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Abstract Suffix arrays form a powerful data structure for
pattern detection and matching. In a previous work, we pre-
sented a novel algorithm (COV) which is the only algorithm
that allows the detection of all repeated patterns in a time
series by using the actual suffix array. However, the require-
ments for storing the actual suffix strings even on external
media makes the use of suffix arrays impossible for very
large time series. We have already proved that using the con-
cept of Longest Expected Repeated Pattern (LERP) allows
the actual suffices to be stored in linear capacity O (n) on
external media. The repeated pattern detection using LERP
has analogous time complexity, and thus makes the analy-
sis of large time series feasible and limited only to the size
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of the external media and not memory. Yet, there are cases
when hardware limitations might be an obstacle for the anal-
ysis of very larger time series of size comparable to hard
disk capacity. With the Moving LERP (MLERP) method
introduced in this paper, it is possible to analyze very large
time series (of size tens or hundreds thousands times larger
than what the LERP can analyze) by maximal utilization
of the available hardware. Further, when empirical knowl-
edge related to the distribution of repeated pattern’s length
is available, the proposed method (MLERP) can achieve
better time performance compared to the standard LERP
method and definitely much better than using any other
pattern matching algorithm and applying brute force tech-
niques which are unfeasible in logical (human) time frame.
Thus, we may argue that MLERP is a very useful tool for
detecting all repeated patterns in a time series regardless of
its size and hardware limitations.

Keywords Suffix arrays - Repeated patterns detection -
Data mining - Time series - DNA analysis

1 Introduction

This paper introduces a new methodology for the analysis
of very large time series using suffix arrays. In [1] we intro-
duced a novel, recursive and very efficient algorithm (COV)
that has the unique property of detecting all repeated pat-
terns in a time series with O (n) complexity on average. For
the past decades, great effort has been applied first on the
construction of efficient data structures for pattern matching
(i.e., suffix trees and suffix arrays) and, respectively, on the
construction of pattern matching algorithms. Yet, although
many algorithms exist that take advantage of the previously
mentioned data structures, there are no algorithms for the
detection of all repeated patterns. Of course, any of the
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already existing algorithms, e.g., [2-6] and [7] can be used
for the detection of all repeated patterns, yet, we will show
that this is unfeasible for very long time series and even
for patterns with very small length inside any kind of time
series. Another feature of our methodology is that although
the COV algorithm can be directly executed in memory, we
prefer to store the suffix array data structure on an external
database management system. This gives us the advantage
to reuse the data structure whenever we want for further
analysis without the need to reconstruct it and overcome the
problem of limited memory which can be of a ratio 1/100
compared to a hard disk.

The tradeoff for the use of an external data storage is
that in order for the COV algorithm to detect all repeated
patterns in a time series, the actual suffix array has to be
constructed. Due to the quadratic space-required capacity of
a suffix array, the use of the data structure is limited to very
small time series. Trying to solve this problem, we proved
in [8] that only suffix strings of length half the length of the
original time series need to be stored for the detection of all
repeated patterns. Although now the suffix array has smaller
size, the quadratic capacity remains and this does not allow
the analysis of very large time series. To overcome this
problem, in [9] we introduced the concept of the Longest
Expected Repeated Pattern (LERP). More specifically, we
showed that if we know the length of the longest expected
repeated pattern in a time series then we have only to store
all suffix strings with length less or equal to this value.
However, in [10] we managed to construct and proved the
Probabilistic Existence of Longest Expected Repeated Pat-
tern Theorem which allows the pre-calculation of the LERP
value without any knowledge of the time series rather than
only its length and the assumption that it is random. This
technique allows the linear required space capacity storage
of the suffix array data structure without any loss of infor-
mation. Our algorithm is then able to analyze any kind of
time series regardless of its size and, therefore, the exter-
nal media data storage. By expanding our previous work
and more specifically the Longest Expected Repeated Pat-
tern (LERP) concept introduced in [9], this paper proposes
a new method for the maximal utilization of the external
media storage used to store a suffix array in which through
a finite loop detects all repeated patterns that exist in a time
series. Although with the introduction of LERP it is possi-
ble for time series of length up to hundred million or billion
characters to be analyzed [11], the methodology proposed
in this paper can further expand this size up to tens of bil-
lions or even more, depending only on the limitations of the
external storage media that will be used to store the suffix
array. The experimental results have shown that although
the new methodology is slightly slower in comparison with
LEREP, it is significantly space efficient. This is acceptable
since the objective of the new methodology is to analyze
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very large time series by challenging the main problem of
the enormous space needed for storage.

A time series is a representation of a time dependent vari-
able over time (e.g., environmental temperature). Yet, any
fixed alphanumeric string based on a predefined and con-
stant alphabet (e.g., chromosomes or proteins) can be also
considered as a time series. For the analysis of time series,
alphabet categorization and discretization is needed in order
to analyze continuous values or values that fluctuate in great
ranges which otherwise would be meaningless to analyze.
For example, atmospheric temperature in Canada may vary
from —35 degrees up to 435 degrees Celsius. In a daily
analysis, or even worse hourly analysis, the outcome of the
measurements will be meaningless for statistical purposes
if not categorized, since there are 76 discrete numerical val-
ues in the specific range or 7,600 if we use real values
with two decimal digits. In order to create a time series of
temperatures that can show seasonal patterns, temperatures
have to be discretized in ranges and in each range, a symbol
(i.e., letter, number, etc.) from a predefined alphabet can be
assigned. This categorization helps to extract valuable infor-
mation of patterns regarding weather conditions, since we
are interested in general conditions of how cold or warm the
weather can be and not in specific temperature values.

After the process of discretization is completed and the
time series is constructed, the data should be stored for fur-
ther analysis. The most common technique so far is based
on a very powerful data structure, the suffix tree [12, 13].
Suffix trees are more preferred because they require low
space capacity and they lead to very good time complexity
that allows fast analysis of time series. Another data struc-
ture used for this purpose is suffix arrays [13—16]. Both data
structures hold information about the suffix strings of a time
series. A suffix string is a substring that represents part of
a time series string after a specific position (suffix). There-
fore, a time series can have exactly n— 1 suffix strings,
plus one which is the complete time series itself. Further-
more, a suffix array stores the lexicographically sorted list
of all suffixes [14—16]. It has to be mentioned that all current
data structure construction methods are temporary, regard-
less whether they are a combined method of memory and
external storage media. When the memory resources are
released then the data structure is no longer available.

While the creation of the data structure is the first impor-
tant step in time series analysis, two equally important
processes follow. First, all occurrences of repeated patterns
should be detected in the time series and then the out-
come should be analyzed for finding potential periodicity
among them. This paper builds upon the LERP methodol-
ogy introduced in [8] and it will not focus on the last process
of periodicity detection. It will mainly concentrate on the
two first steps in periodicity detection, i.e., the reduction
of the required space capacity of a suffix array and then
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detection of all repeated patterns in the time series. The
reported experimental results demonstrate the applicability
and effectiveness of the proposed approach.

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 defines the prob-
lem which will be solved. Section 4 presents the pro-
posed methodology. Section 5 discusses the findings by
applying the proposed methodology to DNA time series
analysis. Finally, Section 6 is conclusions and future work.

2 Related work

Pattern and periodicity detection have been proved to be
problems of great interest. For this purpose, many different
algorithms and methods have been introduced to perform
pattern, e.g., [2, 5, 7, 17-19] and periodicity detection, e.g.,
[12, 20-22]. Moreover, the past decades have witnessed the
utilization of two powerful data structures for time series
analysis, namely suffix trees and suffix arrays. Both are
based on the suffix string concept, which is a substring of
the initial time series string. Suffix strings can be extracted
from a time series by finding each time the string beyond a
specific position in the time series.

A suffix tree is a representation of all suffixes of a string
in a tree format [13]; it is considered a very powerful data
structure [20, 21, 23]. Suffix trees are heavily used for
data mining purposes in many scientific and commercial
fields (e.g., financial, marketing, frequent item-sets detec-
tion, DNA) due to their advantages in string processing
[12, 21, 22, 24]. Several methods and algorithms have been
introduced for the construction and analysis of a suffix tree,
e.g., Weiner [17], McCreight [25] and lately the algorithm of
Ukkonen [26] which creates the suffix tree with linear O (n)
complexity. One of the main advantages of suffix trees is
the small storage space required. This is important because
suffix strings have to be stored in memory in order to be
further analyzed. Techniques for external storage have been
introduced lately in order to analyze larger time series. How-
ever, this might be a problem if the suffix tree cannot fit
in the main memory and external storage is required, since
existing analysis algorithms may crash [23, 24]. That may
happen because the current algorithms cannot access from
the suffix tree the part which is temporarily saved on exter-
nal media. To overcome this problem, new techniques have
been introduced recently, e.g., [3, 4, 6, 23, 24] that allow for
the analysis of the data stored outside the main memory.

Suffix arrays do not suffer from this specific problem
since they can be stored and accessed directly from external
media such as hard disks. However, the read-write I/O pro-
cess is very time consuming compared to the direct access
in main memory. For very long time series, this can be a
significant drawback which forbids sometimes the analysis
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of time series. For a suffix array, one of the limitations is
the required space capacity in case of the full suffix array
which is O (n?) based on Gauss formula for the summa-
tion of series ) 1k = "*(ZH) and it is very important for
our methodology. The latter series represents the summa-
tion of the elements of all the n— 1 suffix strings including
the original time series. Although the space required to store
a suffix array on disk is very large, suffix arrays (as will
be proved in this paper) can behave better in the analysis
of large time series providing a great advantage compared
to the memory limitations of suffix trees. However, Manber
and Myers in [16] introduced a very efficient, linear com-
plexity methodology for the construction of the suffix array
using only the initial time series and the indexes of the lex-
icographically sorted suffix strings, which can significantly
reduce the required space for the data structure and make it
more efficient than suffix trees. Furthermore, great efforts
by many researchers over the past years have been done in
order to utilize more the suffix array by using a combina-
tion of memory and external media storage on the hard disk,
e.g., [2,5,27].

So far the main efforts of researchers who used suffix
arrays and trees have focused on the optimization of the
construction time [28-30] and more specifically on con-
structing the structure with linear time complexity [15, 29].
Especially for suffix arrays the construction complexity
depends on the sorting process [15, 31]. Many techniques
have been introduced that focus on the Longest Common
Prefix (LCP) [14, 15, 29], denoted Icp(a, b), which is the
longest common prefix between strings a and b.

The main advantage of suffix arrays compared to suf-
fix trees is the fact that they can be easily constructed and
stored to external media, something that cannot be generally
achieved for suffix trees [2, 5, 23, 24, 27]. Moreover, suffix
arrays may need less storage capacity compared to the size
and the expected space by other structures, especially when
the alphabet is very large [5, 16]. On the other hand, a disad-
vantage of suffix arrays compared to suffix trees is the huge
amount of data that should be stored when actual suffices
have to be stored as well [16, 31].

In [8] the concept of Longest Expected Repeated Pattern
(LERP) has been introduced; it can be extremely useful in
reducing the size of the actual suffix array to be stored. With
the specific methodology, the size of the time series that can
be analyzed for pattern and periodicity detection purposes
can be expanded. Nevertheless, using this methodology the
size of the time series that can be analyzed depends on
the size of LERP. More specifically, the number of rows
of the suffix array constructed in the database management
system is equal to the time series length, while the size
of the column that holds the suffix strings is equal to the
size of the LERP. Assume the storage limit of the exter-
nal media, due to hard disk limitations, is equal to one
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Terabyte; if we set LERP equal to 1,000 we can approx-
imately analyze a time series of up to 400 MB since
the remaining 600 GB of the database are consumed by
the metadata and the indexes. With this kind of hardware
limitations we cannot analyze the full human genome
(which is of size 3.5 GB) and detect all repeated patterns.
The only way to detect all repeated patterns in the full
human genome is by using as LERP the value 110 which
will allow the construction of the actual suffix array. This
limitation can form a significant effect on the analysis of the
time series since the larger the time series is, the larger the
expected occurrences are, and hence a relatively large LERP
should be chosen. This happens because with a large LERP
we will expect to discover all or at least a large number of
the occurrences.

The methodology introduced in this paper can solve this
problem by maximal utilization of the hard disk capac-
ity and by storing the suffix array. More specifically, the
required space capacity of an actual suffix array is of type
O(nz) [1, 8, 9], where n is the length of the time series.
With the LERP methodology, the required space capacity
can be reduced to linear O(/ * n) (or O(n) since [ is a
constant) depending on the ratio of the time series and the
selected LERP (1) [9]. Yet, with the proposed methodology
the required space capacity (as will be proved) is again lin-
ear O (n). However, with the new methodology the analysis
of very large time series of billions of elements is feasible.
As a consequence, for example, the analysis of the whole
DNA sequence can be feasible. So far this has been impos-
sible since for a time series of size 3.5 billion characters as
in a human DNA chain with selected LERP equal to 5,000,
the required space capacity is almost 35 Tb. Besides the
enormous amount of the required storage capacity, even the
time needed for the construction of such a suffix array could
be impossible. However, following the previous example of
the one Terabyte storage limitations, we can construct an
actual suffix array with LERP 100 and then perform a sec-
ond phase analysis for substrings longer than 100 based on
the results found from the COV algorithm in the first phase.
The full process and the methodology of the Moving LERP
as we have named it will be thoroughly described in the next
section.

3 Our approach

In order to address the enormous required space capacity
for analyzing very large time series using suffix arrays, we
propose an innovative process which expands the LERP
methodology. More specifically, the proposed Moving-
LERP (MLERP) methodology is based on finite loops of
incrementing LERP values. The MLERP methodology will
help in analyzing extremely large time series since the
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limitation of the analysis is restricted only to the size of
the time series and does not depend on the ratio of the
time series and LERP size. The proposed methodology is
presented in this section.

3.1 Moving LERP (MLERP) process description

Suppose that we have a time series of 40 billion characters
that we want to analyze and detect all repeated patterns or
perform just a simple single pattern matching. The direct
construction of such a time series on the memory is impossi-
ble since we need it for a suffix tree at least 480 GB of RAM
[5] while for a suffix array (not the actual) we need at least
360 GB of RAM [16] (only for the data structures). If we
assume that the limit of a database management system we
have can store up to 10 Tb to a hard disk then the maximum
LERP that can be used as previously explained is only 100.
In the first loop of the MLERP process, the LERP value
100 is assigned. By completing the time series analysis for
occurrences detection, a significant amount of substrings
with length 100 is expected to appear as occurrences. Of
course, all these substrings are not the same because they
are very short in length and definitely they are part of longer
and different substrings that might be occurrences as well.
Depending on the identified number of occurrences with
length 100, a new value for the LERP can be assigned so
as not to exceed the database size limitation. For example,
if the total number of these occurrences is half the size of
the original time series, then we can repeat the process of
the calculation of occurrences only for these substrings by
doubling the LERP. Namely, in this second loop only the
occurrences found with LERP 100 from the first loop will
be analyzed. Moreover, there is no need to calculate occur-
rences with length 1 to 99 since in the first loop of the
MLERP process we have already found all substrings with
length 99 and many with length 100. The substrings with
length 99 are confirmed occurrences and there is no pur-
pose to examine them again, since they will give us the
same results. Thus, the process in the second loop recon-
structs the suffix array and analyzes all substrings that were
reported as having length 100 in the first loop. In the sec-
ond loop, the new value of LERP will be 200, which means
a new suffix array is created with, e.g., half the rows and
double the size of the substrings. The process continues
with the analysis and discovers all patterns that occur at
least two times and have length from 100 up to 199. More-
over, occurrences might be discovered with length 200. In
this case, the MLERP process starts a new loop to exam-
ine if the substrings with length 200 hide longer patterns
that occur more than two times. The new loop will start
searching for patterns from length 200 (the previous LERP)
up to the new LERP, i.e., 400. This process can be contin-
ued until there are no substrings with length larger than the
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current LERP. If in the process of doubling each time the
LERP will be used, then after 10 iterations a LERP of size
100 * 2101 =100 * 512 = 51,200 will be reached; this is
very large and probably adequate for the analysis. The total
steps of the process are finite and definitely very few, since it
is exponential with base 2, e.g., for 32 loops we have LERP
approximately equals to 232~ = 2,147,483,648. Moreover,
the current process can be stopped sooner if we are inter-
ested in patterns with specific characteristics, e.g., patterns
with length not longer than a specific value.

With the proposed methodology, it is possible to analyze
time series up to 1 trillion characters starting with LERP
equal to 4, if we assume the database management system
limit for the database’s size due to hard disk limitations is
10 Tb. Thus, with LERP equal to. e.g., 4,000 we can ana-
lyze time series of size up to 1 GB in order to satisfy the
database size limit of 10 Tb as previously mentioned. Using
the MLERP methodology, the previous time series size can
be expanded by almost 1,000 times even if the final LERP
will have a value multiple times larger than 4,000. The pro-
cess can work when very large occurrences are expected in
time series of trillions characters, as long as the time series
and LERP size do not exceed the limitation of the database
management system in each step. The detailed MLERP pro-
cess is described in Algorithm 3 after the other required
algorithms are introduced.

3.2 The algorithms

The first step in the proposed methodology is the creation of
the suffix array. For this purpose, the OSACLERP algorithm
will be used; this algorithm was introduced in [9].

Optimized Suffix Array Construction with Longest Expected
Repeated Pattern Algorithm (OSACLERP) The authors of
[8] presented a simple algorithm (OSAC) for the con-
struction of the suffix array in an external DBMS. It was
optimized to work using a theorem for the Calculation of
Suffix Array’s Required Storage Space [8], which proves
that approximately only 75 % of the full suffix array is
needed to be stored in order to analyze a time series for peri-
odicity. This is possible because if a substring of the time
series has length greater than half the size of the time series
then the specific substring cannot occur again inside the
time series and thus there is no need to store the extra infor-
mation for such cases. In [9], Algorithm 1 (OSACLERP)
was presented, which stores substrings with size equal to
the value of LERP instead of limiting the size of the sub-
string stored in the database to half the size of the time series
as allowed by the theorem for the Calculation of Suffix
Array’s Required Storage Space [8]. The algorithm is pre-
sented again as part of the overall MLERP methodology in
order to calculate the overall time complexity. OSACLERP
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takes as input parameters the string of the time series and the
LERP value for which we want to construct the suffix array.
Then with a simple for-loop and starting from the first char-
acter of the time series’ string it starts to construct in each
loop a substring of length LERP and adds it to the database.

Algorithm 1 Optimized suffix array construction with
LERP (OSACLERP)

Input: string X of time series, LERP value
Output: an array of all suffix strings or nothing in case of direct insertion into the database

OSACLERP (string X, int LERP)
for i := 0; i1 < X.length; i++
1 if (LERP + i > X.length)
.2 LERP := X.length-i
3 end if
subString := X.Substring(i, LERP)
insert substring into database
end for
end OSACLERP

The overall complexity of the OSACLERP algorithm is
O (n) since it has only one for-loop that browses the whole
string of the time series of length |T'|= n. However, a major
part of the overall process described in the algorithm is
not only the insertion of the substring into the database but
also the sorting of the substrings. Experimental results have
shown that database management systems can achieve the
sorting with time complexity close to linear. However the
well-known Merge-Sort algorithm has complexity of type
O(n * log n). Therefore, we can assume that the overall
complexity of the algorithm could be O(n + n) or O(n) as
the experimental results show, or in the worst case it is of
type O(n +n * log n) or O (n * log n) using the merge-sort
algorithm.

ARPaD with shorter pattern length algorithm (ARPaD-SPL)
In [1], the Calculate Occurrences’ Vectors (COV) algorithm
was introduced for finding the positions of the substrings
in the time series. With the introduction of the Shorter
Pattern Length (SPL) parameter, we can limit the results
that the algorithm returns because if a substring that sat-
isfies the conditions is found it has to be longer or equal
to the SPL, in order to proceed and retrieve all positions
at which the substring exists. Using this method, we con-
struct a variation of the COV algorithm, which from now
on we will name it All Repeated Patterns Detection Algo-
rithm (ARPaD-SPL), where very short patterns with length
1 or 2 can be excluded from the results if they are con-
sidered insignificant. Moreover, this process can accelerate
the algorithm because the retrieval of all positions, espe-
cially for short patterns is time consuming. For example,
in a time series of length 10 million characters constructed
from an alphabet of ten letters, the approximate occurrence
of each letter could be one million times. So, the algorithm
will have to retrieve all the ten million positions (aggre-
gated) of the ten single character patterns. Those patterns, in
most of the cases, are insignificant for further analysis and,
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therefore, the algorithm can run faster by avoiding detecting
them.

ARPaD with longest expected repeated pattern algorithm
(ARPaD-LERP) After the introduction of the SPL in
the ARPaD algorithm, the concept of Longest Expected
Repeated Pattern (LERP) is introduced. It works similarly
with the SPL but in a reversed way since it eliminates the
retrieval of substrings that are longer than LERP. While the
SPL can be generally used to search and find all patterns
that occur at least twice and have length equal to or longer
than SPL, the ARPaD-LERP algorithm allows the retrieval
of patterns within a specific length limits by using both SPL
and LERP parameters as lower and upper bounds for the
search and retrieval criteria.

The ARPaD-LERP algorithm can be described as
follows:

1) For all the letters of the alphabet, count suffix strings
that start with the specific letter.

2) If no suffix strings are found or only one is found, pro-
ceed to the next letter (periodicity cannot be defined
with just one occurrence.)

3) In case the same number of substrings is found as the
total number of the suffix strings, proceed to step 4
and the specific letter is not considered as occurrence
because a longer hyper-string will occur.

4) If more than one string and less than the total number of
the suffix strings is found, then for the letters used and
counted already and for all letters of the alphabet add a
letter at the end and construct a new hyper-string. Then
do the following checks:

a) If none or one suffix string is found that starts with
the new hyper-string and the length of the previous
substring is equal to or larger than SPL and smaller
than LERP, consider the previous substring as an
occurrence, find previous substrings’ positions and
proceed with the next letter of the alphabet.

b) If the same number of substrings is found as pre-
viously and the length of the previous substring
is smaller than LERP then proceed to step 4.
However, the specific substring is not considered
as occurrence because a longer hyper-string will
occur.

¢) If more than one and less than the number of
occurrences of the previous substring is found and
the length of the previous substring is different
than LERP, consider the previous substring as a
new occurrence. If the previous substring has not
been calculated again and the length of the sub-
string is equal to or longer than SPL then calculate
substrings’ positions. Continue the process from
step 4.
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Algorithm 2 All repeated patterns detection with shorter
pattern length and longest expected repeated pattern

Input: string of pattern we want to check, a counter of string length, SPL length, LERP length
Output: a list of all occurrence vectors

ARPaD LERP (string X, int count, int SPL, int LERP)

=X+1
newCount := how many strings start with newX
if (newCount = count) AND (X.length < LERP)
ARPaD_LERP (newX, newCount, SPL, LERP)
end if

1

2

3

1 if (count > 1) AND (X.length = LERP) AND (isXcalculated = false)
2 find positions of string X
3 isXcalculated := true
4 end if

1 if (newCount = 1) AND (isXcalculated = false) AND (X NOT null) AND (X.length >= SPL)
2 find positions of string X

3 isXcalculated := true

4 end if

1 if (newCount > 1) AND (newCount < count) AND (X.length <> LERP)

2 1se) AND (X NOT null) AND (X.length >= SPL)
2

2

2

3

4

if (isXcalculate
.2 find position:
.3 isXcalculated
4 end if
RRPaD LERP (newX, newCount, SPL, LERP
end if
end for
end ARPaD LERP

Moving longest expected repeated pattern algorithm
(MLERP) After modifying the algorithms previously intro-
duced in [1, 8, 9, 32], a new algorithm that depicts the
process previously described has been constructed. The
algorithm first creates the suffix array with the use of
OSACLERP for a specified LERP. Then the ARPaD-LERP
algorithm is called to calculate all the new occurrences and
then MLERP adds them in the list of results. If there are
new occurrences then the algorithm continues and assigns
to SPL the value of LERP and doubles the value of LERP.
Of course, different values can be used for the second phase,
depending on the results of the first e.g., if the patterns found
with length equal to LERP are not half the initial suffix
strings but one tenth of them then we can assign as second
LERP value ten times the initial. This will guarantee us that
we have occupied total storage space exactly as the initial in
the first phase. Then it creates a new suffix array from each
substring that was found in the previous step with length
LERP. In this case, it uses length for the new substrings the
doubled value of the previous LERP. The process repeats
until no new occurrences are found. The complexity of the
MLERP algorithm is completely based on the complexity of

Algorithm 3 Moving longest expected repeated pattern

Input: string of pattern we want to check, MLERP length
Output: a list of all occurrence vectors

MLERP (int MLERP)

OSACLERP (TimeSeries, MLERP)

SPL := 1

isCompleted := false

while (isCompleted = false)
list Temp := ARPaD LERP(“”,0,SPL,LERP
list Output += Temp

1

2

3

4

5.1

5.2

5.3

5.4.1 if (Temp.Count = 0)

5.4.2 isCompleted := true

5.4.3 else

5.4.4 Clear Suffix Array Table
5.4.5 SPL := LERP

5.4.6 LELP := 2 * LERP

5.4.7.1 for each element in list Temp
5.4.7.2 insert substring(Temp<Element>.Position, LERP) into database
5.4.7.3 end for

5.4.8 end if

5.5 end while

6 end MLERP
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all previously mentioned algorithms, and it is difficult to be
theoretically calculated. MLERP’s complexity is calculated
as the sum of the complexities of all the algorithms used in
the process.

Example 1 Let us illustrate with an example how the
MLERP process works. Suppose that we have for analy-
sis the string mississippi and the initial value of LERP is 2.
The full lexicographically sorted suffix array as it would be
created with the standard process can be found in Fig. la
and the number to the left of each suffix string denotes the
position of the suffix string in the time series. The MLERP
algorithm will call first the OSACLERP algorithm to create
the suffix array with parameters the time series’ string (mis-
sissippi) and MLERP value 2. The OSACLERP algorithm
will create the lexicographically sorted array of Fig. 1b with
the same number of records as the standard method; how-
ever, the length of the substrings will be from 1 to 2, instead
of from 1 to 11, which is the length of the time series.

After the suffix array creation process, the MLERP algo-
rithm (Algorithm 3) will call the ARPaD-LERP algorithm
(Algorithm 2) in order to search for repeated patterns with
occurrence equal to or greater than two. It starts with the
first letter of the alphabet, i. It founds four substrings that
start with the specific letter. It continues to construct a
longer substring with again the first letter of the alphabet.
The pattern ii does not exist so it continues with the next
letter m and constructs im, which also does not exist. It
continues with the letter p and finds one pattern i.e., ip.
Since pattern ip occurs fewer times than the original start-
ing pattern i, then i is definitely a significant occurrence.
The certainty comes from the fact that after the appearance
of ip with fewer occurrences than i, there is no way that a
pattern starting with i will occur as many times as i, thus
to overcome i as an important occurrence. However, ip is
not important since it occurs only once and, therefore, does

Fig. 1 The lexicographically

sorted suffix array of string 10 i

mississippi and the MLERP 7 ippi

process . . .
4 issippi

1 ississippi
0 mississippi
9 pi

8 ppi

6 sippi

3 sissippi

5 ssippi

2

ssissippi

(a)
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not meet the criteria (of appearing at least twice) to be con-
sidered an occurrence. Then the algorithm continues with
the next letter, s. It finds two occurrences of the substring
is. Since is has been found twice that might hide a longer
pattern with significant occurrence. However, the algorithm
cannot decide yet, so substring is will be saved for further
investigation in the second loop of the MLERP algorithm.
ARPaD-LERP continues with the letter m and finds only one
pattern, so it will be discarded for not meeting the occur-
rence’s criteria. The next letter is p. Since p occurs twice
and pi only once then p is an important occurrence (as we
have with i). Substrings pi and pp are not occurrences since
they occur only once. The last letter in the alphabet is the s.
There are four patterns starting with s. However, since there
are two si and two ss, then the s is definitely an important
occurrence (same as i and p). Moreover, si and ss have the
size of LERP, so the algorithm cannot decide in this loop
if there are important occurrences or hidden longer occur-
rences. They will also be saved for further examination in
the second loop of the MLERP algorithm. So far the process
has discovered as occurrences patterns i, p and s. The next
step of the algorithm is to clear the suffix array, assign the
value of LERP to SPL (=2), double the size of LERP (=4)
and create a new suffix array for the substrings that have
been saved (Fig. 1c).

The ARPaD-LERP algorithm starts again the process but
now instead of searching from the beginning of the sub-
strings it searches from position 2 (SPL) (Fig. 1c). For
substring is, ARPaD-LERP finds first iss but because it has
the same occurrences as is (=2), substring is is definitely
not an important occurrence (since they have the same num-
ber of occurrences). The algorithm continues and finds that
there is a pattern with length exactly the same as the size of
LEREP, i.e., substring issi, and the same occurrences as sub-
string iss. Thus, iss is definitely not an important occurrence
(as with is) and since the length of issi is equal to the length

10:'i 4 4 iissiippi
7 lilp 1 1 lissiissip
| - Ssosunseunsl
4 Hilst 6 :
d :
1 difsi 3
-.-_-‘.-' .
0 mi 5 issiip
9 {pii 2 sl
8 Ipip
FThess
6 :S:I
L
4
3 dsyii
ok
5 idsis
5514
q4d
2 :sis
(b) (c) (d)

@ Springer



948

of LERP, ARPaD-LERP cannot decide if the specific string
is an important occurrence or hides a longer one. So, it will
be saved for further examination in the next loop. For the
previously discovered pattern si, ARPaD-LERP finds that
there is only one string with length greater than 2, i.e., sip,
so string si is an important occurrence and the process stops
there for the specific pattern. Continuing with ss, the algo-
rithm finds the pattern ssi, which occurs as many times as
the ss (=2), so, ss is not an important occurrence and the
algorithm has to examine the longer string ssi. It finds that
there is only one pattern with length greater than 3, i.e., ssip,
80, string ssi is also an important occurrence. ARPaD-LERP
has finished again and has found the new occurrences of si
and ssi.

Since there is one pattern with length equal to LERP, i.e.,
issi, the MLERP algorithm continues the process to analyze
the specific substring (Fig. 1d). In the new loop the new
values of SPL is 4 and LERP is 8. The algorithm finds that
there is one pattern with length larger than the length of issi,
i.e., issip, and therefore, issi is an important occurrence. The
MLERP algorithm has finished the analysis of the whole
time series and it terminates since there are no saved values
for further processing.

At the end of the MLERP process the following occur-
rences have been discovered with the related positions:
i(1,4,7,10), p(8,9), 5(2,3,5,6), si(3,6), ssi(2,5) and issi(1,4).
The results are exactly the same as in the example presented
in [8] with the same time series where the whole suffix array
was processed. The difference is that with the methodology
introduced in this paper instead of creating from the begin-
ning a large suffix array of all suffixes as in Fig. la and
of size 66 bytes, with continuous loops the MLERP algo-
rithm created smaller suffix arrays of 21 bytes, 24 bytes and
15 bytes as shown in Fig. 1b, c and d, respectively. This
seems to be more time consuming but saves storage space
in order to examine larger time series than with the standard
procedure presented in [8].

3.3 Algorithm correctness

Although the COV algorithm has been thoroughly presented
and proved to be correct [1, 8, 32] we will give a strict math-
ematical proof showing that its variation ARPaD Algorithm
is also correct. First we will show that the algorithm termi-
nates and then we will use reduction and absurdum to prove
its correctness.

Proof Termination: First of all the algorithm is finite since
the alphabet is finite and it works in a recursive way increas-
ing each time the length of the pattern to detect by one for
each one of the alphabet’s letters. If the length of the pattern
under examination reaches the value of LERP then ARPaD
Algorithm will terminate at line 3.4.1 or 3.5.1 or will clear
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the value of LERP and continue from the SPL value with
the next alphabet letter (line 3.2) until it will consume all
the alphabet (for-loop at line 3.1).

Correction: Let’s suppose that the algorithm fails to iden-
tify all repeated patterns that have a specific prefix in
the suffix strings array. In this case we can identify three
different occasions:

1) The length of the pattern is less than SPL. In this
case the ARPaD Algorithm in lines 3.6.- and 3.7.2.-
bypasses the detection of the pattern, which is correct
since we have specifically asked to detect patterns that
have length larger than or equal to SPL.

2) The length of the pattern is larger than LERP. In this
case ARPaD Algorithm in lines 3.4.- and 3.5.- stops the
detection of the pattern, which is correct since we have
specifically asked to detect patterns that have length
less than or equal to LERP.

3) The length of the pattern is equal to or larger than SPL
and less than or equal to LERP. Since the algorithm
failed to detect the repeated patterns, therefore, there is
at least one repeated pattern that exists with length &,
where SPL < k < LERP and, therefore, there are at
least two suffix strings with the same starting substring
that the algorithm failed to identify them and have same
length k, where SPL < k < LERP. Therefore, the algo-
rithm in order to fail to detect them stops at position
k— 1. This means that the algorithm has checked the
k— 2 length patterns and found them to be equal and
stopped at k— 1 length because it checked them and
found that they were not the equal. However, this is a
contradiction because the k— 1 length substrings are
equal and the algorithm cannot stop there and since it
has already checked the k— 1 length patterns (since it
stopped there) in lines 3.5.- and 3.6.-, therefore, it will
continue in position k£ and it will detect the repeated
patterns of length k. Therefore, a repeated pattern that
the algorithm will fail to detect cannot exist and the
algorithm has been proven to be correct.

3.4 Algorithms’ analysis

In [1, 8], the overall theoretical worst case complexity of the
COV algorithm was very difficult to calculate because of the
recursion in the algorithm. Based on experimental observa-
tions, it was estimated to be of type O(10 * n * m * 16 *
log n) or generally (n * log n) [8]. With the use of SPL,
the overall worst case complexity of ARPaD Algorithm is
of type O(6 * n * m * 9 log n), or generally O (n * log n).
However, so far the experimental findings reported in this
paper have shown a time complexity for the average case
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Table 1 LERP process time analysis

Time series LERP Max pattern Missed
size length occurrences
125,000 500 79 0

250,000 500 79 0

500,000 500 500 49
1,000,000 500 500 49
2,000,000 500 500 49

scenario of type O(6 * n * m * 2 * log m) which is almost
linear because it can be simplified as O(n), where n is the
length of the time series and m is the length of the alpha-
bet which it is considerably smaller than n (m < n) and it
can be considered a constant. As in the COV algorithm, the
theoretical complexity of ARPaD-LERP is equally very
difficult to be calculated due to the recursion. Based
on experimental observations produced in this paper,
the complexity is of the same type as of the COV
algorithm O(10 * n * m * 16 * log n) [8] or
generally O(n * log n). With the use of SPL and
LERP, however, the worst case complexity is of type
O *n*m*6*logn) or generally O (n * log n). So far
the experimental findings in this paper have shown a time
complexity for the average case scenario of type O(4 * n *
m * 2 * log m) which is almost linear because it can be sim-
plified as O (n), where m is the length of the alphabet and n
is the length of the time series with m < n.

The overall worst case complexity of the process is very
difficult to calculate because of the recursion in the ARPaD-
LERP algorithm and the fact that there is no indication to
how many steps the MLERP algorithm will require (but def-
initely finite steps of order log(n— 1) at the worst case).
In general, the complexity of the whole process can be
estimated first for the OSACLERP algorithm as O(n +
n * log n) if Merge-Sort is used or O(n) if the inher-
ent sorting algorithm of the database management system
will be used which seems almost to be linear complex-
ity. Then the MLERP algorithm has a while-loop that calls
each time the COVLERP algorithm. Although the whole
process is definitely finite and can be finished in very

Table 2 MLERP process time analysis
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Create S.A. Occurrence analysis LERP total process
time (sec) time (sec) time (sec)
136.60 1,982.83 2,119.43
286.46 4,535.71 4,822.16
646.50 12,839.02 13,485.52
1,395.75 28,620.41 30,016.16
2,561.56 71,495.62 74,057.18

few steps (log n— 1), it depends on the selection of the
MLERP value and the size of the time series. In general
the MLERP has complexity O(6 * n * m * 2 * log m)
or O(n) generally since m < n. However, each time the
while-loop ends the new n value (in the complexity) is
significantly smaller than the original of the time series
because it represents the number of occurrences found with
length equal to MLERP. Based on experimental results pre-
sented in the following section it can be observed that the
overall process is of type O(n) in the average case or
O (nlogn).

4 Experiments with DNA data

In order to test the effectiveness and reliability of the
MLERP process, experiments with DNA data have been
conducted. Samples of sizes extending from 125,000 up to
2,000,000 characters long have been used in the experi-
ments. The utilized data represents human chromosome 9.
The experimental process covers both the LERP and the
MLERP methodologies in order to conclude with compa-
rable analysis data. Moreover, we have used both methods
to compare the results and have also an experimental proof
of the MLERP process by comparing one to one the results
of the two methods, something which have reported that
the two sets of repeated patterns from the two methods to
be exactly the same. Each time series has been analyzed
twice; once for each method. For each process the time has
been measured based on a standard personal computer with
a double core processor, 4 GB of RAM, 80 GB hard disk

Time series Started Finished MLERP
size MLERP MLERP loops
125,000 5 80 5
250,000 5 80 5
500,000 5 640 8
1,000,000 5 640 8
2,000,000 5 640 8

Create S.A. Calculate occurrences MLERP total process
time (sec) time (sec) time (sec)
232.25 2,970.13 3,202.38
536.93 7,256.56 7,793.49
1,205.88 14,789.21 15,995.09
3,057.06 33,827.98 36,885.04
8,199.18 88,808.80 97,007.98
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Table 3 LERP & MLERP required space capacity comparison
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Time series size LERP size LERP S.A. MLERP initial MLERP S.A.
approximate size (MB) value approximate peak size (MB)
125,000 500 125.00 5 2.50
250,000 500 250.00 5 5.00
500,000 500 500.00 5 11.78
1,000,000 500 1,000.00 5 30.54
2,000,000 500 2,000.00 5 71.81

and a 32 bit operating system. The results regarding time
complexity can be found in Table 1 for the LERP method-
ology (single ARPaD Algorithm execution) and in Table 2
for MLERP methodology (repeated ARPaD Algorithm
execution). In Table 3, the comparison of the required
space capacity between LERP and MLERP has been
described. The LERP section of Table 3 describes the
approximate required space capacity based on the LERP
value, while the MLERP section of Table 3 describes
the approximate maximum required space capacity (in
the worst, regarding space consumption, loop of the
algorithm).

The first thing that has to be mentioned regarding the
LERP process is that the experimental results are not
directly comparable for each experiment. Although for
all the five experiments a relatively large LERP value
(=500) has been used, only in the first two experiments
it was long enough to discover all occurrences in the
time series, while in the next three experiments it was
insufficient, since 49 occurrences have been left outside
the results since they have been found with length equal
to the LERP value. This means in the last three exper-
iments there are 49 occurrences (each one with more

than two occurrences) that the method did not manage
to further examine and determine if they hide behind
them longer patterns with significant occurrences for
periodicity.

Regarding time consumption, the creation time of the
suffix array for each experiment, including sorting in the
database management system, is almost linear based on the
experimental findings. Moreover, the occurrence analysis
seems to be also linear, yet, not directly, since each time
the length of the time series doubles, the analysis needs
approximately more time by a factor of 2.3 to 2.5 instead of
just 2. This happens because DNA sequences are not ran-
dom time series as we can see from their occurrences per
pattern length and cumulative occurrences graphs shown in
Figs. 2, 3, 4,5, 6, 7 and 8 and their location and dispersion
parameters (Table 4). Patterns that have been found are not
distributed evenly since most of them have small length as it
can be seen from the occurrences per pattern length graphs
presented in Figs. 4-8. It can be observed from the loca-
tion and dispersion parameters (Table 4) that as the length
of the DNA sequence doubles in each experiment, the third
quartile (75 % of the observations) and the mean change
disproportionally.

LERP, MLERP and Efficient Initial Selection MLERP Time

Analysis Comparison
120,000.00

100,000.00 /
80,000.00 /

60,000.00

40,000.00

20,000.00

125,000 250,000
== LERP Total Process Time
Efficient Initial Selection MLERP

500,000 1,000,000 2,000,000
=—O— MLERP Total Process Time

LERP, MLERP and Efficient Initial Selection MLREP Required
Space Capacity Comparison

10,000.00

A/o

10.00 /
O/O/

1.00

1,000.00

100.00
—

125,000 250,000

==O=— LERP S.A. Approximate Size
Efficient Initial Selection MLERP

500,000 1,000,000 2,000,000
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Fig. 2 Time analysis comparison for LERP, MLERP and efficient
initial selection MLERP (in seconds)
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Fig. 3 Required space capacity comparison for LERP, MLERP and
efficient initial selection MLERP (in MegaBytes, logarithmic scale)
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LERP DNA Experiment (n=125,000)
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Fig. 4 Occurrences per pattern length and cumulative occurrences for
LERP DNA experiment with n = 125,000

From the first experiment with DNA of length 125,000
characters, 95 % of the found patterns have length less
than 12 as it can be seen in Fig. 4. When the length is
increased to 2,000,000 characters (15 times more than that
in the previous example), 95 % of the found patterns have
length less than 25 (twice the length of the patterns found
in the previous example) as it can be seen in Fig. 8. That
means that nucleotides are distributed with a predefined
way in the DNA sequence, something that requires the
ARPaD-LERP algorithm to search deeper and eventually
be a little bit slower than expected. DNA sequences seem
not to be random and this is something expected. If every
nucleotide had the same probability to occur at any posi-
tion, DNA sequences with all nucleotide positions occupied
by A, C, G or T could exist. However, such an occasion is
unlikely due to the nature of a living organization structure,
since the DNA sequence is complicated and its nucleotides’
subsequences serve a specific role in the DNA. More-
over, the experiments have shown that the number of the
appearances of each nucleotide is not the same in the DNA

LERP DNA Experiment (n=250,000)
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LERP DNA Experiment (n=500,000)
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Fig. 6 Occurrences per pattern length and cumulative occurrences for
LERP DNA experiment with n = 500,000

sequence. More specifically, |S4|= |St]and | Sc|= |Sg|with
|Sal= 1.8 * |Sc|, where |S|denotes the total number of
appearances of a nucleotide (A, C, G or T) in the DNA
sequence as it has been found experimentally in chromo-
some 9.

The MLERP process time analysis shows that time com-
plexity seems to be almost linear, yet, not directly as it can
be seen in Fig. 2. That might have occurred because for
the two first experiments, in which smaller patterns have
occurred, MLERP looped five times while in the next three
experiments it looped eight times. However, the most impor-
tant outcome in comparison to the LERP results is the fact
that all occurrences have been discovered by the MLERP
process. While MLREP is definitely slower than LERP, as
the results have shown, one great advantage over LERP is
that MLERP manages to discover all occurrences, despite
the initial MLERP value. LERP failed for 49 occurrences

LERP DNA Experiment (n=1,000,000)
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Fig. 5 Occurrences per pattern length and cumulative occurrences for
LERP DNA experiment with n = 250,000

Fig. 7 Occurrences per pattern length and cumulative occurrences for
LERP DNA experiment with n = 1,000,000
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LERP DNA Experiment (n=2,000,000)
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Fig. 8 Occurrences per pattern length and cumulative occurrences for
LERP DNA experiment with n = 2,000,000

to do that in the last three experiments (Table 1). More-
over, MLERP’s time complexity could have been better if a
different initial value would have been chosen.

In Table 5, different initial values for MLERP have been
used to present how the MLERP process can be more effi-
cient in time, based on the selection of the initial MLERP.
For the first two experiments, the value for MLERP has
been chosen to be 30 and for the next three it has been set
to 70. In Table 6, there is a comparison between the time
needed for the analysis by using as initial MLERP value
(=5) and the new MLERP initial values previously selected
(30 and 70). It can be seen in Fig. 2 that the MLERP pro-
cess is faster when the appropriate initial value is selected.
It is approximately 30% faster than the experiments using
MLERP with initial value 5 because as it can be observed
from Table 6 it needs almost half the loops (3 instead of 5
for experiments 1 & 2 and 4 instead of 8 for experiments 3,
4 & 5). However, comparing the space need in the experi-
ment using MLERP with initial value 5 and initial values 30

Table 4 Location and dispersion parameters for LERP DNA experiments

Time series length Q Q2 Q3 Max
125,000 8 9 79
250,000 8 10 79
500,000 9 10 11 548
1,000,000 9 10 11 548
2,000,000 10 11 12 548
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or 70, significantly more space will be needed for the ini-
tial suffix array storage (Fig. 3). What has been earned from
the one side has been lost from the other. Furthermore, the
algorithm is almost 10 % faster than the LERP process since
it has to create and sort a considerably smaller table than
LERP (string length 30 instead of 500). The initial MLERP
value choice is crucial based on the space/time analogy
that has to be met. Faster analysis means more space
consumption while less space consumption means slower
analysis.

From the required space capacity comparison in Table 3,
it is clear how the MLERP process prevails over LERP
(Fig. 3), since the maximum storage capacity needed for
the MLERP process is significantly smaller 20 or 30 times.
By maximum MLERP storage capacity we define the space
needed for the largest suffix array in one of the MLERP
loops. Obviously this had happened in the first loops since
then it is when the process creates the suffix arrays with
almost all suffix strings despite the fact of the small length
of the suffix strings. As the process continues searching
deeper for longer occurrences, the size of the suffix arrays
reduces dramatically.

Some very important aspect regarding the ARPaD Algo-
rithm for both single execution or with the MLERP process
is that it is the only algorithm that can detect all repeated
patterns in a sequence. The fact that ARPaD uses a recursive
approach to detect all repeated patterns without any prior
knowledge of the patterns and their characteristics gives it
an extreme advantage over any other pattern matching algo-
rithm or method that can be used to detect repeated patterns
by applying brute force techniques. We will give a small
example that will prove our assertion. In the first experi-
ment with DNA sequence length just 125,000 characters,
we have found repeated patterns of size 79 (see Table 1).
If we want to use any kind of pattern matching algorithm
like the ones published in [2-5, 7, 27], we have to search
for all combinations of length 79 we can construct with the
4 nucleotides A, C, G and T. However, this means that we

have to check 479 = 2158 different patterns. Assuming that
Mean Std. Dev. Skewness Kyrtosis

8.77 2.95 7.39 97.00

9.54 3.34 5.29 45.97

12.55 25.12 12.60 175.80

12.81 19.82 14.73 252.93

13.26 15.97 15.38 313.24
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Table 5 Efficient initial selection MLERP process time analysis

Time Started Finished MLERP
series size MLERP MLERP loops
125,000 30 120 3
250,000 30 120 3
500,000 70 560 4
1,000,000 70 560 4
2,000,000 70 560 4

we are very lucky and we found the patterns in the first
few steps of our analysis, even then we cannot stop because
none of the pattern matching algorithm can know ahead
how many patterns of a specific length exist and repeat at
least twice (now we know it because of our algorithm and
the analysis already performed). Therefore, we have to con-
tinue and perform the full analysis. Some of the best pattern
matching algorithms, e.g., [2-5, 7, 27] can find a pattern in
10 to 300 milliseconds (however, more time is needed to
find all occurrences). In order to simplify our calculations
let us assume that they need only 1 nanosecond or 1072 s
to find all occurrences of a repeated pattern using some of
the best pattern matching algorithms, assuming that they
can perform millions of times better than what they actually
could achieve. Therefore, the total time needed for those
algorithms to detect all repeated patterns of size only 79 is:
2158 % 10 9sec = 2138 x (3 X 10_17) years = 210yeqrs.
Such time is equivalent to almost 6 x102* times the age of
the Universe in Earth years, if we assume that the age of the
Universe is 13.5 billion Earth years. However, our algorithm
(even using a personal computer with commonly used hard-
ware with normal performance) for the single step execution
needs 2,119 s or almost 36 min while with the MLERP
process it needs 3,202 s or almost 53 min to detect all
repeated patterns and not just those of a specific length.
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Create S.A. Calculate occurrences MLERRP total
time (sec) time (sec) process time (sec)

105.58 1,760.51 1,866.09

209.75 4,036.87 4,246.62

420.08 11,792.71 12,212.79

884.00 25,886.37 26,770.37
1,873.21 72,504.92 70,631.71

5 Conclusion and future work

This paper has introduced a new methodology for the reduc-
tion of storage space required for a suffix array while cal-
culating all repeated patterns of a time series. This method-
ology expands the LERP methodology [9] and allows for
the analysis of even larger time series when the required
space capacity needed for the suffix array is forbidden due
to system, hardware and software limitations. The proposed
method can reduce the required space capacity up to hun-
dreds of times depending on the initial values selected for
MLERP. The time complexity of MLERP, although almost
linear, is more time consuming than the LERP process.
Despite this drawback, the MLEPR method allows for the
analysis of larger time series. For example, in the case of
DNA analysis, the experimental analysis conducted in the
context of this paper has shown (Table 4) that usually for
very long time series of size one million characters it is
not expected to have more than one occurrence with length
larger than 500. This means that an initial small LERP value
for the LERP process can be selected, e.g., 30 for a DNA
sequence of size one million, in order to discover at least
95 % of all occurrences as we can see from the cumula-
tive occurrences diagram (Fig. 8) even without using the
MLERP process. However, if the human DNA sequence

Table 6 LERP, MLERP and efficient initial selection MLERP comparison

Efficient initial selection MLERP

Time series size LERP MLERP
Loops Total process Loops
time (sec)
125,000 1 2,119.43 5
250,000 1 4,822.16 5
500,000 1 13,485.52 8
1,000,000 1 30,016.16 8
2,000,000 1 74,057.18 8

Total process Loops Total process
time (sec) time (sec)
3,202.38 3 1,866.09
7,793.49 3 4,246.62
15,995.09 4 12,212.79
36,885.04 4 26,770.37
97,007.98 4 70,631.71
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should be analyzed as a whole, this would be impossible
with the standard process of the suffix array creation or even
with the use of the LERP. The human DNA has 3.5 billion
elements. The size of the full suffix array would be approx-
imately 10! or 10 million Terabytes, something which is
not supported by common computing systems. Even with
the LERP methodology the biggest value that can be used
is approximately 50, in order to meet database management
possible limitations as described. However, with the use of
the MLERP process and 50 as an initial value for the LERP,
the size of the suffix array will be approximately 200 GB
in the first loop, which is feasible to store in an ordinary
computing system and allows the analysis of time series in
multiple finite loops.

MLERP is on average 30-50 % slower than standard
LERP process because it needs to reconstruct the suffix
array for the suffix strings that need further analysis. How-
ever, the prior-knowledge of how the pattern’s length is
distributed can help in significantly improving the required
time for analysis. A better choice of the initial value of
MLREP can achieve not only the analysis of very large
time series by reducing space capacity but also in better
actual time length than the standard LERP process. In any
case, our ARPaD Algorithm with single execution or with
the use of MLERP makes the detection of all repeated pat-
terns in a time series a very fast process while no other
pattern matching algorithm can do such analysis in feasible
time.

Regarding the complexity of the process, the experimen-
tal results have shown that it is of type O(n) for average
cases, despite the use of a database management system that
needs to sort lexicographically the suffix array immediately
after its insertion in the system. Improved sorting methods
can achieve this in almost linear O(n) time, making the
whole process very fast and appropriate for the analysis of
large time series like DNA sequences.

As future work, the methodology proposed here could
be further enhanced in order to achieve better performance
with the use of parallel programming for the parts of the
algorithms that can be separated and processed in parallel.
This will help in significant reduction of the time consump-
tion needed for the full analysis and all the repeated patterns
detection. This will allow the analysis of very large time
series in logical time frame, making MLEPR a very pow-
erful process for periodicity data mining and time series
analysis. The application domains of MLERP varies from
the analysis of DNA chains in bioinformatics, to mete-
orological data analysis in weather forecasting or power
transmission and distribution forecasting over an electrical
grid.
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