Appl Intell (2011) 34: 226-244
DOI 10.1007/s10489-009-0192-9

Formal analysis of executions of organizational scenarios based

on process-oriented specifications

Viara Popova - Alexei Sharpanskykh

Published online: 19 September 2009

© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract This paper presents various formal techniques for
analysis of executions of organizational scenarios based
on specifications of organizations. Organizational specifi-
cations describe (prescribe) ordering and timing relations
on organizational processes, modes of use of resources, al-
locations of actors to processes, etc. The actual execution
may diverge from scenarios (pre)defined by a specification.
A part of techniques proposed in this paper is dedicated
to establishing the correspondence between a formalized
execution (i.e., a trace) and the corresponding specifica-
tion. Other techniques proposed in this paper provide the
analyst with wide possibilities to evaluate organizational
performance and to identify bottlenecks and other ineffi-
ciencies in the organizational operation. For the proposed
formal analysis the order-sorted predicate Temporal Trace
Language (TTL) is used and it is supported by the dedicated
software tool TTL Checker. The analysis approaches con-
sidered in this paper are illustrated by a case study in the
context of an organization from the security domain.

Keywords Process executions - Process-oriented
specifications - Formal methods - Organization modeling

V. Popova

Centre for Manufacturing, De Montfort University, The Gateway,
Leicester, LE1 9BH, UK

e-mail: vpopova@dmu.ac.uk

A. Sharpanskykh ()

Department of Artificial Intelligence, Vrije Universiteit
Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam,
The Netherlands

e-mail: sharp@few.vu.nl

@ Springer

1 Introduction

Management of processes in many modern organizations is
supported by different dedicated software systems. A large
class of such systems is the Workflow Management Sys-
tems (WfMS). Usually WfMSs are used to guide/control
the execution of organizational scenarios based on certain
internal models. These models describe (prescribe) order-
ing and timing relations on processes, modes of use of re-
sources, allocations of actors to processes etc. Presently a
number of formalisms are developed for representing such
models: Petri-Nets, Workflow Nets, process algebra, logi-
cal specifications. Each of these formalisms has its own ad-
vantages and drawbacks, which are identified in [2]. Pre-
viously an expressive order-sorted predicate language for
process-oriented modeling has been developed [20]. In this
paper this language is used for the specification of a formal
model, based on which actual execution of organizational
scenarios is performed. The actual execution may diverge
from scenarios (pre)defined by a model specification. Data
about executions of organizational scenarios are recorded by
most of WfMSs. Examples of data that are often registered
are: starting and finishing time points of processes, types
and amounts of resources used/consumed/produces/broken,
names of actors, who perform processes. The type and
the level of details of recorded data differ depending on a
WIMS.

In order to guarantee the correct operation of an organi-
zation supported by a WEMS (1) a correct formal process-
oriented specification(s) should be provided and (2) actual
executions of organizational scenarios should correspond to
this (these) formal specification(s).

For establishing the correctness of process-oriented (or
workflow) specification a number of formal verification
techniques exist [1-3, 20, 23, 25]. These techniques are

mailto:vpopova@dmu.ac.uk
mailto:sharp@few.vu.nl

Formal analysis of executions of organizational scenarios based on process-oriented specifications 227

aimed at identifying errors and inconsistencies in specifi-
cations, irrespective of actual executions of these specifica-
tions and of the application domain. The verification tech-
niques related to the model used in this paper are described
in [20]. However, not many formal techniques and tools ex-
ist for performing validation of the process-oriented speci-
fication, i.e., establishing if the organization behaves as ex-
pected (i.e., as it is prescribed by the specification). In [5, 9]
validation is performed by performing simulation of differ-
ent scenarios of organizational behavior. Although simula-
tion techniques can provide useful insights into relation-
ships and dynamics of an organization, they often abstract
from the complex dynamics of real organizations. To per-
form analysis based on the actual execution of an organiza-
tional scenario, data gathered by a WIMS during its oper-
ation can be used. For example, in [1] it is shown how the
analysis based on linear temporal logic (LTL) can be used
for establishing the correspondence between the observed
organizational behavior recorded in a log-file and the ex-
pected behavior prescribed by a specification.

In this paper different types of formal analysis of ac-
tual executions based on organizational specifications will
be described. These types include checking the conformity
to a formal organizational (process-oriented in particular)
specification, analysis of organizational emergent properties
and organizational performance evaluation (estimation). The
analysis is performed using an expressive predicate-based
Temporal Trace Language (TTL), which allows more ex-
pressivity than LTL used in [1] (e.g., allows the specifi-
cation of properties for checking over several traces). The
proposed analysis techniques are supported by the software
tool TTL Checker. Besides the checking of logical formu-
lae, the TTL Checker allows the post-processing of check-
ing results by constructing and evaluating arithmetical ex-
pressions.

The presentation is organized as follows. First, in Sect. 2
the proposed analysis framework is described in general. In
the following sections different components of the frame-
work are considered in detail. Sect. 3 briefly presents the
language of process-oriented specifications, based on which
actual executions are performed. A language used for for-
malizing these executions is introduced in Sect. 4. Section 5
describes the language TTL and considers the specifica-
tion of TTL properties in the dedicated software environ-
ment TTL Checker. Different types of trace-based analysis
are discussed in Sect. 6 and illustrated by examples. Sec-
tion 7 presents a case study, in which it is demonstrated how
the techniques proposed in this paper can be applied to the
analysis of a real company’s logistics. Finally, Sect. 8 con-
cludes the paper.

2 Trace-based analysis: overview

For different types of analysis organizations can be con-
sidered from different perspectives. A general organization
modeling and analysis framework has been described in
[12, 18-20] that includes different views on organizations.
In particular, the performance-oriented view describes or-
ganizational goal structures, performance indicators struc-
tures, and relations between them. Within the organization-
oriented view organizational roles, their authority, responsi-
bility and power relations are defined. In the agent-oriented
view different types of agents with their capabilities are iden-
tified and principles for allocating agents to roles are for-
mulated. Finally, the process-oriented view describes static
structures of tasks and resources and the flow of control.
Concepts and relations within every view are formally de-
scribed using dedicated languages based on the expressive
order-sorted predicate logic. The views are related to each
other by means of sets of common concepts. This enables
different types of analysis across different views.

This paper considers actual execution of organizational
scenarios based on organizational specifications created us-
ing this framework. Such scenarios relate to all views of the
framework but in particular to the process-oriented view as
it describes the company’s operations to which the recorded
events are most often related. The specification of process-
oriented models using the predicate-based language Lpr is
considered in [20]. Section 3 of this paper gives a brief
overview of the language Lpr.

Data about actual executions based on process-oriented
specifications are structured in the form of a trace. A trace
is a formal structure that consists of a time-indexed sequence
of states. Each state is characterized by a set of organi-
zational and environmental events that occur in the state.
Events are represented by atoms expressed in a sorted first-
order predicate language Lgx. The constructs of Lgx will be
described in more detail in Sect. 4.

The formal analysis of actual executions of organiza-
tion scenarios is performed by checking (dynamic) organi-
zational properties on traces using the dedicated software
tool TTL Checker [6]. Properties to be checked are spec-
ified in Temporal Trace Language (TTL) [26], a variant of
order-sorted predicate logic. The TTL Checker has a graphi-
cal interface, using which TTL formulae can be inputted and
traces that represent organization executions can be loaded
and visualized (see for example Fig. 1). Note that the same
formula may be checked on multiple traces at the same time.
By doing this a property can be checked with respect to dif-
ferent executions of organizational scenarios. As a result the
tool generates an answer, if the specified property is sat-
isfied by the execution model (i.e., holds w.r.t. the loaded
trace(s)). If a formula is not satisfied, a counterexample is

@ Springer

228

V. Popova, A. Sharpanskykh

provided. Furthermore, the tool allows performing statisti-
cal post-processing of multiple traces. More details on the
language TTL and the tool will be given in Sect. 5.

Here we identify the types of trace analysis considered in
this paper that can be performed using the TTL Checker.

Each organizational specification (pre)defines a set of
correct scenarios of organization behavior. Depending on
the type of an organization, the model may be specified at
different levels of abstraction (with varying amount of de-
tails and precision) and may allow different degrees of free-
dom for agents in scenario executions. The actual execution
of any organization may diverge from scenarios described
by the specification. In some organizations a certain degree
of deviation is allowed (e.g. as far as the principal organi-
zation goals are achieved and important requirements are
satisfied), whereas other organizations require a strict adher-
ence to the specification (e.g., incident management organi-
zations, nuclear power plants). In the second case the verifi-
cation of the conformity of an actual execution to a formal
organizational specification is of special importance. This is
the first type of analysis considered in this paper, which is
discussed in detail in Sect. 6.1.

Every correct specification guarantees the satisfaction of
a set of (global) constraints over organizational concepts and
instances including processes, resources, roles and agents
identified in the organization. These constraints are usu-
ally specified based on different organizational and general
normative documents (e.g., an organizational mission state-
ment, a strategy description, laws, organizational normative
acts, different policies, job and procedure descriptions) and
are formalized as predicate logic formulae that should be
satisfied by corresponding process-oriented specifications.
The classification of constraint types can be found in [20].

In general, if a trace conforms to the corresponding
process-oriented specification (i.e., a trace is in the set of
legal executions of the specification), then all constraints im-
posed on and satisfied by the specification are also satisfied
by the trace. However, when the checking of the conformity
of the trace to the specification fails, then the satisfaction of
the constraints by the trace is not guaranteed any more. In
this case the analysis of the conformity of a trace to a formal
organization (i.e., a set of organizational constraints) should
be performed, which is the second type of analysis consid-
ered in this paper (see Sect. 6.2).

Often organizational models allow (different degrees
of) autonomy of agents in the execution of organizational
scenarios. For example, in many organic organizations
processes are defined loosely in order to allow flexibility
and rapid change of an organization. Although executions
of such processes are not prescribed by the specifications,
in order to investigate organizational performance, bottle-
necks, error and inconsistencies, such executions (or traces)
still need to be analyzed. This analysis type is called analysis

@ Springer

of the emergent organizational behavior and will be investi-
gated further in this paper in Sect. 6.3.

Finally, this paper proposes a method for the evaluation
of organizational performance based on checking of the sat-
isfaction of organizational goals related to processes and de-
fined by specifications from the performance-oriented view
on organizations (see Sect. 6.4).

The types of analysis described above may be performed
both during the execution and after the execution of organi-
zational scenarios. For example, the analyst may choose for
the real time checking of the correspondence of a trace to
some process-oriented specification to enable the immedi-
ate notification in case inconsistencies are identified. In the
other case the recorded trace may be used by managers for
(automated) post-analysis aimed at the improvement of or-
ganizational performance.

3 Process-oriented specification language Lpr

In this Section we briefly discuss the language Lpr for de-
scribing process-oriented specifications. For more details
the reader is referred to [20]. The objects defined in the spec-
ification belong to one of the following main types (repre-
sented by sorts in the language LpRr):

e tasks describing functions that can be performed in the
organization (sort TASK),

e processes which are instances of tasks and inherit their
characteristics (sort PROCESS),

e resource types describing information and material arti-
facts that can be produced, used and consumed by tasks
(sort RESOURCE_TYPE),

e resources are specific amounts of resource types that are
produced at the same time by processes and can be used
and consumed by other processes (sort RESOURCE),

e locations where resources can be present such as storage
facilities (sort LOCATION),

e agents are individuals that can perform processes (sort
AGENT related to the agent-oriented view of the general
framework),

e roles are sets of functionalities that can be assigned to
agents to perform (sort ROLE related to the organization-
oriented view of the general framework),

e goals are organizational objectives that can be realized by
performing instances of organizational tasks (sort GOAL
related to the performance-oriented view),

e performance indicators are measures based on which the
goals are defined and which evaluate specific aspects of
the performance of processes in the workflow (sort PI re-
lated to the performance-oriented view of the framework).

Different types of relations can be defined over objects of
these sorts. Here only those are considered which are rele-
vant for the analysis of execution traces.

Formal analysis of executions of organizational scenarios based on process-oriented specifications 229

Tasks have as characteristics minimal and maximal dura-
tions specified for example as t.min_duration = v for a task
t and minimal duration v. Tasks can produce/use/consume
resources of specific types which can be specified by
task_uses(t:TASK, rt:RESOURCE_TYPE, v:VALUE) spec-
ifying that task t uses amount v of resource type rt and
similarly task_produces(t:TASK, rt:RESOURCE_TYPE,
v:VALUE) and task_consumes(t:TASK, rt:RESOURCE_
TYPE, v:VALUE). A process is related to the task of which
it is an instance by is_instance_of(t:TASK, p:PROCESS).

The set of specified processes together with the set of
ordering relation defined on them form a workflow. Process
ordering relations can be specified in the following ways:

starts_after(pl:PROCESS, p2:PROCESS) defines that
process pl starts after process p2;

starts_with

(pl:PROCESS, p2:PROCESS)—pl starts simultaneously
with p2;

starts_during(p1:PROCESS, p2:PROCESS)—pl starts dur-
ing the execution of p2;

finishes_with(p1:PROCESS, p2:PROCESS)—pl finishes
simultaneously with p2;

finishes_during(p1:PROCESS, p2:PROCESS)—pl finishes
during the execution of p2.

The beginning and the end of the workflow are desig-
nated by special zero-duration processes BEGIN and END.

Furthermore, three types of structures defining ways of
executing processes can be defined: and-, or- and loop-
structures. Branches of and-structures start simultaneously
and are all executed. When the process after the struc-
ture should start is specified by the and-condition which
can designate all, any or specific processes at the end of
the branches that should finish before the workflow can
continue. Only one branch of an or-structure can be exe-
cuted depending on the or-condition which is an expres-
sion based on a decision variable (related to a decision
process), state or a characteristic of an environmental ob-
ject. Loop structures contain processes that can be repeated
depending on the loop-condition within a maximum num-
ber of iterations. All these structures are defined in a sim-
ilar way with special zero-duration processes designating
the beginning and the end of the structures, for example: be-

gin_and(id: AND_STRUCT) and end_and(id: AND_STRUCT)

mark the beginning and the end of an and-structure with the

One of the characteristics of resource types is their
expiration duration (e.g. rt.expiration_duration = v for
a resource type rt with expiration duration v). Resource
types that can be shared by several processes are specified
in resource_sharable(rt:RESOURCE_TYPE, L:PROCESS_
LIST). Resources that are related to resource types by
is_resource_type(r:RESOURCE, rt:RESOURCE_TYPE).
Resources are characterized by an amount (e.g., r.amount
=V).

Processes can add or remove resource types from loca-
tions which can be specified using the predicates: process_
adds_resource_type_to(p:PROCESS, rt:RESOURCE_
TYPE, LLOCATION, v:VALUE) and process_rem_
resource_type_from(p:PROCESS, rt:RESOURCE_TYPE,
1: LOCATION, v:VALUE) where the last argument speci-
fies the amount of the added or removed resource type. Re-
sources are considered removed at the starting time point of
the corresponding process and are added at the ending time
point of the process.

Relations between roles, agents and processes are defined
as follows: role_performs_process(r:ROLE, p:PROCESS)
and agent_plays_role(a:AGENT, r:ROLE). Relations to
goals and PIs are defined as follows: is_realized_by(g:
GOAL, L:TASK_LIST) defining that goal g can be re-
alized by performing tasks in list L and measures(i:PI,
p:PROCESS) specifying that performance indicator i is a
measure over some aspect of the performance of process p.

4 Execution language Lgx

For the formalization of a trace a dedicated state language
Lgx is used, which is based on Lpgr briefly discussed in the
previous Section. Lgx is based on an ontology specified by
a number of sorts, sorted constants, variables, functions and
predicates (i.e., a signature). Each sort included into this on-
tology is represented by a set of individual objects of a cer-
tain type that occur in the trace (e.g., the sort PROCESS_EX
contains all names of processes that have been executed in
the trace). Note that in order to distinguish the names of sorts
of Lgx from the names of sorts in the language Lpg, all sort
names of Lgx finish with the EX postfix.
This ontology includes the following sorts:

PROCESS_EX—a set of all process names in a trace;

name id. Conditions are specified such as and_cond(id: AND_STRESOURCE_EX—a set of all resource names;

e:COND_EXPRESSION) which means that the condition
of and-structure id is defined by the expression e. Or-
branches are defined as: or_branch(v:OR_COND_VALUE,
p:PROCESS) for every specific condition value and first
process p in a branch. Maximal number of iterations n
of a loop-structure id is defined as: loop_max(id:LOOP_
STRUCT, n:VALUE).

RESOURCE_TYPE_EX—a set of all resource types names;
LOCATION_EX—a set of all location names;
ROLE_EX—a set of all role names;

AGENT_EX—a set of all agent names;

PI_EX—a set of all performance indicators names;
VALUE—an ordered set of numbers;
PROCESS_LIST_EX—a set of all names of process lists;

@ Springer

230

V. Popova, A. Sharpanskykh

Table 1 Relations defined in Lgx

Predicate specification

Informal description

process_started: PROCESS_EX
process_finished: PROCESS_EX

resource_used_by: RESOURCE_EX x PROCESS_LIST_EX x
VALUE

resource_consumed_by: RESOURCE_EX x PROCESS_EX x
VALUE

resource_produced_by: RESOURCE_EX x PROCESS_EX x VALUE
resource: RESOURCE_EX x RESOURCE_TYPE_EX
resource_expired: RESOURCE_EX

resource_invalid: RESOURCE_EX x VALUE

available_resource_amount: RESOURCE_EX x VALUE

process_adds_res_to_location: PROCESS_EX x RESOURCE_EX x
LOCATION_EX x VALUE

process_rem_res_from_location: PROCESS_EX x RESOURCE_EX
x LOCATION_EX x VALUE

available_res_amount_at_location: RESOURCE_EX x VALUE x
LOCATION_EX

pi_has_value: PI_EX x VALUE

agent_is_assigned_to_role: AGENT_EX x ROLE_EX

agent_performs_process: AGENT_EX x PROCESS_EX

env_object_changed_state_into: ENV_OBJECT_EX x
OBJ_STATE_EX

env_object_changed_char_into: ENV_OBJECT_EX x
OBJ_CHAR_EX x VALUE

decision_taken: DECISION_VARIABLE_EX x
DECISION_VAR_VALUE_EX

The process specified as an argument has started
The process specified as an argument has finished

Specifies that a certain amount of a resource is used by a process
Specifies that a certain amount of a resource is consumed by a process

Specifies that a certain amount of a resource is produced by a process
Identifies a resource of a certain resource type
Specifies that a resource is expired

Specifies that a certain amount of a resource became invalid (cannot be
used any more)

Specifies the available amount of the resource

Specifies that a certain amount of the resource is added to the location

Specifies that a certain amount of the resource is removed from the lo-
cation

Specifies the available amount of the resource at the specific location

Identifies the value of a certain PI
Specifies the assignment of an agent to a role
Identifies that an agent performs a certain process

Specifies a changed state of an environmental object
Specifies the value of a certain characteristic of an environmental object

Identifies the value of a decision variable

DECISION_VARIABLE_EX—a set of all names of deci-
sion variables;

DECISION_VAR_VALUE_EX—a set of all values of deci-
sion variables;

ENV_OBJECT_EX—a set of all environmental objects
names;

OBJ_STATE_EX—a set of all names of states of objects;
OBJ_CHAR_EX—a set of all names of object characteris-
tics.

To define events, a number of relations are introduced
into Lgx (see Table 1).

5 Language TTL and specification of dynamic
properties

In this Section first the Temporal Trace Language (TTL)
used for specifying dynamic properties for analysis, is intro-
duced. Then, some peculiar aspects of the specification of
TTL properties in the dedicated software environment TTL
Checker are discussed.

@ Springer

TTL [26] is a variant of order-sorted predicate logic [15]
and has some similarities with Situation Calculus and Event
Calculus. Whereas the standard multi-sorted predicate logic
is a language to reason about static properties only, TTL is
an extension of such language with facilities for reasoning
about the dynamic properties of arbitrary systems.

TTL properties considered in this paper are specified
based on state properties expressed as formulae in Lgx.
For enabling dynamic reasoning TTL includes special sorts:
TIME (a set of linearly ordered time points), STATE (a set
of all state names of a system), TRACE (a set of all trace
names), STATPROP (a set of all state property names). Fur-
thermore, for every sort S from the state language the fol-
lowing TTL sorts exist: the sort SYARS which contains all
variable names of sort S; the sort SSTERMS \which contains
names of all ground terms, constructed using sort S; sorts
SOTERMS 4nd SVARS are subsorts of sort STERMS,

In TTL, formulae of the state language are used as ob-
jects. To provide names of object language formulae ¢ in
TTL the operator () is used (written as ¢*), which maps
variable sets, term sets and formula sets of the state language
to the elements of TTL sorts SOTERMS GTERMS 'gVARS 4,

Formal analysis of executions of organizational scenarios based on process-oriented specifications 231

STATPROP. The state language and TTL define disjoint sets
of expressions. Therefore, in TTL formulae we shall use
the same notations for the elements of the object language
(i.e., constants, variables, functions, predicates) and for their
names in TTL without introducing any ambiguity. Further
we shall use t with subscripts and superscripts for variables
of the sort TIME; and y with subscripts and superscripts for
variables of the sort TRACE.

A state of a system (in our case an organization situated
in the environment) in a trace is referred using a function
symbol state of type TRACE x TIME — STATE.

The set of function symbols of TTL includes A, V,
—, <> : STATPROP x STATPROP— STATPROP; not:
STATPROP— STATPROP, V, 3 : SYARS » STATPROP—
STATPROP, which counterparts are Boolean propositional
connectives and quantifiers. Further we shall use A,V,
—, <> in infix notation and V, 3 in prefix notation for bet-
ter readability.

The states of a system are related to names of state
properties via the formally defined satisfaction relation de-
noted by the infix predicate = (or denoted by the pre-
fix predicate holds): state(y, t) = p (or holds(state(y, t)),
which denotes that the state property with a name p holds
in trace y at time point t. For example, state(tracel,10)=
process_started(p2).denotes that the process p2 has started
in the tracel at the time point 10. Both state(y, t) and p
are terms of TTL. In general, TTL terms are constructed
by induction in a standard way from variables, constants
and function symbols typed with all before mentioned TTL
sorts.

Transition relations between states are described by dy-
namic properties, which are expressed by TTL-formulae.
The set of atomic TTL-formulae is defined as:

(1) If vy is a term of sort STATE, and u; is a term of the
sort STATPROP, then holds(vy, u1) is an atomic TTL
formula.

(2) If 71, 7y are terms of any TTL sort, then t; = 15 is an
atomic TTL formula.

(3) If 11, tp are terms of sort TIME, then #; < 1 is an atomic
TTL formula.

The set of well-formed TTL-formulae is defined inductively
in a standard way using Boolean propositional connectives
and quantifiers. TTL has semantics of the order-sorted pred-
icate logic. A more detailed specification of the syntax and
the semantics for the TTL (including the axiomatic basis) is
given in [27].

An example of a well-formed TTL-formula is:

VtVp: PROCESS_EX state(y,t) = process_started(p)
= 3Jt’ t’ > t state(y, t’) |= process_finished(p)

This property expresses that all processes started in trace y
should eventually finish in this trace.

Using a convenient graphical interface of the TTL
Checker [6], TTL formulae can be inputted for the sub-
sequent analysis on traces. The checking on traces is per-
formed automatically and as a result the answer is generated
identifying if a formula is satisfied by a trace(s). Note that
even if a formula contains a universal quantifier(s), still only
one answer will be generated. It also means that in case the
checking fails, only one counterexample will be shown to
the analyst, which does not reveal all other possible rea-
sons for the failure of the formula. However, if the analyst
demands more fine-grained analysis, it is still possible to re-
place automatically a formula that contains a quantified vari-
able by a number of formulae, in which the quantified vari-
able is replaced by particular instances from the domain of
this variable, and then check each formula separately. If all
obtained formulae are satisfied, then the original formula is
satisfied as well. For example, the property described above
can be replaced by the properties, in which the variable p is
replaced by each individual from the sort PROCESS_EX.

To provide support for analysts who are not skilled in
logics, the TTL Checker allows defining parameterized tem-
plates. Essentially, such templates are predefined logical for-
mulae that can be referred by names with certain parameters.
The designer instantiates a template by assigning certain val-
ues to these parameters.

Furthermore, the tool allows post-processing of the ver-
ification results by composing and evaluating arithmetical
statements. These statements are formed from arithmetical
relations and operations on numerical values. For this the
following functions are used:

case(logical _formula, valuel, value2)—meaning that if
logical_formula is true, then the function is mapped to
valuel, otherwise—to value2.

sum([summation _variables], case(logical_formula,
valuel, 0))—the value of this function is calculated as
follows: logical_formula is evaluated for every combina-
tion of values from the domains of each from the summa-
tion_variables; and for every evaluation when the logical
formula is evaluated to true, valuel is added to the result-
ing value of the sum function (which is initially equal to 0).

Examples of analysis cases that include statistical post-
processing will be given in Sect. 6.

Furthermore, the TTL Checker provides checking results
for further more sophisticated statistical post-processing
(e.g., using different hypothesis testing methods and auto-
mated tools such as SPSS).

6 Types of trace-based analysis

As discussed in Sect. 2, we consider four types of analysis
over execution traces. They are described in more detail in

@ Springer

232

V. Popova, A. Sharpanskykh

this section. First, Sect. 6.1 discusses the analysis of whether
the trace agrees with the organizational specification. Sec-
tion 6.2 discusses the analysis of whether the trace agrees
with the formal organization (i.e., a set of organization-
specific constraints). Section 6.3 describes the analysis of
emergent organizational properties not prescribed by the or-
ganizational specification and/or the formal organization.
Finally Sect. 6.4 discusses the analysis of organizational per-
formance based on performance indicators from execution
traces and organizational goals.

6.1 Trace conformity to an organizational specification

As described in Sect. 3 the process-oriented specification
created by the designer consists of objects defined in the
sorts of Lpr and characteristics and relations for these ob-
jects defined using the predicates and functions of Lpg.
Every such specification can be translated to a set of con-
straints that should be satisfied by an actual execution trace
of the specification. Since the specification is only a partial
representation of a set of desirable behaviors of the (part
of the) organization, it is possible that events unforeseen by
the specification cause the actual trace to represent behav-
ior outside of this set, thus, the actual execution does not
agree with the specification. Therefore an important phase
in the analysis of actual traces is to check whether they sat-
isfy the constraints defined by the specification which will
be discussed in detail in this section. Note that the traces are
assumed to be recorded correctly with respect to the real ex-
ecution and contain no syntactical mistakes and omissions.

First we describe the translation of the specification to
constraints over execution traces. The constraints are repre-
sented as properties formulated in the Temporal Trace Lan-
guage using the Lgx as a state language. These properties
are defined over constants that represent the objects defined
in the specification. Each property is based on one or a spe-
cific combination of language constructs such as ordering
relations, and-/or-/loop-structures, characteristics of objects,
etc. A combination of such constructs might generate more
than one constraints representing different aspects. The set
of properties generated by the translation process are meant
to be checked together automatically on the trace and give
feedback to the analyst which ones are violated.

In the following, we define general rules on how to trans-
late a process-oriented specification to TTL properties that
should be checked on actual execution traces.

The first property we consider represents the restriction
that only processes defined in the specification are allowed
to be performed. It is formalized in the TTL in the following
way. For p1, ..., pn constants representing the names of the
processes in the specification the following property should
be checked:

C1: Vt, p:PROCESS_EX state(y, t) |= process_started(p)
=p=pl|...|p=pn

@ Springer

The next properties represent the constraints that processes
that are not part of an or-branch of any or-structure (should
be performed in any condition) have indeed started and fin-
ished in the actual trace.

For p1 a process not in any or-branch:

C2: 3tl state(y, tl) |= process_started(pl)
C3: 3tl state(y, tl) |= process_finished(p1)

For processes that are part of an or-branch it is not known
in advance whether they will be executed or not since that
depends on the evaluation of the or-condition. Similarly for
processes in loop-structures it is not known how many times
they will be executed. Therefore for these processes it needs
to be checked only for processes that have started whether
they have finished in the actual trace which is expressed in
the following property:
For pl a process in an or-branch or in a loop-structure:

C4: 3tl state(y, tl) = process_started(pl) = It2: state(y,
t2) = process_finished(pl)

Additionally for processes not in loop-structures:

C5: 3tl state(y, tl) = process_started(pl) = (Vt3 t3 # tl
=> state(y, t3) = —process_started(p1l)

The next property checks whether the actual duration of a
process is within the range defined by the corresponding
task.

For a process p1, a task tk, min duration d1 and max dura-
tion d2 such that [is_instance_of(p, tk), tk.min_duration=dl1,
tk.max_duration=d2]:

C6: 3tl, t2 state(y, t1) = process_started(pl) & state(y, t2)
= process_finished(p2) = dl <2 —tl &t2—tl <d2

The processes in the specification are synchronized by dif-
ferent types of ordering relations which are translated to
constraints in the following way:

For p1, p2 such that starts_with(p1, p2):

C7: 3tl state(y, tl) = process_started(pl) = state(y, tl)
= process_started(p2)

C8: 3tl state(y, tl) = process_started(p2) = state(y, tl)
= process_started(p1)

For p1, p2 such that finishes_with(p1, p2):

C9: 3tl state(y, t1) = process_finishes(p1l) = state(y, tl)
k= process_finishes(p2)

C10: 3tl state(y, tl) = process_finishes(p2) = state(y, t1)
k= process_finishes(p1)

For p1, p2 such that starts_during(p1, p2):

C11: 3tl state(y, t1) = process_started(pl) = 3t2,t3 12 <
tl & t1 < t3 A state(y, t2) = process_started(p2) &
state(y, t3) = process_finished(p2)

For pl, p2 such that finishes_during(p1, p2):

Formal analysis of executions of organizational scenarios based on process-oriented specifications 233

C12: 3tl state(y, tl) = process_finished(pl) = 3t2, t3 t2
tl & tl < (3 state(y, t2) = process_started(p2) &
state(y, t3) = process_finished(p2)

For pl, p2, d such that starts_after(p2, p1, d) except for be-
ginning and ending of an and-, or-, or loop-structures:

C13: 3tl state(y, tl) | process_finished(pl) = 3t2:
state(y, t2) = process_started(p2) & d =2 —tl

Next, and-structures are considered. Firstly, specifications
such as [starts_after(p, begin_and(id), d), starts_after(begin_
and(id), p1), ..., starts_after(begin_and(id), pn)] are treated
as [starts_after(pl, p, d), ..., starts_after(pn, p, d)]. Fur-
thermore the end of the structure should be considered
[starts_after(end_and(id), p1), ..., starts_after(end_and(id),
pn), starts_after(p, end_and(id))] and it should be checked
whether the order of execution at the end of the and-structure
matches the specified and-condition.

For pl, ..., pn, p, d such that [starts_after(end_and(id),
pl), ..., starts_after(end_and(id), pn), starts_after(p, end_
and(id), d), and_cond(id, any)]:

Cl14: 3tl state(y, tl) = [process_finished(pl) Vv---V
process_finished(pn)] & (Vt2: 2 < tl = state(y, t2)
= [—process_finished(pl) A--- A —process_
finished(pn)]
= 3t3 state(y, t3) |= process_started(p) & d =t3 —tl

For pl,..., pn, p, d such that [starts_after(end_and(id),
pl), ..., starts_after(end_and(id), pn), starts_after(p, end_
and(id), d), and_cond(id, all)]:

C15: 3tl, ..., tn, tp state(y, tl) = process_finished(pl) &
-+ & state(y, tn) = process_finished(pn) & tp > t1 &
- &tp>=tn & (tp=tl|---| tp =tn) = 3tt state(y,
tt) = process_started(p) & d = tt—tp

And-conditions with other expressions are treated similarly
taking into account which processes should finish so that
the next process can start, for example: [starts_after(end_
and(id), pl),..., starts_after(end_and(id), pn), starts_
after(p, end_and(id), d), and_cond(id, finished(pl)A
finished(p2))] can be checked as follows:

Cl6: 3tl, t2, t state(y, tl) | process_finished(pl) &
state(y, t2) = process_finished(p2) & tl < t & t2
<t& (t=1tl]t=1t2) = 33 state(y, t3) =
process_started(p) & d = t3—t

For or-structures it should be checked if exactly one of the
branches is executed and that it matches the evaluation of
the specified or-condition.

For p, pl, ..., pn, d, decision variable dv and decision
variable values vall, ..., valn such that [starts_after(begin_
or(id), p, d), starts_after(pl, begin_or(id)),..., starts_
after(pn, begin_or(id)), or_cond(id, dv), or_branch(pl,
vall), ..., or_branch(pn, valn)]:

C17: 3tl state(y, tl) = process_finished(p) = 3t2 (state(y,
t2) = process_started(pl) & Vt3 state(y, t3)
[—process_started(p2) A--- A —process_started(pn)]
& 3t4 state(y, t4) = decision_taken(dv, vall) & t4
<2 & V515 > t4 & t5 < 2 & state(y, t5) = de-
cision_taken(dv, val) = val = vall) |---| (state(y,
t2) | process_started(pn) & Vt6 state(y, t6) =
[—process_started(pl) A--- A —process_started(pn-
1)] & 3t7 state(y, t7) = decision_taken(dv, valn) &
17 < t2 & (Vt8 t8 > t7 & t8 < 2 & state(y, t8) |=
decision_taken(dv, val) = val = valn)) & d = t2 —t1

In a similar way, formulations can be given for the case of a
condition based on the state of an environmental object or a
characteristic of an environmental object.

Furthermore it should be checked that the processes in
the branches that did not start also are not executed. For
every or-branch such that [starts_after(pl, begin_or(id)),
starts_after(p2, pl),..., starts_after(pn, pn-1), starts_
after(end_or(id), pn)] the following property should be
checked:

C18: Vtl state(y, tl) = —process_started(pl) = Vt2
state(y, t2) = [—process_started(p2) A--- A —
process_started(pn)]

For pl,..., pn, p, d such that [starts_after(end_
or(id), pl), ..., starts_after(end_or(id), pn), starts_after(p,
end_or(id), d)]:

C19: 3tl state(y, tl) = [process_finished(pl) Vv---V
process_finished(pn)] = 3t2 state(y, t2) = process_
started(p) & d = t2 — tl

Next, loop-structures are considered. Specifications such
as [starts_after(begin_loop(id), p1), starts_after(p2, begin_
loop(id))] are treated as starts_after(p2, pl). Furthermore
for every process in a loop-structure the corresponding se-
quencing relations are checked in a similar way. For the last
process p2 in a loop-structure with a condition expression
dv = val for a decision variable dv such that [starts_after(p1,
begin_loop(id)), ..., starts_after(end_loop(id), p2, d2),
starts_after(p3, end_loop(id), d3), loop_cond(id, dv = val),
loop_max(m)] the following property should be checked:

C20: dJtl state(y, t1) = process_finished(p2) =

3t2 (state(y, t2) = process_started(pl) & 3t3 state(y,
t3) = decision_taken(dv, val) & t3 < t2 & (Vt4 t4
> 13 & t4 < t2 & state(y, t4) = decision_taken(dv,
vall) = val = vall) & —max_iter(p2) & t2 —tl =
d2) & (state(y, t2) = process_started(p3) & t2 — tl
= d2 + d3 & (3t3 state(y, t3) = decision_taken(dyv,
vall) & vall #val &t3 <2 & (V4 t4 >3 & t4 <t2
& state(y, t4) = decision_taken(dv, val2) = val2 =
vall) | max_iter(p2)))

@ Springer

234

V. Popova, A. Sharpanskykh

Property max_iter(p2) can be defined as follows where m is
the maximal number of iterations:

Jtl,...,tmtl L2 A---Atl Ftm A---A tm — 1 # tmA
state(y, tl) = process_started(p2) & --- & state(y, tm) =
process_started(p2)

Different types of conditions are treated similarly taking
into account the specific condition variable.

The following properties concern resources and resource
types and how they are used/consumed/produced/shared by
processes.

For resource type rt, task tk, amount v and process p such
that [is_instance_of(p, tk), task_consumes(tk, rt, v)]:

C21: sum([r:RESOURCE_EX], case(3tl, t2 state(y, tl)
process_started(p) & state(y, t2) [process_
finished(p) & 33 t1 < 3 & 3 < t2 A state(y, t3)
= resource_consumed_by(r, p, v1) & 3t4 state(y, t4)
= resource(r, rt), vl,0)) = v

For resource type rt, task tk, amount v and process p such
that [is_instance_of(p, tk), task_uses(tk, rt, v)] for every
time point t in the trace it will be checked:

C22: sum([L:PROCESS_LIST_EX], case(3tl, t2 state(y,
tl) = process_started(p) & state(y, t2) = process_
finished(p) & tl < t & t < t2 & state(y, t) = re-
source_used_by(r, L, vl) & is_in_list(p, L) & 3t4
state(y, t4) = resource(r, rt), v1,0)) = v

For resource type rt, task tk, amount v and process p such
that [is_instance_of(p, tk), task_produces(tk, rt, v)]:

C23: 3tl, t2 state(y, tl) = process_started(p) & state(y,
t2) = process_finished(p) = A3 t1 < t3 & t3 < t2
& state(y, t3) |= resource_produced_by(r, p, v) & 3t4
state(y, t4) = resource(r, rt)

In the specification, the resources already available at the be-
ginning of the workflow that will be used by its processes are
represented as resources produced by the BEGIN process. It
should therefore be checked if the available resource amount
at the beginning of the execution trace matches the amount
produced by the BEGIN process in the specification.

For resource r, resource type rt, amount v such that
[process_output(BEGIN, 1), is_resource_type(r, tt), T.
amount=v]:

C24: sum(|[r:RESOURCE_EX], case(state(y,0) E
[available_resource_amount(r, vl) A resource(r, rt)],
vl,0) =v

It should also be checked whether the resources are shared
between lists of processes for which this is allowed. For
resource type rt and list of processes L such that [re-
source_sharable(rt, L)]:

C25: 3t1 3L1:PROCESS_LIST_EX state(y, tl) &= re-
source_used_by(r, L1, v) & 3t2 state(y, t2) = re-
source(r, rt) = is_sublist_of(L1, L)

@ Springer

For resources it should also be checked if they are placed at
the right location by processes. For resource type rt, process
p, location 1, value v such that [process_adds_resource_type
_to(p, rt, 1, v)]:

C26: 3tl, t2 state(y, tl) = process_started(p) & state(y,
t2) |= process_finished(p) = 3t3,t1 <t3 &3 <t2 &
dr:RESOURCE_EX state(y, t3) = process_adds_res
_to_location(p, 1, 1, v) & 3t4 state(y, t4) = resource(r,
rt)

For resource type rt, process p, location 1, value v such that
[process_rem_resource_type_to(p, rt, 1, v)]:

C27: 3tl, t2 state(y, tl) = process_started(p) & state(y,
t2) |= process_finished(p) = 3t3,t1 <t3 &3 <t2 &
Ir:RESOURCE_EX state(y, t3) |= process_rem_res_
from_location(p, r, 1, v) & 3t4 state(y, t4) = re-
source(r, rt)

Finally it should be checked if role and process assignment
to agents follow the specification:

For role r, agent a and process p such that [role_performs_
process(r, p), agent_plays_role(a, r)]:

C28: 3Jtl, t2 state(y, tl) = process_started(p) & state(y,
t2) = process_finished(p) = Vt3 t1 < t3 & 3 <
t2 & state(y, t3) = [agent_performs_role(a, r) A
agent_performs_process(a, p)]

The above listed properties are quite general and can be
checked in any order on the actual execution trace. How-
ever in many cases it would be beneficial to enforce certain
order in which the properties should be checked. For exam-
ple it would often be useful to find efficiently the first time
point at which the trace does not correspond to the speci-
fication and which constraint is violated. Often when one
constraint is violated that causes the violation of many other
constraints however finding all these constraints might not
add much more information on what went wrong. For ex-
ample when one process fails to produce a resource neces-
sary for another process this might cause changes or even
failures in the rest of the execution trace. However these are
only consequences of the first failure—the production of the
resource. It is therefore useful to alert the analyst of the first
time point at which a violation of a constraint occurs. It is
possible to find this point by checking all constraints, find-
ing all violations and then finding the earliest one. However
if we are only interested in the first one it would be more
efficient to try to find the earliest violation first after which
the search can be stopped.

The approach proposed here is to consider the events of
the trace in their natural temporal order starting from the be-
ginning of the trace and processing them one by one. For
each event that represents a starting or finishing point of
a process only a selection of the relevant constraints are

Formal analysis of executions of organizational scenarios based on process-oriented specifications 235

checked. Here the general constraints (C1, ..., C28) can be
used after some small adjustments coming from the fact that
they are checked with respect to a specific time point when
a specific event occurs.

In the following we define the set of relevant constraint
with respect to the type of event occurring in the trace.
The first constraints to be checked are C24 which checks
the available resource at the first time point only and C2
(which checks if a process starts) for the first process(es)
in the workflow that should start at the first time point un-
conditionally (not in any or-branch). If at the first time point
an or-structure begins then it should be checked that only
one branch is executed and it matches the evaluation of the
condition (a variation of C17). Afterwards the (partially) or-
dered list of starting and finishing points of processes is con-
sidered item by item. For every starting point the following
types of constraints are considered (in this order):

1. the process is defined in the specification (C1),

2. the process has not been executed before in the part of
the trace up to the current event for processes not in loop-
structures (C5),

3. constraints with respect to the conditions for the end of
and-structures (C14, C15, C16).

4. constraints related to synchronizations starts_with and
starts_during (C7, C8, C11),

5. existence of a finishing point for the process (C3, C4),

For every finishing point the following types of constraints
are considered (in this order):

1. resource-related constraints (C21, C22, C23, C25, C26,
C27)

2. agent- and role-related constraints (C28)

process duration (C6)

4. constraints related to synchronizations finishes_with and
finishes_during (C9, C10, C12)

5. constraints with respect to the process which should start
next (C13, C17, C18, C19, C20).

bt

From all types of considered constraints those are selected
that refer to the specific process to which the starting or fin-
ishing point belongs. When two or more events coincide fin-
ishing points (in any order) are considered before the start-
ing points (in any order).

The above described approach assumes the availability
of the whole execution trace at the beginning of the analy-
sis. In some situations however it might be necessary to
perform such analysis at real time while the trace is being
generated. This will give the possibility to react as soon
as something in the execution deviates from the specifica-
tion and take appropriate measures. With some adjustments,
the generic properties can be used here as well. The analy-
sis process works as follows. The information about events
from the trace become available following the order of the

time points at which they occur and all events happening at
the same time point become available all at once. Depending
on the type of the current considered event specific types of
constraints are checked or assigned to be checked at specific
time points in the future. The system gives a warning when
a constraint is violated by the trace. At the first time point
again the available resource (C24) and the starting of the
first processes is checked (C2, C17). Then for every start-
ing point of a process that appears in the trace the following
types of constraints are considered:

1. the process is defined in the specification (C1),

2. the process has not been executed before in the part of
the trace up to the current event (C5),

3. constraints with respect to the conditions for the end of
and-structures (C14, C15, C16).

4. constraints related to synchronizations starts_with and
starts_during (C7, C8, C11),

5. existence of a finishing point for the process (based on
C3, C4)—as this information is not yet available in the
trace, the corresponding properties are scheduled to be
checked for every time point until such a finishing point
occurs. When the maximal duration determined by the
specification is passed and no finishing point has yet
occurred a warning is given that the process exceeds
its allowed duration. A warning is also generated if the
process finishes before its minimal duration determined
by the specification has passed.

6. resource-related constraints of the following types are
checked for every time point until the process finishes:
resource sharability (C25), resource used by a process
(C22), resource produced (C23) or consumed (C21) by
the process, resource at a location (C26, C27) up to the
current time point is checked not to exceed the specified
amount in the specification.

7. agent- and role-related constraints are checked for every
time point until the process finishes.

For every finishing point the following types of constraints
are considered (in this order):

1. resource produced (C23) or consumed (C21) by the
process for its whole duration is checked to be equal to
the pre-specified amount in the specification

2. constraints related to synchronizations finishes_with and
finishes_during (C9, C10, C12)

3. constraints with respect to the process which should start
next (C13, C17, C18, C19, C20)—since the necessary in-
formation is not yet available in the trace, the properties
are scheduled to be checked in the following way. For
every time point it is checked if the expected process has
started until information about its starting point arrives.
If this starting point is before the pre-specified delay a
warning is issued. A warning is also issued when the de-
lay has passed and the process has not started yet. C17 is

@ Springer

236

V. Popova, A. Sharpanskykh

checked until the starting point of the first process in a
branch of the or-structure. Afterwards it is checked for
the rest of the incoming trace that none of the other first
processes of other branches of this structure start at any
later point (C18). At the end of the or-structure a prop-
erty is scheduled for checking if the process after the
or-structure starts for every time point until the process
actually starts. For loop-structures a counter is kept for
the current number of iterations. It is used to determine
the next process together with the current evaluation of
the condition. Based on that, the appropriate property is
scheduled to be checked until the correct process starts.

For most types of constraints the following rule is used:
when a specific constraint is checked or scheduled for
checking it is marked and is not considered any more at the
events occurring later. An exception is made for the loop-
related constraints which might need to be considered mul-
tiple times.

6.2 Trace conformity to a formal organization

A formal organization is specified by a fixed set of rules
that define (prescribe) organizational structure and behav-
ior. These rules are usually described in different organiza-
tional and general normative documents (e.g., an organiza-
tional mission statement, a strategy description, laws, orga-
nizational normative acts, different policies, job and proce-
dure descriptions) and are formalized as predicate logic con-
straints imposed on an organizational specification.

Some of these constraints are strict and should not be vi-
olated in any organizational scenario; e.g., “the number of
working hours of an employee per week should not exceed a
certain value”, “all employees involved in a certain process,
which has a risk factor for human health, should be provided
with the necessary safety means”. Other rules are less strict
and can be (temporally) violated; e.g., “the average amount
of a certain resource produced by an organization is required
to be greater than a certain number”, “the maximum percent-
age of losses (e.g., due to breakage) of a certain resource
type should be within a certain range”.

In general, if a trace conforms to the corresponding orga-
nizational specification (i.e., a trace is in the set of possible
executions of the specification), then all constraints imposed
on and satisfied by the specification are also satisfied by the
trace. However, when the checking of the conformity of a
trace to an organizational specification fails, then the satis-
faction of the constraints by the trace is not guaranteed any
more. In this case the analysis of the conformity of a trace
to a formal organization should be performed by checking
organization-specific properties. Such properties are based
on dependencies and characteristics defined in (implied by)
an organizational specification, or correspond to different

@ Springer

types of constraints (e.g., domain-specific, physical world
constraints) defined for the specification.
Consider several examples:

P1: In the trace y1 the process pl is executed (after some
time) after the process p2 has finished:
3tl, t2 tl < t2 state(y, tl) = process_finished(p2) &
state(y, t2) = process_started(p1)

For example, it is required that a product produced by
an organization should be eventually delivered to the
customer.

Other properties expressing ordering relations between
processes (also including references to real time) are
specified in a similar manner.

P2: For the specified set of traces TR the average overall
amount of resources of type r produced by an organiza-
tion up to a time point t should be at least n:
sum([y :TR, t:between(0, t), r':RESOURCE_EX],
case(Ja’:PROCESS_EX 3Jam:VALUE_EX state(y,
t’)E= [resource_produced_by(r’, a’, am) A resource(r’,
r)], am, 0))/sum([y :TR], case(true, 1, 0)) > n,
here between(0, t) represents a set of all natural num-
bers in the interval [0, t].

P3: In the trace y 1 the amount of loss of resources of type
r caused by the consumption, usage, and invalidation
evaluated at the time point t should be less than m.
sum([t’: between(0, t), r':RESOURCE_EX], case(3a’:
PROCESS_EX Jam1:VALUE state(y 1, t’)|= [resource
_produced_by(r’,a’, am1) A resource(r’, r)], aml, 0)) —
sum([t’:between(0, t), r’:RESOURCE_EX], case(3a’:
PROCESS_EX dam2:VALUE_EX state(y1l, t)E
[resource_consumed_by(r’, a’, am2) A resource (1’, 1)],
am2, 0)) — sum([t’:between(0, t), r :RESOURCE_EX],
case(Jam4:VALUE_EX state(y1l, t’)E [resource_
invalid(r’, am4) A resource(r’, r)], am4, 0)) — sum([r’:
RESOURCE_EX], case(3:PROCESS_LIST_EX
Jam2:VALUE_EX state(y 1, t)|= [resource_used_by(r’,
1, am3) A resource(r’, r)], am3, 0)) < m

P4: Inthe trace y 1 aresource r produced by an organization
required by some other organizational processes should
be used or completely consumed before its expiration
date.
3t Ip:PROCESS_EX Jam:VALUE_EX state(y 1, t)=
resource_produced_by(r, p, am) & [Vt’ t'>t state(y 1,
t’)[= resource_expired(r) = 3t” Ipl: PROCESS_LIST_
EX Jam2 ' >t"& t”>t resource_used_by(r, pl, am2)]

P5: In the trace y 1 the overall amount of working hours of

an agent a at time point t (e.g., a time point in the end
of some working period) should not exceed n:
(sum([t’: between(0, t), p’:PROCESS_EX], case(state
(y1,) [agent_performs_process(a, p’) A process_
finished(p’)], t’, 0)) — sum([t”: between(0, t), p’:
PROCESS_EX], case(state(y 1, t")|= [agent_performs_
process(a, p’) A process_started(p’)], t”, 0))) <n

Formal analysis of executions of organizational scenarios based on process-oriented specifications 237

P6: In the trace y 1 no agent executes more than one process

at the same time:
Vpl:PROCESS_EX Vtl state(y1, tl) k= [agent_
performs_process(a, pl) A process_started(pl)] = 3t2
state(y 1, t2) = process_finished(pl) & Vt’ t'<t2 &
t'<tl Vp’#pl state(y1l, t')l= (—process_started(p’)
A—agent_performs_process(a, p’))

P7: In the trace y1 at the time point t the amount of avail-
able resources of type r is at least a pre-specified mini-
mum amount min.
sum([r’:RESOURCE_EX], case(3aml:VALUE_EX
state(y 1, t)|= [available_resource_amount(r’, aml) A
resource(r’, r)], aml, 0)) > min

6.3 Analysis of organizational emergent properties

Emergent properties are not specified and not implied by an
organizational specification and are related only to (result
from) an actual execution(s) of an organization. Such prop-
erties may be checked for different reasons. For example, the
analysis of emergent properties may be dedicated to the opti-
mization of the organizational functioning (e.g., discovering
and eliminating bottlenecks). Furthermore, emergent prop-
erties may be checked to test intuitions of the analytic about
the operation of an organization. Many of these properties
include the post-processing of the results of checking of dy-
namic properties by calculating the values of different sta-
tistical functions: e.g., sum, average, minimum, maximum
etc., and are often expressed over multiple traces.
Consider several examples:

P8: For the specified set of traces TR, determine a fre-
quency of finishing the process p on time (dura-
tion should be within the interval [min_duration,
max_duration]).
sum([y :TR], case(3tl,t2 state(y, tl)E= process_
started(p) & state(y, t2)= process_finished(p) &
(t2—1t1) < max_duration & (t2 —t1) > min_duration],
1, 0)) / sum([y :TR], case(3tl state(y, t1)= process_
started(p), 1, 0))

P9: In the trace y 1 at the time point t calculate the average
workload of agents of an organization:

(sum([tl: between(0, t), p’:PROCESS_EX, a’:
AGENT_EX], case(state(y 1, t1) = [agent_performs_
process(a’, p’) A process_finished(p’)], t1, 0) — sum
([t2: between(0, t), p:PROCESS_EX, a’:AGENT_
EX], case(state(yl, t2)E [agent_performs_
process(a’, p’) A process_started(p’)], t2, 0))) /
sum([a’:AGENT_EX], case(true, 1, 0))

Maximum and minimum workload is calculated in a
similar manner.

P10: Maximum duration of a process p in all executions:

Jy 1, tl, t2 state(y 1, tl)}= process_started(p) & state
(y1, t2)= process_finished(p) & Vy' # y1vtl’, 2’

[state(y’, t1’) = process_started(p) & state(y’, t2°) =
process_finished(p) & (t2°—t1’)<(t2 — t1)]

P11: In all executions the delay between the end of the
process pl and the beginning of the process p2 should
be less than n
VyVvtl, 2 state(y, tl) = process_finished(pl) &
state(y, t2) = process_started(p2) = (t2 —tl)<n

6.4 Performance evaluation

The performance of an organization at a certain time point
(for a certain period) is evaluated by determining the satis-
faction of key organizational goals. These goals range from
high-level abstract goals often concerning the whole orga-
nization to more specific goals often defined over separate
departments or roles. High-level goals are decomposed to
more specific goals which are easier to measure, thus, form-
ing goal decomposition structures. Goals are defined and
discussed in [18] as part of the performance-oriented view
of the general framework. Example of goals can be: ‘It is re-
quired to maintain high degree of product quality’, ‘It is re-
quired to achieve high customer satisfaction’, ‘It is required
to maintain number of work-related accidents per year to
less than 3, ‘It is required to achieve productivity of n prod-
ucts per day per employee’, etc.

Goals are formulated based on performance indica-
tors (PIs), which are associated with certain organizational
processes. Pls can also range from very abstract to very spe-
cific and can influence each other which can be specified
by relations defined in the performance-oriented view. For
more details the reader is referred to [19]. Examples of Pls
can be: product quality, customer satisfaction, number of
accidents, productivity, etc.

The values of these PIs are measured (directly or indi-
rectly) during or after the process execution depending on
the goal evaluation type and in the end or during a cer-
tain period of time (an evaluation period defined as a goal
horizon). Then, by comparing the measured values with the
corresponding goal expressions, the satisfaction of the goals
is determined. Further, the obtained goal satisfaction mea-
sure is propagated by applying the rules defined in [18], up-
wards in the goal hierarchy for determining the satisfaction
of higher level goals. An example of this type of analysis is
given in Sect. 7.4 in the frames of the case study.

7 Case study

The application of different types of analysis will be illus-
trated in the context of an organization from the security
domain. The main purpose of the organization is to de-
liver security services (e.g., private property surveillance,
safeguard) to different types of customers (individual, firms

@ Springer

238

V. Popova, A. Sharpanskykh

and enterprises). The organization has well-defined struc-
ture with predefined (to a varying degree) job descriptions
for employees. The total number of employees in the or-
ganization is approximately 230000 persons. The global
management of the organization (e.g., making strategic de-
cisions) is performed by the board of directors, which in-
cludes among others the directors of the different divisions
(regions). Within each region a number of areas exist con-
trolled by area managers. An area is divided into several
units, controlled by unit managers. Within each unit exist a
number of locations, for which the contracts with customers
are signed and security officers are allocated. The allocation
of employees is performed based on plans created by plan-
ning groups.

The analysis techniques will be illustrated in relation to
the planning process, which is described in the following in
more detail.

The planning process consists of the forward (or long-
term) planning and the short-term planning. The forward
planning is a process of creation, analysis and optimiza-
tion of forward plans that describe the allocation of secu-
rity officers within the whole organization for a long term
(4 weeks). Forward plans are created based on customer
contracts by forward planners. During the short-term plan-
ning, plans that describe the allocation of security officers
to locations within a certain area for a short term (a week)
are created and updated based on the forward plan and up-
to-date information about the security employees. Further-
more, based on short term plans, daily plans are created.
Within each area the short-term planning is performed by the
area planning team that consists of planners and is guided
by a team leader. During the planning process short-term
planners interact actively with forward planners (e.g., for
consultations, problem solving). Furthermore, forward plan-
ners have a number of supervision functions with respect to
short-term planners.

The position of forward planners in the organizational
structure has changed as a result of the reorganization in the
past. Before the reorganization each planning team had a
forward planner as its member, who was mainly responsi-
ble for the creation of long-term plans for locations of the
area. After the reorganization forward planners from area
planning teams were combined into a centralized forward
planning group, which now cooperates with all area plan-
ning teams.

A number of reasons for such a change in the organiza-
tional structure are identified in the reorganization reports.
In the following it will be shown how the proposed analysis
techniques could be used for the automated justification of
the identified performance bottlenecks and other problems
in the organization.

The company’s reorganization reports specify the follow-
ing motivations for the necessity of such reorganization:

@ Springer

(1) Uneven workload of forward planners in different area
planning teams.
The truth of this statement can be established by calcu-
lating the workload for the forward planners in different
areas and comparing the results. For this the following
property can be used with a—the agent name, for whom
the workload is calculated, and t—the time point up to
which the workload is calculated:
sum([tl: between(0, t), p :PROCESS_EX], -case
(state(y 1, tl) | [agent_performs_process(a, p’) A
process_finished(p’)], t1, 0)) — sum([t2: between(0, t),
p :PROCESS_EX], -case(state(y1l, t2)= [agent_
performs_process(a, p’) A process_started(p’)], t2, 0))
If multiple traces are available, the average workload of
every agent can be calculated as it is demonstrated in the
property P9.
A side-effect of a high workload of a forward planner
could be the undue execution of some processes as-
signed to the forward planner. This can be established
by verifying the correspondence of the actual execution
of an organization to the corresponding specification.

(2) Certain planning tasks of a forward planner require col-
laboration with other forward planners. In the previous
organization this has been achieved by informal (i.e., not
determined by a formal organizational specification) co-
operation between forward planners from different ar-
eas.

This statement can be justified in two steps. First by per-
forming the analysis of the correspondence of a trace to
the specification, it can be established that in the trace ex-
ist processes performed by agents that are not allocated to
the roles, to which these processes are assigned. Then, the
number (or frequency) of such processes that started until
the time point t for each role r can be calculated as follows:

sum([p’:PROCESS_EX], case(3tl <t Ja:F_PLANNER state
(yl, tl) E [agent_performs_process(a, p’) A—agent_
performs_role(al, r)], 1, 0))

If multiple traces (a set TR) are available, the average
number of such processes for role r can be calculated as fol-
lows:

sum([y :TR, p:PROCESS_EX], case(3tl<t 3Ja:F_
PLANNER state(y, tl) = [agent_performs_process(a, p’)
A—agent_performs_role(al,)], 1, 0)/> ([y :TR], case
(true, 1, 0))

(3) Planning activities and data in each area were isolated
from each other. Sometimes this lead to situations, when
customer requests in one area were not satisfied because
of the deficiency of security officers, whereas in other
areas available employees were in plenty.

Such situations could be identified by calculating the
(average) number of customer requests that were not ac-
complished by the organization until the time point t:

Formal analysis of executions of organizational scenarios based on process-oriented specifications 239

sum([tl: between(0, t)), r’': CUSTOMER_REQUEST],
case
(state(y 1, t1) = env_object_changed_state_into(r’, ac-

role_performs_process(planner, p2)
role_performs_process(unit_manager, p4)
role_performs_process(unit_manager, p5)

tive) & Vt2 t2>tl state(y 1, t2) = —env_object_changed_state. .

into(r’, satisfied), 1, 0))

In the following subsections we illustrate in more detail
the different types of analysis of execution traces using the
activities of the short-term planners after the reorganization
of the planning departments.

7.1 Organizational specification and correspondence of a
trace to this specification

Based on company documents such as job descriptions,
company policy, procedures, etc., a process-oriented spec-
ification was created for the planning departments. Part of
this specification dedicated to the creation of daily plans and
short-term plans is considered here. It describes the work
performed with respect to these plans within one day. In the
first half of the day security employees should provide their
data change forms (containing requests for changes in the
allocation schedule) to the unit manager (defined as process
p3) who then checks and improves the data (process p4) and
puts it in the system (p5) so that it becomes available to the
planners. At the same time the planners are busy with other
tasks, for example during the last week of the month they
are busy with creating a new short-term plan (STP) for the
next month (p1). In the second half of the day they work on
creating a daily plan (p6) for the next day (taking into ac-
count the available data change information in the system),
inputting it in the system (p7) and informing all concerned
(p8). Then they update the current-month short-term plan if
necessary (p9) and so on. Part of the specification is shown
below:

starts_after(begin_and(and1), BEGIN, 0)
starts_after(begin_or(orl), begin_and(and1), 0)
starts_after(p3, begin_and(andl), 0)
starts_after(p4, p3, 0)

starts_after(p5, p4, 0)

starts_after(p2, begin_or(orl), 0)
or_cond(orl, week_state)

or_branch(last, p1)

or_branch(other, p2)
starts_after(end_or(orl), p1, 0)
starts_after(end_or(orl), p2, 0)
starts_after(end_and(andl), p5, 0)
starts_after(end_and(and1), end_or(orl), 0)
starts_after(and1, all)

starts_after(p6, end_and(and1), 0.5)

role_performs_process(sec_officer, p3)
role_performs_process(planner, p1)

is_instance_of(p1, t1)
task_produces(tl, STP, 1)
t1. min_duration = 3.5h
tl.max_duration = 4h

Based on this specification constraints can be generated as
discussed in Sect. 6.1. For example the first few lines of the
specification generate the following constraints for the first
time point of any execution trace:

state(y, 0) = process_started(p3) (based on C2)

state(y, 0) = process_started(p2) & (Vt3 state(y, t3)
—process_started(pl)) & state(y,0) = —env_object_
changed_state_into(week, last) | (state(y,0) = process_
started(pl) & (Vt3 state(y, t3) = —process_started(p2)) &
state(y, 0) = env_object_changed_state_into(week, last)
(based on C18)

Vp:PROCESS_EX state(y, 0) = process_started(p) = p =
pl | p=p2|p=p3 (based on Cl)

Also based on company documents traces were created cor-
responding to this part of the specification. One of these
traces is used to illustrate the analysis of whether an exe-
cution trace agrees with the specification. The trace repre-
sents a day from the last week of the month. Part of this
trace is shown in Fig. 1. In the left part the atoms are listed
and in the right part the time line is shown which here con-
sists of 12 hours. The time line shown is relative to the
trace and not expressed in absolute date and time stamps.
The absolute time line can always be calculated if neces-
sary given the time stamp of the beginning of the trace. For
each atom, the time interval for which it is true is displayed
by a dark-grey bar while a light-grey bar designates that the
value is false. For example for the whole duration of the
trace agent al is assigned to play the role of a security of-
ficer, process_started(pl) is only true for time point 0 and
agent al performs process pl for the whole duration of the
process from time point O to time point 1.

The trace in Fig. 1 contains a process that is not in the
specification, namely p12. It is executed instead of process
p3. According to p3, the security officers should deliver
the change forms to the unit manager however on that day
the unit manager was unavailable therefore the forms were
brought directly to the planners (p12) who then had to check
and improve them and input them in the system. These extra
tasks (which were considered urgent) prevented the planners
from finishing their work on creating a short-term plan on
time. Therefore all other processes during the rest of the day
were shifted later than the specification prescribed.

@ Springer

240

V. Popova, A. Sharpanskykh

agent_is_assigned_to_role(al, sec_officer)

agent_is_assighed_to_role(a2, planner)

env_object_changed_state(week, last)| |

process_started(p1)1 ||

agent_performs_process(az, p1)

process_started(p3)1 i

agent_performs_process(al, p3) i

process_finished(p3)1 i

process_started(p12)1 |1

agent_performs_process(al, p12)1

process_finished(p12)1

resource_produced by(r1, p12, 1)

resource(r1, DCF)

process_started(p4) |

agent_performs_process(az, p4)

resource_used by(p4.r1, 1)

process_finished(p4) |

resource_produced_by(p4, r2, 1)1

resource(r2, correct_ DCF) 1

process_started(p5)

agent_performs_process(a2, p5)

resource_used_by(p5, r2, 1)1

process_finished(p5)

resource_produced_by(p5, 3)]

resource(r3, DCF_in_system)

process_finished(p1) |

resource_produced_by(r4, p1, 1)1

resource(rd, STP) 1

process_started(p6)

agent_performs_process(az, p6)

resource_used by(r3, p6)-

time ©°

Fig. 1 The execution trace used for illustration

According to the approach presented in Sect. 6.1 the trace
is considered time point by time point taking into account
the starting and finishing points of processes. We assume
that the analysis is performed in real time so that only the
part of the trace up to the current time point is available.
At time point O first the three instantiated constraints given
above are checked. They are all satisfied since the only two
processes starting are p3 and pl and at this time point the
state of the object week is indeed ‘last’. The analysis con-

@ Springer

tinues following the order defined in Sect. 6.1. Steps 3 and
4 from the list are not relevant because no such relations are
defined in the specification. For step 5 the following proper-
ties are scheduled to be checked for every time point t until
they are satisfied:

state(y, t) = process_finished(p1)
state(y, t) |= process_finished(p3)

Formal analysis of executions of organizational scenarios based on process-oriented specifications 241

If that does not happen before the end of the trace then it is
considered that this constraint is violated.

Also the minimal and maximal duration should be ac-
cording to the specification:

state(y, t) = process_finished(pl) = t > 3.5
state(y, t) = process_finished(pl) = t <4
state(y, t) = process_finished(p3) =t =1

If any of these three properties fail, then the corresponding
constraints are considered violated.

At step 6 resource-related constraints are scheduled. Here
the only relevant resource is produced by p3 and is the col-
lection of data change forms DCF which is considered as a
whole and only one such collection can be produced. There-
fore C23 is not relevant in this case.

For step 7, agent- and role-related constraint C26 is
scheduled for checking for every time point t until the
process finishes.

state(y, t) = —process_finished(pl) = state(y, t) = [agent_
plays_role(a2, planner) A agent_performs_process(a2, pl)]
state(y, t) = —process_finished(p3) = state(y, t) = [agent_
plays_role(al, sec_officer) A agent_performs_process(al,
p3)]

From all the scheduled constraints one fails at time point
0.5—since at this time point process p3 finishes, its duration
is below the specified minimal duration of 1 hour. At this
step the analysis is stopped with the conclusion that the trace
does not agree with the specification and the first process
that violates the constraints is p3.

7.2 Formal organization properties

As it was discussed above, the trace from Fig. 1 does not
agree with the specification. However this type of analysis
does not elaborate on whether and which important orga-
nizational properties are satisfied. One of the properties ex-
tracted from the organizational documents of the company is
that a daily plan for the next day is available before the end
of the current working day. It can be expressed as follows:

3t, p:PROCESS_EX, rRESOURCE_EX
state(y, t) = [resource_produced_by(r, p) A resource(r,
daily_plan)]

This property is satisfied by the trace.

Another property says that if the planners need to update
the short-term plan then this should be performed only after
the daily plan is available. The property reflects the com-
parative level of urgency of the two processes and can be
expressed as follows:

3tl, 2, p:PROCESS_EX, r:rRESOURCE_EX
state(y, tl) = [resource_produced_by(r, p) A resource(r,
daily_plan)] & state(y, t2) = process_started(p9) = t1 <2

This property is also satisfied.

7.3 Emergent Properties

Analyzing this trace it can be seen that the reason why the
planners get overloaded is because the unit manager was not
available to perform the processes assigned to him. Based on
this, the analyst might decide to check in what percentage of
the traces it happens that the work load of the unit manager
(in this part of the model) is less than 3 hours. This can be
checked by the following property:

sum([p:PROCESS_EX], case(3tl, t2 state(y, t1) |= [process
_started(p) A agent_performs_process(a, p) A agent_
performs_role(a, unit_manager)] & state(y, t2) = process_
finished(p), t2 — t1,0)) < 3

Various other properties might be meaningful to check
depending on the situation, for example: how long does it
take to produce a new short term plan where the sum of the
durations of the processes producing STP resource is found
over the traces for the days of the last week of the month and
SO on.

7.4 Performance evaluation

One of the high-level goals of the organization considered
in the case study is the goal G1: ‘It is required to maintain
good level of satisfaction of the employees’. This general
goal is decomposed into more specific goals among which
is the goal G1.1: ‘It is required to maintain that the level
of work load is moderate’. This is again decomposed into
even more specific goals among which is the goal G1.1.1:
‘It is required to achieve that the number of working hours
per day for each employee is not more that 8’. This goal is
based on the performance indicator P1: ‘working hours per
day per employee’ which can be evaluated for every trace
for the last point t of the trace.

Vv:VALUE state(y, t) = pi_has_value(P1, v) = v <8

For the example trace in Fig. 1 it will be calculated (see
property 1 at the beginning of Sect. 7) and included at the
end of the trace that pi_has_value(P1, 11) which is more
than 8. Therefore goal G1.1.1 is not satisfied and it con-
tributes negatively to the satisfaction of G1.1. The satisfac-
tion values are propagated upwards in the goals structure
according to the rules defined in [18].

8 Discussion

This paper introduces automated techniques for manifold
formal analysis of actual executions based on specifications
of organizations. On the one hand these techniques allow
identifying errors and inconsistencies in executions of orga-
nizational scenarios, on the other hand they provide means

@ Springer

242

V. Popova, A. Sharpanskykh

for the evaluation and improving of organizational perfor-
mance (e.g., by identifying and eliminating bottlenecks).
Furthermore, the results of the proposed analysis procedures
may be used for proving the validity of process-oriented
specifications.

For the proposed analysis techniques the TTL language
and the dedicated environment TTL Checker are used,
which allow high expressivity in specification of proper-
ties, including precise timing relations, references to multi-
ple states (execution histories), arithmetical operations and
checking properties on multiple traces. All these possibili-
ties make TTL more expressive language than the standard
modal logics (e.g., LTL, CTL, ATL) and calculi (e.g., situa-
tion and event calculus). The proposed analysis approaches
and languages are related to the process-oriented view on
organizations, which also includes a formal language for
building process-oriented specifications and constraints im-
posed on these specifications. Properties to be checked on
actual executions of organizational scenarios (traces) are ob-
tained by the translation procedure of a process-oriented
specification, described in this paper. The translation is
performed only once and the resulting properties can be
checked on every new-coming trace. The translation is based
on clear translation rules that can easily be automated.

Also Petri-net-based approaches for checking confor-
mance of a trace to a process-oriented specification have
been developed. In particular, in the approach described in
[22] to establish (the degree of) correspondence of a trace
(event log) to a Petri-net-based process-oriented specifica-
tion, the trace is executed in the model by following the tran-
sitions that belong to the logged events in the trace. Then, the
measure of conformance is calculated based on the number
of tokens that had to be created artificially and the number
of tokens that had been left in the specification (which in-
dicates the process not having properly completed). In con-
trast to this approach, the technique described in this pa-
per does not require execution of a trace on a specification
every time when correspondence is checked. On the other
hand, the Petri-net-based approach does not perform a spec-
ification translation into properties to be checked on traces,
as the proposed method does. However, by checking the
properties obtained as the result of a translation, the pro-
posed method allows precise identification of inconsistency
sources instead of a generalized conformance measure of-
fered by the Petri-net-based approach. The central ideas of
the approach from [22] are very similar to the research de-
scribed in [8].

Approaches based on state machines are also used to
check correspondence between a trace and a process-
oriented specification. In such approaches state machines
encode sets of possible executions of organizational sce-
narios and state transitions correspond to events [7]. Thus,
the problem of establishing correspondence of a trace to

@ Springer

a process-oriented specification is reduced to the problem
of determining, whether a trace represents an execution of
the state machine (i.e., process-oriented model). One of
the approaches to achieve this is by processing the trace
from the beginning and checking whether each states and
transition of the trace are in accordance with the process-
oriented specification. This type of approaches is similar
to the Petri-net-based approaches considered above. An-
other approach is based on formulating properties over
states (usually expressed in standard modal temporal log-
ics CTL and LTL) and checking whether they are satis-
fied by the trace [17]. In this case properties to be checked
stem from the process-oriented specification using some
translation/abstraction mechanism. It should be noted that
the above mentioned approaches concentrate exclusively
on process-oriented concepts while the approach presented
in this paper is based on a multi-faceted modeling frame-
work including also performance-, organization- and agent-
related concepts and relations. This allows more extensive
analysis, an example to which is the performance evaluation
analysis described in this paper.

In [10] an approach is proposed for enacting distrib-
uted business workflows using BPEL4WS on multi-agent
platforms. In this approach Lightweight Coordination Cal-
culus (LCC) [21] is used to interpret workflow specifica-
tions. These specifications describe executions of organiza-
tional scenarios, which are actually realized by agents. This
is an essential distinction from our work, in which agents
may demonstrate behavior deviating from the dynamics de-
scribed by a process-oriented specification. The main con-
tribution of our work is a repertoire of analysis means to
identify such behavioral deviations of agents and to estab-
lish their consequences for the organization (e.g., for its per-
formance). Furthermore, LCC is an imperative language for
representing dialogues between agents that comprise send-
ing and receiving messages. The process-oriented language
described in this paper allows specifying not only flows of
control, but also more specific process-oriented aspects of
organizations (e.g., resources and their relations to processes
and actors), not captured by LCC.

In the area of multi-agent systems, norms are em-
ployed often to regulate and coordinate the behaviors of au-
tonomous agents interacting in open environments [14, 16].
Norms are essentially rules that can be categorized as per-
missions, obligations and prohibitions and describe respec-
tively what may be done, what should be done, and what
should not be done. Normative systems are formalized often
using deontic logic [11, 14]. The language TTL as a variant
of reified order-sorted predicate logic, used for the formal-
ization of properties in this paper, has a higher expressive
power than any variant of deontic logic. Furthermore, the
types of properties being checked on traces in the proposed
approach are not restricted to permissions, obligations and

Formal analysis of executions of organizational scenarios based on process-oriented specifications 243

prohibitions only. In particular, diverse causal relations on
states of processes can be specified. Moreover, as shown in
the paper, a set of properties to check the trace conformity
to an organizational specification is identified based on an
organizational specification in a systematic manner and its
completeness can be ensured. On the contrary, the frame-
works from normative systems literature known to the au-
thors are not obtained from formal organizational specifica-
tions (e.g., workflow models) and the issue of completeness
of sets of norms is not discussed in this literature.

Monitoring and verifying of violation of norms is done
usually using automata- and graph-like structures [13, 16].
This type of verification differs from temporal interval
checking performed by the TTL Checker tool. For more de-
tails about the computational complexity we refer to [6].

The analysis techniques introduced in this paper can be
applied to both mechanistic and organic organizations [24].
In particular, since many mechanistic organizations are char-
acterized by a high stability and a large number of routine
processes that can be specified with high precision, the veri-
fication of the conformity of actual executions of such orga-
nizations to a formal organizational specification is of spe-
cial importance. At the same time organic organizations are
highly dynamic and their processes are very flexible, vari-
able and often unpredictable. Therefore, models for such
organizations can be specified only at a high abstraction
level, sometimes defining only interface states (i.e., inputs
and outputs) of high-level processes, and then the analy-
sis techniques for the evaluation of emergent organizational
processes and performance can be applied.

In the proposed approach traces are based on the actual
execution of organizational scenarios. Such traces can be
obtained in different ways: (1) automatically generated by
a WEMS based on recorded information about environmen-
tal events; (2) if data about the execution are represented
in the form of informal logs created based on a process-
oriented specification in Lpg, they can be formalized (man-
ually or automatically) using the language Lgx; (3) in case
data about the execution are represented in some other for-
mal language, the translation between this language and Lgx
(if possible) is performed. Note that the translation and fur-
ther analysis of traces obtained by (3) is possible only if the
specification based on which an original trace is generated
can be related to an equivalent specification in Lpg.

Traces can also be generated based on a process-oriented
specification by performing simulations. Such traces can be
used for diagnosis of inconsistencies, redundancies and er-
rors in organizational structure and behavior. For this type of
analysis dedicated software is provided [6], in which differ-
ent scenarios of organizational behavior based on process-
oriented specifications are built and traces are generated.
Further analysis of these traces is performed in the TTL
Checker as it is described in this paper. This type of analysis
is discussed in more detail in [9].

In the cases when a process-oriented specification is not
(or partially) known or when a trace represents a signifi-
cant extension of the specification based on which it was
generated, process mining techniques may be used [1]. Us-
ing these techniques information about the original process
model can be derived from execution traces.

Event logs (traces) can also be used for determining the
equivalence of process-oriented specifications—in [4] such
an approach in the context of Petri-nets is presented.

In the future it will be investigated how the proposed
techniques can be applied for the analysis of inter-organiza-
tional processes. Also more analysis cases supported by the
proposed techniques will be performed in the context of real
organizations.

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. van der Aalst W, Beer H, van Dongen B (2005) Process min-
ing and verification of properties: an approach based on tempo-
ral logic. In: Meersman R, et al (eds) On the move to meaningful
Internet systems 2005: CooplS, DOA, and ODBASE: OTM con-
federated international conferences, CooplS, DOA, and ODBASE
2005, vol 3760. Springer, Berlin, pp 130-147

2. van der Aalst W, van Hee KM (2002) Workflow management:
models, methods, and systems. MIT Press, Cambridge

3. Adam NR, Atluri V, Huang W-K (1998) Modeling and analysis of
workflows using petri nets. J Intell Inf Syst 10(2):131-158. Spe-
cial Issue on Workflow and Process Management

4. Alves de Medeiros AK, van der Aalst WMP, Weijters AJIMM
(2008) Quantifying process equivalence based on observed behav-
ior. Data & Knowl Eng 64(1):55-74

5. Barjis J, Shishkov B, Dietz J (2002) Validation of business com-
ponents via simulation. In: Proceedings of the 2002 summer com-
puter simulation conference

6. Bosse T, Jonker CM, Meij L, van der Sharpanskykh A, Treur J
(2009) Specification and verification of dynamics in agent models.
Int J Coop Inf Syst 18(1):167-193

7. CookJ, He C, Ma C (2001) Measuring behavioral correspondence
to a timed concurrent model. In: Proceedings of 2001 international
conference on software maintenance, pp 332-341

8. Cook JE, Wolf AL (1999) Software process validation: quanti-
tatively measuring the correspondence of a process to a model.
ACM Trans Softw Eng Methodol 8(2):147-176

9. Desel J, Juhas G, Lorenz R, Neumair C (2003) Modelling and
validation with VipTool. In: Lecture notes in computer science,
vol 2678. Springer, Berlin, pp 380-389

10. Guo L, Robertson D, Chen-Burger Y-H (2005) A novel approach
for enacting the distributed business workflows using BPEL4WS
on the multi-agent platform. In: IEEE international conference on
e-business engineering (ICEBE’05), pp 657-664

11. Horty JF (2001) Agency and deontic logic. Oxford University
Press, Oxford

12. Jonker CM, Sharpanskykh A, Treur J, Yolum P A Framework for
formal modeling and analysis of organizations. Appl Intell 27(1)
49-66

@ Springer

244

V. Popova, A. Sharpanskykh

13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Kyas M, Prisacariu C, Schneider G (2008) Run-time monitor-
ing of electronic contracts. In: 6th international symposium on
automated technology for verification and analysis (ATVA’08).
Springer, Berlin, pp 397-407

Krogh C (1996) The rights of agents. In: Wooldridge M, Muller
JP, Tambe M (eds) Agent theories, architectures, and languages II,
vol 1037. Springer, Berlin, pp 1-16

. Manzano M (1996) Extensions of first order logic. Cambridge

University Press, Cambridge

Modgil S, Faci N, Meneguzzi F, Oren N, Miles S, Luck M (2009)
A framework for monitoring agent-based normative systems. In:
Proceedings of the eighth international conference on autonomous
agents and multi-agent systems (AAMAS’09), Budapest, Hun-
gary. ACM, New York

Pfeiffer J-H, Rossak WR, Speck A (2004) Applying model check-
ing to workflow verification. In: Proceedings of the 11th IEEE
international conference and workshop on the engineering of
computer-based systems (ECBS’04), pp 144-152

Popova V, Sharpanskykh A (2007) Formal modelling of goals in
agent organizations. In: Proceedings of AOMS @IJCAI workshop,
pp 74-86

Popova V, Sharpanskykh A (2007) Modeling Organizational Per-
formance Indicators. In: Barros F, Frydman C, Giambiasi N, Zei-
gler B (eds) Proceedings of international modeling and simulation
multiconference, pp 165-170

Popova V, Sharpanskykh A (2008) Process-oriented organisation
modelling and analysis. Enterp Inf Syst J 2(2):157-176
Robertson D (2005) A lightweight coordination calculus for agent
social norms. In: Proceedings of the autonomous agents and multi-
agent systems workshop on declarative agent languages and tech-
nologies. Lecture notes in computer science, vol 3476. Springer,
New York, pp 183-197

Rozinat A, van der Aalst WMP (2008) Conformance checking of
processes based on monitoring real behavior. Inf Syst 33(1):64—
95

Saake G (eds) (1998) Logics for databases and information sys-
tems. Kluwer Academic, Dordrecht, pp 117-166

Scott WR (2001) Institutions and organizations, 2nd edn. SAGE
Publications, Thousand

Singh MP (1996) Synthesizing distributed constrained events from
transactional workflow specifications. In: Proceedings of the 12th
IEEE international conference on data engineering, pp 616-623
Sharpanskykh A, Treur J (2006) Verifying interlevel relations
within multi-agent systems. In: Proceedings of the 17th European

@ Springer

27.

conference on artificial intelligence, ECAI’06. IOS Press, Amster-
dam

Sharpanskykh A (2008) On computer-aided methods for modeling
and analysis of organizations. PhD Dissertation, VU University
Amsterdam

Viara Popova is a Research Fellow
at the Centre for Manufacturing, De
Montfort University, UK. She re-
ceived her MSc degree in Computer
Science at Sofia University, Bul-
garia, and a PhD degree at Erasmus
University Rotterdam in the area of
knowledge discovery. Subsequently
she worked as a post-doctoral re-
searcher at Vrije Universiteit Am-
sterdam in the area of modeling and
analysis of multi-agent and human
organizations with a focus on logis-
tics and incident management. Her

current research interests include organization modeling, prediction of

demand in manufacturing, knowledge discovery and natural language
processing.

Alexei Sharpanskykh received his
PhD degree at the Vrije Universiteit
Amsterdam in the area of Artificial
Intelligence. Currently he is work-
ing as a post-doctoral researcher at
the same university. He is doing
research in modeling and analysis
of multi-agent organizations in the
context of a number of projects in
the areas of logistics, incident man-
agement and ambient intelligence.

	Formal analysis of executions of organizational scenarios based on process-oriented specifications
	Abstract
	Introduction
	Trace-based analysis: overview
	Process-oriented specification language LPR
	Execution language LEX
	Language TTL and specification of dynamic properties
	Types of trace-based analysis
	Trace conformity to an organizational specification
	Trace conformity to a formal organization
	Analysis of organizational emergent properties
	Performance evaluation

	Case study
	Organizational specification and correspondence of a trace to this specification
	Formal organization properties
	Emergent Properties
	Performance evaluation

	Discussion
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

