Appl Intell (2013) 38:114-129
DOI 10.1007/s10489-012-0361-0

A novel IMC controller based on bacterial foraging optimization
algorithm applied to a high speed range PMSM drive

Aymen Flah - Lassaad Sbita

Published online: 17 June 2012

© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract This paper is a proposal of a modified internal
model control based on an intelligent technique. The indirect
field oriented control strategy (IFOC) is used as a permanent
magnet synchronous motor (PMSM) drive platform. Neu-
ral network controller and estimator are respectively added
to replace the conventional speed regulator and the speed
encoder in the global drive scheme. A wide speed work-
ing range is considered and high speed mode is incorpo-
rated in the study testes. In the IFOC inner control loops,
the commonly used synchronous frame conventional pro-
portional plus integral (PI) controllers are replaced by two
modified internal model control (IMC) regulators. There-
fore, a method based on the bacterial foraging optimiza-
tion (BFO) algorithm is performed to optimize and adjust
the IMC low pass filter parameters. The robustness of the
proposed PMSM sensorless drive scheme is confirmed by
simulation tests in the MATLAB/SIMULINK. Moreover, a
comparative evaluation results are illustrated to prove the ef-
fectiveness of the proposed control algorithm according to
different controllers combinations.

Keywords PMSM - Bacterial foraging optimization -
Internal model control - Neural network
1 Introduction

PMSM drives become more and more attractive in motion-
control applications such as High Speed Trains and electric
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vehicles. Its high performances: high efficiency, low iner-
tia and high torque-to-volume ratio, high power factor and
almost no need for maintenance are the main advantages.
Compared to induction and reluctance motors, PMSM is
lower in weight and smaller in size [1]. The previous fea-
tures make it the most preferable for high performances
motion control application. Several control strategies have
been carried on to unsure the highest dynamic electrical ma-
chine drive performances. The most popular one is the IFOC
which requires an accurate knowledge of the rotor shaft po-
sition. This implies the need of a speed or position sensors,
such as an absolute encoders or magnetic resolvers mounted
to the rotating shaft. However, these sensors present sev-
eral drawbacks, such as reduced reliability, susceptibility to
noise, additional cost and weight, and increased complex-
ity of the installation [2]. Therefore, sensorless drive sys-
tem is crucial for many applications, not only to reduce cost
of the equipment, but also to improve system reliability. So
the idea is to replace the real speed encoder by a software
one. This last is an observer or an estimator which is built
upon measured variables. Effectively, the simplest measured
PMSM variables are stator voltages and currents. Many sen-
sorless based schemes have been proposed in the literatures
[3]. Some methods are based on the back-EMF voltage.
These are simple and yield well position estimation at aver-
age and rated speeds, but fail at low operating speeds. Two
basic deficiencies let these methods degrade as the speed
reduces: pure integration drift and sensitivity to parameter
uncertainty. To overcome this problem, several authors have
used other techniques, either based on state observers, like
Extended Kalman Filter in [4], High-gain Observer in [5]
and Extended Luenberger Observer in [6], or based on the
intelligent techniques, like the neuronal network estimators
as presented in [7]. For its good performance proved in [8],
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the artificial neural architecture is used to replace the real
speed encoder in this application.

The PMSM control problems present an extended re-
search sector. Many authors, who look for the PMSM ro-
bustness drive, use the field oriented control (FOC) strat-
egy as a reliable method, which is characterized by a simple
architecture based on three proportional plus integral con-
trollers as described in [2]. But the problems that occur in
this last method are mainly: calculation of controller param-
eters and the robustness performances. Some works propose
the adaptive control scheme as a robust control strategy, as
the Model Reference Adaptive Control (MRAC) method.
Effectively, the MRAC approach was able to compensate the
system parameters variations, such as inertia and torque con-
stant as explained in [9, 10]. Some other authors relied on
the artificial intelligence techniques in their robustness con-
trol problems as presented in [11]. In the mean time, these
methods need an exact mathematical identification for the
learning system’s starting phase, in the artificial case, and
for adjusting the controller parameters in the MRAC case.

The Internal Model Control (IMC) is classified as a ro-
bust control strategy which principle simulates the human
style. Thus, in the manual mode, the operator attempts to
tune the desired variable close to the desired goal, based on
their spontaneous representation. This act is designed by the
internal model in the IMC architecture. Therefore, some au-
thors aim to replace the internal model system by an intel-
ligent one, as neuron, fuzzy, or ANFIS technique, as sup-
ported in [12] and [13-17]. However, the inverse model sta-
bility problem appeared as explained in [17]. Meanwhile,
the contributions in the internal model control strategy are
limited and the IMC filter parameter tuning presents another
critical point which hardly can influences the IMC control
performances.

Many researches are based on the heuristics algorithms in
their optimization problems, as given in [18], where the au-
thors are based on the Ant-Colony Algorithm in the satellite
control problem, or as done in [19], where the authors use
the Particle Swarm Optimization technique in the Fuzzy in-
ferences system tuning. These algorithms prove their effec-
tiveness in these optimization problems. Therefore, based on
the heuristic algorithms, an intelligent optimization method
based on bacterial foraging algorithm (BFO) is used here for
tuning the IMC controller parameter and for enhancing its
robustness. The BFO approach choice is based on its power-
ful optimization algorithms in terms of convergence speed
and final precision [18]. In the proposed PMSM control
method, the BFO-IMC is used as current controllers in the
IFOC drive strategy. In order to improve the overall PMSM
control scheme, a robust speed controller is required. This
one should enable the drive to follow any reference speed,
taking into account the high speed mode and the effects of
load dynamic impact and parameter variations. In [7] and

[19], the performance and robustness of the recurrent neural
network are noted. So the recurrent neural network type is
selected as the speed controller in this method. In the electri-
cal vehicle application, the high speed range is required and
to perform this working mode, a filed weakening algorithm
[20] is added for generating the needed direct reference sta-
tor current.

This paper is organized as follows: Sect. 2 presents the
mathematical model of the PMSM, the principles of the field
weakening and the IFOC strategies. The use of the neural
network as a speed controller and as a speed observer is de-
veloped in Sect. 3. Section 4 is designed for the develop-
ment of two internal model current controllers and the sta-
bility analysis. The intelligent optimization approach using
the BFO is explained in Sect. 5. Sections 6 and 7 present the
simulation results and the conclusion, respectively.

2 Mathematical modeling of the PMSM

The dynamic model of the PMSM written in the (d-q) refer-
ence frame can be described by the system (1) of nonlinear
differential equations [7, 21]:

. dig .
vg = Rsig + LdE —wLy4iy

- ey
. d lg .

Vg = Rsig + qu + wLgig + oly
where vy, vy and iy, iy are respectively direct and quadratic
stator voltage and current comportments. R is the stator re-
sistance, Ly, L4 are the d and ¢ axis self stator inductances,
o is the rotor speed and A, is the permanent magnet flux
linkage.

The electromagnetic torque expression can be formulated
as Egs. (2) or (3):

3
T, = Ep()‘miq + (Lag — Lq)idiq) 2

3 : :
Te=§p()\dlq+)\'qld) 3

where Ay = Lgiq+ Ay and Ay = Lyi,. For anon salient pole
PMSM the quadratic and the direct inductances are equal
then Ly = Ly = Ly, so the torque expression becomes: T, =
5P Cumiy).

Hence the electromagnetic torque depends only on the ¢
axis current.

The mechanical equation for the motor dynamics is given
in Eq. (4):

I.—T = (i)(a)—i-ﬂa)) )
p J

where, Tj, p, J and fv are respectively the load torque, the
motor pole pairs number, the moment of inertia and the vis-
cous friction coefficient.
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2.1 Field weakening operation FWO

In general, a PMSM is fed by a Voltage Source Inverter
(VSI). When the drive reaches nominal speed, the inverter
generates maximum voltage magnitude. Without field weak-
ening control algorithm, the torque rapidly decreases to zero
and can be even negative for speed range above the nominal
one [20]. The maximum electromagnetic torque and output
power developed by PMSM are ultimately dependent on the
allowable inverter current rating and the maximum output
voltage. The stator current is limited by the VSI current rat-
ing. Then the stator d and g components and corresponding
limit value are given in Eq. (5).

ig g < i ma )
This expression represents a current-limited circle centering
at the origin, but with the radius of i5max as shown in Fig. 1.
It should be noticed that this current-limited circle remains
constant for any speed. Assume that the voltage applied to
the PMSM reaches its limit, the maximum stator voltage
Vsmax 18 determined by the available DC bus voltage. Con-
sidering this limit, the stator voltage equations should satisfy
the following condition:

U7 = 0G4 07 = U ©)
Neglecting the stator resistance voltage drop, assuming
steady state operation and substituting vs and v, from sys-
tem 1 and dividing by w squared, the stator voltage equation
can then be written as indicated in Eq. (7):

2 2
(Laia + hn)? + (Lgig)* = (v—) < (M) %)
1) )
As illustrated, the constraint Eq. (7) determines a series of
concentrated ellipses, centering at Point C (—2—’:, 0) in the
(ig,i4) plane. As the maximum voltage vymax is fixed, the
ellipsis shrinks inversely with rotor speed. Figure 1 illus-
trates the voltage-limit ellipses (w1 < wy < w3) and the
current-limit circle which are plotted in the (iz, ;) plane.

It should be noted that the ellipse shape depends on the
saliency ratio, which is defined as IL‘—Z For all non-saliency
PMSM (Lg = L4 = Ly), the voltage-limited shape (Eq. (8))
change to circles.

.+)¥_m2+.2_i2<vsmax2 ]
<ld Ls) o) _<a)LS) _<st) ®)

Here is proposed a new field weakening algorithm as illus-
trated in Fig. 2. Effectively, if the target speed is less than
the nominal one, the reference direct stator current is equal
to zero. However if the desired target speed is higher than
the nominal value, the reference direct stator current is gen-
erated from Eq. (8).
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Fig. 1 Current-limit circle and voltage-limit ellipses of the PMSM
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Fig. 2 The proposed Field weakening algorithm

2.2 Field oriented control (FOC)

Field oriented control (FOC) strategy has been widely used
in various industrial applications. It is one of the most
popular schemes for high performance of electrical ma-
chine drives. It is originally introduced for induction ma-
chines and it is easily extended to PMSM drives. The FOC-
PMSM strategy in its standard scheme incorporates one
outer loop for speed control and two inner loops for d and
g current components regulation. These loops are usually
built all around PI conventional regulators. In this strat-
egy the direct reference current is fixed to a zero value.
Hence, the PMSM drive behaves typically as a separately
excited DC machine. However, if the reference speed ex-
ceeds the rated one, the d current reference value is de-
rived from the field weakening algorithm. The g-axis ref-
erence current i, is generated as the speed regulator output
Fig. 6.

3 Neural networks controller and estimator

The neural networks application is highly useful as con-
troller estimator. Neural networks architecture can be clas-
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Fig. 3 Recurrent neural
network global architecture

sified into recurrent and non recurrent categories. Every ar-
chitecture is required for a specific application. In the non
recurrent networks the output is calculated directly from
the input through feed forward connections. In the recur-
rent networks, the output is calculated from the actual input
value of the network, and the actual or the previous outputs
or states of the total network. It is clear that the recurrent
one is dynamic versus the non recurrent one. In this work,
two NN are used together as a speed controller, and estima-
tor.

The non recurrent neuron network architecture is used
as estimator for its simple and easy usage versus the
recurrent. The estimator is ANN and the recurrent one
as a dynamic is used as a controller. This last contains
more mathematical expressions in the running algorithm;
this why the ANN is selected for identification prob-
lem [21].

3.1 Recurrent neural networks speed controller

Recurrent neural networks (RNN) have been an interest-
ing and important part of neural network research during
the 1990’s. Much architecture is presented in the literature,
where some is characterized by the total connection and
other by a partial connection. In this work, the proposed and
used recurrent neural networks Speed Controller (RNNSC)
architecture is given in Fig. 3. The structure corresponds to 3
neurons at input layer, two neurons in hidden layer and one
in output layer. Refers to Fig. 3 as describing the connecting,
S is the input signals of the hidden layer, X is the output
signal of the hidden layer, i ;‘ is the final output signal of the
RNNSC and /; (k) is the input vector. Wf | (k) is the weight
between the same neuron in the hidden layer, Wﬁ ; (k) is the
weight between two successive neurons in the hidden layer,
w ]I ; (k) is the weight from the input layer to the hidden layer
and W jO (k) is the weight from the hidden layer to the output
layer. f(.) is a sigmoid activation function.

connection between the input and the hidden layer
— — — connection between the output and the hidden layer
----------- connection between two neurons in the hidden layer

—— — connection between the input and the output in the
same neuron in the hidden layer

The mathematical relations [7] between the different neu-
rons in the different layers are given by Egs. (9), (10)
and (11):

Sjk)y=WP.(k)X;(k—1)

Y WLOLE AW WX jk=1) (9
i=1

1
Xj(k)=f(5j(k))=m (10)
i) =3 WO WXk (11)

j=1

Equation (12) gives the error function for the proposed
RNNSC:

1 1
Erk) = 5 [ig ) = i) = Sej k) (12)

The error e; is the difference between the desired actual i
current and the RNNSC output as a reference one. The gra-
dient method is used for adjusting the weights. The mathe-
matical expressions used to update the different weights are
in Eq. (13):

WOk +1) =W (k) + AW/ (k)

0E (k)
=W0 k) — ] k) ———
j ( ) 77[( )8Wj0(k)
Wi k+1) =W (k)+AW! k)
AE; (k)
Wh e+ D) =WE () +AWE, (k)
0E (k)
],j—l( ) 771( )BWJI:/_I(k)
WPk +1)= WP, (k) + AWP, (k)
dE; (k)
=WPi (k) —np () —5——
Jii WP, (k)
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The gradient expressions are shown in Eq. (14):

dE (k)

W =—er(k)X (k)

% = —e1 WO )P (K)
% = —er WO 0)0,.4 (1)
% = —e1 (WO KR 51 ()

Pj k)= X;(k)(1 — X ;(k))

X (Xjtk=1)+ WP,k Pj j(k—1))
Qj.i(k)=X;(k)(1 — X (k))

X (Ii(k) + WP (k) Qi (k — 1))
Rjj—1(k)=X;()(1—X;(k))

x (WP (OR; j—1(k = 1) + X1k — 1))
(14)

The coefficients 775 , nf) , n%, 7710 design the RNNSC learning
rates.

3.2 Artificial neural networks speed estimator

For the Artificial Neural Networks Speed Estimator
(ANNSE), the relations between the different neurons in the
input, hidden and the output layer are given by the mathe-
matical expressions as depicted in Egs. (15), (16), and (17)
[8].

Sitky=> "V 0I5k (15)
i=1
Xj(k)= (S-(k)—; 16)
10 =115 )_1~|-exp(—Sj(k)) (
oty =Y _"VP k)X, (17)
j=1

where, §; is the hidden layer input signals. X ; is the hidden
layer output signals. @ is the output signal of the ANNSE.
Vj{ ; (k) is the weight from the input layer to the hidden layer
and Vjo (k) is the weight from the hidden layer to the output
layer. I; (k) is the input data vector and f(.) is the sigmoid
function. The error function is defined in Eq. (18):

1 1
Eo(k) = 5[0k - o] = Se®) (18)
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e (k) is the error between the desired actual speed and the
ANNSE output. We use the gradient method for adjusting
the weights. The mathematical expressions for the weights
update are given in Eq. (19), and the gradient expressions
are reported in Eq. (20):

VP k+1) =V +avE k)
0E, (k)
=VvO2k) —nlk
i (k) =g ( )BV].O(k)
I I I (19)
ol 1 0w (R)
=Vii® "w(k)avj{i(k)
dE, (k)
= —e, (k)X i(k
v (k) eo()X (k)
dE, (k) o (20)
= —e, (WO (k) Q; ;i (k
8Vj”i(k) eo()W; (k) Qi (k)
Qi) =X;k)(1—X;K&)(L k)

The coefficients 1., nYare the learning ANNSE rates. The
used ANNSE structure corresponds to 3 neurons at input
layer, two neurons in hidden layer and one in output layer.

4 The internal model current controller

The internal Model control strategy can be a challenge for
the PMSM drive, as reported in [12]. The general IMC struc-
ture is presented in Fig. 4, where Gi(s) represents the inter-
nal model, C(s) the controller and G(s) the real model. The
reference stator currents i * = [i;, i ;;] are compared with the
output error between the real, “y(¢f) = [ig ia]” and the ob-
served, “y(t) = [i, ia]” stator currents. The output errors are
applied as inputs to the controller to generate the stator ref-
erence voltages v* = [vy, vg].

The used PMSM voltages are deduced as depicted in
Eq. 21):

2y

I v;’(t) =y (1) — Whm
v (1) = va(t)

i e v ()
C(s) > Gy

(@)
Gi(s)

Fig. 4 The IMC structure
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then
vy () = (Rs + Las)ia(t) — wLgiq () )
v(']’ (t) = (Ry + Lys)ig(t) + wLgiq(t)
The inverse model can be expressed by the Eq. (23)
. n
| _gi|va®
iq [ (1)
Gi— (Rs + Lys) wLg (23)
T PO | —wLy (Rs + Lgs)

P(s)=s*L4Ly +5(Lg+ Lg)Rs + R? + 0?LyL,
4.1 IMC stability analysis

From Fig. 4, if the internal model is perfect, then Gi(s) =
G (s). So, there is no more feedback occurring in Fig. 4. The
closed loop system can be expressed as: F(s) = Gi(s)C(s).

F(s) is stable if and only if Gi(s) and C(s) are stable.
However, if Gi(s) is not minimum phase, then Gi “Ls) is
unstable. If Gi~!(s) numerator degree is higher than the
denominator, then Gi~!(s) cannot be implemented. These
two constraints can be resolved as: In the present application
Gi(s) has no right half plane zero. So refers to H optimiza-
tion procedure we can let: C(s) = Gi —L(s). This solution
resolves only the first cited constraint. The second one is re-
solved with a low pass filter L(s). Then the IMC controller
can be expressed by:

C(s)=L(s)Gi~!
L(s) = [? . }

s+o

This IMC regulator parameter is adjusted online, using an
intelligent optimization algorithm based on the bacterial re-
search food principle. The detail of the proposed intelligent
optimization algorithm is given in the next section.

5 Bacteria foraging optimization: a brief overview

According to the Escherichia coli (E. coli) bacterial which
is present in the human intestine, the bacterial foraging op-
timization support a new method based on foraging be-
havior for solving optimization problems. So according to
the bacteria behavior law, all the elements support the best
species which have the ability for searching food and elim-
inate the other. The bacteria foraging strategy can be ex-
pressed generally by three processes, the first is the chemo-
taxis step. The second is called the reproduction and the last
is the elimination-dispersal step [18]. Some authors divide
the chemotaxis step into two other, swimming and tumbling,
then four steps are obtained.

The bacterial foraging optimization algorithm is illus-
trated in Fig. 5. We define J (i, j, k, 1) the value function
coast and 6;(j, k, ) the ith bacteria position. In the present
algorithm, the most important loop is the chemotaxis, de-
signed by “B”. In this one, each bacterium will be passed
through the tumbling and the swimming step “F”. Where the
corresponding objective value will be calculated and com-
pared to the less saved one. After assuring that all the bacte-
ria, “G”, are executing the entire chemotaxis step, “B”, the
reproduction one will start. Effectively, this action is charac-
terized by, the reproduction of the best bacteria half. Where,
the worst bacteria half that corresponding to the highest
objective function coast will be dead. However, the other
best half with the lowest coast function, split. The obtained
copies are placed at the same location as their parent. After,
the reproduction step is achieved, the last one, which called
“elimination-dispersal”, start. Effectively, with a probability
P,4, an elimination and dispersion for each bacterium (this
keeps the number of bacteria in the population constant)
occur [18, 22]. The elimination and dispersal events assist
chemotaxis progress by placing the bacteria to the nearest
required values. Each bacterium according to a fixed proba-
bility dispersed from their original position and move to best
position within the search space. These events may prevent
the local optima trapping but lead to disturb the optimization
process.

In the chemotaxis step, the bacterium is said swimming
if it moves in a predefined direction and tumbling if it moves
in an altogether different direction. The bacterial position is
updated mathematically by Eq. (24):

e C(i)=C(i) +dl in swimming
e C(i) = C(i) — d2 in the tumbling

As(i)
VAT () As @)

0;(j, k, 1) represents the position of the ith bacterial in the
jth chemotaxis step, the kth reproduction step and the /th
elimination step. The parameters d1 and d2 are two positive
elements. C (i) shows the swim size taken in the random di-
rection specified by the tumble. As(i) depicts the vector di-
rection of the jth chemotaxis step. When the bacterial move-
ment is run or swim, As (i) takes the same that was available
in the last chemotaxis step; otherwise, As(i) is a random
vector elements in the interval [—1, 1]. This swimming ac-
tion is continued as long as it continues to reduce the cost,
but only up to a maximum number of steps, Ns. If not, this
action will be stopped.

Several optimization coast functions are commonly used,
such as:

0i(j+1,k,D)=06;(j, k. 1)+ C() (24)

e The Integral Absolute Error and (IAE): IAE =

fooo lerror(t)|dt
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of the initial positions of the bacteria

Initialization of the algorithm parameters and @

| Elimi]nilt]ij:? loop 0, +1,k,0) = 8.(j+1,k,1)+C@) As(i)
. ®© Jas™ @)as(i)
Reproduction loop +

k=k+1 . - . - .
Calculation of the objective function J (i, j+1, k, 1) ‘

v
Chemotaxis loop 4._ .q_
~—©

=i+l
1

Bacteria Number
i

v

Calculation of the

objective function P
TGk 1) | 1=itl
Save Start Tumble C
VAR N (A X)) - action Y
rd
v ol Jj<N,
| m=1; m<=p; m=m+1 )’ Reproduction © 9
¥ Action™ <
~ ~
| rand(A,, (V) €[-11] | Ao $- ------- -
|
|
y : . Ne+1 :
. i _ ..
Q(j+1,k,l)=9i(j,k,l)+C(i)AS7(l) End Tumbling | | Jheaith = > JG kD !
VAT (D) As(i) .~ action ! J=1 |
* // | * I
» ! :
Compute lhf: E)bjcclivc function : Remove the worst half of the |
I+l kD | | bacteria and clone the best half :
' ! |
Start swim lenght counter .
€ - — — — —Start Swim
m=0 .
+ action
Elimination-dispersal with
probability Ped for each
bacterium
‘ .
End
S : Number of bacteria
N, :Number of Chemotaxis steps
N_ : Limit of swim action
N:a‘ : Limit number of Elimination and dispersion
N, ¢ Limit number of Reproduction

Fig. 5 The bacterial foraging optimization algorithm

@ Springer



A novel IMC controller based on bacterial foraging optimization algorithm applied to a high speed range 121

Eq. 25 —» BFO I ___________ )
Iy - ]
i —
¢ 4 VDC
2 4, Il
-l oo |, ]
; i d, P

- [nverter

S
] Y VY
Y

£ =

.
Field
"] Weakening

Gi(s)

IMC inner Current loops

1\
r‘

A A

S

PMSM

AA

Gi(s): Inverse Model
C(s): IMC Controller

Fig. 6 The PMSM high performance sensorless drive scheme

Fig.7 Learning data base for 5000
the RNNSC case

Time(s)

e The Integral of Time-weighted-Absolute Error (ITAE):  In this work the ISE is used in the optimization problem as

ITAE = fooot|err0r(t)|dt written in Eq (25)
e The Integral of the Squared Error (ISE): ISE = 00
2 g
S lerror(1)ldt B /0 |le* (1) |dt + Ba.overshoot = J (i, j. k1) (25)
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The BFO IMC tuning algorithm is running for the proposed
control structure taking into account the most of load distur-
bances and stator resistance variations. Up on this condition
the BFO converge on the best filter parameter to be used.

6 Simulations results

In order to verify the effectiveness and the robustness of
the proposed control scheme for the PMSM drives at a high
speed working region, Matlab/Simulink software package is
used to perform simulation tests of the overall drive schema
illustrated in Fig. 6. The proposed control scheme based on
the IFOC strategy; regroups two inner loops IMC current
controllers, a RNNSC outer loop controller and an ANNSE
to estimate the shaft speed. The field weakening Algorithm
is synthesized to generate the direct stator reference current.
The Bacterial Foraging algorithm is carefully applied for ad-
justing the IMC filter parameters.

The PMSM parameters are: P = 400 W, the rated cur-
rent Iy = 2 A, the maximum current Ip,x = 2.1, the
rated speed w = 2500 rpm, the rated torque 7; = 1.5 Nm,
Li=L;=215mH, Ry =52 Q, A, =024 Wb, J =
85¢~% kgm?. The inverter parameters are: the DC bus volt-
age is fixed to 660 V and the switching frequency is 10 kHz.

In the traction and the electric vehicle applications, the
load torque decreases if the motor speed exceeds the rated
value. In this work the electric vehicle typical drive cycle
is supporting the speed reference trajectory. The used target
speed trajectory begins with 7; = 1.5 Nm from O rpm at
t =0 s to 2500 rpm at r = 0.075 s, then to 4000 rpm with
7; =09 Nm at r =0.575 s as indicated to Fig. 10.

For the proposed PMSM control drive system, the two
neural blocs, speed estimator and controller, need a signifi-
cant database for the learning phase. This data base is con-
taining a variable reference speed with many load appli-
ances, as presented in Fig. 7. The vectors input data used
for the two neural blocs are:

e For the ANNSE: I (k) = [ig (k) iy (k) va(k)vy ()]"
o For the RNNSC: 1 (k) = [e(k — De(k)i(k — 1)]"

Figures 8a and 8b show the viewer’s windows of the
learning step. The iterations number is fixed to 200 and 700
for RNNSC and ANNSE respectively. Good performances
are obtained after the learning operation.

After obtaining the desired neural blocs, the IMC param-
eters BFO tuning is started. The objective function to be
minimized is presented in Eq. (25). The coefficients 8; and
B> are two positive numbers chosen in this application as
B1 = B2 = 100. The speed error and overshoot are respec-
tively denoted by e and A. The BFO architecture parameters
specifications are chosen those of the test yielding to a mini-
mum of computational and keeping good performance. The
best obtained BFO characteristics are given as the follow:

@ Springer

-
% Neural Network Training (nntraintool)

Neural Network

Layer

Algorithms

Training: Levenberg-Marquardt

Performance:  Mean Squared Error (1

Progress

Epoch: o 200 iterations 200
Time: 0:08:13

Performance: 0.00323 (B SZea0n | 1.00e-15
Gradient: 1.00 I i| o0.00

Mu: 0.100 1.00e-06 1.00e+10
Validation Checks: a 0 6

Plots

..Pefermance |

- |

Plot Interval: ) 1 epochs
@’ Maximum epoch reached.
@ st ] @
L
’t MNeural Network Training (nntraintool) El_hé

Neural Network

gt gt gt ]

Algorithms

Training: Levenberg-Marquardt (trainim)
Performance: Mean Squared Error (mze)
Progress
Epoch: o [B 449 iterations | 700
Time: 0:29:13 |
Performance: 0.266 9.35e-08 1.00e-07
Gradient: 1.00 [I8 0.00267 0.00
Mu: 0.100 0.100 1.00e+10
Validation Checks: a 0 6
Plots

Regression
Plot Interval: | 1 epochs

@f” Performance goal met.

Fig. 8 The learning viewer’s windows

The bacteria number: S =6

The chemotaxis steps number: N, =4

The swim length: Ny =4

The reproduction steps number: N, =2

The elimination-dispersal events number: N,g = 2

The number of bacteria reproductions (splits) per genera-

tion S, = /2

e The probability that each bacteria will be eliminated/
dispersed: P.; = 0.25

e The run length c(:, 1) = 0.05_ones(s, 1)
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Fig. 9 (Continued)

e The initial fitness cost; calculated by the ISE method for
the initial random parameter.

The simulation results in Fig. 9 show the evolution of
the fitness coast function and the IMC parameter accord-
ing to the S bacteria and the chemotaxis event, in the en-
tire reproduction and elimination loop. As presented in this
figure, the obtained results demonstrate that the coast func-
tion value decrease in the last elimination and reproduction
event. Where, in the first stage, presented in Fig. 9a, the cost
value is approximated to 15 x 10°. However in the last one,
Fig. 9d, the value is decreased to 3 x 10*. The corresponding
IMC parameters are also highlighted at the same figures. It
should be noticed that the obtained minimum coast function
can be more reduced if the reproduction and the elimination
iterations are increased. However, a compromise between
simulation time reduction and a precise results, inquires the
use of previously cited BFO configuration.

In these figures, are illustrated the obtained coast function
value and IMC parameter for each bacterium and for every
part of chemotaxis step. It is clear that the best objective
function cost value, is always obtained in the first chemo-
taxis step. That is due to the reproduction loop, where the
present bacteria are cloned from the best previous one. So,
the new chemotaxis event will be started with the best bac-
terium. It is clear here to deduce that the last chemotaxis
loop presents the highly coast function and this is due to the
worst half of bacteria, that will be eliminated.

Finally, the BFO generate the best IMC parameter that
equivalent to the minimum of both speed error and over-
shoot. In this case, the best value is obtained for N,, = 2,
N.is =2, N. = 1. Where, all the S bacteria locate the same
optimum IMC parameter.
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6.1 Comparative and discussion studies

Figures 10 and 11 present the speed and stator flux simula-
tion results for five control methods defined as:

— The conventional IFOC strategy with three PI (PI method),

— The IFOC strategy with a PI speed regulator and two stan-
dard IMC current regulators (IMC without BFO method),

— The IFOC strategy with a neural network speed controller
and two PI current controllers (NN method),

— The IFOC strategy with a PI speed regulator and two BFO
IMC current regulators (IMC with BFO method),

— The proposed IFOC strategy with a RNNSC speed con-
troller and two BFO IMC current regulators (IMC with
BFO and NN method).

Effectively, five dynamic speed and flux responses are
respectively reported in Figs. 10 and 11. Each of these re-
sponses is obtained for each method separately and under
the same test conditions. Speed targets are fixed at first to the
rated one (2500 rpm) and consequently to a high speed one
(4000 rpm) and all of them have a slope change dynamic.
At rated speed region a load torque of 0.1 N'm is applied at
t =0.15 s and removed at r = 0.4 s. The same load torque
crisp value (0.1 N.m) is added in the high speed region, at
atime t = 0.9 s. An added 100 % abrupt stator resistance
variation is introduced at a time ¢t = 1 s. In Fig. 10, many
zooms are presented to highlight PMSM speeds dynamic re-
sponse performances according to the five previously cited
methods. These zooms concern the load torque and param-
eter variations as same as the speeds overshoots. For the
same methods and conditions, the Fig. 11 reports the phase
plane stator flux components. It can be easily noticed that the
IFOC decoupling and different magnetic regimes behavior
are highly better for the proposed method (IMC with BFO
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and NN method). A comparison of different methods per-
formances are extracted and summarized in Table 1. Where
one easily notices the highest performances of the proposed
method compared to others. The worst method (IMC with-
out BFO) is not reported in this table and in the zooms too.
The IFOC strategy with a PI speed regulator and two stan-
dard IMC current regulators (IMC without BFO method)
gives the worst performances and the speed signal becomes
unstable when a stator resistance variation occurs at a high
speed regimes.

The speeds dynamic responses reported in Fig. 10 con-
firm that the dynamic performances of the proposed method
are much higher versus the four candidate methods. From
Fig. 11 the NN and IMC-BFO method phase plane trajectory
of the motor flux, indicates the superiority in IFOC decou-
pling at different speed regimes and in its high performances
dynamic trajectory behavior.

The major drawback of the PMSM is the ripple in the
produced torque which is critical. The important torque rip-
ple source is generated by the interaction of the stator cur-
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Table 1 A comparative study between the four drive methods
Regimes 7, and A (%) comparison Methods
PI IMC with BFO NN IMC with BFO and NN
Rated speed Load torque variation 7, rise time (s) 0.04 - - 0.06
Maximum speed error +0.4 % +0.8 % 0.006 % 0.004 %
Speed performances 7, Rise time (s) 0.03 0.03 ~0.02 ~0
Overshoot A (%) 1% 2.4 % 0.2 % 0.2 %
High speed Load torque variation 7, Rise time (s) 0.04 - 0 0.04
Maximum speed error +0.25 % +0.3 % 0.2 % 0.025 %
Speed performances 7, Rise time (s) 0.05 - 0.02 0.05
Overshoot A (%) +1.25 % +2 % 0.125 % 0.125 %
Stator resistance variation 7, Rise time (s) 0.02 - 0 0
Maximum speed error +0.5 % +0.25 % 0 0
Number of controllers tuning parameters 6 3 4 1

rent magnetomotive forces and the permanent magnetic field
produced. In order to reduce this, good performance cur-
rent regulation is the challenge. Figure 14b, confirms the ob-
tained high performances in stator current regulation against
load torque and resistance variations for a large speed work-
ing range. Therefore, the use of IMC with BFO (Fig. 14b)
in current regulation is better than that of conventional PI

@ Springer

(Fig. 14a). From the IMC with BFO current regulation re-
sponse which is robust and precise, it can be concluded that
the IFOC used strategy will have good decoupling, the drive
scheme is of energy saving and the torque ripple is then re-
duced. For a high performance drives the speed regulation
performance is not sufficient because this can induces lost
of FOC decoupling, worst efficiency and higher torque rip-
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ple. For that the use of IMC with BFO is very helpful to
enhance the PMSM drive performances.

As previously highlighted the robustness and the effec-
tiveness of the proposed overall control scheme (IMC with
BFO and NN method) is proven. The simulation of the over-
all PMSM drive system yields to Figs. 12 and 13 illustra-
tions. The two operating regimes are depicted one for the
rated speed (2500 rpm) and the field weakening one for
(4000 rpm). The motor stator current components are act-
ing in a way that i, generates the torque and iy is generated
by the field weakening algorithm accordingly to the speed
working regime. It can be seen the agreement of the esti-
mated speed with the reference one. A stator resistance and
torque variations are applied and the system response is im-
mune to that.

7 Conclusion

In this paper, a high performances sensorless PMSM drives
based on the recurrent neuronal networks and the bacte-
ria foraging algorithm IMC tuning is developed to control
the PMSM at wide speed range. The Internal model con-
trol based on the bacteria foraging algorithm for adjusting
the parameters of the IMC controller, was applied as a ro-
bust command in the IFOC strategy. The recurrent neural
network algorithm was described and the bacteria forag-
ing algorithm was presented. The simulation results prove
the good performances obtained for the proposed control
scheme under load torque and stator resistance variations.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.
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