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Abstract
Psychotherapy has been proven to be effective on average, though patients respond very differently to treatment.Understanding
which characteristics are associated with treatment effect heterogeneity can help to customize therapy to the individual patient.
In this tutorial, we describe different meta-learners, which are flexible algorithms that can be used to estimate personalized
treatment effects. More specifically, meta-learners decompose treatment effect estimation into multiple prediction tasks, each
of which can be solved by any machine learning model. We begin by reviewing necessary assumptions for interpreting the
estimated treatment effects as causal, and then give an overview over key concepts of machine learning. Throughout the
article, we use an illustrative data example to show how the different meta-learners can be implemented in R. We also point
out how current popular practices in psychotherapy research fit into the meta-learning framework. Finally, we show how
heterogeneous treatment effects can be analyzed, and point out some challenges in the implementation of meta-learners.

Keywords Treatment effect heterogeneity · Individual treatment effects ·Machine learning ·Meta-learners ·Causal inference ·
Personalized medicine

Introduction

In the last decades, clinical psychologists conducted many
randomized controlled trials and observational studies to test
the effectiveness of psychotherapy. In almost all of these
studies, the parameter of interest was the average treatment
effect, a measure of the overall impact of treatment, and
the results showed that psychotherapy is (on average) effi-
cacious for reducing clinical symptoms (see, e.g., Cuijpers
et al., 2020, for depression, Baker et al., 2021 for anxiety
disorders, or Kline et al., 2018 for posttraumatic stress dis-
orders). However, researchers and practitioners have long
realized that psychotherapy can affect different patients in
different ways (see e.g., Kaiser et al., 2022), and knowing
patient attributes that are related to such treatment effect het-
erogeneity is essential to the famous question of “what works
for whom” Paul (1967).

To answer this question, clinical psychologists need sta-
tistical approaches that allow them to detect subgroups of
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patients which respond differently to the treatment(s) under
consideration. A simple statistical approach involves form-
ing subgroups of participants according to their values in a
particular attribute (e.g., using participants’ age to categorize
them into young, middle-aged, and old persons).Within each
subgroup, the conditional average treatment effect (CATE,
the respective average treatment effect for the young,middle-
aged, and old persons) is estimated, and if the resulting
CATEsdiffer across subgroups, the respective attribute is said
to modify the treatment effect (e.g., Wendling et al., 2018a).
Such an approach is theory-driven because the attributes to
form subgroups are specified a priori (see e.g., Hu, 2023,
for other theory-based approaches to estimate heterogeneous
treatment effects).

Theory-based approaches cannot be employed when one
does not know the attributes that define relevant subgroups.
In this case, researchers could test every possible attribute
combination by including, for example, all interaction terms
in a classical linear regressionmodel. However, this approach
is not feasible when the number of potential attributes is
large, because then the resulting statistical models would
contain many parameters (potentially larger than the size of
the used sample), which can impair parameter estimation.
As a remedy, one can employ data-driven covariate selec-
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tion strategies (e.g., Huibers et al., 2015; Wester et al., 2022.
Yet, even with these strategies, the underlying assumption
of the classical regression model remains a linear functional
relationship between the covariates and the outcome - an
assumption that might be violated in the population.

To address this, statistical research suggested several other
data-driven approaches that use flexible machine learning
methods to estimate a treatment effect for each person based
on their covariate values. Heuristically, these approaches can
be distinguished into two groups: The first group consists of
estimators that are based on altering a specificmachine learn-
ing method in such a way that it estimates the CATE directly.
This group includesmethods such as the causal tree (Athey&
Imbens, 2016), the causal forest (Athey et al., 2019), causal
boosting (Powers et al., 2018), and the Bayesian causal forest
(Hill, 2011; Hahn et al., 2020). The second group consists
of general algorithms that decompose CATE estimation into
multiple sub-problems, each of which can be solved by any
machine learning method (Künzel et al., 2019). These algo-
rithms are called meta-learners and include methods such
as the T-learner and the X-learner (see Künzel et al., 2019;
Wendling et al., 2018a; Bica et al., 2021; Nie & Wager,
2021; Kennedy, 2022). Regardless of which method is used,
the results can then be used for further analyses, such as
evaluating which covariates are driving the treatment effect
heterogeneity, or for predicting individual treatment effects
for new patients in order to derive personalized treatment
recommendations.

To accommodate the interest of clinical psychologists in
heterogeneous treatment effects, this tutorial explains the
most common meta-learners and shows how they can be
implemented in the statistical software R (R Core Team,
2023). We focus on meta-learners because they are straight-
forward to implement in standard statistical software and
also very flexible by allowing to incorporate standard sta-
tistical models (e.g., the generalized linear model) and/or
popular machine learning algorithms (e.g., random forests,
gradient boosted trees, neural networks) to estimate het-
erogeneous treatment effects.1 Psychotherapy research has
increasingly focused on treatment effect heterogeneity and
individual treatment recommendations in the past decade (see
e.g., Barber & Muenz 1996; Lutz et al., 2006; Wallace et al.,
2013; DeRubeis et al., 2014). One popular approach that has
been applied in various therapy studies (e.g., Huibers et al.,

1 For introductions to the causal tree, causal forest, causal BART, and
causal boosting, we refer to Hu (2023), Jacob (2021), and Carnegie
et al. (2019). Also, several other modified machine learning methods
were proposed, including methods that rely on lasso regression (Qian
& Murphy, 2011), support vector machines (Imai & Ratkovic, 2013),
multivariate adaptive regression splines (Powers et al., 2018), neural
networks (Johansson et al., 2016; Shalit et al., 2017; Schwab et al.,
2018; Curth & van der Schaar, 2021), and deep kernel learning (Zhang
et al., 2020).

2015; Deisenhofer et al., 2018; Keefe et al., 2018; Delgadillo
& Gonzalez Salas Duhne, 2020 van Bronswijk et al., 2021;
Schwartz et al., 2021) is the personalized advantage index
introduced by DeRubeis et al. (2014), which is a measure of
the predicted advantage of one therapy relative to another. As
we show below, this approach fits well into the meta-learning
framework.

Specifically, this tutorial is structured as follows: In Sec-
tion 2, we introduce the potential outcome framework that
we use to define average and conditional average treatment
effects and the propensity score. To facilitate understanding
of the meta-learners, we then review some machine learning
basics in Section 3. In Sect. 4, we describe the data exam-
ple that we use to illustrate the different meta-learners in
the following sections. We then describe the different meta-
learners and discuss their strengths andweaknesses in Sect. 5.
In Sect. 6, we point out some critical issues in implementing
meta-learners. In particular, we explain why and how sam-
ple splitting is often implemented when using ameta-learner.
Furthermore, we illustrate how to analyze the heterogene-
ity of treatment effects based on the individual treatment
effect estimates obtained from a meta-learner. Throughout
the article, we show the R code for implementing the differ-
ent approaches. Also, because the causal inference and the
machine learning literature come with their own terminol-
ogy that some readers might be unfamiliar with, we provide
a glossary at the end of this article.

Potential Outcome Framework and
Heterogeneous Treatment Effects

Weconsider a settingwhere the treatment variable A is binary
(e.g., there is a treatment and a control condition) and the out-
come variable Y is continuous. For instance, A could denote
whether participants underwent psychotherapy, and Y could
denote the symptom severity. For a person i , the observed
value in the treatment variable is Ai = 0 when she belongs
to the control group and Ai = 1when she is in the experimen-
tal group (of course, A could also denote which among two
alternative treatmentswas received, e.g. cognitive-behavioral
therapy or psychodynamic therapy, as often the case in cur-
rent psychotherapy research). Furthermore, several covariate
values are available for person i (e.g., her age and educa-
tional status) that we collect in the vector X i . Importantly,
we assume that the treatment variable does not influence the
covariates. Using the potential outcomes framework (POF;
see, e.g., Hernan & Robins, 2020; Imbens & Rubin, 2015 for
introductions), we assume that each person has two potential
outcomes: Yi (1) denotes the outcome of person i if exposed
to treatment (Ai = 1), and Yi (0) denotes the outcome of
person i in absence of treatment (Ai = 0). In our example,
Yi (1) would be i’s symptom score if she had received psy-
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chotherapy, andYi (0)would be her score had she not received
psychotherapy. Then the individual treatment effect (ITE) τi
of person i is defined as the difference between the two poten-
tial outcomes, τi = Yi (1) − Yi (0). We further assume that
the observed outcome equals the potential outcome under the
treatment level actually received:2

Yi = AiYi (1) + (1 − Ai )Yi (0). (1)

Hence, one can observe only one potential outcome value,
but never both, with the consequence that the ITE τi cannot
be calculated (the fundamental problem of causal inference,
Holland, 1986).

Statisticians therefore focus on estimating the conditional
average treatment effect (CATE) and the average treatment
effect (ATE). The CATE τ(x) is defined as

τ(x) = E[τi |X i = x] = E[Yi (1) − Yi (0)|X i = x] (2)

where E denotes ‘expectation’ (i.e., the population aver-
age). To avoid confusion later, note that the term CATE
can refer both to the function itself and to the prediction
of this function at X i = x, that is, the expected treatment
effect for persons with covariate values x. For instance, we
could be interested in the expected treatment effect for per-
sons who are 50 years old and have a university degree (i.e.,
x = (age, education) = (50, ’university degree’)). If, sup-
posedly, there exists only a single person aged 50 with a
university degree in the population, then the CATE of this
person equals her ITE. In general, the ITE τi equals theCATE
τ(x) if all covariates that determine the variability of treat-
ment effects in are included in Xi . Thus, estimating theCATE
is the best shot at estimating the ITE.

TheATE is the expectation of theCATEs across all covari-
ate value combinations,

τ = E[Yi (1) − Yi (0)]
= E [E[Yi (1) − Yi (0)|X i ]] = E[τ(X i )]. (3)

Thus, the ATE is an ‘average’, and if all CATEs are the
same, it is said to be homogeneous. By contrast, if the treat-
ment effect varies across persons with different values of the
observed covariates, there is treatment effect heterogeneity,
and the CATE can be used to identify the subgroups that
differ in their treatment effect.

The definition of the ATE and CATE are based on the
potential outcomes, and above we stated that some of these

2 This is called the stable unit treatment value assumption (SUTVA)
in the causality literature and requires that the potential outcomes for
a person i are not affected by whether other persons receive treatment
or not (i.e., there are no spillover effects) and that there are no different
versions of the treatment and control condition which lead to different
potential outcomes (Imbens & Rubin, 2015).

values cannot be observed. Therefore, to obtain estimates
of the CATE (and the ATE), we have to tie them to the
observed values (see Equation (1) above). Furthermore, in
observational studies (i.e., where exposure to treatment is
non-random), additional assumptions are needed to obtain
estimates that can be interpreted as causal. Here, we will
rely on conditional independence and positivity.3 Condi-
tional independence states that the potential outcomes are
independent of the treatment conditional on the observed
covariates (i.e., {Yi (0),Yi (1)} ⊥ Ai | X i ). This entails that
all confounding variables were observed and are contained
in X i . Positivity requires that the conditional probability to
receive treatment – the propensity score π(x) – is bounded
away from 0 and 1:

0 < π(x) = P[Ai = 1|X i

= x] < 1 for all x in the support of X i . (4)

This means that for any possible covariate combination, both
treated and untreated persons exist. Note that in random-
ized controlled trials, the propensity score is known by study
design (e.g., π(X i ) = 0.5 when treatment groups are of
equal size), whereas in observational studies it is unknown
and needs to be estimated (see below).

Using the definition of the CATE and the conditional
independence and positivity assumption (Hernan & Robins,
2020; Imbens & Rubin, 2015), the CATE can be expressed
as

τ(x) = E[Yi (1) − Yi (0)|X i = x]
= E[Yi |X i = x, Ai = 1] − E[Yi |X i = x, Ai = 0]
= μ1(x) − μ0(x) (5)

We refer to μ1(x) and μ0(x) as the conditional mean func-
tions. Note that μ1(x) and μ0(x) are defined in terms of
the observed rather than potential outcomes. Thus, one can
estimate the CATE from observed data.

Machine Learning Basics

Equation 5 shows that an estimate of the CATE (and hence
also the ITE) can be obtainedwhenone knows the conditional
mean functions μ1(x) and μ0(x). Estimating such functions
is a classical prediction task, for which machine learning
methods are well suited. Machine learning refers to any sta-
tistical model or algorithm that uses the observed outcome

3 These assumptions have many different names in the literature.
Conditional independence is also called conditional exchangeability,
conditional ignorability, no hidden bias, and selection on observables.
The positivity assumption is also called overlap assumption or sufficient
common support (Imbens, 2004; Hernan & Robins, 2020).
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and covariate values to build a model that takes the covariate
values as input and predicts the outcomegiven these covariate
values.4 When dealing with binary or categorical outcomes,
such as determining whether a person receives treatment or
not, the prediction concerns a class or category membership
and is called classification. When the outcome is continuous,
such as measuring the symptom score of a person, the pre-
diction is a real value. This type of prediction is known as
regression (that is, the term ’regression’ refers to the predic-
tion of a continuous outcome in general, and ordinary least
squares linear regression represents just one among various
approaches available for generating such predictions).

In either case, a training set is used to build an estimator
(or model) of m(x) = E[Yi |X i = x] such that the devia-
tions between the observed (true) outcome values Y and the
model’s predicted values Ŷ = m̂(x) = Ê[Yi |X i = x] are as
small as possible. The magnitude of the deviations is quan-
tified with a loss function, and the model’s parameters are
estimated in such a way that the value of the loss function
is minimal for the training data. To illustrate, a well-known
‘machine learning algorithm’ is the linear regression model,
whose predicted values are given by:

Ŷi = Ê[Yi |X i ] = β0 + β1Xi1 + . . . + βp Xip. (6)

The regression coefficients, β0, β1, . . . , βp, are obtained
such that they minimize the average of the squared error
terms (i.e., the mean squared error [MSE])

MSE(β) = 1

n

n∑

i=1

(Yi − Ŷi )
2. (7)

Thus, the MSE serves as a loss function for the linear regres-
sion model. In fact, the MSE is the standard loss function for
regression tasks.

Having constructed the prediction model (e.g., having fit
the regression model to training data), its performance, that
is, its prediction error, has to be assessed on an indepen-
dent test set. It is important to use independent samples for
training and evaluating the model because it is likely that the
model predicts the outcome values for the training data very
well, but only poorly for new (test) data. Thus, if one used the
training data to evaluate the model’s predictive performance
again, the resulting error estimate would likely be overly
optimistic. This phenomenon is called overfitting and occurs
because the model partly captures irrelevant, random devia-
tions in the training data, which has the consequence that the

4 Strictly speaking, this is the definition of supervised learning, and we
use the termsmachine learning and supervised learning interchangeably
in this article.Other forms ofmachine learning include semi-supervised,
unsupervised, and reinforcement learning (see e.g., Burkov, 2020, for a
definition of these terms).

Fig. 1 Examplaric regression tree. Note. A regression tree to predict a
depressive symptom score based on perceived family support and self-
esteem (estimated on a 5-point Likert scale). The tree consists of two
splits, resulting in three leaves. The lowest symptom score (i.e., 3.9)
is predicted for adolescents who rate their family support above 3.8
points. For adolescents who rate their family support lower than 3.8
points, the predicted symptom score further depends on self-esteem.
The highest symptom score (i.e., 7) is predicted for adolescents with
lower family support and self-esteem. The plot was created with the R
package rpart.plot (Milborrow, 2022)

model does not generalize to new data (see McNeish, 2015;
Nestler & Humberg 2022).

As stated above, linear regression is a machine learning
algorithm. However, for many prediction tasks it is not the
best modeling option, because linear regression presumes a
linear relationship between the covariates and the outcome.
Hence, the linear regression model provides poor predic-
tions if the true relationship is nonlinear. Furthermore, the
model yields unstable parameter estimates when the number
of covariates is large relative to the sample size (i.e. when the
setting is high-dimensional). More “typical” machine learn-
ing methods such as lasso regression, gradient boosted trees,
and neural networks (see Hastie et al., 2009 for a thorough
overview) are more flexible in this regard because they make
fewer or no assumptions about the functional form and can
also be applied in high-dimensional settings.

Random Forests and Cross-validation

Another machine learning method that performed well in a
number of contexts, and that we use throughout the article,
is the random forest (Breiman, 2001). A random forest can
be used both for classification and regression problems and
consists of a collection of decision trees. A single decision
tree successively splits the covariate space into disjoint sub-
groups of persons (the ‘leaves’), such that within leaves, the
persons are as similar as possible regarding the outcome vari-
able. Then all persons falling into a given leaf obtain the same
predicted value. Figure 1 presents an example of a regression
tree.
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The covariates and covariate values used for splitting are
chosen such that the prediction error in the training set is
minimized. In a regression tree, for example, the mean of the
outcome values in a leaf is used as the predictive value for
that leaf, and the splits are found by minimizing the MSE.
Note that some variables might not be part of the final tree.
Specifically, when a variable is not very predictive of the out-
come in the training set, splitting on it will not help decrease
the MSE, so the variable will never be chosen for splitting.
Thus, unlike a linear regression model, the final decision tree
might not contain all covariates. Due to this internal variable
selection, a decision tree is better at handling many predictor
variables than linear regression.

As stated, the random forest is a collection of trees and
computes predictions by averaging the predictions frommul-
tiple trees. To obtain good predictions, two tweaks are used
when constructing the single trees. First, each tree is fitted
on a random subsample of the training set (which is usu-
ally obtained via bootstrapping with replacement). Second,
at each split only a random subset of the covariates is con-
sidered as potential split variables. This has the consequence
that a random forest provides more stable predictions than a
single tree.

The performance of a random forest depends – amongst
other things – on the number of potential covariates con-
sidered at each split (henceforth referred to as ‘mtry’), the
number of trees in the forest, and the depth of the single trees
(the tree depth limits the maximal number of leaves). Such
parameters – parameters whose values affect the way the
model is built – are called hyperparameters in the machine
learning literature, and they have to be fixed at specific val-
ues before training the model. Unfortunately, researchers do
not know a priori which hyperparameter values work best
for the problem at hand. Therefore, one tries out several pos-
sible hyperparameter values and then selects the ones with
the best predictive performance. This process of tuning the
hyperparameters is an integral part of building a machine
learning model, and the standard approach for doing this is
k-fold cross-validation (see Figure 2 for an illustration).

Assume that only three mtry values are considered (e.g.,
3, 4, and 5) in hyperparameter tuning. To use k-fold cross-
validation for choosing between these three values, the
training data is randomly split into k equally sized sub-
sets called folds. Cross-validation then iterates through these
folds: In each of the k iterations, one of the k subsets is held
out as validation data, while the other k − 1 subsets are used
for training the three random forest models, one model for
each mtry value. That is, in each iteration, the k − 1 training
subsets are used to fit the models, and the prediction error of
each model is calculated on the hold-out dataset. Finally, the
prediction errors for each mtry value are separately averaged
across the k iterations, and the mtry value with the lowest

mean prediction error is selected as the final hyperparame-
ter.

Mostmachine learning software implements hyperparam-
eter tuning via cross-validation, such that the researcher only
needs to specify which hyperparameters to tune and how
many folds to use.5 Furthermore, k is typically set to either 5
or 10, because simulation studies found these values to work
well (Hastie et al., 2009). In general, however, k should be
chosen such that each fold is large enough to be representative
of the full sample. Finally, after cross-validation, one fixes
the hyperparameters to the selected values, refits the model
using thewhole training dataset, and uses the resultingmodel
to calculate the prediction error on the test set.

Illustrative Data Example

To illustrate the differentmeta-learners,weuse the public-use
datasets of the National Longitudinal Study of Adolescent to
Adult Health (AddHealth; Harris&Udry, 2022). AddHealth
is a longitudinal studyof a nationally representative sample of
20,000 adolescents aged 12 to 19 during the 1994-95 school
year. Since then, the respondents were followed into adult-
hood with five waves, most recently in 2016-18. We use the
Add Health data from wave I (1995), wave II (1996), and
wave III (2001-02) to investigate the effect of receiving psy-
chological or emotional counseling on depressive symptoms.

Specifically, we use the answer to the question “In the past
year, have you received psychological or emotional counsel-
ing?” from the wave II survey as the treatment variable (i.e.,
Ai = 1 if the respondent received counseling, and Ai = 0
otherwise). Our outcome of interest, Yi , is the total score on
the 9-item-subscale of the CES-Depression scale (CES-D) in
the wave III survey. The maximal possible score is 27, rang-
ing from 0 to 25 in our sample (M = 4.52, SD = 4.06). We
control for 25 covariates in total, all of which were assessed
before the treatment variable in the wave I survey. Specifi-
cally, we include six socio-demographic variables: age, sex
(0 = ’female’ and 1 = ’male’), race (Hispanic, White, Black,
Native American/Indian, Asian, and other), parental edu-
cation (0-8, with higher values indicating higher levels of
education ), parental income, and whether the respondent’s
parents agreed to have enough money to pay their bills (0
= ‘yes’, 1 = ‘no’). Regarding the family setting, we control
for parental involvement (measured by the number of shared
parent-child activities within the past four weeks, Sieving et
al.,2001), perceived parental closeness, and perceived family

5 The more hyperparameters are tuned, the slower the tuning process.
However, not all hyperparameters are equally important, and often sim-
ulation studies found some hyperparameters to work well under their
default values. Also, sometimes hyperparameters are interdependent
such that it is possible to fix one hyperparameter to a specific value and
only tune the other one given that value.
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Fig. 2 Workflow of tuning and
testing machine learning
models.

support (1-5, with higher values indicating higher closeness
and support, respectively; LeCloux et al., 2016). We further
control for several personality and health-related variables as
well as for weekly activities, namely self-rated intelligence
(6-point Likert scale from 1 = ’moderately below average’ to
6 = ’extremely above average’), health (5-point Likert scale
from 1 = ’excellent’ to 5 = ’poor’), self-esteem (0-5, the
mean score on 6 items such as “You like yourself just the
way you are”), how much the respondent has an analytic
approach towards decision making (0-5, the mean score on 5
items such as “When making decisions, you generally use a
systematic method for judging and comparing alternatives”),
how much the respondent tends to avoid dealing with prob-
lems (0-5, the score on the item “You usually go out of your
way to avoid having to deal with problems in your life”),
alcohol use (1-8, with 1 indicating 2-3 drinks in lifetime and
8 indicating that the respondent drank almost every day in
the past 12 months; Sieving et al., 2001), how many times
the respondent participated in team sports, did exercise, and
spent time with friends during the last week (each measured
on a 5-point Likert scale from 0 = ’not at all’ to 5 = ’5 or more

times’), and the total hours that the respondent spent with
television, videos, or video games. Furthermore, we control
for whether the respondent seriously thought about commit-
ting suicide (0 = ‘no’, 1 = ‘yes’) and whether a suicide was
attempted during the past year (’no attempt’, ’one attempt’,
’two or more attempts’), as well as for a family and a friend
suicide composite representing suicide attempts and com-
pletion in the past year among family members and friends,
respectively (’no attempt’, ’attempted suicide’, ’completed
suicide’). Finally, we include prior treatment and prior CES-
D score as covariates. We used the R-package caret to
impute missing values via bagged trees (Kuhn, 2022). The
total sample entailed n = 3, 491 persons, out of which 353
persons received treatment (i.e., received psychological or
emotional counseling). The supplementarymaterial provides
a detailed script showing how we formed the sample.

Figure 3 displays the pairwise correlations between the
variables (left panel) as well as the mean differences of the
covariates between the treatment and control group (right
panel). Typically, standardized mean differences below 0.1
are deemed acceptable, whereas covariateswith standardized
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Fig. 3 Pairwise correlations and initial covariate imbalance in the illus-
trative data example. Note. Pairwise correlations of all variables in the
illustrative data example (left panel) and the covariates’ mean differ-
ences between adolescents receiving (A = 1) vs. not receiving (A = 0)
psychological or emotional counseling (right panel). In the case of

binary variables (indicated by asterisks), the raw (rather than standard-
ized) mean differences are displayed. The dashed lines indicate the
threshold of 0.1 for an acceptable covariate balance. The balance plot
was created with the R package cobalt (Greifer, 2022)

mean differences ≥ 0.1 are considered to be imbalanced
(Leite, 2016). As can be seen, several covariates are sub-
stantially imbalanced: On average, adolescents who did vs.
did not receive counseling had more often already received
counseling, had been more depressive and more suicidal in
the year before, had consumed more alcohol, had felt less
supported by their family and less close to their parents, had
spent more time with friends, had rated their self-esteem and
health as lower, and were more often female.

We point out that the main purpose of this example is
to illustrate the different meta-learners, rather than to draw
any substantive conclusions. For example, the validity of
the results is limited by the fact that the treatment is not
well-defined (i.e., the treatment variable captured whether
respondents received any psychological or emotional coun-
seling, whose content and quality likely varied to a great
extent) and because there might be relevant confounders that
we do not control for (e.g., adverse childhood experiences).

Meta-learners for CATE Estimation

Let us now turn to the estimation of the CATE function τ(x)

using meta-learners (see Equation 5 again). Meta-learners
are algorithms that decompose CATE estimation into mul-
tiple prediction problems, each of which can be solved by
any machine learning model, and then combine the results

of these models to obtain τ̂ (x) (Künzel et al., 2019). The
machine learning method used to solve a prediction problem
is called a base-learner and in this tutorial, we always use
the random forest as base-learner and we fit the forests with
the ranger function in the R package ranger (Wright
& Ziegler, 2017).6 Most of the prediction problems amount
to estimating the conditional means of the outcome and the
treatment. The latter are referred to as nuisance functions,
because they are not of primary interest themselves, but are
needed to derive τ̂ (x). The meta-learners differ in the num-
ber of nuisance functions that need to be estimated. Broadly,
the meta-learners can be distinguished into the more simple
conditional mean regression methods and the more complex
pseudo-outcome methods (Wendling et al., 2018b; Jacob,
2021; Okasa, 2022). Conditional mean regression methods
rely on estimating conditionalmean functions of the outcome
only. TheS-Learner and theT-Learner thatwedescribe below
belong to this group ofmeta-learners. Pseudo-outcomemeth-
ods require more steps and usually incorporate information
from the propensity score in order to increase (statistical)

6 We tune the models following the recommendations of Boehmke and
Greenwell (2019). When showing how the different meta-learners can
be implemented in R below, we present simplified code which fits ran-
dom forest models with default settings in order to ease readability. In
the supplementary material, we provide the full code, including hyper-
parameter tuning. For pseudo-code representations of themeta-learners,
see e.g., Okasa (2022).
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efficiency. Specifically, the pseudo-outcome methods first
estimate several nuisance functions (e.g., the conditional
means of the outcome and the propensity score) and then
combine these estimates into a pseudo-outcome ψ̂ . The
pseudo-outcome ψ̂ is an initial approximation of the CATE
and to obtain a final estimate of τ̂ (x), ψ̂ is regressed on the
covariates X i .7 This pseudo-outcome regression approach
is advantageous compared to just using the pseudo-outcome
as the CATE estimate, because firstly, it yields a model that
maps the covariates on the estimated treatment effect. Thus,
when data for a new person is collected, the pseudo-outcome
model can be used to obtain a prediction of this person’s
CATE, without having to estimate her values on the nui-
sance functions. Secondly, it serves to regularize and improve
the CATE estimate, since pseudo-outcomes can take rather
extreme values (especially when the positivity assumption is
nearly violated, that is, some estimated propensity scores are
close to 0 or 1). We discuss two pseudo-outcome methods,
the X-learner and DR-learner, and also the R-learner, which
can be regarded as a special kind of pseudo-outcomemethod.

Two-model learner (T-learner) and Single-model
learner (S-learner)

Equation (5) shows that a straightforward approach to esti-
mate τ(x) is to estimate the conditional mean function in
absence of treatment μ0(x) = E[Yi |X i = x, Ai = 0]
and the conditional mean function under treatment μ1(x) =
E[Yi |X i = x, Ai = 1] by fitting separate prediction mod-
els to the data of the control group and the treatment group,
respectively. For every person, both models are used to gen-
erate a predicted value, and the difference between these two
values is taken as that person’s CATE estimate. Since this
algorithm requires separate estimation of the two conditional
mean functions, it is called Two- or T-learner. Note that we
could have used different base-learners in the two groups.
For instance, we could have fit a linear regression model to
the data of the control group and a random forest to the data
of the experimental group, respectively.

Code 1 T-Learner

1

2 # Create separate data frames for the
control and the treatment group:

3 dfs0 <- dfs[dfs$A == 0, ]
4 dfs1 <- dfs[dfs$A == 1, ]
5

7 More specifically, a pseudo-outcome is defined as an unbiased esti-
mator of the CATEwhen computed with the true (rather than estimated)
nuisance functions. That is, E[ψi |X i = x] = τ(x), where ψi denotes
the pseudo-outcome when computed with the true nuisance functions.
Hence, by regressing the estimated pseudo-outcome on the covariates
X i , one obtains an estimate of the CATE function, Ê[ψi |X i = x] =
τ̂ (x).

6 # Train a random forest for the control
group data:

7 mu0_fit <- ranger(y = dfs0$Y, x = dfs0
[, covariateNames], keep.inbag =
TRUE)

8 # Obtain predictions for mu_0, use OOB
predictions (see Sect. 6) where
applicable:

9 mu0_hat <- rep(0, n)
10 mu0_hat[dfs$A==0] <- mu0_fit$

predictions # OOB predictions
11 mu0_hat[dfs$A==1] <- predict(mu0_fit ,

dfs1)$predictions
12

13 # Train a random forest for the
treatment group data:

14 mu1_fit <- ranger(y = dfs1$Y, x = dfs1
[, covariateNames], keep.inbag =
TRUE)

15 # Obtain predictions for mu_1, use OOB
predictions where applicable:

16 mu1_hat <- rep(0, n)
17 mu1_hat[dfs$A==1] <- mu1_fit$

predictions # OOB predictions
18 mu1_hat[dfs$A==0] <- predict(mu1_fit ,

dfs0)$predictions
19

20 # Compute CATE estimates (see Equation
5):

21 cate_t <- mu1_hat - mu0_hat

Alternatively, one can use the whole sample to fit a single
model inwhich the observedoutcomevalues aremodeled as a
function of the covariates and the treatment indicator variable
to obtain μ̂(x; a) = Ê[Yi |X i = x, Ai = a]. The resulting
model is then used to generate a prediction for person i as if
she was in the control group and in the experimental group,
respectively. The CATE can then again be estimated by tak-
ing the difference between the two predictions. Since a single
model is fitted to the data, this algorithm is called Single- or
S-learner in the literature. Instead of using a random for-
est, we could have fit a general linear model to the data, in
which the outcome values are regressed on the covariates and
the treatment variable indicator. When the S-learner with a
general linear model as base-learner is used to obtain an esti-
mate of the ATE, epidemiologists and biostatisticians call
this approach the parametric g-formula (Hernan & Robins,
2020). Furthermore, note that the personalized advantage
index introduced by DeRubeis et al. (2014) is essentially a
CATE estimate obtained by either the S-learner or T-learner.

Code 2 S-Learner

1

2 # Train a random forest including
covariates AND treatment variable

3 mu_fit <- ranger(y = dfs$Y, x = dfs[, c
("A", covariateNames)], keep.inbag
= TRUE)

4
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5 # Predict mu_0 by setting A = 0 for all
persons , use OOB predictions (see

Sect. 6) where applicable
6 dfsTMP <- dfs
7 dfsTMP$A <- 0
8 mu0_hat_s <- rep(0, n)
9 mu0_hat_s[dfs$A==0] <- mu_fit$

predictions[dfs$A==0]
10 mu0_hat_s[dfs$A==1] <- predict(mu_fit ,

dfsTMP)$predictions[dfs$A==1]
11

12 # Predict mu_1 by setting A = 1 for all
persons , use OOB predictions (see

Sect. 6) where applicable
13 dfsTMP$A <- 1
14 mu1_hat_s <- rep(0, n)
15 mu1_hat_s[dfs$A==1] <- mu_fit$

predictions[dfs$A==1]
16 mu1_hat_s[dfs$A==0] <- predict(mu_fit ,

dfsTMP)$predictions[dfs$A==0]
17

18 # Compute the CATE as the difference
between the predictions by
treatment status (see Equation 5):

19 cate_s <- mu1_hat_s - mu0_hat_s

X-learner

In contrast to the T- and the S-Learner, the X-learner (see
Künzel et al., 2019) is a pseudo-outcome method. The first
step of the X-learner is identical to the T-learner, that is,
one estimates μ1(x) and μ0(x) separately using the treat-
ment and control group data, respectively. In the second step,
the respective missing potential outcome for each person is
estimated using μ̂1(x) and μ̂0(x), respectively. Then, a dif-
ference between the actual observed value and the imputed
potential outcome is computed as

ψ̂X (X i ) =
{
Yi − μ̂0(X i ), Ai = 1

μ̂1(X i ) − Yi , Ai = 0
(8)

The resulting values are the pseudo-outcomes of the X-
learner. They are used to obtain two estimates of the CATE,
one for the control group, τ̂0(x), and one for the treatment
group, τ̂1(x), by separately modeling the pseudo-outcome as
a functionof the covariates in the control and treatment group,
respectively. Finally, the CATE is estimated as a weighted8

average of τ̂0(x) and τ̂1(x), using the propensity score for
weighting:

τ̂ (x) = π̂(x)τ̂0(x) + [1 − π̂(x)]τ̂1(x). (9)

8 Typically, the estimated propensity score is used as a weighting func-
tion, but in principle, any weighting function that takes values in [0, 1]
could be used for averaging the two estimates (Künzel et al., 2019).

Code 3 X-Learner

1

2 # See the T-Learner for mu0_fit and mu1
_fit

3 # Compute the pseudo -outcome using the
estimated conditional mean function
from the respective other group (

see Equation 8):
4 psi_x_0 <- predict(mu1_fit , dfs0)$

predictions - dfs0$Y
5 psi_x_1 <- dfs1$Y - predict(mu0_fit ,

dfs1)$predictions
6

7 # Fit random forest using the pseudo -
outcome and the covariates
separately in the two groups:

8 tau_x_0_fit <- ranger(y = psi_x_0, x =
dfs0[, covariateNames], keep.inbag
= TRUE)

9 tau_x_1_fit <- ranger(y = psi_x_1, x =
dfs1[, covariateNames], keep.inbag
= TRUE)

10

11 # Predict treatment effects per group
using the two resulting models , use
OOB predictions where applicable:

12 tau_x_0_hat <- rep(0, n)
13 tau_x_0_hat[A==0] <- tau_x_0_fit$

predictions
14 tau_x_0_hat[A==1] <- predict(tau_x_0_

fit , dfs1)$predictions
15 tau_x_1_hat <- rep(0, n)
16 tau_x_1_hat[A==1] <- tau_x_1_fit$

predictions
17 tau_x_1_hat[A==0] <- predict(tau_x_1_

fit , dfs0)$predictions
18

19 # Estimate the propensity score:
20 ps_fit <- ranger(y = dfs$A, x = dfs[,

covariateNames], probability =
TRUE)

21 ps_hat <- ps_fit$predictions[,2] # OOB
predictions

22

23 # Ensure positivity by adding/
subtracting a small epsilon to
estimated propensity scores close
to zero/one:

24 epsilon <- .01
25 ps_hat <- ifelse(ps_hat < epsilon ,

epsilon ,
26 ifelse(ps_hat > 1-

epsilon , 1-epsilon , ps_hat) )
27

28 # Compute the CATE as propensity score -
weighted combination of the group -
specific estimates (see Equation 9)
:

29 cate_x <- ps_hat*tau_x_0_hat + (1-ps_
hat)*tau_x_1_hat
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Doubly-Robust Learner (DR-Learner)

As the X-learner, the DR-learner (see Kennedy, 2022)
requires estimating both conditional mean functions sepa-
rately in the two groups as well as estimating the propensity
score. Given these estimates, the pseudo-outcome of the DR-
learner is given by

ψ̂DR(X i ) =μ̂1(X i ) − μ̂0(X i ) + Ai
[
Yi − μ̂1(X i )

]

π̂(X i )

− (1 − Ai )
[
Yi − μ̂0(X i )

]

1 − π̂(X i )
. (10)

The pseudo-outcome of the DR-estimator is doubly-robust
(Robins & Rotnitzky, 1995), that is, it is a consistent esti-
mator of the CATE as long as either the two conditional
mean functions or the propensity score model is correctly
specified (Lunceford&Davidian, 2004; Knaus, 2022). Thus,
ψ̂DR(X i ) should still be a good initial approximation of the
CATE even if one fails to find a good approximation of the
propensity score, as long as the conditional mean functions
are estimated well (and vice verca).

As outlined above, ψ̂DR(X i ) is then regressed on the
observed covariates to obtain the DR-learner’s final CATE
estimate τ̂ (x). A potential drawback of the DR-learner is
that extreme, ’unusual’ propensity scores (propensity scores
close to zero for treated persons or close to one for untreated
persons) can lead to outlying pseudo-outcomes, rendering the
DR-estimates unstable (i.e., causing them to be highly vari-
able). The DR-estimator is thus sensitive to near violations
of the overlap assumption.

Code 4 DR-Learner

1

2 # See T-learner for estimating the
conditional mean functions and the
X-learner for estimating the
propensity score.

3

4 # Compute the pseudo -outcome of the DR -
learner (see Equation 10)

5 augmentedTerm <- 1/ps_hat * (dfs$A * (
dfs$Y - mu1_hat)) -

6 1/(1-ps_hat)* ( (1-dfs$A) * (dfs$Y -
mu0_hat) )

7 psi_dr <- mu1_hat - mu0_hat +
augmentedTerm

8

9 # Fit a random forest to the pseudo -
outcome:

10 tau_dr_fit <- ranger(y = psi_dr , x =
dfs[, covariateNames], keep.inbag =
TRUE)

11

12 # Compute the CATE as the predictions
from the pseudo -outcome regression

13 cate_dr <- tau_dr_fit$predictions # OOB
predictions

R-Learner

The final meta-learner that we consider here is the R-learner
(see Nie &Wager, 2021). In order to capture treatment effect
heterogeneity, the R-learner uses a specific loss function,
the so-called R-loss. Minimizing the R-loss is equivalent to
fitting a weighted pseudo-outcome regression. Specifically,
the R-learner starts with estimating the propensity score and
the conditional mean of the outcome given the covariates,
m(x) = E[Yi |X i = x]. Then, the CATE is obtained by min-
imizing

L̂ R [τ(·)] = 1

n

n∑

i=1

{Ai − π̂(X i )}2
[
Yi − m̂(X i )

Ai − π̂(X i )
− τ(X i )

]2

(11)

= 1

n

n∑

i=1

{Ai − π̂(X i )}2
[
ψ̂R(X i ) − τ(X i )

]2

(12)

which is equivalent to regressing thepseudo-outcome ψ̂R(X i )

on the observed covariates, weighted by {Ai − π̂(X i )}2. The
pseudo-outcome can be motivated by a semiparametric lin-
ear model (Robinson, 1988) that uses the residuals from the
regression of Yi on X i [i.e., Yi − m(X i )] and the residuals
from the regression of Ai on X i [i.e., Ai −π(X i )] to control
for the potential confounding bias of X i . However, similarly
to the pseudo-outcome of the DR-learner, it can take extreme
values due to the term Ai−π̂ (X i ) in the denominator (i.e., the
pseudo-outcome for treated persons with propensity scores
close to one and untreated persons with propensity scores
close to zerowill be very large in absolute value). Theweight-
ing then serves to increase efficiency, as personswith extreme
pseudo-outcomes (persons with values Ai − π̂(X i ) close to
zero) are down-weighted by {Ai − π̂(X i )}2 (Jacob, 2021).
In contrast to the other meta-learners described so far, the
R-learner can only be used with machine learning methods
that allow modification of the loss function by passing the
weights {Ai − π̂(X i )}2.9 However, this applies to a range of
machine learning methods implemented in existing software
such as random forest (ranger, Wright & Ziegler, 2017),
lasso regression, ridge regression (glmnet, Simon et al.,
2011), and gradient boosted trees (xgboost, Chen et al.,
2022).

Code 5 R-Learner

1 # Train a regression model for m(X) = E
(Y|X) and obtain predictions

9 Also, for minimizing the R-loss the R-Learner specifically requires
machine learning methods that incorporate some form of regularization
– that is,methods that penalize the complexity of theCATEby shrinking
some parameters towards zero.
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2 m_fit <- ranger(y = dfs$Y, X = dfs[,
covariateNames], keep.inbag = T)

3 m_hat <- m_fit$predictions # OOB
predictions

4

5 # Compute the pseudo -outcome of the R-
learner (we already estimated the
propensity score; see Equations 11
and 12)

6 resid_treat <- dfs$A - ps_hat
7 resid_out <- dfs$Y - m_hat
8 psi_r <- resid_out / resid_treat
9 # Compute weights

10 w <- resid_treat^2
11

12 # Regress pseudo -outcome on covariates
using weights w

13 tau_r_fit <- ranger(y = psi_r, x = dfs
[, covariateNames], case.weights =
w, keep.inbag = T)

14

15 # Compute the CATE as the predictions
from the weighted pseudo -outcome
regression

16 cate_r <- tau_r_fit$predictions # OOB
predictions

Comparison of the Different Meta-learners

Having described the most prominent meta-learners, we now
compare them with regard to their finite sample properties
(see Nie and Wager (2021) and Kennedy (2022) for asymp-
totic properties of theR-learner andDR-learner, respectively;
see Künzel et al. (2019), Curth and van der Schaar (2021),
and Okasa (2022) for theoretical and numerical comparisons
of the different meta-learners). As to be expected, the rela-
tive performance of the different meta-learners (in terms of
the MSE) depends on the specific data setting. Also, perfor-
mance differences are more pronounced the more the group
sizes differ and the more confounding is present (i.e., the
more the data-generating process deviates from a random-
ized controlled trial, see e.g., Nie & Wager, 2021; Jacob,
2020), because then it is more important whether and how
information from the propensity score is used. Thus, in these
cases, pseudo-outcome methods tend to yield better results
than the conditional outcome regression models.

The S-learner treats the treatment indicator Ai just as any
other covariate when estimating the CATE. Therefore, using
the S-Learner in settings where Ai is not very predictive of
Yi can be problematic, because Ai may be omitted as a pre-
dictor variable in a fitted machine learning model (e.g., a
regression tree might never use Ai for splitting), with the
consequence that the CATE cannot be estimated. However,
even when the treatment indicator remains in the model, the
S-learner may be biased towards zero (see, e.g., Künzel et al.,
2019), depending on the amount of regularization of Ai (i.e.,

the stronger the regularization, the larger the bias).10 Nev-
ertheless, in situations where the CATE is simple or indeed
zero for many covariate value combinations, the S-learner
can work well (Künzel et al., 2019).

In contrast to the S-Learner, the T-learner does not suffer
from the regularization problem concerning the treatment
variable, because it estimates the conditional mean functions
separately in each group. Due to this separate estimation, the
T-learner is expected to perform particularly well in situa-
tions where the CATE function is more complex than either
of the conditional mean functions, as long as both groups
are reasonably large. With only few data points available in
one of the groups, the T-learner may provide estimates that
are unstable and prone to bias, because then it is likely that
the estimated conditional mean function overfits the data in
the small group such that differences in the two functions
are (partly) due to random noise. One can try to avoid this
overfitting by using a simple or regularized model, but then
the T-learner can suffer from regularization bias. For exam-
ple, the coefficients of different covariates may be shrinked
towards zero in μ̂0(x) and μ̂1(x), such that the T-learner esti-
mates a non-zero CATE evenwhen it is zero everywhere (Nie
&Wager, 2021). Thus, in settings with unbalanced treatment
group sizes, the T-learner is caught between overfitting and
regularization bias, especially when the CATE has a sim-
ple form (see Künzel et al. (2019) and Kennedy (2022) for
concrete examples in which the T-learner is suboptimal).

The X-learner was developed to overcome the limitations
of the S-learner and the T-learner, that is, to workwell regard-
less of whether the CATE has a simple or complex form and
despite very different group sizes. This is achieved by using
the information of the control group to estimate a condi-
tional treatment effect for the treatment group and vice verca,
and then computing the final estimate as (propensity score-
) weighted average. The weighting serves to pull the final
estimate closer to the estimated effect that relies on the con-
ditional mean function estimated in the larger group (i.e., that
is expected to be more accurate).11 Similar to the X-learner,
the DR-learner and the R-learner estimate the CATE bymod-
elling a pseudo-outcome as a function of the covariates,

10 One possibility to enforce the coefficient of Ai to remain in themodel
would be to use the general linear model as base-learner. However, as
outlined in the introduction, this can result in bias when the functional
form is misspecified and is not always feasible when the number of
covariates is large.
11 To provide more intuition for the weighting, consider a data setting
where there are many more persons in the control than in the treatment
group, as in the illustrative example. Then μ̂1(x) is estimatedwithmuch
greater uncertainty than μ̂0(x). Because τ̂0(x) relies on estimates from
μ̂1(x) and τ̂1(x) on estimates from μ̂0(x), one can expect τ̂1(x) to be
more accurate. By weighting τ̂1(x)with 1− π̂(x) and τ̂0(x)with π̂(x),
theX-learner givesmoreweight to the presumablymore accurate τ̂1(x),
since the propensity score π̂(x) is overall small when few persons were
treated.
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which can remove some of the bias induced by regularization
and overfitting compared to the S-learner and the T-learner
(Curth & van der Schaar, 2021). In fact, although the S-
learner and T-learner can perform well in particular settings,
simulation studies found them to be overall outperformed by
the pseudo-outcome methods (Künzel et al., 2019; Kennedy,
2022; Jacob, 2020;Okasa, 2022). Therefore, especiallywhen
analysing non-experimental data, psychotherapy researchers
should consider to use a pseudo-outcome method rather than
the S- or T-learner for CATE estimation.

Comparing the pseudo-outcome methods, it is more diffi-
cult to give general considerations apart from the fact that
the X-learner is robust towards violation of the positiv-
ity assumption due to its different use of the propensity
score, whereas the DR-learner, and to a lesser extent also
the R-learner, can become unstable in presence of extreme
propensity scores (Okasa, 2022).

Okasa (2022) compared the performance of all meta-
learners presented in this tutorial in an extensive simulation
study, investigating a high-dimensional setting (i.e., 100
covariates, out of which 95 were neither predictive of the
outcome nor the treatment variable) with varying complex-
ity of the underlying functions, imbalance of group sizes,
and sample size (i.e., n = 500, 2, 000, 8, 000, and 32, 000).
Based on the results, he recommends using the X-learner
whenever one group makes out 85% or more of the whole
sample, irrespective of sample size. In settings where one
groupmakes out 75%of thewhole sample, he found the sam-
ple size to be decisive: With sample sizes of 500 or 2, 000,
theX-learnerwas still the preferable choice, whereas theDR-
learner was favourable with large sample sizes of 8, 000 or
greater. When the groups were of equal size, the sample size
was less important. Then, the DR-learner and the R-learner
were the preferred estimators. However, as a word of caution,
these recommendationsmay change asmore simulation stud-
ies emerge that examine meta-learners in other settings (e.g.,
using other data-generating functions).

Table 1 summarizes the distributions of individual treat-
ment effects as estimated by the five meta-learners in our
data example. Histograms and pairwise correlations of the
estimated individual treatment effects are displayed in Fig-
ure 4.

As can be seen in Table 1, the meta-learners yielded over-
all similar ATE estimates that range between 0.47 and 1.07
and hence indicate than on average, receiving any kind of
psychological or emotional counseling results in a minor
increase in depressive symptoms 5 years later (as measured
on the 9-item CES-D subscale with a maximum score of
27 points). Further, all meta-learners suggest some treatment
effect heterogeneity (the standard deviation ranges from 0.92
for the X-learner to 1.25 for the DR-learner), indicating that
the adverse effect of receiving counseling is stronger for some
adolescents (with themaximal estimatedCATE ranging from

5.19 to 16.04), whereas a small group of adolescents seems to
benefit from counseling (i.e., the sign of their estimated treat-
ment effect is negative, with the minimal estimated CATE
ranging from −1.64 to −8.10). Note that although the five
meta-learners yield overall similar distributions of estimated
CATEs, this does not necessarily imply that the individual
estimates are similar as well. Reassuringly, however, the esti-
mated treatment effects are positively correlated across all
meta-learners, with the highest correlation between the X-
learner and the T-learner (0.73). The S-learner resulted in
somewhat different predictions than the other meta-learners,
with correlations ranging between 0.07 and 0.17.

Notably, the R-learner (and to a lesser extent also the
DR-learner) predict some treatment effects as unreasonably
large. This is likely due to the fact that in our data exam-
ple, only 353 persons underwent counseling, whereas 3, 491
did not. That is, the group sizes were highly unbalanced and
the estimated propensity scores were overall very small. In
fact, some propensity scores were estimated as 0 and we
set values below 0.01 to 0.01 in order to enforce the overlap
assumption.12 As argued above, this is a setting the X-learner
was specifically designed for. Therefore, we focus on the
X-learner in the next section,13 where we examine how to
perform inference on heterogeneous treatment effects (such
as testing whether there is evidence for significant treatment
effect heterogeneity). Before doing so, however, we point out
some key issues with meta-learners.

Further Issues and Analysis of Treatment
Effect Heterogeneity

In the final section of this tutorial, we discuss some further
issues to consider when estimating the CATE. We focus on
the choice of the base-learners, reducing overfitting via sam-
ple splitting and cross-fitting, and the statistical analysis of
the CATE estimates.

Choice of Base-Learners andModel Stacking

The performance of each meta-learner depends upon how
well the nuisance functions are estimated (e.g., the condi-

12 Setting extreme propensity scores to a less extreme value or dis-
carding all persons with propensity scores outside of a certain range
(see, e.g., Crump et al., 2008) are common strategies to deal with (near)
violations of the positivity assumption. However, the choice of cutoff
values is often arbitrary and such ad hoc modifications can change the
meaning of the causal effect estimates (see, e.g., Li et al., 2019).
13 It would be interesting to directly compare the prediction perfor-
mance of the different meta-learners (using an independent test set).
However, this is difficult since the true CATE is unobservable. Never-
theless, Athey et al. (2020) proposed two measures for comparing the
MSE of CATE estimators, which are based on a specific transformed
outcome and on the R-loss.
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Table 1 Descriptive statistics of
the individual treatment effects
as estimated by the different
meta-learners

Mean SD Min 25% Median 75% Max

T-Learner 1.07 1.12 −3.19 0.31 0.98 1.75 6.82

S-Learner 0.47 0.93 −3.89 −0.10 0.36 0.95 6.48

X-Learner 0.74 0.92 −1.64 0.10 0.60 1.25 5.19

DR-Learner 0.75 1.25 −6.97 0.17 0.69 1.26 11.38

R-Learner 0.75 0.94 −8.10 0.38 0.79 1.16 16.04

Fig. 4 Distribution and pairwise
correlations of estimated
individual treatment effects for
the different meta-learners.
Note. The plot was created with
the R package psych (Revelle,
2022)

tional mean functions), which in turn hinges upon the choice
of the base-learners. For example, Knaus et al. (2021) found
the performance of the DR-learner to deteriorate in some set-
tings when using lasso regression as base-learner, whereas it
performed relatively well across all settings when the nui-
sance functions were estimated with a random forest. In
practice, one should try to choose a base-learner that is well-
suited for the prediction task at hand and to optimize its
performance via hyperparameter tuning. We always chose
the random forest in the example as base-learner, because
it can approximate both simple and complex functions, is
comparatively easy to tune, and because previous simulation
studies on meta-learners found it to be a good choice (Knaus
et al., 2021; Okasa, 2022). Another advantage is that it allows
to calculate out-of-bag predictions; a point that we return to
in the next subsection.

Nevertheless, it is impossible to know which machine
learning method would be the best to use for a given pre-
diction problem, which explains the increased use of the
’Super Learner’ in machine learning applications. The Super
Learner is amodel stackingmethod. The basic idea of model
stacking is to not just use one machine learning method for
prediction, but rather to fit several machine learning mod-
els to the data (e.g., the generalized linear model, gradient

boosted trees, and random forest), and then to combine the
predictions of these models. There are different possibilities
for combining the predictions, and the Super Learner uses a
weighted average, whereby the optimal weights are obtained
via cross-validation. It can be shown that (asymptotically)
the Super Learner works as well as the best machine learning
method included in it (Van der Laan et al., 2007). We refer
the reader to Naimi and Balzer (2018) for a more detailed
introduction to the Super Learner and for an explanation of
how it can be implemented in R.

So far, psychotherapy researchers predominantly used the
generalized linear model as base-learner (but see Delgadillo
& Gonzalez Salas Duhne, 2020), often selecting covariates
beforehand either via covariate selection strategies or via
machine learning methods such as the random forest (e.g.,
Huibers et al., 2015;Webb et al., 2019; Schwartz et al., 2021;
van Bronswijk et al., 2021; Senger et al. 2022). The main
advantages of using the generalized linear model is that it
facilitates interpretation and inference of the CATE: it is
straight-forward to assess which covariates are driving the
predictions through evaluating significance tests and com-
paring the (standardized) regression coefficients. With more
flexible base-learners, it becomes more difficult to interpret
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and perform inference on treatment effect heterogeneity, and
we will describe approaches for doing so in the next section.

Sample Splitting and Cross-Fitting

Another important aspect to consider when using meta-
learners for estimating the CATE and when subsequently
analysing treatment effect heterogeneity is overfitting, which
can happen at two points. First, when using pseudo-outcome
methods such as the X-, DR-, and R-learner, one estimates
some nuisance functions and then uses the (predictions
of these) nuisance functions to estimate the CATE in a
(weighted) pseudo-outcome regression. However, using the
same data to estimate the nuisance functions and the treat-
ment effect functionmakes the occurrence of overfittingmore
likely, which in turn can bias the CATE estimator (see e.g.
Kennedy, 2022;Chetverikov et al., 2018a).Note that this type
of overfitting does not concern the S-and the T-learner, since
they only require estimation of the conditional mean func-
tion(s) to compute the CATE without any further estimation
step. The second point concerns the heterogeneity analysis
of the estimated treatment effects – which we discuss in the
next subsection—and is thus relevant for all meta-learners:
Using the same sample for fitting the CATE function and for
further analysing the estimated treatment effects can impair
the validity of the results. Ideally, one would have access to
an independent test set and use a meta-learner’s estimated
CATE function, τ̂ (x), to obtain the treatment effects for the
persons in this test set. Then these estimates would be used to
make inferences regarding the treatment effect heterogeneity.
In the following, we focus on the first point and describe how
different sample splitting approaches can be used to prevent
overfitting bias for this case.When turning to the heterogene-
ity analysis afterwards, we come back to these approaches
and discuss how they can be applied in a scenario in which
there is no independent test set.

Some machine learning methods have a built-in approach
to reduce overfitting as such. A random forest, for instance,
is a collection of trees and each tree in the forest is fitted on
a bootstrap sample of the training data. As bootstrap sam-
ples are random subsamples of the actual sample, not all
persons are used when estimating a specific tree in the for-
est (because some persons are out-of-bag (OOB), that is, not
part of that tree’s bootstrap sample). This in turn allows to
calculate the OOB prediction for a person i : The predicted
value of i is calculated only from the trees that were fitted
on bootstrap samples which do not contain i . Thus, the OOB
predictions are, in a certain sense, independent from model
fitting,which iswhyweusedOOBpredictions throughout the
implementations of the meta-learners. However, one might
prefer other base-learners, such as gradient boosted trees or a
model stacking method like the Super Learner, which do not
entail such a built-in approach. A generic approach to prevent

overfitting bias is sample splitting (e.g., Chernozhukov et al.,
2018a). In the simplest case, the whole sample is randomly
split into two sub-samples (or folds), S1 and S2. The first fold
S1 is used to train the nuisance functions, whose predictions
for the second, independent fold S2 are used to generate the
pseudo-outcome. Then the pseudo-outcome is regressed on
the covariates in S2, yielding an estimated CATE function.

A problem of sample splitting is that using only a sub-
sample for CATE estimation can result in loss of efficiency
and (ironically) underfitting. As a remedy, one typically
employs cross-fitting (e.g., e.g. Chernozhukov et al., 2018a)
to ensure that all the data is used for estimating the CATE
function: As before, the nuisance functions are trained in fold
S1 and then used to generate the pseudo-outcome for fold S2.
Then, the roles of the folds are reversed such that the nui-
sance functions are trained in fold S2 and the results are used
to generate the pseudo-outcome for fold S1. As a result, one
obtains an ’out-of-fold’ (or cross-fitted) pseudo-outcome for
each person i , which was calculated based on nuisance func-
tions that did not use person i for training. In thefinal step, this
cross-fitted pseudo-outcome is regressed on the covariates in
the full sample to obtain τ̂ (x). The 2-fold cross-fitting thatwe
just explained can be extended to k-fold cross-fitting. In Fig-
ure 5 we show a graphical illustration of 5-fold cross-fitting.
Using more folds further reduces the risk of underfitting, but
at the same time weakens the protection against overfitting.
Note that sample splitting (and cross-fitting) should not be
mixed-up with cross-validation: While sample splitting is
used to separate the estimation of nuisance parameters from
estimating the parameter of interest (i.e., the CATE), cross-
validation is (mainly) used for hyperparameter tuning of the
machine learning method. Thus, in case of the simple sam-
ple splitting scheme just explained, cross-validation is done
within S1 to obtain optimal nuisance functions that are then
used in S2 to calculate the pseudo-outcome regression.

Furthermore, we point out that there is another defini-
tion of cross-fitting14 and that further variants of sample
splitting and cross-fitting have been suggested in the liter-
ature (see Chernozhukov et al., 2018a and Newey & Robins,
2018, and also Jacob, 2020, and Jacob, 2021, for a discus-
sion of all kinds of splitting approaches). Whichever variant
is used, all serve the same goal, that is, to ensure that the nui-
sance functions used to construct a person’s pseudo-outcome

14 Our definition of cross-fitting is also called ’combined approach’
in the literature (Jacob, 2020). However, there is also an ’averaging’
variant, which is defined as follows: After having used S1 for nuisance
function estimation and S2 for pseudo-outcome regression, the roles
are reversed and S2 is used for nuisance function estimation and S1
for pseudo-outcome regression. This results in two estimated CATE
functions that each can be used to generate a prediction for the CATE
of a person. These CATEs are then averaged to obtain the final CATE,
τ̂ (x) = 1

2

(
τ̂S1 (x) + τ̂S2 (x)

)
. Again, this 2-fold cross-fitting procedure

can be extended to using k folds.
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Fig. 5 5-fold cross-fitting
procedure

were estimated without using data from that person. How-
ever, so far it is unclear which splitting procedure, if at all,
is to be preferred in which data setting. Jacob (2020) and
Okasa (2022) performed simulation studies to compare the
R-learner, DR-learner, and X-learner under different sam-
ple splitting schemes, implemented both with and without
cross-fitting. Overall, their results indicate that the X-learner
usually performs best when using the full sample at all steps
(i.e., not splitting the sample at all) and is quite robust under
different implementations. In case of the DR-learner and R-
learner, it seems to be more relevant whether (and if so,
which) sample splitting procedure is used. Furthermore, the
results are also dependent on the base-learners that are used.
In sum, at present there seems to be no uniformly superior

version and we encourage the reader to watch out for forth-
coming simulation studies results for further guidance.

Inference on Heterogeneous Treatment Effects

In the last section, we showed histograms of the CATE
estimates for each meta-learner and reported descriptive
statistics for the obtained CATE estimates (i.e., the mean,
the standard deviation, and the quantiles). Here, we discuss
some more recent statistical approaches for making infer-
ence on features of interest of the CATE (see Chernozhukov
et al., 2018b).15 Specifically, we describe an overall test

15 Currently, there is no standard approach to obtain a (valid) confi-
dence interval for a single individual treatment effect. Künzel et al.
(2019) evaluated several bootstrap procedures to obtain confidence
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for the presence of heterogeneity, how hypotheses regard-
ing subgroup-specific CATEs can be tested (e.g., testing the
null hypothesis that the ATE among the 20% most affected
persons is zero), and how one can investigate which covari-
ates are associated with treatment effect heterogeneity. In
the following, we first focus on the description of these tests
(assuming the availability of an independent test set) and
present the results for the illustrative data example. At the
end of this subsection, we discuss how sample splitting and
cross-fitting can be applied to ensure the validity of these
tests when there is no independent test set – as was the case
in our example – and describe the specific procedure that we
implemented here.

Is there evidence for significant treatment effect het-
erogeneity? Chernozhukov et al. (2018b) suggested an
overall test for treatment effect heterogeneity and for the
quality of a CATE estimator. They focused on randomized
controlled trials, but their test can be adjusted for observa-
tional data (see Athey et al., 2020; Tibshirani et al., 2023).
The (adjusted) test consists of fitting the following regression
model:

Yi − m̂(X i ) = β1
[
Ai − π̂(X i )

]

+ β2
{[

τ̂ (X i ) − τ̂
] [

Ai − π̂(X i )
]} + ε,

(13)

where m̂(X i ) is the mean function estimate of i , π̂(X i ) is
the propensity score estimate, and τ̂ = 1

n

∑n
i=1 τ̂ (X i ) is

the ATE estimated from the meta-learner’s CATE estimates
(i.e., the mean of these estimates, see Table 1). The coef-
ficient β2 measures how much the CATE estimates covary
with the true CATE. If the meta-learner adequately captures
the true heterogeneity, then β2 = 1 (Chernozhukov et al.,
2018b). Therefore, when β2 is significantly greater than zero,
this indicates that there is significant treatment effect hetero-
geneity and that it was captured by the meta-learner at least
to some extent. The results for the illustrative data example
(using the X-learner) are shown in Table 2 (see the supple-
mentary material for the corresponding R code).

The coefficient β1 in model (13) equals the ATE (if the
true functionsm(X i ), π(X i )were used instead of estimates).
Thus, in line with the results of the meta-learners, the sig-
nificant estimate of 0.66 indicates that on average, receiving

intervals and found the different procedures to perform similar, but none
provided the correct coverage. However, the authors investigated full-
sample versions of the meta-learners, and estimating standard errors via
bootstrapping might work better when using sample splitting within
the meta-learners (Okasa, 2022; see also Jacob, 2021 for implemen-
tations of bootstrapping for meta-learners.). Also, in the special case
where ordinary least squares regression (rather than a typical machine
learning method) is used to obtain the CATE estimates in the last step
of the pseudo-outcome methods, standard normality-based confidence
intervals for the CATE estimates are valid. In the full code in the sup-
plementary material, we show how this can be implemented in R.

Table 2 Results of global test for treatment effect heterogeneity

β1 β2

0.661 0.943

(0.110, 1.208) (0.293, 1.590)

[.019] [.004]
Note.Medians over 50 splits. Median confidence intervals (α = .05) in
parenthesis. P-values for the hypothesis that the parameter is equal to
zero against the two-sided alternative in brackets.

counseling leads to a slight but significant increase in depres-
sive symptoms. The ATE estimate of the X-learner (0.74, see
Table 1) was in a similar range, but indicates that the average
prediction of the X-learner is not entirely correct. Further-
more, since β2 is significant and estimated close to 1, we can
reject the null hypothesis of no treatment effect heterogene-
ity and infer that the X-learner did a good job at capturing
the treatment effect heterogeneity.

What are the treatment effects across subgroups?
Having seen that there is significant treatment effect het-
erogeneity, it is interesting to investigate how the treatment
effects vary across persons. To this end, we can sort the
persons by their estimated CATE, and then split them into
subgroups based on quantiles. Here, we split the sample into
five subgroups,G1, . . . ,G5, but note that the number of sub-
groups is somewhat arbitrary. Thereafter, we fit the following
regression model:

Yi − m̂(X i ) = [
Ai − π̂(X i )

] 5∑

k=1

γk Dk,i + ε, (14)

where Dk,i is a dummy variable for the kth subgroup, that
is, Dk,i is one when the predicted CATE of person i is in
group Gk , and zero otherwise. The parameters of interest in
this model are the coefficients γk , which equal the CATE in
subgroup k (again, if the true functions m(X i ), π(X i ) were
used): γk = E[τ(X i )|Gk]. These subgroupCATEs are called
sorted group average treatment effects (GATES) (see Cher-
nozhukov, Demirer, et al., 2018b, and also Jacob, 2019).16

In some cases, the resulting GATES may not be monotonic
(although one would expect them to be, since the subgroups
were defined based on the predicted strength of treatment
effect). Therefore, it is recommended to sort the GATES
when using them for further testing, such that they are mono-
tonic. This has the effect that the GATES better approximate
the ideal GATES (i.e., the GATES that would be obtained,
hypothetically, if the subgroups were defined based on the
true CATE).

16 In difference, ’regular’ group average treatment effects are average
effects for groups that are defined by a (small) set of pre-chosen covari-
ates (such as the CATE for old persons with a university degree).

123



Administration and Policy in Mental Health and Mental Health Services Research

Fig. 6 GATES of receiving counseling. Note. Median point estimates
of treatment effects in subgroups (defined based on the X-learner’s pre-
dicted CATE), based on 50 splits. Error bars represent the median 95%
confidence intervals

Figure 6presents theGATES for the illustrative data exam-
ple. As can be seen, for most of the subgroups, receiving
counseling does not have a significant effect on depres-
sive symptoms five years later. However, for the 20% most
(adversely) affected adolescents, receiving treatment leads
to an average increase of 2 points on the CES-D and this
increase is significantly different from zero.

Estimating GATES is just one example of performing a
subgroup analysis. In psychotherapy research, it is common
to first sort persons based on their estimated CATE into two
or three groups: persons for which receiving treatment is
indicated (e.g., if a higher outcome indicates more symp-
toms, persons whose estimated CATE has a negative sign
or is lower than some statistical or clinical cut-off), persons
for which treatment is not recommended (estimated CATEs
with positive sign or higher than the cut-off), and, option-
ally, persons for which receiving treatment is expected to be
neither strongly beneficial nor harmful (estimated CATES
around zero). Then, one compares the outcomes between
persons who received their model-indicated recommenda-
tion (the ’optimal’ group) versus persons who did not (the
’non-optimal’ group) and tests whether the mean outcomes
differ significantly (e.g., DeRubeis et al., 2014). If the sample
is observational, propensity score methods such as propen-
sity score matching or weighting should be used in order for
this comparison to be informative (e.g., Delgadillo &Gonza-
lez Salas Duhne, 2020). If the outcomes of the optimal group
are on average significantly better than the outcomes of the
non-optimal group, the estimated CATE function is deemed
useful for clinical practice, that is, for informing treatment
recommendations for future patients. However, predicting
ITEs is a highly challenging task, and as DeRubeis et al.
(2014) discuss, the clinical utility of the predictive model
should then be tested further in a prospective way.

Which covariates are associated with the treatment
effect heterogeneity? When the global test and the GATES
reveal substantial treatment effect heterogeneity, one seeks to
better understand which variables drive the heterogeneity. To
this end, one can compare the average (as well as variances,
covariances, etc.) of baseline covariates across the subgroups.
The comparison of average covariate levels between themost
and least affected subgroups is called classification analy-
sis (CLAN; see Chernozhukov, Demirer, et al., 2018b). For
the data example, we tested the covariate’s mean differences
between the 20% most positively affected and the 20% most
negatively affected adolescents with Welch-tests, using the
Holm correction to adjust for multiple testing (the R code
is provided in the supplementary material). Table 3 presents
the results for those covariates which have a non-negligible
mean difference between the treatment and untreated adoles-
cents (i.e., the Hedge’s g of their absolute mean difference is
larger than 0.20). The most pronounced differences at base-
line were that the most negatively affected adolescents (the
fifth subgroup, whose average effect of counseling is a 2
point increase in depressive symptoms) on average spend
less timewith friends, drink less alcohol and do less exercise,
have a higher tendency to avoid problems, and feel more sup-
ported by their family. Note that the differences in baseline
covariates between subgroups cannot be interpreted as causal
(e.g., we cannot infer that consuming less alcohol will nega-
tively influence the effect of receiving counseling), but might
help to shed light on the true factors underlying heterogenous
treatment effects.

Obtaining valid inferenceAs stated above, it is important
to use independent persons for fitting the CATE function and
for performing inference on the estimated treatment effects
in order to obtain valid results. When an independent test set
is not available, one can use sample splitting. In case of the S-
learner and the T-learner (see Figure 7 A), this means that in
a first step, a (random) part of the sample is used to estimate
the conditional mean function(s) as well the two nuisance
functions that are needed for the global heterogeneity test
and the GATES (i.e., π̂(x) and m̂(x)). Then predictions are
obtained for the other part of the sample and these are used
for the heterogeneity analysis. To increase efficiency, one
could use cross-fitting to obtain out-of-fold predictions for
thewhole sample (see Figure 7B), such that all data is used in
the heterogeneity analysis. Furthermore, because the results
of the tests depend on the specific way the data was split,
Chernozhukov et al. (2018b) suggested to repeat the sample
splitting process multiple times (e.g., 100) and to aggregate
the parameter estimates (β1, β2, γk , etc.), confidence inter-
vals, and p-values by taking the medians across the repeated
splits. This has the effect that the p-values account both for
the estimation uncertainty and for the uncertainty induced by
the sample splitting.
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Table 3 Results of classification analysis

20% Most Positively Affected 20% Most Negatively Affected Difference
MG1 (CI) MG5 (CI) MG1 − MG5 (CI) Hedge’s g

Hispanic .05 .14 −0.09 −0.32

(.04, .07) (.12, .17) (−0.12, −0.06)

Black .12 .25 −0.13 −0.34

(.10, .14) (.22, .28) (−0.17, −0.09)

Asian .00 .09 −0.9 −0.44

(.00, .01) (.07, .11) (−0.11, −0.07)

Health 4.05 3.68 0.36 0.41

(3.99, 4.11) (3.62, 3.75) (0.27, 0.45)

Problem avoidance 2.87 3.40 −0.53 −0.52

(2.80, 2.94) (3.33, 3.47) (−0.64, −0.43)

Alcohol use 2.95 1.99 0.96 0.57

(2.81, 3.08) (1.89, 2.09) (0.79, 1.13)

Teamsports 1.52 1.20 0.32 0.29

(1.44, 1.60) (1.12, 1.28) (0.21, 0.43)

Excercise 1.91 1.37 0.54 0.54

(1.84, 1.98) (1.30, 1.44) (0.44, 0.64)

Time with friends 2.50 1.09 1.41 1.74

(2.45, 2.55) (1.03, 1.15) (1.33, 1.49)

Video hours per week 19.54 25.47 −5.94 .0.27

(17.96, 21.12) (23.98, 26.97) (−8.11, −3.76)

Parental involvement 5.26 6.62 −1.36 −0.41

(5.02, 5.50) (6.39, 6.84) (−1.69, −1.03)

Parental closeness 4.20 4.45 −0.24 −0.39

(4.16, 4.25) (4.41, 4.49) (−0.31, −0.18)

Family support 3.78 4.14 −0.35 −0.50

(3.73, 3.83) (4.09, 4.18) (−0.43, −0.28)

≥ 2 attempted suicides .05 .01 .05 0.28

(.04, .07) (.00, .01) (.03, .06)

Prior treatment .17 .08 0.10 0.29

(.14, .20) (.06, .09) (0.06, 0.13)

Prior CES−D 10.39 12.18 −1.79 −0.23

(9.79, 10.99) (11.67, 12.69) (−2.58, −1.01)

Note.Medians over 50 splits. MG1 = mean in first subgroup; MG5 = mean in fifth subgroup.
Confidence intervals (α = .05) in parenthesis. Significant differences are shown in bold (p-values were adjusted for multiple testing using Holm’s
correction).

In case of the pseudo-outcome methods, one can include
an additional split to prevent overfitting in the pseudo-
outcome regression. To do so, one splits the sample into three
folds, uses the first fold for estimating the nuisance func-
tions, the second fold to estimate the CATE function τ̂ (x),
and the third fold to perform the heterogeneity analysis on
the predicted treatment effects. This sample splitting scheme
is illustrated in Figure 7 C. However, with small sample sizes
or when there are only few observations in one of the groups,
as is the case in our illustrative example, splitting the data
into three folds likely results in severe underfitting and loss

in power. Therefore, following Jacob (2021) we used a two-
step cross-fitting procedure (see Figure 8 in the appendix for a
graphical illustration) that consisted of generating an out-of-
fold pseudo-outcome for the full sample in a first step. In the
second step, we used 10-fold cross-fitting for the estimation
of the CATE function and the heterogeneity analysis, which
was repeated 50 times. That is, in each of the 50 repetitions,
we (i) obtained a CATE estimate τ̂ (X i ) for each person i ,
whereby the function τ̂ (x) was estimated on a sub-sample
that did not entail i , (ii) performed the analysis on these cross-
fitted estimates, and (iii) stored the results. The final results
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Fig. 7 2-fold sample splitting (A), 2-fold cross-fitting (B), and 3-fold
sample splitting (C) procedure for separating the estimation of the
CATE function from the heterogeneity analysis. Note. Procedure C can

only be applied to pseudo-outcome methods, where the additional split
aims at preventing overfitting due to using the same data for nuisance
function estimation and pseudo-outcome regression

were obtained by taking the median across the repetitions
(see the supplementary material for the R code). We chose
50 repetitions based on the results of Jacob (2020) and 10
folds to have sufficient observations in the training folds to
adequately learn the CATE function.17 However, we caution
that this is a novel procedure and that simulation studies are
required to show that it provides valid results and to com-
pare it to alternative implementations of sample splitting and
cross-fitting.

Conclusion

Clinical psychologists are interested in finding the best pos-
sible treatment for patients. In this tutorial, we described
different meta-learners that use off-the-shelf machine learn-
ing methods for estimating the CATE. Informally, a meta-
learner specifies what to estimate in which order, but the
researcher needs to decide upon the how, that is, which

17 As we have discussed above, the X-learner seems to work best in its
full-sample version, which is whywe did not use cross-fitting in the first
step in our example (but we used the random forests’ OOB predictions).
Also, we included the estimation of the propensity score π(x) and the
conditional mean functionm(x) (which are needed for the computation
of the CATE and/or the heterogeneity analysis) in the repeated 10-fold
cross-fitting in the second step.

machine learning methods to use for estimation. While
presenting descriptive statistics of the estimated CATE is
informative in its own right, we also illustrated how the
estimates can be used to further analyse treatment effect
heterogeneity (i.e., to test whether there is significant het-
erogeneity, to test hypotheses regarding subgroup-specific
CATEs, and to examine which covariates are associated with
the underlying heterogeneity). We also pointed out how cur-
rent popular practices in psychotherapy research fall under
the meta-learner framework. Furthermore, we discussed the
use of sample splitting and cross-fitting in order to prevent
overfitting of the more complex meta-learners and to ensure
valid results when making inference on heterogeneous treat-
ment effects. As our descriptions have shown, meta-learners
entail many researchers’ degrees of freedom, underlining the
importance of transparency and the need for guidelines for
best practices. However, despite these challenges, the high
flexibility of meta-learners provides the tools for estimating
the CATE with high accuracy and precision in a variety of
data settings.

Glossary

base-learner refers to any machine learning method that is
used within a meta-learner to solve a prediction task.
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Fig. 8 2-step cross-fitting
procedure. Note. In this
illustration, the first step uses
5-fold cross-fitting for
generating the pseudo-outcomes
and the second step uses
(repeated) 2-fold cross-fitting
for pseudo-outcome regression
and heterogeneity analysis

conditional independence assumption is the assump-
tion that conditional on the observed covariates, the
potential outcomes of person i are independent from
whether or not i receives treatment, that is, independent
from how person i would respond to treatment. Formally,
Ai ⊥ {Y (0),Y (1)}|X i . In observational studies where
persons self-select into treatment, this is a strong assump-
tion since it rules out any unobserved confounding, and
should be assessed carefully based on theoretical consid-
erations and sensitivity analysis.

conditional mean method refers to meta-learners that rely
on estimating the conditional mean functions of the
outcome only, i.e., that do not incorporate additional
information such as the propensity score. Examples are
the T-learner and the S-learner.

covariate imbalance occurswhen the treatment and control
group differ in their covariate distributions. Propensity
score methods aim to balance the distribution of covari-
ates between the two groups in order to prevent that the
treatment effect estimation is biased by group differences
in the observed covariates. Strong covariate imbalance
can result in (near) violations of the positivity assump-
tion.

cross-fitting is a sample splitting technique that separates
the estimation of nuisance parameters from the estima-
tion of the parameter of interest (e.g., the CATE).

cross-validation is a sample splitting technique that uses
separate subsamples for training the model and for eval-
uating the model’s performance. It is mainly used for
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hyperparameter tuning and for obtaining an realistic esti-
mate of a model’s prediction error.

doubly-robustness is a property of a causal estimator;
an estimator is called doubly-robust when it remains
consistent as long as either the propensity score or the
conditionalmean function(s) of the outcome are correctly
specified.

hyperparameter is a parameter whose value affects the
training of the model. Thus, hyperparameters have to be
specified a-priori, whereas the “normal” model param-
eters are learned during training. For example, in lasso
regression the shrinkageparameterλ is a hyperparameter:
it affects how the model parameters (e.g., the coefficients
β) are estimated (e.g., whether they are set to zero).

hyperparameter tuning is the process of selecting a set
of optimal hyperparameter values for a machine learning
algorithm. Here, “optimal” refers to the predictive per-
formance of the resulting model when used to predict the
outcome for new observations (i.e., observations that are
not used to train the model). The predictive performance
is assessed via the loss of the algorithm. Hyperparameter
tuning is often performed via cross-validation.

loss function captures the deviation between a model’s
predicted values and the true values. Machine learning
algorithms build a predictive model by minimizing a
given loss function, hence their predictive performance
strongly depends upon the choice of loss function. For
example, a common loss function for regression tasks is
themean squared error,MSE= 1

n

∑n
i=1(Yi−Ŷi )2, which

measures the squared differences between the actual and
the predicted values.

machine learning is used synonymously to supervised
learning in this tutorial. Supervised learning refers to any
algorithm that uses data points with observed outcome
values to build a predictive model, that is, to build a func-
tion that maps the observed outcome Y on the covariates
X

meta-learner is a meta-algorithm that breaks down the task
of estimating the CATE into several prediction tasks,
each of which can be solved using any machine learn-
ing method.

model stacking refers to algorithms that combine several
machine learning models into a new predictive model.
The motivation is that different machine learning models
have different strengths, and it is generally difficult to
choose which one to use. Thus, model stacking aims to
find combinations of (fitted) machine learning models
that optimize the predictive performance. An example
for a model stacking algorithm is the Super Learner.

model training is synonymous to building a model; it is
the process of applying a machine learning algorithm to
training data, yielding a predictive model.

model tuning see hyperparameter tuning.

nuisance parameter (nuisance function) is any parameter
(function) that is unspecified and has to be approximated
in order to estimate or test hypotheses regarding the
parameter of interest. In the case of meta-learners, the
conditionalmean functions or the propensity function are
examples for nuisance functions: We are not interested
in these functions themselves, but need to approximate
them in order to estimate the CATE.

out-of-bag prediction In a random forest, the out-of-bag
prediction for a person i is the average prediction from
the trees that do not contain i in their respective bootstrap
sample.

overfitting occurs when a model fits the training data too
closely, and therefore does not generalize well to new
data (i.e., fails to adequately predict the outcome for new
observations that were not used for training the model).

positivity assumption is the assumption that the propen-
sity score is bounded away from 0 and 1, formally,
0 < π(x) < 1 for all possible covariate combinations
x. This implies that for any possible combination of
observed covariate values, there exist both treated and
untreated persons. Also referred to as sufficient common
support or overlap assumption.

propensity score is the conditional probability of receiv-
ing treatment given the observed covariates. Formally,
π(x) = P(Ai = 1|X i = x.

pseudo-outcome is an initial approximation of the CATE
that is regressed onto the observed covariates in order to
obtain a final CATE estimate.

pseudo-outcomemethod refers to meta-learners that oper-
ate via a pseudo-outcome. Examples are the X-learner
and the DR-learner.

R-loss is a squared-error loss specifically designed to cap-
ture heterogeneous treatment effects while controlling
for potential confounding. The R-loss is used by the R-
learner as well as the causal forest.

regularization refers to techniques that constrain amodel’s
complexity in order to avoid overfitting. This is achieved
by including apenalty term in the loss function. For exam-
ple, lasso regression minimizes the loss function

L lasso = 1

n

n∑

i=1

(Yi − Ŷi )
2 + λ

p∑

j=1

|β j |
︸ ︷︷ ︸
penalty term

where Ŷi = β0 + β1Xi1 + . . . + βp Xip are the model’s
predictive values and λ ≥ 0. Adding the penalty term
has the effect that large absolute coefficients can result
in higher values of the loss function despite decreasing
the errors (Yi − Ŷi )2, such that the algorithm seeks to
find a good balance between the model’s complexity and
predictive accuracy in the training data. λ determines the
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degree of regularization, that is, how much the model’s
coefficients are shrinked towards zero.

stableunit treatmentvalueassumption (SUTVA) assumes
that for each person i , the observed outcome equals
the potential outcome under the treatment level actually
received, formally, Yi = Yi (Ai ). This entails that the
treatment levels are well-defined and rules out any inter-
ference between persons.

Super Learner is a variant of model stacking. Despite the
similar name, it is not a meta-learner (but can be used as
base-learner within meta-learners, for example).

supervised learning see machine learning.
underfitting occurswhen amodel fails to capture the under-
lying patterns in the data, such that it neither performs
well on the training data nor generalizes to new data.
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