traditional
Dempster-Shafer theory is incomplete. GET provides the
generalized basic probability assignment (GBPA) concept
for data expression and modeling. It also provides a gen-
eralized combination rule (GCR) for combining conflicting
or inconsistent evidence, and a new conflict model. Based
on this new concept, rule, and model, GET actually gener-
alizes traditional Dempster-Shafer theory. In other words,
Dempster-Shafer theory becomes a special case of GET.
We have used many numerical examples to demonstrate the
effectiveness and appropriateness of the proposed GET.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce some background knowl-
edge, including Dempster-Shafer theory [6, 46], the pig-
nistic probability transformation [49], Jousselme’s evidence
distance [28], and Liu’s evidence conflict model [35]. In
Section 3, we present GET, the generalized evidence dis-
tance, the GCR, and their applications. We discuss the ∅
generalized conflict model and its application in Section 4.
Finally, our conclusions are given in Section 5.

2 Preliminaries

2.1 Dempster-Shafer theory

For completeness, we introduce the following basic con-
cepts of Dempster-Shafer theory [6, 46].

For a finite nonempty set � = {H1, H2, · · · , HN }, � is
called a frame of discernment when it satisfies

Hi ∩ Hj = ∅, ∀i, j = {1, · · · , N}. (1)

Let 2� be the set of all subsets of �, namely

2� = {A | A ⊆ �}. (2)

2� is called the power set of �. For FOD �, a mass function
is a mapping m from 2� to [0, 1], formally defined as

m : 2� → [0, 1], (3)

which satisfies the condition
∑

A∈2�

m(A) = 1 (4)

m(∅) = 0. (5)

In Dempster-Shafer theory, a mass function is also called
a basic probability assignment (BPA). Given a BPA, the
belief function Bel : 2� → [0, 1] is defined as

Bel(A) =
∑

B⊆A

m(B). (6)

The plausibility function P l : 2� → [0, 1] is defined as

P l(A) = 1 − Bel(Ā) =
∑

B∩A�=∅
m(B), (7)

where Ā = � − A. The functions Bel and P l express
the lower and upper bounds of the support of subset A,
respectively.

Dempster combination rule (denoted by m = m1 ⊕ m2)
is used to combine two independent BPAs (m1 and m2). It
is defined as

m(A) =
{ 1

1−K

∑
A=B∩C

m1(B)m2(C), A �= ∅;
0, A = ∅.

(8)
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where

K =
∑

B∩C=∅
m1(B) · m2(C). (9)

Note that Dempster combination rule is only applicable to
two BPAs that satisfy K < 1.

2.2 Pignistic probability transformation

In the transferable belief model (TBM) [47], pignistic prob-
abilities are typically used to make decisions.

Let m be a BPA on the frame of discernment �. Its asso-
ciated pignistic probability transformation (PPT), BetPm :
� → [0, 1], is defined as
BetPm(ω)=

∑

A⊆P(�),ω∈A

1

|A|
m(A)

1 − m(∅)
, m(∅) �= 1, (10)

where |A| is the cardinality of subset A. The PPT process
transforms basic probability assignments to probability dis-
tributions. Therefore, the pignistic betting distance [49] can
be easily obtained using the PPT.

Let m1 and m2 be two BPAs on the frame of dis-
cernment �. Then, the pignistic probability transforma-
tions are BetPm1 and BetPm2 . The pignistic betting dis-
tance, difBetP

m2
m1 (difBetP for short), between BetPm1 and

BetPm2 is

difBetP = max
A⊆�

(
∣∣BetPm1(A) − BetPm2(A)

∣∣) (11)

∣∣BetPm1(A) − BetPm2(A)
∣∣ indicates the support degree of

the BPAs.

2.3 Jousselme’s evidence distance

Jousselme et al. [28] proposed a new distance measure for
the conflict between two bodies of evidence, which is also
called the evidence distance.

Let m1 and m2 be two BPAs defined on the same frame
of discernment, �, which contain N mutually exclusive
and exhaustive hypotheses. Let dBPA(m1, m2) represent the
distance between two bodies of evidence, defined as

dBPA(m1, m2) =
√
1

2
(m1 − m2)

T D (m1 − m2), (12)

where m1 and m2 are two BPAs. D is a 2N × 2N matrix

whose elements are D(A, B) = |A∩B|
|A∪B| , where A, B ∈ P(�)

are derived from m1 and m2, respectively.

2.4 Liu’s evidence conflict model

In traditional Dempster-Shafer evidence theory, the conflict
coefficient K represents the degree of conflict between two
bodies of evidence. Liu [35] noted that K cannot effectively
measure the disagreement between two bodies of evidence.

In the conflict model proposed by Liu [35], the pignistic
betting distance and coefficient K are united to represent
the degree of conflict.

Let m1 and m2 be two BPAs on the same frame of
discernment, �. Then, the conflict model proposed by
Liu is

cf (m1, m2) = 〈K, difBetP 〉 , (13)

where K is the classical conflict coefficient of Dempster
combination rule in (9), and difBetP is the pignistic betting
distance in (11). When K > ε and difBetP > ε, m1 and
m2 are regarded as being in conflict, where ε ∈ [0, 1] is
the threshold of the conflict tolerance. Because there does
not exist an “absolutely meaningful threshold” of conflict
tolerance that satisfies all pairs of BPAs [1], the value of ε

is subjective and not fixed. Generally speaking, the closer ε

is to 1, the greater the conflict tolerance.

3 The generalized theory

Dempster-Shafer theory has many merits in information
fusion. It is similar to Bayesian theory, but has some large
improvements. However, it still has some shortcomings.
The computational complexity increases with the num-
ber of elements in the frame of discernment, which limits
its real-world applications. Additionally, highly conflicting
evidence causes counter-intuitive results. In the frame of
discernment, the following two points may be the causes of
the highly conflicting results. One is the incompleteness of
the frame of discernment. For example, in military appli-
cations, suppose there are three targets (a, b, and c) on the
frame of discernment. Then, the sensors can only recognize
the different unions of these three targets. However, if there
exists a new unknown target (d), the sensors cannot distin-
guish whether it is one of the previous three targets. In this
situation, the recognition results will be multifarious, after
combination, and there will be incorrect results. Another
factor is the reliability of the sensors. Condition, distur-
bances, and other aspects of the sensor will influence the
judgment results. There are some alternatives that overcome
these shortcomings. Preprocessing the information or using
approximation algorithms [26, 51] can reduce the computa-
tional complexity. Researchers have made significant efforts
to solve the highly conflicting problem in recent years. Two
typical solutions are the transferable belief model (TBM)
[48] and Dezert-Smarandache theory (DSmT) [18]. One
characteristic of the TBMmodel is related to the concepts of
closed and open worlds. However, to the best of our knowl-
edge, the TBM has only been applied to closed worlds.
DSmT provides a new solution to the highly conflicting
problem, but it is computationally complex. In summary, we
still need a more reasonable model for solving for the highly
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conflicting problem. The new model should be able to han-
dle incomplete frames of discernment, and should be no
more computationally complex than traditional Dempster-
Shafer theory. Taking this into consideration, we propose
the new GET in this paper.

Note that traditional Dempster-Shafer theory is based on
the frame of discernment, and has a constraint that the BPA
m(∅) must be equal to 0. This is why classic Dempster-
Shafer theory can only function in a closed world. In this
paper, closed world means that the elements in the frame of
discernment are exhaustive and complete. There are many
cases of this in real-life. For example, a dice roll only has
six possibilities (1, 2, 3, 4, 5 and 6). However, some appli-
cations lack complete knowledge, so we can only obtain
a partial frame of discernment. As previously mentioned,
the known enemy targets may be “a”, “b” and “c”, but
there may exist a secret undeclared target, “d”. Then, the
sensors cannot effectively recognize target “d”. In this sit-
uation, the frame of discernment {a, b, c} is incomplete.
This is an open world situation. Along with enriched knowl-
edge, an open world is absolute and a closed world is
relative. Another example is SARS (severe acute respira-
tory syndrome). Before the appearance of SARS, the frame
of discernment of pneumonia was not complete. Obviously,
traditional Dempster-Shafer theory can only represent and
process uncertain information in a closed world, which lim-
its its applications. In this paper, we propose generalized
evidence theory, which can be applied in an open world.

3.1 Basic concepts of generalized evidence theory

Definition 1 Suppose that U is a frame of discernment in
an open world. Its power set, 2U

G, is composed of 2U propo-
sitions, ∀A ⊂ U . A mass function is a mapping mG : 2U

G →
[0, 1] that satisfies
∑

A∈2U
G

mG(A) = 1. (14)

Then, mG is the GBPA of the frame of discernment, U . The
difference between GBPA and traditional BPA is the restric-
tion of ∅, as shown in (5). Note that mG(∅) = 0 is not
necessary in GBPA. In other words, the empty set can also
be a focal element. If mG(∅) = 0, the GBPA reduces to a
traditional BPA.

The ∅ is used to model an open world in GET. We should
emphasize that the ∅ in GET is not a common empty set, it
also can be a focal element or represents the union of focal
elements that are out of the given frame of discernment.
The mG : 2U

G → [0, 1] in Definition 1 indicates that the
∅ is the focal element outside of the frame of discernment,
not the empty set in traditional BPA. Likewise, mG in (14)

means that GBPA assigns some probability to the proposi-
tions beyond the frame of discernment. For simplicity, in the
remainder of this paper, we have abbreviated GBPA to BPA,
the mass function mG to m, and 2U

G to 2U .
Similar to Dempster-Shafer theory, the generalized belief

function (GBF) and generalized plausible function (GPL) in
GET are defined as follows.

Definition 2 Given a GBPA m, the GBF is GBel: 2U →
[0, 1], and satisfies

GBel(A) =
∑

B⊆A

m(B), (15)

GBel(∅) = m(∅). (16)

Definition 3 Given a GBPA m, the GPF is GPl: 2U →
[0, 1], and satisfies

GP l(A) =
∑

B∩A�=∅
m(B), (17)

GP l(∅) = m(∅). (18)

Note that in Definitions 2 and 3, GBel(∅) and GP l(∅)

are both equal to m(∅), which is logical. Because ∅ is
a proposition beyond the frame of discernment, it cannot
be supported by these propositions within the frame of
discernment. Additionally, we do not know whether these
propositions agree beyond the frame of discernment. GBF
and GPF can be regarded as generalized lower and upper
bounds of the support of subset A, respectively. It is obvious
that

GBel(A) ≤ GP l(A). (19)

In the following, we give two examples of calculating
the GBF and GPF, which show that the new GBF and GPF
are generalizations of the traditional belief and plausibility
functions, respectively.

Example 1 Suppose that there is a frame of discernment of
{a, b, c}, and a GBPA is given as

m(a) = 0.6; m(c) = 0.2; m(b, c) = 0.2.

The GBPA m assigns 0 to the empty set, i.e.,m(∅)=0. In this
case, the GBPA m degenerates into a traditional BPA. The
GBF and GPF can be obtained using

GBel(a) = 0.6; GBel(b) = 0; GBel(c)

= 0.2; GBel(b, c) = 0.4,
GP l(a) = 0.6; GP l(b) = 0.2; GPl(c)

= 0.4; GP l(b, c) = 0.4.

These results show that the values of the GBF and GPL in
GBPA are the same as Bel and Pl in traditional BPA, where
m(∅)=0.
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Example 2 Suppose that there is a frame of discernment of
{a, b, c}, and a GBPA is given as

m(a) = 0.6; m(b) = 0.1; m(b, c) = 0.2; m(∅) = 0.1.

In this case, the GBPA assign some value to the focal
element ∅. The GBF and GPL are

GBel(a) = 0.6; GBel(b) = 0.1; GBel(c)

= 0; GBel(b, c) = 0.3; GBel(∅) = 0.1,
GP l(a) = 0.6; GP l(b) = 0.3; GP l(c)

= 0.2; GP l(b, c) = 0.3; GP l(∅) = 0.1.

3.2 Generalized combination rule (GCR)

The classic Dempster combination rule can be used to com-
bine two BPAs (m1 and m2) to yield a new BPA (m). Based
on the classic Dempster combination rule, the generalized
combination rule (GCR) is defined as follows.

Definition 4 In generalized evidence theory, ∅1 ∩ ∅2 = ∅
means that the intersection between two empty sets is still an
empty set. Given two GBPAs (m1 and m2), the generalized
combination rule (GCR) is defined as follows.

m(A) =
(1 − m(∅))

∑
B∩C=A

m1(B) · m2(C)

1 − K
, (20)

K =
∑

B∩C=∅
m1(B) · m2(C), (21)

m(∅) = m1(∅) · m2(∅), (22)

m(∅) = 1 if and only if K = 1. (23)

The characteristics of the GCR in (20–23) can be sum-
marized as follows.

(1) When m(∅) = 0, the GCR degenerates to the classic
Dempster combination rule.

(2) Two empty sets can be combined by multiplying their
GBPA values.

(3) The factor 1/(1 − K) in (20) is a normalized pro-
cess that reassigns the GBPA values after deducting the
m(∅) obtained from (22). In other words, we multiply
the GBPAs with non-empty intersections to accumu-
late them, and then amplify the results 1/(1 − K)

times.
(4) Because ∅1 ∩ ∅2 = ∅, the GBPA value of conflict

coefficient K is obtained after superposing (9) and
(22).

Three properties of generalized evidence theory (GET) are
as follows.

Property 1 When m(∅) = 0, GBPA degenerates to tradi-
tional BPA. More generally, if GBPA just assigns single
elements, GBPA degenerates to probability theory.

Property 2 For the GCR of GET, if m(∅) = 0, then
GCR degenerates to the classic Dempster combination rule.
More generally, when GBPAs just assign single elements,
the results of GCR are the same as those of Bayesian
probability.

Property 3 Similar to Dempster combination rule, GCR is
commutative and associative. This means that the combina-
tion results using the GCR are unrelated to the order of the
combination.

3.3 Generalized evidence distance

The generalized evidence distance (GED) in GET is defined
as follows.

Definition 5 Let m1 and m2 be two GBPAs on the frame of
discernment U . The generalized evidence distance between
m1 and m2 is defined as

dGBPA(m1, m2) =
√
1

2

(−→
m1 − −→

m2
)T

D
(−→
m1 − −→

m2
)
, (24)

where D is a 2N × 2N matrix with elements

D(A, B) = |A ∩ B|
|A ∪ B| ; A, B ∈ P (U) . (25)

It is calculated using

dGBPA(m1, m2) =
√
1

2

(∥∥−→
m1

∥∥2 + ∥∥−→
m2

∥∥2 − 2
〈−→
m1,

−→
m2

〉)
,

where
∥∥−→

m
∥∥2 = 〈−→

m,
−→
m

〉
,
〈−→
m,

−→
m

〉
is the inner product of the

two vectors, i.e.,

〈−→
m1,

−→
m2

〉 =
2N∑
i=1

2N∑
j=1

m1(Ai)m2(Aj )
|Ai∩Bi ||Ai∪Bi | ;

Ai, Bj ∈ P(U).

3.4 Numerical examples of GCR

In this subsection, we use numerical examples to demon-
strate the GCR combination process.

Example 3 Assume a frame of discernment U = {a, b, c},
and that two GBPAs are given as

m1(a) = 0.5; m1(a, b) = 0.5
m2(a) = 0.5; m2(b) = 0.3; m2(U) = 0.2.

We combine m1 and m2 such that

m(∅) = m1(∅) · m2(∅) = 0 × 0 = 0

and

K = m1(a) · m2(b) = 0.5 × 0.3 = 0.15.
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Then,

m(a) = 1 − m(∅)

1 − K
× (m1(a) × (m2(a) + m2(U))

+m2(a) × m1(a, b)).

= (1 − 0) × (0.5 × (0.5 + 0.2) + 0.5 × 0.5)

1 − 0.15
= 0.706.

m(b) = 1 − m(∅)

1 − K
× m1(a, b) × m2(b)

= (1 − 0) × 0.5 × 0.3

1 − 0.15
= 0.176.

m(a, b) = 1 − m(∅)

1 − K
× m1(a, b) × m2(U)

= (1 − 0) × 0.5 × 0.2

1 − 0.15
= 0.118.

m(U) = 0.

This example shows that the GCR is the same as the classic
Dempster combination rule when m(∅) = 0.

Example 4 Suppose that the frame of discernment is U =
{a, b, c} and two GBPAs are given as

m1(a) = 0.2; m1(b) = 0.2; m1(∅) = 0.6,
m2(a) = 0.2; m2(b, c) = 0.1; m2(∅) = 0.7.

In this example, we used an intersection table to calculate
K in the GCR. Using Table 1, we can easily obtain K (the
conflicting coefficient in GET). That is,

K = m1(a) · m2(b, c) + m1(a) · m2(∅) + m1(b) · m2(a)

+m1(b) · m2(∅) + m1(∅) · m2(a) + m1(∅) · m2(b, c)

+m1(∅) · m2(∅),

= 0.2 × 0.1 + 0.2 × 0.7 + 0.2 × 0.2 + 0.2 × 0.7
+0.6 × 0.2 + 0.6 × 0.1 + 0.6 × 0.7,

= 0.02 + 0.14 + 0.04 + 0.14 + 0.12 + 0.06 + 0.42,
= 0.94.

Then,

m(∅) = m1(∅) × m2(∅) = 0.6 × 0.7 = 0.42,

so

m(a)= 1−m(∅)
1−K

× m1(a)m2(a) = (1−0.42)×0.2×0.2
1−0.94 = 0.387,

m(b)= 1−m(∅)
1−K

×m1(b)m2(b, c)= (1−0.42)×0.2×0.1
1−0.94 =0.193,

m(c) = 0.

Table 1 Intersection table for combining m1 and m2 in Example 4
using GCR

m1 ⊕ m2 m2(a) = 0.2 m2(b, c) = 0.1 m2(∅) = 0.7

m1(a) = 0.2 {a}(0.04) ∅(0.02) ∅(0.14)
m1(b) = 0.2 ∅(0.04) {b}(0.02) ∅(0.14)
m1(∅) = 0.6 ∅(0.12) ∅(0.06) ∅(0.42)

The final results are
m(a) = 0.347; m(b) = 0.193; m(c) = 0; m(∅) = 0.42.

It is obvious that the traditional Dempster combination
rule is not suitable in this situation, because m(∅) �= 0.
Clearly, after we determine the value of m(∅), GCR redis-
tributes the remaining probability to the other nonempty
sets. In this example, the probability of m(c) is 0, because
the single set {c} is not supported by either of the two BPAs
in the frame of discernment. That is to say, we increase the
probability of the single sets {a} and {b} because they are
both more or less supported by the two GBPAs.

Example 5 Suppose that the frame of discernment is U =
{a, b, c}, and two GBPAs are given as

m1(a) = 0.2; m1(∅) = 0.8,
m2(b) = 0.5; m2(∅) = 0.5.

The conflicting coefficient K in GET is

K = m1(a)(m2(b) + m2(∅)) + m1(∅)(m2(b) + m2(∅)),

= 0.2 × (0.5 + 0.5) + 0.8 × (0.5 + 0.5)
= 1.

Thus,

m(∅) = 1.

From the GCR view, we can first obtain that m(∅) =
m1(∅) × m2(∅) = 0.4. However, because the other two
propositions are not supported by each other, the remain-
ing probability cannot be assigned to either of them, and is
reassigned to m(∅). Therefore, m(∅) is assigned twice the
amount, and m(∅) = 0.4 + 0.6 = 1. We believe that this is
reasonable. When the two GBPAs are highly conflicting and
do not support each other, we should consider that the frame
of discernment is incomplete.

Example 6 (Comparison with the belief revision method
[5]) As discussed in [5], the belief revision method is also
associated with knowledge representation and incorporat-
ing new information. In this example, we compared the
proposed GCR with the belief revision method [5].

As in [5], we initially assume that

P({a, b, c}) = 0.15; P({a, b, c̄})=0.15;P({a, b̄, c})=0.1;
P({a, b̄, c̄}) = 0.1;
P({ā, b, c}) = 0.15;P({ā, b, c̄})=0.15;P({ā, b̄, c})=0.1;
P({ā, b̄, c̄}) = 0.1.

If we obtain an observation of a with reliability 0.8, the
belief revision method derives a revised belief of

P(a, 0.8)({a, b, c}) = 0.24; P(a, 0.8)({a, b, c̄}) = 0.24;
P(a, 0.8)({a, b̄, c}) = 0.16; P(a, 0.8)({a, b̄, c̄}) = 0.16;
P(a, 0.8)({ā, b, c}) = 0.06; P(a, 0.8)({ā, b, c̄}) = 0.06;
P(a, 0.8)({ā, b̄, c}) = 0.04; P(a, 0.8)({ā, b̄, c̄}) = 0.04.
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Now, let us consider this case in the GBT framework. The
initial belief can be considered a GBPA, that is,

m1({a, b, c}) = 0.15; m1({a, b, c̄}) = 0.15; m1({a, b̄, c})
= 0.1; m1({a, b̄, c̄}) = 0.1;

m1({ā, b, c}) = 0.15; m1({ā, b, c̄}) = 0.15; m1({ā, b̄, c})
= 0.1; m1({ā, b̄, c̄}) = 0.1.

Because this example is in a closed world, m1(∅) = 0.
In GET, an observation of a with reliability 0.8 means that
a occurs with a probability 0.8 despite b and c, and a does
not occur with a probability 0.2 regardless of b and c. So in
GET, the observation can be expressed by

m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}) = 0.8;

m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}) = 0.2.

Based on the GCR, we can combine m1 (the initial
knowledge) and m2 (new observation). The calculation pro-
cess is as follows. The intersection table for combining m1

and m2 is shown in Table 2. Using this,

K =
∑

∅ = 0.12 + 0.12 + 0.08 + 0.08 + 0.03 + 0.03

+0.02 + 0.02 = 0.5,

and m(∅) = m1(∅)m2(∅) = 0 × 0 = 0.
Now,

m({a, b, c}) = 1 − m(∅)

1 − K
× (m1({a, b, c})

×m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}))
= (1 − 0) × 0.15 × 0.8

1 − 0.5
= 0.24,

m({a, b, c̄}) = 1 − m(∅)

1 − K
× (m1({a, b, c̄})

×m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}))
= (1 − 0) × 0.15 × 0.8

1 − 0.5
= 0.24,

m({a, b̄, c}) = 1 − m(∅)

1 − K
× (m1({a, b̄, c})

×m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}))
= (1 − 0) × 0.1 × 0.8

1 − 0.5
= 0.16,

m({a, b̄, c̄}) = 1 − m(∅)

1 − K
× (m1({a, b̄, c̄})

×m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}))
= (1 − 0) × 0.1 × 0.8

1 − 0.5
= 0.16,

m({ā, b, c}) = 1 − m(∅)

1 − K
× (m1({ā, b, c})

×m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}))
= (1 − 0) × 0.15 × 0.2

1 − 0.5
= 0.06,

m({ā, b, c̄}) = 1 − m(∅)

1 − K
× (m1({ā, b, c̄})

×m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}))
= (1 − 0) × 0.15 × 0.2

1 − 0.5
= 0.06,

m({ā, b̄, c}) = 1 − m(∅)

1 − K
× (m1({ā, b̄, c})

×m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}))
= (1 − 0) × 0.1 × 0.2

1 − 0.5
= 0.04,

m({ā, b̄, c̄}) = 1 − m(∅)

1 − K
× (m1({ā, b̄, c̄})

×m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}))
= (1 − 0) × 0.1 × 0.2

1 − 0.5
= 0.04.

Moreover, if we iterate the process and again observe a

with the same reliability, the revised belief P(a, 0.8)(a, 0.8)
can also be obtained using the belief revision method. Cor-
respondingly, the results derived from the GCR are denoted
GCR(m1, m2, m3), where m3 represents the same observa-
tion of a with reliability 0.8.

The above results are displayed in Table 3. The
GCR(m1, m2) results are the same as the revised belief

Table 2 Intersection table for combining m1 and m2 in Example 6

m2({a, b, c}, {a, b, c̄}, {a, b̄, c}, {a, b̄, c̄}) = 0.8 m2({ā, b, c}, {ā, b, c̄}, {ā, b̄, c}, {ā, b̄, c̄}) = 0.2

m1({a, b, c}) = 0.15 {a, b, c}(0.12) ∅(0.03)

m1({a, b, c̄}) = 0.15 {a, b, c̄}(0.12) ∅(0.03)

m1({a, b̄, c}) = 0.1 {a, b̄, c}(0.08) ∅(0.02)

m1({a, b̄, c̄}) = 0.1 {a, b̄, c̄}(0.08) ∅(0.02)

m1({ā, b, c}) = 0.15 ∅(0.12) {ā, b, c}(0.03)
m1({ā, b, c̄}) = 0.15 ∅(0.12) {ā, b, c̄}(0.03)
m1({ā, b̄, c}) = 0.1 ∅(0.08) {ā, b̄, c}(0.02)
m1({ā, b̄, c̄}) = 0.1 ∅(0.08) {ā, b̄, c̄}(0.02)
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Table 3 Comparison of the GCR and belief revision methods

P/m1 P(a, 0.8) GCR(m1, m2) P(a, 0.8)(a, 0.8) GCR(m1, m2, m3)

{a, b, c} 0.1500 0.2400 0.2400 0.2824 0.2824

{a, b, c̄} 0.1500 0.2400 0.2400 0.2824 0.2824

{a, b̄, c} 0.1000 0.1600 0.1600 0.1882 0.1882

{a, b̄, c̄} 0.1000 0.1600 0.1600 0.1882 0.1882

{ā, b, c} 0.1500 0.0600 0.0600 0.0176 0.0176

{ā, b, c̄} 0.1500 0.0600 0.0600 0.0176 0.0176

{ā, b̄, c} 0.1000 0.0400 0.0400 0.0118 0.0118

{ā, b̄, c̄} 0.1000 0.0400 0.0400 0.0118 0.0118

P(a, 0.8), GCR(m1, m2, m3), and P(a, 0.8)(a, 0.8). There-
fore, the GCR is consistent with the belief revision method.
Meanwhile, note that the belief revision method is only
suitable in a closed world, and that the GCR is inher-
ently more useful because it can be applied in an open
world.

4 Application and discussion

4.1 The m(∅) in Dempster-Shafer evidence and GET

In classic Dempster-Shafer theory, m(∅) = 0 is indispens-
able. From this point of view, ∅ is a proposition without
any support from other propositions. There is no physi-
cal meaning to ∅ in Dempster-Shafer theory. ∅ was first
noted and assigned to m(∅) in the TBM proposed by
Smets [48]. In TBM, if there is a lot of conflict between
two bodies of evidence, the conflict is assigned to m(∅).
The basic belief assignment (BBA) in TBM is used to
distinguish the method from traditional BPA in Dempster-
Shafer theory. However, BBA and BPA are both essentially
assigned to these nonempty sets. In other words, the restric-
tion condition of m(∅) = 0 is still necessary. The logic
behind this approach is questionable. If the problem is
in an open world, we should assign the value to m(∅)

when we generate the BBAs in TBM. Additionally, it is
a weak approach to dealing with conflict. Yager [54] pro-
posed a method where the conflicting values are assigned
to the whole set � when the evidence is highly contra-
dictory. Yager’s method is contentious. In GET, while the
GBPAs are generated, m(∅) �= 0 is permissible, which is
easy to understand. That is, there may exist some hypothe-
ses or propositions beyond the fixed frame of discernment.
The value of m(∅) indicates the open world degree of the
frame of discernment. The GET proposed in this paper is
an extension of classic Dempster-Shafer theory, and can
express and deal with more uncertain information in the
open world than Dempster-Shafer theory in the closed
world.

4.2 Modified Liu’s conflict model

As mentioned in Section 2.4, Liu analyzed the drawbacks of
the classic conflict coefficient, K , and proposed a conflict
model. The main idea is to construct two tuples using the
pignistic betting distance difBetP from TBM [49] and the
classic conflict coefficient K from Dempster-Shafer theory
[6, 46]. The union of these is used to represent degree of
conflict. If only difBetP is large, then the two pieces of evi-
dence cannot be regarded as conflicting. If only K is large,
then the two pieces of evidence can also not be viewed as
conflicting. The conflict is only ascertained by the union
of difBetP with K . This conflict model is very interest-
ing, because it provides a new way of thinking regarding
methods for expressing the conflict between two bodies of
evidence. The following is a numerical example of Liu’s
conflict model.

Example 7 Let a frame of discernment be � = {a, b, c},
and consider two BPAs m1 and m2 defined as

m1(a) = 1
3 ; m1(b) = 1

3 ; m1(c) = 1
3 ,

m2(a, b, c) = 1.

Because K = 0 and difBetP = 0, cf12(K, difBetP ) =
〈0, 0〉, so the two BPAs are regarded as not being in conflict.
However, this is obviously irrational, because the two BPAs
provide different information. m1 is definite, and m2 is total
ignorance. So Liu’s conflict model is still not suitable for
reasonably expressing the conflict between evidence.

This example demonstrates that “the same probability of
occurrence” is the same as “total ignorance of the system”
in Liu’s conflict model. However, the real situation is not so
simple. If we know nothing about the system (i.e., m(�) =
1), then m(a) = m(b) = 0.5; m(a) = 0.7, m(b) = 0.3;
m(a) = 1, m(b) = 0 and so forth are possible, and the prob-
ability of uncertainty for the system is maximized. Thus, the
pignistic betting distance cannot distinguish between situ-
ations with the same probabilities or total ignorance, and
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is not an appropriate conflict model. We propose a modi-
fied evidence conflict model that is based on Jousselme’s
evidence distance [28].

Definition 6 Suppose that there are two different BPAs on
the same frame of discernment �, and that the modified
evidence conflict model is defined as

cf (m1, m2) = 〈K, dis〉 , (26)

where K is the classic conflict coefficient in Dempster-
Shafer theory (see (9)), and dis is the evidence distance in
(12).

4.3 Conflict model of GET

In the previous subsection, we modified Liu’s conflict
model using (26) to make it more reasonable. However,
this conflict model is still in a closed world, and cannot be
applied to an open world where the frame of discernment
may be incomplete. With this in mind, we propose a new
conflict model for GET.

Definition 7 Assume that there are two GBPAs, m1 and
m2, on the frame of discernment U , and that the generalized
conflict model is

cfG(m1, m2) = 〈K, dis〉 , (27)

where K is the generalized conflict coefficient in (21), and
dis is the generalized evidence distance in (24).

Compared with existing methods, this new proposed
generalized conflict model can handle information on the
incomplete frame of discernment. When the frame of dis-
cernment is complete, the generalized conflict coefficient

and generalized evidence distance reduce to the classical
coefficient and classical evidence distance. Additionally,
(27) degenerates to (26).

The following examples demonstrate how to apply the
generalized conflict coefficient and generalized conflict
model.

Example 8 Consider two GBPAs, m1 and m2, on the frame
of discernment. The first group of GBPAs varies. They start
at m1(a) = 1 and m1(∅) = 0, and then m1(a) progres-
sively decreases by 0.1 and m(∅) progressively increases
by 0.1 at each time step. The second group of GBPAs also
varies. They start at m2(a) = 1 and m2(∅) = 0, and
then m2(a) progressively decreases by 0.1 and m1(∅) pro-
gressively increases by 0.1 at each time step. Then, the
generalized conflict coefficient between the two GBPAs is
shown in Fig. 1.

Figure 1 indicates that, when m1(a) = 1, m1(∅) = 0,
m2(a) = 1, and m2(∅) = 0, the generalized conflict coef-
ficient is minimized, the proposition {a} is absolutely sup-
ported by the system, and the frame of discernment is com-
plete. While m2(a) progressively decreases by 0.1 at each
time step, m1(∅) progressively increases by 0.1 and the gen-
eralized conflict coefficient also gradually increases. This
situation indicates that the frame of discernment is becom-
ing more incomplete. According to GCR, when m(∅) = 1
appears in any of these GBPAs, the generalized conflict
coefficient achieves its maximum of 1.

Example 9 Suppose that there are two GBPAs on the frame
of discernment. The first group of GBPAs varies. It starts
with m1(a) = 0 and m1(∅) = 1. m1(a) progressively
increases by 0.1 and m(∅) progressively decreases by 0.1 at

Fig. 1 Generalized conflict
coefficient between two GBPAs
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each time step. The second group of GBPAs also varies. It
starts with m2(a) = 0 and m2(∅) = 1. m2(a) progressively
increases by 0.1 and m2(∅) progressively decreases by 0.1
at each time step. Then, the generalized evidence distance
between the two GBPAs is as shown in Fig. 2. Figure 2
shows that the generalized evidence distance on the diagonal
is 0, because the two GBPs are the same.

Example 10 Consider two GBPAs on the same frame of
discernment, and two given GBPAs,

mx1(b) = 0.1; mx1(∅) = 0.9,
mx2(b) = 0.1; mx2(∅) = 0.9.

The GET conflict model is

cfG(m1, m2) = 〈0.81, 0〉 ,

and is illustrated in Fig. 3.
Figure 3 indicates that there is just one class b on the

frame of discernment. The two dotted triangles represent the
classes a and c, both of which do not appear on this frame
of discernment. In fact, sensors x1 and x2 belong to classes
a and c, respectively. If we only consider the generalized
evidence distance, we will obtain an incorrect result. This
example points out that generalized conflict coefficient is a
better measure than the generalized evidence distance on an
incomplete frame of discernment.

The following two examples are applied to the complete
frame of discernment with m(∅) = 0.

Example 11 Consider a frame of discernment � = {a, b}.
The first fixed BPA is such that m1(a, b) = 1. The second
varying BPA begins with m2(a) = 0; m2(b) = 1. m2(a)

Fig. 3 Two samples with different classes

progressively increases by 0.1 and m2(b) decreases by 0.1
at each time step. Then, the evidence distance and pignistic
betting distance between m1 and m2 are as shown in Fig. 4.
Figure 4 shows that when m2(a) = 0.5 and m2(b) = 0.5,
the pignistic betting distance between two BPAs is 0, which
indicates that there is no conflict between BPAs. However,
at this time step, the evidence distance is 0.5, which indi-
cates that there is conflict between the BPAs. It is obvious
that we should use evidence distance and not pignistic bet-
ting distance as a measure of the conflict for a complete
frame of discernment.

Example 12 Suppose that we have a frame of discernment
of � = {1, 2, 3 · · · 20}, and two BPAs are defined as

m1(7) = 0.6; m1(A) = 0.4,
m2(1, 2, 3) = 1,

Fig. 2 Generalized evidence
distance between two GBPAs
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Fig. 4 Comparisons of evidence distance and pignistic betting
distance

where A is a varying subset of �. A increments one more
element each time, starting at A={1}, and ending with Case
20, when A = {1, 2, 3 · · · 20}. The evidence distance and
classic conflict coefficient K between two BPAs are shown
in Table 4 and Fig. 5.

Table 4 and Fig. 5 show that, regardless of the subset
A, the classic conflict coefficient K is always 0.6. This is

Table 4 Comparison of the new proposed conflict coefficient with the
classic conflict coefficient

Cases dBPA K

A={1} 0.7916 0.6

A={1,2} 0.7024 0.6

A={1,2,3} 0.6 0.6

A={1,...,4} 0.6782 0.6

A={1,...,5} 0.7211 0.6

A={1,...,6} 0.7483 0.6

A={1,...,7} 0.7982 0.6

A={1,...,8} 0.8 0.6

A={1,...,9} 0.8083 0.6

A={1,...,10} 0.8149 0.6

A={1,...,11} 0.8202 0.6

A={1,...,12} 0.8246 0.6

A={1,...,13} 0.8283 0.6

A={1,...,14} 0.8315 0.6

A={1,...,15} 0.8343 0.6

A={1,...,16} 0.8367 0.6

A={1,...,17} 0.8388 0.6

A={1,...,18} 0.8406 0.6

A={1,...,19} 0.8423 0.6

A={1,...,20} 0.8438 0.6

Fig. 5 Comparison of the new proposed conflict coefficient with the
classic conflict coefficient

irrational. The generalized evidence distance depends on A,
and can effectively measure the conflict. That means the
generalized evidence distance for measuring the conflict is
better than the generalized conflict coefficient, in the case
of a complete frame of discernment.

These numerical examples show how to apply this new
conflict model. When the frame of discernment is incom-
plete and m(∅) �= 0, the two-tuples of the conflict model
should mainly depend on the generalized conflict coeffi-
cient. However, when the frame of discernment is complete
and m(∅) = 0, the two-tuples of the conflict model should
mainly depend on the generalized evidence distance.

5 Conclusions

In this paper, we proposed a novel theory called GET. Some
key points are given in the following.

First, evidence theory is an efficient tool for fusing infor-
mation in an uncertain environment. If we definitely know
that we are in a closed world, Dempster combination rule
is enough to combine evidence from different sources. If
the evidence is conflicting, the conflicting evidence can be
combined by considering its reliability.

Second, GET is an extension of Dempster-Shafer theory,
in which the strict restriction condition of m(∅) = 0 is aban-
doned. In GET, ∅ is regarded as an element with the same
properties as the other elements. It represents unknown, but
not a common empty.

This is why GET can better fuse uncertain information in
an open world, when compared with Dempster-Shafer the-
ory. GET inherits all the benefits of Dempster-Shafer theory,
but expands its scope to an open world. When the frame of
discernment is complete and m(∅) = 0, GET degenerates
to Dempster-Shafer theory. Additionally, the GCR in GET
is distinct from the Dempster combination rule.
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Third, we proposed the generalized conflict model based
on GET. We have demonstrated how to apply the general-
ized conflict model under different conditions. When the
frame of discernment is incomplete, the measure of the gen-
eralized conflict should mainly be based on the generalized
conflict coefficient. When the frame of discernment is com-
plete, the measure of the generalized conflict should mainly
be based on the evidence distance.

An increasing amount of research is focusing on model-
ing epistemic uncertainty [43]. We believe that the proposed
evidence theory with the non-zero empty set will provide a
promising way to model epistemic uncertainty in the future.
Additionally, note that, besides conflict management in an
open world, we should also pay attention to the exclusive
condition in Dempster-Shafer evidence theory. An ongo-
ing area of investigation involves D numbers theory, which
focuses on mutual exclusion in evidence theory. In clas-
sical evidence theory, we assume that each hypothesis is
exclusive. However, this is not reasonable in the real world.
Various linguistic variables and fuzzy numbers cannot be
exclusive for each element. For example, given two linguis-
tic values “Good (G)” and “Very Good (VG)”,m(G, V G) =
0.8 is not accepted under Dempster-Shafer evidence the-
ory because the two linguistic values are not exclusive. To
address this limitation, a novel theory called D numbers the-
ory [12] was proposed. D numbers and the GET proposed in
this paper are generalizations of evidence theory, providing
a more flexible and reasonable way to handle uncertainty in
the real world [9–11, 34].

Acknowledgments The author greatly appreciates Professor Shan
Zhong of the Academy of Engineering for his encouragement, and Pro-
fessor Yugeng Xi from Shanghai Jiao Tong University for his support.
The author also greatly appreciates Dr. Jean Dezert for his enthusias-
tic comments that have improved this manuscript. Professor Sankaran
Mahadevan from Vanderbilt University discussed many topics related
to this work. Dr. Deqiang Han from Xi’an Jiao Tong University and
Dr. Wen Jiang from Northwestern Polytechnical University discussed
the topic of conflict management in this paper. The author’s Ph.D
students in Shanghai Jiao Tong University, Peida Xu and Xiaoyan
Su, are responsible for some of the numerical experiments in this
paper. The author’s Ph.D students in Southwest University (Xinyang
Deng, Ya Li and Daijun Wei), and graduate students in Southwest
University (Yajuan Zhang, Bingyi Kang, Xiaoge Zhang, Shiyu Chen,
Yuxian Du, Cai Gao) were involved in discussions regarding con-
flict evidence management. Mr. Hongming Mo was responsible for
some editorial work. The author greatly appreciates the continuous
support for this work over the last ten years. This work is partially
supported by National Natural Science Foundation of China, Grant
Nos. 30400067, 60874105 and 61174022, Chongqing Natural Sci-
ence Foundation, Grant No. CSCT, 2010BA2003, Program for New
Century Excellent Talents in University, Grant No. NCET-08-0345,
Shanghai Rising-Star Program Grant No.09QA1402900, the Chenxing
Scholarship Youth Found of Shanghai Jiao Tong University, Grant No.
T241460612, and the open funding project of State Key Laboratory of
Virtual Reality Technology and Systems, Beihang University (Grant
No.BUAA-VR-14KF-02).

References

1. Ayoun A, Smets P (2001) Data association in multi-target
detection using the transferable belief model. Int J Intell Syst
16(10):1167–1182

2. Cuzzolin F (2007) Two new bayesian approximations of belief
functions based on convex geometry. IEEE Trans Syst Man
Cybern B 37(4):993–1008

3. Cuzzolin F (2008) A geometric approach to the theory of evidence.
IEEE Trans Syst Man Cybern Part C Appl Rev 38(4):522–534

4. Cuzzolin F (2014) Lp consonant approximations of belief func-
tions. IEEE Trans Fuzzy Syst 22(2):420–436

5. Delgrande JP (2012) Revising beliefs on the basis of evidence. Int
J Approx Reason 53(3):396–412

6. Dempster A (1967) Upper and lower probabilities induced by a
multivalued mapping. Ann Math Stat 38(2):325–339

7. Dempster AP (2008) A generalization of Bayesian inference. In:
Classic works of the dempster-shafer theory of belief functions,
pp 73–104

8. Dempster AP, Chiu WF (2006) Dempster-Shafer models for
object recognition and classification. Int J Intell Syst 21(3):283–
297

9. Deng X, Hu Y, Deng Y, Mahadevan S (2014a) Environmen-
tal impact assessment based on D numbers. Expert Syst Appl
41(2):635–643

10. Deng X, Hu Y, Deng Y, Mahadevan S (2014b) Supplier selec-
tion using AHP methodology extended by D numbers. Expert Syst
Appl 41(1):156–167

11. Deng X, Chan FT, Sadiq R, Mahadevan S, Deng Y (2015) D-
CFPR: D numbers extended consistent fuzzy preference relations.
Knowl-Based Syst 73(1):61–68

12. Deng Y (2012) D numbers: Theory and applications. J Inf Comput
Sci 9(9):2421–2428

13. Deng Y, Chan FT (2011) A new fuzzy dempster mcdm method
and its application in supplier selection. Expert Syst Appl
38(8):9854–9861

14. Deng Y, Shi W, Zhu Z, Liu Q (2004) Combining belief functions
based on distance of evidence. Decis Support Syst 38(3):489–493

15. Denœux T, Masson MH (2004) EVCLUS: evidential clustering of
proximity data. IEEE Trans Syst Man Cybern B Cybern 34(1):95–
109

16. Denoeux T, Masson MH (2012) Evidential reasoning in large
partially ordered sets. Ann Oper Res 195(1):135–161

17. Destercke S, Burger T (2013) Toward an axiomatic definition of
conflict between belief functions. IEEE Trans Cybern 43(2):585–
596

18. Dezert J, Smarandache F (2006) Dsmt: A new paradigm shift for
information fusion. arXiv:cs/0610175

19. Dezert J, Han D, Liu Z, Tacnet JM (2012) Hierarchical propor-
tional redistribution for bba approximation. In: Belief functions:
theory and applications. Springer, pp 275–283

20. Dezert J, Tchamova A, Han D, Tacnet JM (2013a) Why demp-
ster’s fusion rule is not a generalization of bayes fusion rule.
In: 2013 16th International Conference on Information fusion
(FUSION), IEEE, pp 1127–1134

21. Dezert J, Tchamova A, Han D, Tacnet JM (2013b) Why demp-
ster’s rule doesn’t behave as bayes rule with informative priors.
In: Innovations in Intelligent Systems and Applications (INISTA),
2013 IEEE International Symposium on IEEE, pp 1–5

22. Dubois D, Prade H (1988) Representation and combination of
uncertainty with belief functions and possibility measures. Com-
put Intell 4(3):244–264

23. Elouedi Z, Mellouli K, Smets P (2004) Assessing sensor reliability
for multisensor data fusion within the transferable belief model.
IEEE Trans Syst Man Cybern B Cybern 34(1):782–787

http://arxiv.org/abs/cs/0610175


542 Y. Deng

24. Haenni R (2002) Are alternatives to dempster’s rule of combi-
nation real alternatives?: Comments on about the belief function
combination and the conflict management problem—lefevre et al.
Inf Fusion 3(3):237–239

25. Haenni R (2005) Shedding new light on Zadeh’s criticism of
Dempster’s rule of combination. In: 2005 7th International confer-
ence on information fusion, vol 2, pp 879–884

26. Haenni R, Lehmann N (2002) Resource bounded and anytime
approximation of belief function computations. Int J Approx
Reason 31(1):103–154

27. Huang S, Su X, Hu Y, Mahadevan S, Deng Y (2014) A new
decision-making method by incomplete preferences based on
evidence distance. Knowl-Based Syst 56:264–272

28. Jousselme AL, Grenier D, Bossé É (2001) A new distance between
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