
Applied Categorical Structures (2024) 32:4
https://doi.org/10.1007/s10485-023-09762-9

Algebraic Dynamical Systems in Machine Learning

Iolo Jones1,2 · Jerry Swan2 · Jeffrey Giansiracusa1

Received: 16 June 2023 / Accepted: 13 December 2023 / Published online: 18 January 2024
© The Author(s) 2024

Abstract
We introduce an algebraic analogue of dynamical systems, based on term rewriting.We show
that a recursive function applied to the output of an iterated rewriting system defines a formal
class of models into which all the main architectures for dynamic machine learning models
(including recurrent neural networks, graph neural networks, and diffusion models) can be
embedded. Considered in category theory, we also show that these algebraic models are a
natural language for describing the compositionality of dynamic models. Furthermore, we
propose that these models provide a template for the generalisation of the above dynamic
models to learningproblemson structured or non-numerical data, including ‘hybrid symbolic-
numeric’ models.

Keywords Machine learning · Dynamical systems · Term rewriting · Functional
programming · Compositionality

1 Introduction

The relationship between the structure of a model and its observable behaviour is central
to many areas of applied mathematics. In linguistics and computer science, there are cor-
responding notions of the syntax and semantics of an expression or program. In machine
learning, behaviour is determined via learned parameters while the structure of a model is
typically considered to be prescribed by hyperparameters. This is often categorified in the
context of functional programming, where programs are viewed as maps in a category of
data types. Here the syntax is specified by an algebraic data type, on which, in a general
setting, recursively-defined functions determine the semantics [26]. These perspectives can

Communicated by Stefan Milius.

B Iolo Jones
iolo.j.jones@durham.ac.uk

Jerry Swan
jerry@hylomorph-solutions.com

Jeffrey Giansiracusa
jeffrey.giansiracusa@durham.ac.uk

1 Durham University, Durham, UK

2 Hylomorph Solutions, Glasgow, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10485-023-09762-9&domain=pdf

4 Page 2 of 32 I. Jones et al.

be combined in formal machine learning theory, where the categorical perspective forms a
basis for describing ‘compositionality’: the properties of a model’s components which are
preserved under composition. Compositional modelling provides vital support for safe and
causal inference, where unconstrained neural approaches are known to be lacking [11].

In this paper, we develop this theory to include the increasingly popular class of models
based on dynamical systems.We describe thesemodels via universal algebra [5] and category
theory and show that term rewriting systems [2] are the exact algebraic analogue of dynamical
systems, but also explicitly encode the structure of the model in their expression. The rewrite
rule corresponds to this syntax or structure, while the semantics are specified by a recursive
function on that algebraic structure. The categorical setting also allows us to talk, in full
generality, about which properties of models are preserved under composition. We use this to
prove that rewriting models are naturally compositional, in the sense that the corresponding
dynamical system will lift to any category with the appropriate structure.

1.1 Structural Constraints in Machine Learning

A proper appreciation of the role played by structural constraints requires a brief summary
of the history of Artificial Intelligence (AI). Ever since its inception [29], the field of arti-
ficial intelligence has been split between ostensibly-competing symbolic and connectionist
perspectives. The symbolic approach was initially favoured, exemplified by so-called ‘Good
Old Fashioned AI’ (GOFAI) [33], that typically attempts to model the world in terms of
rules which manipulate opaque symbols via formalisms such as predicate calculus. Such
approaches were ill-suited for modelling the noisy real world and suffered from the ‘knowl-
edge elicitation bottleneck’ in which domain experts were unable to provide adequate domain
models at the desired high-level of representation. By the early 1990s, it became widely
accepted that GOFAI had failed.

In contrast, the connectionist approach seeks to model the world numerically, notably
via the universal function approximation properties of neural networks [10]. The approach
has benefited from successive innovations, in particular the development in the late 1980s
of the backpropagation algorithm [32] for training multi-layer networks and the emergence
of greater computing power in the 2000s. The currently dominant approach of supervised
machine learning addresses the knowledge elicitation bottleneck by learning from a labelled
training set. However, the underlying statistical mechanics of the learning mechanism mean
that there is a tendency to model correlation rather than cause [35]. Historically the main
challenge in machine learning has been to create models that are scalable, train well, and
can approximate a suitable class of functions for the task at hand. There has been significant
progress on these fronts in the past decades but themethods used are generallyblack box in that
their behaviour cannot be explained and/or guaranteed. This has led to an increasing emphasis
on developingmodels with structural constraints that guarantee particular properties, or make
the model’s behaviour easier to understand.

Structural constraints can bring several important benefits, including:

1. Imposing domain-specific constraints on the model. This can include symmetries like
translation equivariance, physical constraints when modelling a known physical system,
or safety constraints that limit the behaviour of the model. In contrast to black boxmodels,
such constraints make the model’s behaviour more interpretable/auditable.

2. Making problems well posed and learnable. Fitting a model to data requires a constrained
form of model to be well defined, and tighter constraints will require less data to train.

123

Algebraic Dynamical Systems... Page 3 of 32 4

3. Improving robustness by passing through dimensional bottlenecks. Data usually contain
noise in the ambient space which can be reduced by a learned compression into a smaller
space where the geometry is more likely to be causal.

4. Counteracting the ‘curse of dimensionality’. Sparse data in high dimensions will become
more dense when reduced in dimension, allowing effective resampling from their distri-
bution or interpolation between points.

Aswe explore in the next section, there has been a general trend towardsmodels that, for all the
reasons above, are more tightly structurally constrained. Since these models are constructed
via the composition of smaller parts, these structural properties can all be expressed as
algebraic relations. These relations can encode things like dimension or parameter-sharing
between functions and are also required to prove that the model has given properties, such
as being equivariant under some group action. Group equivariance is the particular focus
of geometric deep learning [4], which aims to derive machine learning models that are
equivariant under actions on the input data.

1.2 Non-numerical Data and StructuredModels

Whilemost of themainmachine learningmodels work on vector-valued data, many problems
are best described with non-numerical or mixed data, such as graphs or discretely labelled
data. In addition to the descriptive role that the algebraic perspective affords for machine
learning theory, an algebraic representation can directly express hierarchically-structured
models, in which nodes can be labelled with arbitrary (i.e. symbolic and/or numeric) contex-
tual data.

It is widely acknowledged that deep learning has difficulty in generalizing beyond the
training set [11] and the absence of first-class hierarchical structure in Deep Learning rep-
resentations has been conjectured to be one of the main reasons behind this [43], as well
as leaving DL vulnerable to adversarial attack [20]. Of particular interest is the associated
ability to represent hierarchical structure without the need for encoding and decoding steps,
since these have an attendant prospect of ignoring important structural constraints. Cogni-
tive linguists have long argued that a key cognitive capacity is the ability to represent and
transform recursive structure [27], since such representations allow infinitely many proposi-
tions to be finitely described. Such induced structure can then be used as a base substrate for
the computational implementation of cognitive mechanisms such as abstraction and analogy
[43].

1.3 Universal Algebra and Compositionality

We use universal algebra [5] as a language for describing the structure of machine learning
models. We will specifically work with free term algebras to describe these models, which
are algebraic constructions consisting of all the possible combinations of terms generated by
a predefined set of constants and functions. This set is called the signature of the algebra, and
its elements are terms such as x, y, f (·), g(·, ·, ·), ... which can be used to form combinations
like g(x, y, f (y)). We can therefore separate this purely symbolic term from its evaluation,
which we obtain by substituting particular values in for x and y in some set X and particular
functions f : X → X and g : X3 → X . The evaluation of terms is therefore done recursively,
and so is naturally viewed in the context of functional programming, where the term algebra
and set X are both algebraic data types and the evaluation is a catamorphism between them.

123

4 Page 4 of 32 I. Jones et al.

We will treat this theory in the language of category theory, which formalises the idea that
certain properties of the functions constructing themodel canbepreservedunder composition.

In this framework, the internal structure of the model is made explicit in the term expres-
sion. This allows us to describe structural constraints in terms of the signature, and the form
of the expressions we generate with it. On the other hand, by treating these algebras within
the wider context of category theory, we can describe the compositional properties of models
with the categories in which they lie.

1.4 Dynamical Systems and Term Rewriting

While this algebraic approach seems to richly describe the structure and compositionality
of static functions f : Xn → Xm , an important class of machine learning models are the
dynamical systems of the form

G : Xn → Xn f : Xn → Xm

leading to the dynamical process:

x0 x1 x2

y0 y1 y2

f
G

f
G

f
G

This class of models includes recurrence relations, recurrent neural networks, message-
passing models on graphs, and diffusion models, but there is no clear notion of algebraic
dynamics with which to fit them into this algebraic framework. This means there is no
algebraic description with which to describe the structure and structural constraints on the
dynamics of a model. It also means we cannot apply category theory to describe a model’s
compositionality, which is a particularly important consideration in the dynamic case as, if
a property of the dynamics only holds approximately, the error will compound over time.

Wewill address this here, and show that in fact the notion of dynamical system is perfectly
captured by the algebraic notion of term rewriting. A rewrite rule is a relation that rearranges
the subterms of a term in some specified manner, such as f (x, f (y, z)) �→ f (f (x, y), z)
which defines associativity.

We use this to construct a purely algebraic class of models called rewriting models using
the theory of term rewriting and functional programming. In our case, the rewrite rule will
define the inductive composition of terms which, when evaluated recursively, will generate
a dynamical system. Our main result is to prove that these rewriting models coincide with
the usual definition of dynamical systems when the algebraic expressions are evaluated
recursively: the rewrite rule thereby precisely captures the syntax of the dynamics, onto
which the learning process imposes a semantics as a recursive function. In this sense, these
models encode both syntax and semantics simultaneously, and so provide a unified language
for talking about both. The informal version of the theorem is as follows.

Theorem (Algebraic dynamical systems, Theorem 6.3) The class of dynamical systems
embeds in the class of rewriting models, such that every rewriting model projects onto a
dynamical system.

In other words, we show that term rewriting is the correct notion of algebraic dynamical
system. These rewriting models are precisely the same as dynamical systems on the level of
output, but they allow for a fully algebraic representation of the structural evolution over time.

123

Algebraic Dynamical Systems... Page 5 of 32 4

Aswe show in the next section, this is an incredibly important feature in practice, but currently
lacks a formal representation. Furthermore, this description can be used prescriptively to
impose structural and relational constraints in a compositional way. We show this in the
following theorem, also given informally.

Theorem (Compositionality, Theorem 7.1) If the sets and functions used in a rewriting model
are all in a category C, where C has the same coproduct as Set, then the rewriting model is
equivalent to one in C.

This can be interpreted as a universality property, which states that the algebraic dynamics
given by rewriting describe dynamical systems in every category C with the appropriate
coproduct. This includes all the main categories of interest in machine learning, and so
proves that rewriting models are a fully compositional construction.

In the context of hybrid machine learning, the algebraic setting we use in this paper is
type-agnostic, since the algebraic description of a model is treated independently of the data
type of the output. By developing a general framework for algebraic dynamical systems,
we propose that the rewriting models used in this paper provide a template for the future
development of hybrid models. These two theorems provide a theoretical justification for
this, because they show that rewriting models are indeed the correct symbolic analogue of
dynamical systems, and that the important properties of the type (whatever it turns out to be)
are preserved.

2 Algebraic Constraints in Machine Learning

In this section we will survey some different uses of algebraic constraints in popular machine
learning models. By an algebraic constraint we mean a rule that forces a given function in
a model to take a specified form, such as passing through a bottleneck or sharing weights
with other functions. We will emphasise that imposing algebraic constraints is the same as
controlling the structure of the model, and that desirable structural properties of models can
be expressed and specified algebraically.

2.1 Static Models

We will first discuss static machine learning (ML) models that do not evolve over time with
the iterated application of some function.

Example 2.1 (Neural networks) Neural networks are a standard tool in machine learning tool
for function approximation from data. They are composed of linear functions fi : Rni →
Rni+1 called layers with nonlinear activation functions applied componentwise to all the
layers

R
nin → R

n1 → · · · → R
nout

They are ubiquitous because they train well and are universal approximators (in the sense that
they are dense in L2 [34]), but are not compositional in that they do not havemany guaranteed
properties besides continuity. In many image and temporal applications we would like the
output to be space- or time-equivariant, which is achievedwith a convolutional neural network
inwhich the layer functions fi are the convolution of the input with a learned kernel. This also
massively reduces the number of parameters needed per layer, something called parameter
sharing in which the small number of kernel parameters is unfolded to a whole layer.

123

4 Page 6 of 32 I. Jones et al.

So among the family of neural networks, the ones with important compositional properties
can be specified by this particular formula for convolution. The structure we want is therefore
induced algebraically, and the algebraic form also controls things like the size and shape of
the kernel.

Example 2.2 (Low-rank matrix completion) The matrix completion problem is fundamental
in many applied ML domains [12]. Given an incomplete matrix M , the problem is to find
a complete matrix M ′ that approximately agrees with M where M is sampled. This is a
common problem in recommendation systems where each column is a product and each row
is a user, and the matrix contains that user’s rating or opinion of that product. Most users
will not have used most products, so M is mostly empty, but if it can be completed then the
entries of M ′ can be used to suggest products to a user based on their previous preferences.

The most common approach is to approximate M by a low-rank matrix M ′ so that, if M
is n ×m, M ′ = AB where A is n × k and B is k ×m. If k is taken to be small (less than the
number of completed entries of M), then finding A and B becomes a well-posed optimisation
problem. Furthermore, by tuning k we can control the properties of the output: smaller k will
make M ′ smoother and more robust while larger k will make it more sensitive and precise.
In this example the form of the solution is straightforward, but these desirable qualities are
entirely structural, and are controlled by the algebraic properties of M ′ (namely its rank).

Example 2.3 (Autoencoders) There are many generative problems in ML where we would
like a model to sample new data from a given probability distribution. These generally take
the form of an autoencoder [8], in which data in a large dimensional space are encoded in
a smaller dimensional space by a function e : R

n → R
k , and then decoded by a function

d : R
k → R

n . The model is then trained to minimise ||d ◦ e − id||, so that the encoding has
minimal loss but is constrained by the bottleneck dimension k. Unlike the matrix completion
example, there is not a natural choice for the forms of e and d , although the bottleneck k
plays the same role of controlling precision versus robustness. Again, this k is a structural
constraint that is implemented through the algebraic form of the model.

The bottleneck is also essential for using (variational) autoencoders as generative models,
where we want to sample data from a distribution by sampling in the compressed latent
space. The data in the input space R

n often suffer from the curse of dimensionality: that
the number of data needed to densely sample a region of space increases exponentially with
the dimension. Statistical modelling of data in this space is then usually impossible, but the
sparse data in R

n can be made sufficiently dense in R
k for small enough k.

Example 2.4 (Graphmodels) Graph neural networks (GNNs) [48] are amodel forML on data
in the form of a labelled graph, where each vertex has a vector label mv with information
about that vertex, and edges are sometimes labelled as well. This can be used for vertex
segmentation or regression, as well as whole-graph classification. GNNs are static models in
the above sense, where the data on each vertex is transformed by a function which depends
both on the data at that vertex and the data of its neighbours (and the edges connecting
the neighbours, if they are labelled). This constitutes one layer of the network, and a GNN
usually comprises a few layers.

In this sense, GNNs make use of the graph structure via the neighbourhood aggregation,
and so constrain the algebraic form of the model to one that encodes locality. By placing
a topological requirement on the algebraic expressions in the model, the GNN becomes
sensitive to that extra structure and does not simply view the vertices as a set.

123

Algebraic Dynamical Systems... Page 7 of 32 4

2.2 Dynamic Models

We now consider dynamic ML models which are the main focus of this paper. By dynamic
wemean amodel of which a large component is the iterated application of a learned function,
such as a recurrence relation, recurrent neural network (RNN), or attention transformer. As
discussed above, the algebraic properties of a static model specify its structure, and that struc-
ture is often essential for a variety of objectives. Historically the dominant trend in dynamical
models was to use fairly unstructured dynamics, withminimal algebraic constraints, like gen-
eral message-passing neural networks for graphs and RNNs for time series. More recently
huge progress has been made by replacing these models with simpler but more structured
alternatives with tighter algebraic constraints, such as convolutional networks [1], attention
transformers [47] and diffusionmodels for graphs [7], attention head networks for time series
[45], and the emergence of stable diffusion for generative modelling [6]. In all these cases
the power of the model is derived from structural constraints on the dynamical interaction
taking place, suggesting that an algebraic approach will effectively describe the properties
of these models as well.

Example 2.5 (Time series models) The canonical example of a dynamic ML model is an
RNN [25], or variations thereof such as long short-term memory networks [46]. In these
models, there is a hidden dynamical system R

k → R
k which is updated at each time step by

a function that takes in the state vector from the previous time step and also the network’s
input, if it is made available. The update function is fixed, so the algebraic form of the model
reuses this base function at each timestep, leading to a family of models parametrised by
time. This algebraic property guarantees that the model defines a dynamical system, and is
effectively translation equivariant.

Example 2.6 (Diffusion models) Many popular ML models are trained by continuously opti-
mising some objective function, and so must be differentiable in their parameters. They are
typically also differentiable in their input (i.e. themodels are differentiable functions), and so,
once trained, can be used to optimise some input to have a particular output value. A recent
and very prominent extension of this idea is a diffusion model, which takes random input
and optimises the likelihood of that input given by some target probability distribution. This
allows the generation of sample data from that distribution by starting with a random input
point and then diffusing it in this way towards the distribution. A more advanced variant uses
Bayesian optimisation with a pre-trained classification model to generate prompt-specific
diffusions to the distribution [6].

Viewed as a discrete diffusion process, diffusion models are also dynamic models in
the sense that the diffusion operator is iteratively applied to the input. The iteration of this
operator thereby induces a family of models indexed by diffusion time, where the output of
the model is taken to be the limit of this process in some sense. The theoretical guarantees
for the diffusion follow from Langevin dynamics, which are encoded in the algebraic form of
the diffusion operator. When Bayes’ theorem is used for prompt-based diffusion, this is also
specified algebraically. As with RNNs, this allows an algebraic description of the model’s
individual static functions, but the model itself, viewed as a family of n-step iterations, does
not admit a unified algebraic description.

While we can use the algebraic theory for static models to describe the functions involved
in these dynamic examples, there is no unified algebraic framework for expressing the model
as a whole. In other words, there is no corresponding algebraic dynamics that describes the

123

4 Page 8 of 32 I. Jones et al.

iterated application of the component functions that comprise all these examples. We will
address that question in this paper.

This is also an important issue in the development of hybrid dynamic models, which
need to process timeseries of symbolic or mixed data types. For example, one particular
open problem in contemporary robotics is how to extend ‘simultaneous localization and
mapping’ (SLAM [37]) algorithms (which incrementally construct scene representations in
real-time) to incorporate semantic constraints [13, 21]. In the proposedmodel, this is possible
by propagating successive parse-trees as first-class objects through the learning process for
the timeseries. The output of a parse is a structured representation of a scene and (in all but
pathological situations) there will likely be significant structural continuity between frames.
With a hybrid representation, this commonality can be exploited by the learning process to
ensure spatio-temporal coherence and more efficient inference.

3 RelatedWork

As first introduced in Risi Kondor’s thesis [23], the term ‘algebraic machine learning’ refers
to harmonic approaches to representation-theoretic constraints; Swan [41] relatedly used the
group-theoretic Fourier transform to perform continuous (i.e. real-valued) learning of heuris-
tics for a discrete (i.e. permutation) problem. A wide perspective on constraint representation
for ML is proposed by Bronstein et al’s ‘Erlangen programme’ for Geometric Deep Learning
via the unifying perspective of group theory [4].

Following an initial miscellany of influential publications (e.g. [15, 16, 18]), there is
nascent but increasingly-convergent interest in the application of category theory to machine
learning, with Shiebler et al providing a recent survey [36] of this rapidly-growing area.
An area of considerable activity is a categorical treatment of inference (e.g. [9, 14, 38]), in
particular affording a unified perspective via (dependent) optics/polynomial functors (e.g.
[17, 30, 39, 40, 43]).

Regarding the desire to maintain a compositional mapping between syntax and semantics,
previous work by Bloom et al [3] (motivated predominantly by the ability to reason about
concurrent systems) provides a functorial mapping from datatypes (the syntax) to behaviour
(as represented by e.g. finite state automata). A compositional theory for the operational
semantics of generalised Petri nets is proposed by Master [28]. With particular regard to the
role of algebraic data types as a syntactic form for structural learning, Swan [42] uses symbolic
regression to learn recursive functions of algebraic data types (ADTs) and subsequently
proposes [43] that the ADT structure itself should also be learned, as a basis for ‘necessary
and sufficient’ causal structure.

4 Discrete Dynamical Systems

The class of models we will seek to describe algebraically are known as discrete dynamical
systems. We will regard these as models for time series, although they can have different
interpretations, such as diffusion processes as described above. The term discrete dynamical
system is often also used more specifically for the sub-class which, in this paper, we will term
recurrence relations [19]. These are the sequences (sn) which satisfy

sn = f (sn−1, ..., sn−d)

123

Algebraic Dynamical Systems... Page 9 of 32 4

for some d (which we call the depth of the relation) and function f : Xd → X , for all n ≥ d .
The sequence is then specified by f and the d initial conditions s0, ..., sd−1 ∈ X .

We will briefly discuss some examples and properties of recurrence relations, and how
they fit within the broader class of recurrent systems.

4.1 Recurrence relations

A simple example of a recurrence relation is the Fibonacci sequence given by sn = sn−1 +
sn−2, and linear recurrence relations in general are a surprisingly expressive class of model
(i.e. where the function f is linear). They include, for example, the popular ARIMA model
for time series (albeit without the error quantification for which ARIMA is also used [31]).

Example 4.1 A sequence of the form

sn =
m∑

i=1

(
ai sin(ci n + si) + bi cos(ci n + si)

)

can be expressed as a depth-2m linear recurrence relation. Notice that

sn−k =
m∑

i=1

ai
(
sin(ci n + si) cos(ci k) − cos(ci n + si) sin(ci k)

)

+
m∑

i=1

bi
(
cos(ci n + si) cos(ci k) − sin(ci n + si) sin(ci k)

)

=
m∑

i=1

(
ai cos(ci k) − bi sin(ci k)

)
sin(ci n + si)

+
m∑

i=1

(
bi cos(ci k) − ai sin(ci k)

)
cos(ci n + si)

for all k ∈ N. Hence the set {sn−1, ..., sn−2m} satisfies a system of linear equations in 2m
variables, which can be solved to give each sin(ci n + si) and cos(ci n + si) in terms of the
si . These can be substituted into the expression for sn to give a linear recurrence relation.

A broader class of sequences can be modelled by non-linear recurrence relations.

Example 4.2 Let p be adegree-k polynomial, and sn = p(n).Notice thatwe canfindconstants
b0, ..., bk such that

b0 + b1 p(n − 1) + ... + bk p(n − k) = n

for all n, so define f : R
k → R by

f (x1, ..., xk) = b0 + b1x1 + ... + bkxk .

Then sn = p ◦ f (sn−1, ..., sn−k), with initial conditions p(0), ..., p(k).

Example 4.3 If sn is a strictly monotonic sequence in R then we can write sn = f (n) for
some (non-unique) invertible function f : R → R. So sn = f (f −1(sn−1) + 1) is a first
order recurrence relation.

123

4 Page 10 of 32 I. Jones et al.

If the dynamical system is a recurrence relation, then the learning problem is greatly
simplified. The structure of the model as sn = f (sn−1, ..., sn−d) means that, for a given
depth d , we can compute the time-delay embedding

{(sn, sn−1, ..., sn−d) : n ∈ N}
and learning the recurrence relation f becomes a regression problem on this point cloud.

4.2 Dynamical Systems

A common method in the analysis of dynamical systems is to exchange 1-dimensional/ nth

order systems for n-dimensional/ first order ones. For example, with a linear recurrence of
order 2, we would write

(
sn
sn−1

)
=

(
a1 a2
1 0

) (
sn−1

sn−2

)
.

Now we have a hidden first order dynamical system which is interpreted via the projection
map (x, y) �→ x . This more general form of model is what we will call dynamical systems in
this paper. Rather than modelling a time series itself recurrently as above, there is a hidden
dynamical process in a latent space, along with a map from the system to the output space.

Definition 4.4 A dynamical system is a pair of sets (X , Y) and maps G : Y → Y and
f : Y → X . We call Y the latent space (or set) and X the output space (set). We call a
dynamical system cartesian if Y = Xn for some n.

A dynamical system produces a sequence in X for each initial state y0 ∈ Y , by the iterated
application of G to y0 followed by f .

x0 x1 x2

y0 y1 y2

f
G

f
G

f
G

Example 4.5 A recurrent neural network is a cartesian dynamical system in which G and f
are neural networks, and usually X = R.

Example 4.6 A Kalman filter’s estimation process is a cartesian dynamical system in which
G and f are linear, and X = R [22].

Example 4.7 A depth-d recurrence relation is a cartesian dynamical system where f is the
projection π1, and G is given by

(x1, ..., xd) �→ (g(x1, ..., xd), x1, ..., xd−1)

Example 4.8 A (time-independent) message passing neural network is a dynamical system
on the set of edges and vertices, but it can also be viewed as a cartesian dynamical system.
Let each vertex have hidden state htv at time t , the edges have fixed hidden states evw , the
messages be passed by

mt+1
v =

∑

w∈N (v)

M(htv, h
t
w, evw)

123

Algebraic Dynamical Systems... Page 11 of 32 4

and states updated by

ht+1
v = U (htv,m

t+1
v),

with readout function

R({htv : v ∈ G}).
If there are n vertices with d-dimensional hidden states, then the recurrent system has hidden
space Y = R

nd , where each hidden state is of the form

xt = (htv1 , ..., h
t
vn

).

Define m : Y → R
n by

(h1, ..., hn) �→ (∑

vk∈N (v1)

M(h1, hk, ev1vk), ...,
∑

vk∈N (vn)

M(hn, hk, evnvk)
)
,

and G : Y → Y by

x = (h1, ..., hn) �→ (
U (h1,m(x)), ... , U (hn,m(x))

)
.

Then the dynamical system uses G for state transitions and the output function f : Y → R

given by

(h1, ..., hn) �→ R({hk : k = 1, ..., n}).
There are many other such examples of dynamical systems in machine learning, and the

class is strictly greater than the recurrence relations. However, we can ask exactly how much
bigger, or equivalently under what conditions a dynamical system can be expressed as a
recurrence relation.

Lemma 4.9 Let D be a cartesian dynamical systemgiven byG and b and defineφ : R
d → R

d

by

x �→ (b(x), b(G(x)), ..., b(Gd−1(x))).

Then D is a depth-d recurrence relation if φ is invertible.

Proof If we define φ as above then

φ(xk−d−1) = (b(xk−d−1), ..., b(xk−2))

= (sk−d , ..., sk−1),

Where sn is the sequence induced by D, and xn is the sequence of hidden states. If φ is
invertible we can recover xk−d−1, so then

sk = b(Gd(φ−1(sk−d , ..., sk−1))),

so we have a recurrence relation b ◦ Gd ◦ φ−1. �	
In the case that the dynamical system is linear, we can directly apply this to generically

reduce the model to a recurrence relation.

Proposition 4.10 If K is a linear cartesian dynamical system where G is linear with distinct
eigenvalues, and b acts non-trivially on the eigenvectors of G, then K is a depth-d linear
recurrence relation, where d is the dimension of the hidden space.

123

4 Page 12 of 32 I. Jones et al.

Proof Let G : R
d → R

d where R
d is the hidden state, and define φ : R

d → R
d as the linear

map

x �→ (b(x), b(G(x)), ..., b(Gd−1(x))).

Lemma 4.9 says that if φ is invertible then K is a recurrence relation. Since G has distinct
eigenvalues λ j , we can change the basis of C

d to an eigenbasis for G, where now G is
diagonal with distinct entries. So, writing b = (b1, ..., bd) in this new basis, where we
assume all bi
= 0, we have

det(φ) =

∣∣∣∣∣∣∣∣

b1 b2 · · · bd
b1λ1 b2λ2 · · · bdλd
· · · · · · · · · · · ·

b1λ
d−1
1 b2λ

d−1
2 · · · bdλd−1

d

∣∣∣∣∣∣∣∣

=
(d∏

j=1

b j

)
∣∣∣∣∣∣∣∣

1 1 · · · 1
λ1 λ2 · · · λd
· · · · · · · · · · · ·

λd−1
1 λd−1

2 · · · λd−1
d

∣∣∣∣∣∣∣∣

=
(d∏

j=1

b j

)(∏

1≤i< j≤d

(λ j − λi)
)
,

using the formula for the determinant of a Vandermonde matrix. This is non-zero under
precisely the conditions we have assumed. So φ is invertible, and

sk = b ◦ Gd ◦ φ−1(sk−d , ..., sk−1),

making K a linear recurrence relation. �	

This result can be seen as a special case of Takens’ theorem [44], which says that the map
φ is invertible, for some depth d , for a generic smooth dynamical system on R. As such, we
can view smooth dynamical systems as recurrence relations based on the principle in lemma
4.9.

However, to say that a dynamical system can bemodelled as a recurrence relation does not
mean that this is an efficient model for learning. Based on the principle of compositionality,
in practice such models are often composed of more complex or robust parts, as described in
the examples above. In the following section, we lay out our algebraic model for dynamical
systems that offers a natural language for describing and reasoning about compositionality
in time-series modelling.

5 Universal Algebra and Rewriting

We now introduce the proposed rewriting model using ideas from functional programming.
The model will comprise an iterated term rewriting process, in which a single term is itera-
tively rewritten to generate a sequence. This provides a purely algebraic representation of the
structure of the model, which can then be interpreted by a recursive function from the term
algebra into the output type. We will conclude that there is a constructive correspondence
between the two families of model, so that, given a model in one family, we can construct an
equivalent model in the other.

123

Algebraic Dynamical Systems... Page 13 of 32 4

In this way we can identify the model architecture with two algebraic objects: the initial
term at the start of the process, and the rewrite rule that tells us how to build up the dynamics
at each time step. The recursively defined output function then interprets the term in the
output type. In other words, the rewrite rule describes the hyper-parameters of the model,
including any algebraic constraints, and the catamorphism describes the parameters.

This will allow a unified algebraic description of the time-parametrised family of models
and their constraints, and permits the same algebraic analysis and specification that exists for
static models.

5.1 Terms and Algebras

The rewriting process is purely formal andwill be definedon a termalgebra.Wenow introduce
some standard notions from universal algebra and term rewriting. More details can be found
in [2].

Definition 5.1 (Signature) A signature is a function � : N → Set. The set �n := �(n) is
called the set of n-ary operators of �.

Definition 5.2 (�-terms)Let� be a signature andV be a set of variables such that�∩V = ∅.
The set T (�, V) of all �-terms over V is defined inductively by

• V ⊆ T (�, V) (every variable is a term),
• f (t1, ..., tn) ∈ T (�, V) for all f ∈ �n and ti ∈ T (�, V) for i = 1, ..., n (closure under

the application of function symbols).

We can identify the terms with the set of planar trees whose vertices are labelled by
elements of �n and leaves by elements of V . We can alternatively interpret this term set as
the elements of a type, where the signature induces the constants and operators associated
with the type. The variables will let us define equations and relations in the type with which
we can define rewriting. For example, �0 = {a, b}, �1 = { f }, and �2 = {g} means that
there are two constants, one unary function, and one binary function.

We will use the following standard definitions, although intuitively these correspond to
operations on the tree representation of terms. Positions in the term index the vertices of the
tree, a subterm is obtained by pruning the tree at a vertex, and a tree can be inserted into
another at a specified vertex.

Definition 5.3 Let � be a signature, V be a set of variables disjoint from �, and s, t ∈
T (�, V).

1. The set of positions of the term s is a set Pos(s) of strings over the alphabet of positive
integers, which is inductively defined as follows:

• If s = v ∈ V , then Pos(s) := {ε}, where ε denotes the empty string.
• If s = f (s1, ..., sn), then

Pos(s) := {ε} ∪
⋃

{i p : p ∈ Pos(si)}.
The position ε is called the root position of the term s, and the function or variable symbol
at this position is called the root symbol of s. We denote by l(p) the length of the string
p.

2. For p ∈ Pos(s), the subterm of s at position p, denoted by s|p , is defined by induction
on the length of p:

123

4 Page 14 of 32 I. Jones et al.

• s|ε = s,
• f (s1, ..., sn)|iq = si |q .

3. For p ∈ Pos(s), we denote by s[t]p the term that is obtained from s by replacing the
subterm at position p by t , i.e.

• s[t]ε = t ,
• f (s1, ..., sn)[t]iq = f (s1, ..., si [t]q , ..., sn).

4. We denote the set of variables occurring in s by Var(s), so

Var(s) := {v ∈ V : s|p = v for some p ∈ Pos(s)}.
A term t ∈ T (�, V) is called ground if Var(t) = ∅.

We can induce maps on the term algebra by defining them on the variables, and then
insisting that these substitutions commute with the operators.

Definition 5.4 (Substitution) Let � be a signature and V be a countably infinite set of vari-
ables. A T (�, V)-substitution (or just substitution), is a function V → T (�, V). The set
of all T (�, V)-substitutions will be denoted by Sub(T (�, V)) or just Sub. Any T (�, V)-
substitution σ can be extended to a map σ̂ : T (�, V) → T (�, V) by setting σ̂ = σ on V
and then inductively defining

σ̂ (f (s1, ..., sn)) = f (σ̂ (s1), ..., σ̂ (sn))

for all si ∈ T (�, V). We say a term t is an instance of a term s if there exists a substitution σ

such that σ̂ (s) = t . We will usually suppress the hat in notation where there is no ambiguity.

In functional programming, we can interpret the signature as generating an algebraic data
type (ADT) where the arity of the operators specify the shape of the type in some sense. We
now make this notion precise.

Definition 5.5 (�-algebra) If � is a signature, a �-algebra is a set X along with functions
xσ : Xn → X for all σ ∈ �n and all n. In particular, there are constants xσ ∈ X for each
σ ∈ �0.

Definition 5.6 (�-algebra Homomorphism) If � is a signature and X and Y are �-algebras,
a �-algebra homomorphism is a function h : X → Y such that h(xσ (x1, ..., xn)) =
yσ (h(x1), ..., h(xn)) for all σ ∈ �n . In particular h(xσ) = yσ for all σ ∈ �0.

So the unique extension of substitution (explained in their definition) is really saying that
a function f : V → T (�, V) extends uniquely to a homomorphism T (�, V) → T (�, V).
The �-algebras also form a category. The sets of �-terms T (�, V) are �-algebras, where
for each f ∈ �n we define x f : Xn → X by

(t1, ..., tn) �→ f (t1, ..., tn).

It can be shown that the set of ground terms T (�, ∅) is the initial object in this category,
called the initial algebra. It is a subalgebra of every set of terms T (�, V). Fromnowonwewill
suppress the� in the notation and denote, for fixed�, T := T (�, ∅) and T (V) := T (�, V).
We can equivalently describe the �-algebras as algebras of an endofunctor F of Set.

123

Algebraic Dynamical Systems... Page 15 of 32 4

Definition 5.7 (F-algebra) IfC is a category, and F : C → C is an endofunctor ofC , then an
F-algebra is a tuple (A, α), where A is an object ofC andα is aC-morphism F(A) → A. The
F-algebras form a category where a map from (A, α) to (B, β) is aC-morphism f : A → B
such that f ◦ α = β ◦ F(f).

F(A) F(B)

A B

F(f)

α β

f

Given a signature �, we can define F� : Set → Set as

X �→
∑

f ∈�

X | f | ∼=
∑

N

�n × Xn

where | f | denotes the arity of f , and identify each σ with its corresponding summand
X |σ |, then the �-algebras are exactly the category of F�-algebras, F�-Alg. We can define a
forgetful functor U : F�-Alg → Set by sending (A, α) �→ A, which can be shown to have
a left adjoint T : V �→ T (V). The functor T is fully faithful, because any homomorphism
T (V) → T (V ′) is uniquely determined by its restriction to V and the map associated to
a homomorphism is its restriction to V . In particular the homomorphisms T (V) → T (V)

are in bijection with maps f : V → T (V), where the homomorphism associated to f is
T (f) : T (V) → T (f (V)) ⊆ T (V).

The initial algebras T of F�-Alg are called algebraic data types (ADTs) in functional
programming, and are used to give the following notion of a recursive program.

Definition 5.8 [Catamorphism] If X is a set, T is an initial F-algebra, and c : F(X) → X ,
then the catamorphism of c is the unique map cata(c) : T → X such that

F(T) F(X)

T X

F(cata(c))

φ c

cata(c)

commutes.

For example, we can identify the natural numbers N, along with the maps ∗ �→ 0 and
n �→ n+1, as the initial algebra of the endofunctor X �→ X +1. This lets us define recursive
functions N → X by specifying two functions 1 → X and X → X . For example the
map α : N → C which sends n �→ zn is given by the maps ∗ �→ 1 and w �→ zw, since
α(0) = α ◦ φ(∗) = 1 and α(n + 1) = α ◦ φ(n) = zα(n), and so α(n) = znα(0) = zn by
induction.

We can dually define F-coalgebras for any endofunctor F , where instead we have mor-
phisms α : A → F(A). If we let ψ : T → F(T) by f (t1, ..., tn) �→ (t1, ..., tn) then by
Lambek’s Lemma [24] (T , ψ) is the final coalgebra, and ψ is inverse to φ.

We can push the algebra and coalgebra maps φ and ψ through the functor F to make T
into an Fn algebra and coalgebra, and define

�n := φ ◦ · · · ◦ Fn−1(φ) : Fn(T) → T

�n := Fn−1(ψ) ◦ · · · ◦ ψ : T → Fn(T)

123

4 Page 16 of 32 I. Jones et al.

which are mutual inverses. These both clearly satisfy

Fn(T) Fn(T)

T T

Fn(f)

�n �n

f

Fn(T) Fn(T)

T T

Fn(f)

f

�n �n

for any homomorphism f : T → T . The map �n can be seen as splitting a (ground) term’s
expression tree into its constituent subtrees of distance at most n from the root. Correspond-
ingly, �n will assemble a tree from a collection of subtrees. While the ground terms form an
initial algebra and hence are also a coalgebra, if we take a set of terms with variables T (V)

then, while this is an F-algebra, it fails to be a coalgebra because the inverse map ψ is not
defined on the variables. We can, however, define it on the subset of non-variable terms, and
by extension define �n on all terms whose variables occur at depth at least n from the root.

For example, if x , y, and z are variables, the term f (x, g(y, z)) can be split by ψ into
(x, g(y, z)) ∈ T 2 ⊂ F(T). However �1 = F(ψ) ◦ψ cannot be applied since x is a variable
and so ψ(x) is not defined.

So in the case that a term t has all its leaves at the same depth, the right choice of n will
strip the tree down to just the variables and constants at the leaves, i.e. there exists some n
such that t̂ := �n(t) ∈ (�0∪V)k ⊂ Fn(T) for some k. This will be important for our model
as we would like to keep track of the action of a homomorphism on the tuple of variables in
a given term. We can make this explicit and show that the correct choices of n and k are the
depth and leaf number of the term, which we now define.

Definition 5.9 Let t ∈ T (V) be a term. Then the depth of t is defined as

d(t) := max{length(p) : p ∈ Pos(t)}
and the leaf number of t is defined as

L(t) := |{p ∈ Pos(t) : t |p ∈ V ∪ �0}|.

Even when t has no constants, the leaf number of is not necessarily the size of Var(t),
since variables in t may be repeated more than once. For example if t = f (g(x, y), x), where
x and y are variables, then d(t) = 2 and L(t) = 3.

5.2 Reduction Relations and Rewriting Functions

We can now make use of the variables to define expressions in the term algebra. These will
be used to parameterise rewriting processes, which can be induced by identities of two terms.

Definition 5.10 (�-identity) Let � be a signature and V a set of variables disjoint from �.
A �-identity (or simply identity) is a pair (s, t) ∈ T (V) × T (V). We call s the left-hand
side (LHS) and t the right-hand side (RHS), and assume always that Var(t) ⊆ Var(s).

Identities are the basis for rewriting, by generating from each identity a reduction relation.
This nomenclature refers to the typical use of rewriting as a simplification of complex expres-
sions. In our application, the relation will in fact be building up a sequence of increasingly
complex terms, and so is better viewed as an expansion rather than a reduction.

123

Algebraic Dynamical Systems... Page 17 of 32 4

Definition 5.11 (Reduction Relation) Let E be a set of �-identities. The reduction relation
→E⊂ T (V) × T (V) is defined as s →E t if there exists some pair (l, r) ∈ E , p ∈ Pos(s),
and σ ∈ Sub where

s|p = σ(l) and t = s[σ(r)]p.
We sometimes write s →p

E t to indicate the position at which the reduction takes place. We
also call (l, r) a rewrite rule and say that s rewrites to t .

For example, if

l = f (x, f (y, z)) r = f (f (x, y), z)

is an identity, then f (a, f (g(b), f (c, d))) will rewrite to f (f (a, g(b)), f (c, d)) at position
ε and rewrite to f (a, f (f (g(b), c), d)) at position 2.

Reduction relations are typically used in rewriting systems comprising multiple rules and
where the rewriting can occur at any position. For our application, we will be using a single
rewrite rule (although in practice this may be searched for and constructed as a composition
of multiple simple rules), and insist that the reduction occurs at a specified position. In this
case, the reduction relation defines a function between the subsets of T (V)whichmatchwith
the left-hand rule. We note for our application that the set of ground terms T is clearly closed
under rewriting, since Var(t) ⊆ Var(s) whenever s →E t .

Definition 5.12 Given a term s and position p, we define the set of instances of s at position
p by

T s
p := {t ∈ T (V) : t |p = σ(s) for some σ ∈ Sub}.

Given a pair of terms (l, r), where Var(r) ⊆ Var(l), we can define a rewriting function
Rp : T l

p → T r
p by

t �→ t[σ(r)]p
if t |p = σ(l).

We need to check that Rp is well defined, in the sense that it does not depend on the
substitution σ . We further show that it is a surjection, and is also injective in the case that
Var(r) = Var(l).

Lemma 5.13 Rp is awell defined surjection T l
p → T r

p which is injective if V ar(r) = Var(l).

Proof In order to show that Rp is well defined, we need to check that if σ(l) = σ ′(l) for two
substitutions σ and σ ′, then σ(r) = σ ′(r). We claim that if σ(t) = σ ′(t) for some term t
then σ = σ ′ on Var(t). If v ∈ Var(t) then there is some p where t |p = v. So

σ(v) = σ(t |p) = σ(t)|p = σ ′(t)|p = σ ′(t |p) = σ ′(v).

We also note by induction that σ(t) is determined by the value of σ on Var(t). Using this
and the fact that Var(r) ⊆ Var(l), it follows that σ(r) = σ ′(r) whenever σ(l) = σ ′(l).

It is clear that the codomain of Rp is indeed contained in T r
p , since (t[σ(r)]p)|p = σ(r)

and so if t ∈ T l
p then Rp(t) ∈ T r

p . Conversely, if t ∈ T r
p then t |p = σ(r) for some σ . Now

let t ′ = t[σ(l)]p ∈ T l
p . We see that

Rp(t
′) = (

t[σ(l)]p
)[σ(r)]p = t[σ(r)]p = t,

123

4 Page 18 of 32 I. Jones et al.

so Rp is surjective.
We now show that Rp is injective under the additional assumption that Var(r) = Var(l).

Suppose t, t ′ ∈ T l
p , so t |p = σ(l) and t ′|p = σ ′(l) for substitutions σ and σ ′, and that

Rp(t) = Rp(t ′) i.e. t[σ(r)]p = t ′[σ ′(r)]p .
We can see that

σ(r) = (
t[σ(r)]p

)|p = (
t ′[σ ′(r)]p

)|p = σ ′(r).

By the same argument as above, where this time we use the fact that Var(r) = Var(l), we
have σ(l) = σ ′(l) and so t |p = t ′|p . It then follows that

t = t[t |p]p
= (

t[σ(r)]p
)[t |p]p

= (
t ′[σ ′(r)]p

)[t |p]p
= t ′[t |p]p
= t ′[t ′|p]p
= t ′,

and so Rp is injective. �	
Example 5.14 Suppose� is a signature comprising two constants a and b, as well as a single
binary relation (·, ·). Suppose we introduce two variables x and y to define a rewrite rule
(x, y) �→ (y, (x, y)). Then, for example,

T l
ε = {(t1, t2) : ti ∈ T (V)}

and

T l
21 = {(t1, ((t2, t3), t4)) : ti ∈ T (V)}.

The map R21 sends

(t1, ((t2, t3), t4)) �→ (t1, ((t3, (t2, t3)), t4)).

The requirement that Var(r) = Var(l) for injectivity is essential. If we take l = f (x, y)
and r = g(x) for variables x and y then Rε is clearly not injective, as Rε(f (x, y)) =
Rε(f (x, x)) = g(x).

For our application, we are interested in rewrite rules that can be repeatedly applied to
a single term to generate a sequence. This is possible exactly when r = τ(l) for some
substitution τ .

Lemma 5.15 T r
p ⊆ T l

p if and only if r = τ(l) for some substitution τ .

Proof If r = τ(l) for some τ , and t ∈ T r
p , then t |p = σ(r) = στ(l) for some σ . So t ∈ T l

p and

hence T r
p ⊆ T l

p . Conversely, suppose T
r
p ⊆ T l

p . Let t be any termwith t |p = r , so that t ∈ T r
p

is witnessed by the identity substitution. Then by assumption t ∈ T l
p , so r = t |p = τ(l) for

some τ . �	
We would like to establish a connection between an iterated rewriting function and the

hidden state of a recurrent system, which can be in any type. We do this by associating to
each reduction relation a natural transformation between powers of the endofunctor F , such

123

Algebraic Dynamical Systems... Page 19 of 32 4

that the rewriting function Rp is conjugate to the action of this natural transformation on
F(T).

Fd(l)(T (V)) Fd(r)(T (V))

T p
l T p

l

ηT (V)

�d(r)

Rε

�d(l)

If we consider a dynamical system on R
2 as an example, where the hidden dynamical

process is given by g = (g1, g2) and the output function by f , we can represent the symbolic
application of g by the rewrite rule f (x1, x2) �→ f (g1(x1, x2), g2(x1, x2)), where x1 and x2
are variables. We can then find lifted terms l̂ ∈ V 2 ⊂ F(T) and r̂ ∈ V 4 ⊂ F2(T). Viewing
F as a polynomial functor in the variable Y , we can use this information to define a natural
transformation between the corresponding cofactors Y 2 and Y 4 of F and F2, by defining
the map 4 → 2 as (1, 2, 1, 2) determined by the variables x1 and x2. If we can somehow
extend this natural transformation to the other cofactors of F , we can define η : F → F2

such that r̂ = ηT (l̂). The naturality of η will allow us to define an analogous rewrite on other
F-algebras. In this example the map ηR : R

2 → R
4 will describe the application of g and f .

There is, however, a technical problem with generalising the case above to all examples
of rewrite rules. For example if the rule was f (x1, x2) �→ f (g1(x1, x2), x2) then, although
r̂ ∈ V 3 ⊂ F2(T), there is no copy of Y 3 in F2 with which to identify this, because the
subterms of r have different depths. We can, however, account for this by including an
additional unary operator ι in � which will always be interpreted as the identity Y → Y
for any �-algebra. In this example, we can then write r = f (g1(x1, x2), ι(x2)), so that the
rewrite corresponds to a natural transformation of cofactors Y 2 → Y 3. We make this precise
below, where we write �′ for this extended signature, but first define the property of all
variables occurring at the same depth, which we call flat.

Definition 5.16 A term t ∈ T (V) is called flat if l(p) = d(t) for all p ∈ Pos(t) with
t |p ∈ V .

We now check that the extension of � to �′ guarantees for each term t the existence of an
essentially equivalent flat term t ′. If (Y , α) is a �-algebra we let (Y , α′) be the �′-algebra
where α′ extends α by α′ : ι �→ idY

Lemma 5.17 If t ∈ T (V), then there is a flat term t ′ ∈ T (�′, V) such that cata(α)(t) =
cata(α′)(t ′) for all �-algebras (Y , α).

Proof We define t ′ by induction on d(t). If d(t) = 0 then Pos(t) = {ε} so t ′ = t . If d(t) ≥ 1
then t = f (t1, ..., tn) for some f ∈ �n (and where d(ti) ≤ d(t) − 1 for all i) and so we set

t ′ = f (ιd(t)−d(t1)−1(t ′1), ..., ιd(t)−d(tn)−1(t ′n)).

Then, if t ′|p ∈ V , we have p = iqp′ where 1 ≤ i ≤ n, q is a string of d(t) − d(ti) − 1
ones, and q ∈ Pos(t ′i) where t ′i |q = t ′|p ∈ V . So l(q) = d(ti) by induction, and l(p) =
1 + (d(t) − d(ti) − 1) + d(ti) = d(t), so t ′ is flat.

123

4 Page 20 of 32 I. Jones et al.

We can then check inductively that

cata(α′)(t ′) = cata(α′)(f (ιd(t)−d(t1)−1(t ′1), ..., ιd(t)−d(tn)−1(t ′n)))
= α(f)(cata(α′)(ιd(t)−d(t1)−1(t ′1)), ..., cata(α′)(ιd(t)−d(tn)−1(t ′n)))
= α(f)(cata(α′)(t ′1), ..., cata(α′)(t ′n)) since α′(ι) = idY

= α(f)(cata(α)(t1), ..., cata(α)(tn)) by induction

= cata(α)(f (t1, ..., tn))

= cata(α)(t)

for all �-algebras (Y , α). �	
So with the addition of this additional identity operator, we can assume without loss of

generality that the left and right-hand side terms of the rewrite rule are flat. This is precisely
the condition that guarantees we can identify the variable tuple V L(t) with a cofactor Y L(t)

of Fd(t). As noted before we can define the map �n on all terms with minimal leaf depth at
least n, so in particular we can lift each flat term t to a term t̂ := �n(t). We now make this
more precise.

Lemma 5.18 Let t ∈ T (V) be flat. Then the functor Y �→ Fd(t)(Y) has a cofactor Y L(t),
and there is a tuple t̂ ∈ (�0 ∪ V)L(t) such that �d(t)(t̂) = t .

Proof We use induction on d(t), and use Yn to denote the monomial functor throughout. If
d(t) = 0, then t is either a constant or a variable, meaning L(t) = 1. It follows immediately
that F0 = Y has Y 1 = Y as a cofactor, and that t ∈ �0 ∪ V ⊂ T (V) satisfies �0(t) = t .

If d(t) ≥ 1 then t = f (t1, ..., tn) for some f ∈ �n , where all ti have d(ti) = d(t) − 1
(since flatness is a hereditary property). Note that we can condition

Pos(t) =
n⋃

i=1

{i p′ : p′ ∈ Pos(ti)}

and so

{p ∈ Pos(t) : t |p ∈ �0 ∪ V } =
n⋃

i=1

{i p′ : p′ ∈ Pos(ti), t |p ∈ �0 ∪ V }

is a disjoint union, giving

L(t) =
n∑

i=1

|{p′ ∈ Pos(ti) : t |p ∈ �0 ∪ V }| =
n∑

i=1

L(ti).

If we make the inductive assumption that Y �→ Fd(t)−1(Y) has Y L(ti) as a cofactor for all i
then Fd(t)(Y) = F(Fd(t)−1(Y)) has

n∏

i=1

Y L(ti) ∼= Y
∑n

i=1 L(ti) ∼= Y L(t)

as a cofactor. We can then define

t̂ = (t̂1, ..., t̂n) ∈
n∏

i=1

(�0 ∪ V)L(ti) ∼= (�0 ∪ V)L(t) ⊂ Fd(t)(�0 ∪ V),

123

Algebraic Dynamical Systems... Page 21 of 32 4

and verify that

�d(t)(t̂) = φ ◦ F(�d(t)−1)(t̂)

= φ(�d(t)−1(t̂1), ..., �d(t)−1(t̂n))

= φ(t1, ..., tn)

= t

by induction. �	
If we take the example t = f (g(f (x, c), y), x), where c is a constant and x, y

are variables, then d(t) = 3 and L(t) = 4. We can flatten t to the T (�′, V) term
t ′ = f (g(f (x, c), ι(y)), ι2(x)), so that t̂ ′ = (x, c, y, x) ∈ (�0 ∪ V)4. We can check that

�3(t̂ ′) = f (�2(x, c, y),�2(x)

= f (g(φ(x, c), φ(y)), ι(φ(x)))

= f (g(f (x, c), ι(y)), ι2(x))

= t ′

according to the configuration of the cofactor Y 4 in F3. The representable notation Yn does
obscure the fact that when we refer to such terms as powers of Fd they also contain the
information about the construction of the terms within. For example, there is a copy of Y 2

in F2 corresponding to both terms of the form g(f (x, y)) and f (g(x), y), although this sort
of algebraic ambiguity will not be important in the following application.

Before proceeding with the result we summarise some basic facts about polynomial func-
tors. For a full exposition see [40].

Lemma 5.19 (Yoneda) Given a functor F : Set → Set and a set S, there is an isomorphism

F(S) ∼= Nat(Y S, F)

where Nat denotes the set of natural transformations. Moreover, this isomorphism is natural
in both S and F.

In particular, we obtain the useful corollary that

ST ∼= Nat(Y S, Y T)

which classifies the monomial natural transformations. In the case of polynomials, we use
the fact that the natural transformations on coproduct functors are exactly the coproducts of
natural transformations on each cofactor, so that, if p and q are polynomials,

Nat(p, q) =
∏

i∈p(1)

∑

j∈q(1)

p
q j
i .

We can now prove a lemma that associates to each rewrite rule a natural transformation
that factors through the algebra structure. Intuitively we would like to take a term t that
matches with a flat left-hand term l at position ε, and push t up the levels of F to depth
d(l), corresponding to breaking the expression tree for t down into its subtrees at the variable
positions of l. The rewriting of these variables from l to r can then be conferred onto t as
a natural transformation from T (V)Var(l) → T (V)Var(r). In practice, it will prove more
straightforward to extend this to a natural transformation η : T (V)d(l) → T (V)d(r). Conju-
gation with �d(l) and �d(r) will allow us to express the rewriting function in terms of ηT (V).

123

4 Page 22 of 32 I. Jones et al.

We will later deal with the case of non-trivial rewrite position by restricting the term to the
subterm at position p and applying a position-ε rewrite, and so this simple case is all we
characterise here.

Note that we cannot deal with non-trivial rewrite position by simply pushing this same
process up to the depth of the rewrite position. This is because the term may match multiple
times at the same depth, but we only want the subterm at the specified position to change. In
other words �l(p) ◦ Rε ◦ �l(p)
= Rp .

Lemma 5.20 If (l, r) is a�′-identity, where l and r are flat and d(r) ≥ d(l), then there exists
a natural transformation η : Fd(l) → Fd(r) such that the diagram

Fd(l)(T (V)) Fd(r)(T (V))

T p
l T p

l

ηT (V)

�d(r)

Rε

�d(l)

commutes for all positions p.

Proof Given the two flat terms l, r ∈ T (V), by Lemma 5.18 we can find tuples

l̂ = �d(l)(l) ∈ (�0 ∪ V)L(l) ⊂ Fd(l)(T (V))

r̂ = �d(r)(r) ∈ (�0 ∪ V)L(r) ⊂ Fd(r)(T (V)).

We begin by constructing η : Fd(l) → Fd(r) such that r̂ = ηT (V)(l̂). Since we assume that
Var(r) ⊆ Var(l), we can assign to each i ∈ {1, ..., L(r)} some ji ∈ {1, ..., L(l)} such
that r̂i = l̂ ji . So let u : L(r) → L(l) by i �→ ji , which defines a natural transformation
Y L(l) → Y L(r). To extend this to a natural transformation η : Fd(l) → Fd(r) we must pick
natural transformations on the other cofactors of Fd(l). Under the assumption that d(r) ≥ d(l)
we can use the d(r)−d(l) power of the identity operator ι to match each Y n ⊂ Fd(l)(Y)with
Yn ⊂ Fd(r)(Y). We choose the identity natural transformation so that η : Fd(l) → Fd(r)

will preserve the cofactors that are not rewritten. By construction we have that r̂ = ηT (V)(l̂).
From the properties of �n and �n , and naturality of η, we can assemble a commutative

diagram

T (V) Fd(l)T (V) Fd(r)T (V) T (V)

T (V) Fd(l)T (V) Fd(r)T (V) T (V)

�d(l)

σ

ηT (V)

Fd(l)(σ)

�d(r)

Fd(r)(σ) σ

�d(l) ηT (V) �d(r)

If s ∈ T l
ε and t = Rε(s), then there exists some substitution σ with s = σ(l) and t =

s[σ(r)]ε = σ(r). We can evaluate the diagram at l to obtain

l �l(p)(l̂) �l(p)(r̂) r

s t

�d(l)

σ

ηT (V) �d(r)

σ

�d(r)◦ηT (V)◦�d(l)

123

Algebraic Dynamical Systems... Page 23 of 32 4

and so t = �d(r) ◦ ηT (V) ◦ �d(l)(s). Conversely suppose that s ∈ T l
ε (so s = σ(l) for some

substitution σ) and t = �d(r) ◦ ηT (V) ◦ �d(l)(s). We now have

l �l(p)(l̂) �l(p)(r̂) r

s t

�d(l)

σ

ηT (V) �d(r)

σ

�d(r)◦ηT (V)◦�d(l)

so t = σ(r) = Rε(s). So Rε = �d(r) ◦ ηT (V) ◦ �d(l) for all positions p. �	
Note that the natural transformation η is not uniquely determined by the pair (l, r), since

the term l may have repeated variables. In the case that each variable in l appears only once,
and l contains no constants, then there is a unique η.

6 RewritingModels

We will now introduce rewriting models for time series, and prove that they are indeed the
algebraic analogue of dynamical systems.

We start by defining a term algebra on a signature, and some rewrite rule in that algebra.
We would like the rewrite rule to represent some time-homogeneous process, so we will
generate a sequence from the iterated application of that single rule to some initial term t0.
By Lemma 5.15 this is possible precisely when r = τ(l). We also choose a �-algebra (X , c)
which comprises the output set X and the map c which interprets the terms as elements of
X . From these constituent pieces, we can define our model.

Definition 6.1 Let � be a signature, (l, r ′) be a �-identity in some T (V) with r = τ(l), and
p a position, which induces a rewriting function Rp : T l

p → T l
p . If (X , c) is a �-algebra,

and t0 ∈ T l
p is a ground initial term, then a rewriting model is the map N → X given by

n �→ cata(c) ◦ Rn
p(t0).

Note that, if we require that r = τ(l), then if l is flat then r is not flat in general. This is
because substitution increases the leaf depth of the variables but not the constants. So even if
τ only substitutes flat terms of the same depth, τ(l)will still not be flat if l contains constants.
Hence we define r as a general term but rewrite using the flattened term r ′.

Wewill show that this model is equivalent to a dynamical system on XL(l). First, we define
two maps

H : Fd(l)(T) → Fd(l)(T) H = Fd(r)(φ) ◦ · · · ◦ Fd(l)−1(φ) ◦ ηT

and

G : Fd(l)(X) → Fd(l)(X) � = Fd(l)(c) ◦ · · · ◦ Fd(r)−1(c) ◦ ηX ,

where η is the induced natural transformation Fd(l) → Fd(r) in Theorem 5.20. Note that
the requirement that d(r) ≥ d(l) is satisfied by the fact that r = τ(l). G will be the hidden
dynamical process on XL(l), and H is the algebraic equivalent on T L(l).

Lemma 6.2 Let H and G be as above. Then

Fd(l)(cata(c)) ◦ Hn = Gn ◦ Fd(l)(cata(c)),

and this also holds on the cofactors T L(l) and XL(l).

123

4 Page 24 of 32 I. Jones et al.

Proof It suffices by induction to prove the case n = 1. Naturality of η : Fd(l) → Fd(r) gives
the commutative square

Fd(l)(T) Fd(r)(T)

Fd(l)(X) Fd(r)(X)

ηT

Fd(l)(cata(c)) Fd(r)(cata(c))

ηX

Inductively applying F to the definition of catamorphism produces the ladder

Fd(r)(T) Fd(r)−1(T) · · · Fd(l)+1(T) Fd(l)(T)

Fd(r)(X) Fm−1(X) · · · Fd(l)+1(X) Fd(l)(X)

Fd(r)−1(φ)

Fd(r)(cata(c))

Fd(r)−2(φ)

Fd(r)−1(cata(c))

Fd(l)+1(φ) Fd(l)(φ)

Fd(l)+1(cata(c)) Fd(l)(cata(c))

Fd(r)−1(c) Fd(r)−2(c) Fd(l)+1(c) Fd(l)(c)

where d(r) ≥ d(l) because r = τ(l). Gluing these along Fd(r)(cata(c)) gives the result.

Fd(l)(T) Fd(r)(T) Fd(l)(T)

Fd(l)(X) Fd(r)(X) Fd(l)(X)

ηT

Fd(l)(cata(c))

H

Fd(l)(φ)◦···◦Fd(r)−1(φ)

Fd(r)(cata(c)) Fd(l)(cata(c))

ηX

G

Fd(l)(c)◦···◦Fd(r)−1(c)

We constructed η such that η : Y L(l) → Y L(r) (where Yn denotes the functor Y �→ Yn), so
we obtain the following restriction.

T L(l) T L(r)

XL(l) XL(r)

ηT

cata(c)L(l) cata(c)L(l)

ηX

We now check if r = τ(l) then the ladder construction is also valid. Since l is flat it lifts to the
tuple l̂ ∈ (V ∪ �0)

L(l) ⊂ Fd(l)(T). If r = τ(l) then �d(l)(r) ∈ T L(l) also, but each variable
in l̂ is now replaced with its substitution under τ . Flattening to r ′ means that each component
of the tuple �d(l)(r ′) ∈ T L(l) has the same depth. Note that, although it is suppressed by the
notation Yn , each representable cofactor of Fk contains the compositional information about
how they were constructed from lower-order terms. As such we obtain

T d(r) T d(l)

Xd(r) Xd(l)

Fd(l)(φ)◦···◦Fd(r)−1(φ)

cata(c)d(r) cata(c)d(l)

Fd(l)(c)◦···◦Fd(r)−1(c)

123

Algebraic Dynamical Systems... Page 25 of 32 4

since all maps involved respect the algebra structure. So we have

T L(l) T L(l)

XL(l) XL(l)

cata(c)d(l)

H

cata(c)d(l)

G

where G and H denote the relevant restrictions. �	
This lemma tells us that the inductive definition of the term sequence has a corre-

sponding dynamical process in Xd(l), and these are conjugate with the lifted catamorphism
Fd(l)(cata(c)). This is at the core of the following main result, which says that the rewriting
models are an algebraically enriched class of dynamical systems. Specifically, the cartesian
dynamical systems embed into the rewriting models, and each rewriting model projects onto
a dynamical system, where that projection admits a section. So we can think of the rewrit-
ing models as a space of models that is fibred over the dynamical systems, where the fibre
contains the additional structural information.

Theorem 6.3 (Equivalence of models) The class of cartesian dynamical systems embeds in
the class of rewriting models. The rewriting models project onto the cartesian dynamical
systems and that projection admits a section.

Proof We will show how, given a model in one of these classes, we can construct a corre-
sponding model in the other. We will see that the composition of these constructions will fix
any dynamical system, and so give an embedding. Conversely, the composed constructions
may forget the additional algebraic structure given by a rewriting model. We will first prove
that any rewriting model will project onto a cartesian dynamical system, and then show that
this projection has a section (or left-inverse).

We start by considering a rewriting model at the base position ε, given by (l, r) and c,
and some initial term t0. As in Lemma 6.2 we can construct a ladder using the definition of
catamorphism.

Fv(l)(T) Fv(l)−1(T) · · · F(T) T

Fv(l)(X) Fv(l)−1(X) · · · F(X) X

Fv(l)−1(φ)

Fv(l)(cata(c))

Fv(l)−2(φ)

Fv(l)−1(cata(c))

F(φ) φ

F(cata(c)) cata(c)

Fv(l)−1(c) Fv(l)−2(c) F(c) c

Using Lemma 6.2 we can form the diagram

T l
ε T v(l) T v(l) T l

ε

Xv(l) Xv(l) X

�v(l)

Rn
ε

Hn

Fv(l)(cata(c)) Fv(l)(cata(c))

�v(l)

cata(c)

Gn Cv(l)

where Ck := c ◦ · · · ◦ Fk−1(c). If we define an initial state

x0 = Fv(l)(cata(c))(�v(l)(t0)) ∈ Xv(l)

123

4 Page 26 of 32 I. Jones et al.

then

cata(c) ◦ Rn
ε (t0) = Cv(l) ◦ Gn(x0),

which is a cartesian dynamical system with internal state Xv(l).
We now deal with the case in which the rewriting occurs at a non-trivial position p. To

do this we would like to restrict our terms to their subterms at position p, which reduces the
situation to the above case for position ε. The technicality is that the output of the induced
dynamical system will be the value of the rewritten subterm, and not the entire term we
started with. We will need to define a context function X → X which compensates for this
adjustment. We first check that the restriction we want makes sense, so let rp : T l

p → T l
ε by

t �→ t |p . We would like the following diagram to commute

T l
p T r

p

T l
ε T r

ε

Rp

rp rp

Rε

and can verify that, if t ∈ T l
p so t |p = σ(l), we have

rp ◦ Rp(t) = rp(t[σ(r)]p) = σ(r) = Rε(σ (l)) = Rε ◦ rp(t).
We now construct our function X → X which will have the effect of substituting the output
of the dynamical system back into the initial term. We define a substitution function Subp

s :
T (V) → T (V) by

Subp
s (t) =

{
s[t]p if p ∈ Pos(s)
t otherwise

Suppose we have a �-algebra (X , c), a term t ∈ T , and a position p ∈ Pos(t). We would
like to find a function αt

p : X → X which satisfies

T T

X X

Subtp

cata(c) cata(c)

αt
p

and do so by induction on l(p). If l(p) = 0 then p = ε and Subtp = idT , so αt
p = idX .

If l(p) ≥ 1 then p = kq for some k ∈ N and position q . Since p ∈ Pos(t) we must have
d(t) ≥ 1, so t = f (t1, ..., tn) for some f ∈ �n , where n ≥ k. Now l(q) = l(p) − 1, so by
induction there is some α

tk
q : X → X which satisfies

T T

X X

Sub
tk
q

cata(c) cata(c)

α
tk
q

So we define αt
p : X → X by

x �→ c(f)(cata(c)(t1), ..., cata(c)(tk−1), α
tk
q (x), cata(c)(tk+1), ..., cata(c)(tn)).

123

Algebraic Dynamical Systems... Page 27 of 32 4

We can then verify that, if s ∈ T , we have

αt
p ◦ cata(c)(s) = c(f)(cata(c)(t1), ..., α

tk
q (cata(c)(s)), ..., cata(c)(tn))

= c(f)(cata(c)(t1), ..., cata(c)(tk[s]q), ..., cata(c)(tn))
= cata(c)(f (t1, ..., tk[s]q , ..., tn))
= cata(c)(t[s]kq)
= cata(c) ◦ Subtp(s),

so αt
p satisfies αt

p ◦ cata(c) = cata(c) ◦ Subtp .
We can now expand the diagram given above with these additional pieces, where t0 is the

initial term (which lives in T l
p).

T l
p T l

p

T l
ε T v(l) T v(l) T l

ε T l
p

Xv(l) Xv(l) X X

Rn
p

rp rp

�v(l) Hn

Fv(l)(cata(c)) Fv(l)(cata(c))

�v(l)

cata(c)

Sub
t0
p

cata(c)

Gn Cv(l) α
t0
p

We notice that, since r = τ(l), if t |p = σ(l) then Rp(t) = t[στ(l)]p and so Rn
p(t) =

t[στ n(l)]p . So given the initial term t0 ∈ T l
p where t0|p = σ(l), we have

Subt0p ◦ rp ◦ Rn
p(t0) = Subt0p ◦ rp(t0[στ n(l)]p)

= Subt0p (στ n(l))

= t0[στ n(l)]p
= Rn

p(t0).

If we now let

x0 := Fv(l)(cata(c)) ◦ �v(l)(t0|p),
be our initial element of Xv(l), we can conclude that

cata(c) ◦ Rn
p(t0) = cata(c) ◦ Subt0p ◦ rp ◦ Rn

p(t0)

= αt0
p ◦ Cv(l) ◦ Gn ◦ Fv(l)(cata(c)) ◦ �v(l) ◦ rp(t0)

= (αt0
p ◦ Cv(l)) ◦ Gn(x0).

So the rewriting model is again a cartesian dynamical system, where the hidden dynamics
are still given by G, but where α

t0
p ◦ Cv(l) is the new output map Xv(l) → X .

We now prove the converse: that the cartesian dynamical systems embed in the rewriting
models, in the sense that composition with the construction above will fix the dynamical
system. Suppose we have a cartesian dynamical system on X of depth d , so there are maps
G : Xd → Xd and f : Xd → X . We would like to find an equivalent rewriting model, i.e.
a section (left-inverse) of the projection above. Define a signature � via

�0 = {a1, ..., ad} �1 = {ι} �d = {σ0, ..., σd}

123

4 Page 28 of 32 I. Jones et al.

and �n = ∅ for all other n. Now F(X) = d + X + (d + 1)Xd . We pick a variable set
V = {v1, ..., vd} and a �-identity

l = σ0(v1, ..., vd) r = σ0(σ1(v1, ..., vd), ..., σd(v1, ..., vd))

which induces a natural transformation η : F → F2 where

σ0(t1, ..., td) �→ σ0(σ1(t1, ..., td), ..., σd(t1, ..., td))

ai �→ ι2(ai)

σi (t1, ..., td) �→ ι(σi (a1, ..., ad))

for i = 1, ..., d . We also induce a catamorphism by the assignments

σ0 �→ f σi �→ πi ◦ G ι �→ idX ai �→ xi

for i = 1, ..., d , where x0 = (x1, ..., xd) ∈ Xd is the initial internal state of the dynamical
system, and πi : Xd → X is projection onto the i th component. We can represent this in the
following diagram.

T d + T + (d + 1)T d d + T + (d + 1)T d T

d + X + (d + 1)Xd d + X + (d + 1)Xd X

ψ

Rn
ε

Hn

F(cata(c)) F(cata(c))

φ

cata(c)

Gn c

If we choose the initial term t0 ∈ T as t0 = σ0(a1, ..., ad) then

F(cata(c)) ◦ ψ(t0) = F(cata(c))(a1, ..., ad)

= (cata(c)(a1), ..., cata(c)(ad))

= (x1, ..., xd)

= x0.

and so cata(c) ◦ Rn
ε (t0) = f ◦ Gn(x) for all n. So any cartesian dynamical system embeds

as a rewriting model at position ε. �	
We can interpret this result as saying that we can use the purely algebraic language of

terms and rewriting to describe the structure of a dynamical system, but that the structure
contained in the rewrite rule is strictly richer than the dynamical system projection. This
allows us to identify how the algebraic structure evolves and whether it has any interesting
properties. The converse is also true: given a rewriting model for a sequence in an arbitrary
type X , we can now understand the model to be the appropriate generalisation of dynamical
systems to that type.

7 Compositionality of RewritingModels

Given that we now have an algebraic language for the temporal structure of these models,
we would also like to know in what sense it is compositional. In other words, how do we
know what properties of a dynamical system are propagated over time? In order to address

123

Algebraic Dynamical Systems... Page 29 of 32 4

this we identify compositionality with functoriality, meaning that the properties we want to
be preserved under composition define a category C which embeds via a forgetful functorU
into Set.

Examples of this can be constraints on the sorts of sets involved,which could be topological
spaces, manifolds or Euclidean spaces. The functions between them can then be further
reduced to be continuous, smooth, k-smooth, or linear. Another important class of categories
are the G-equivariant sets, which are the main object of geometric deep learning, where
models are prescribed to be equivariant under the actions or representations of various groups
G. Convolutional neural networks, for example, are maps in the category of R

2-equivariant
Euclidean spaces with piecewise linear maps. This is achieved via compositionality, since
each layer can be shown to be R

2-equivariant, and so their composition must be too.
We will prove the following meta-theorem, which states that, if the sets and maps that

define the dynamical system are in the image of the functorU , then, under certain assumptions
on C , the dynamical system as a whole will lift to one in C .

Theorem 7.1 (Compositionality) Let C be a category with products and coproducts, and
U : C → Set be a functor with natural isomorphisms

U (X + Y) ∼= U (X) +U (Y) U (X × Y) ∼= U (X) ×U (Y).

Let X ∈ C and cσ : X |σ | → X in C for each σ in some signature �, so that we can define
c : F(U (X)) → U (X) with each U (cσ). Then a rewriting model given by some �-identity
(l, r) and c is equivalent to a cartesian dynamical system whose sets and maps are all in C.

Proof The statement is well-defined because U preserves products, so if cσ : X |σ | → X in
C then U (cσ) : U (X)|σ | → U (X) in Set. The fact that U also preserves coproducts means
we can define a lift F̂ : C → C such that U F̂ = FU , where F̂ copies the same polynomial
form as F . This is possible since the polynomials induced by a rewriting model have finite
exponents, and we can define Xn inductively in C .

Suppose the �-identity (l, r) induces a natural transformation η : FL(l) → FL(r). We
would like to construct a lift of ηX to a map η̂ : F̂ L(l)(X) → F̂ L(r)(X) in C (note that
we just require a map: this η̂ will not be a natural transformation). If we denote by Y k the
functor Y �→ Y k then we can decompose η into natural transformations Y n → Ym . Using
the Yoneda lemmawe identify each of these with maps u : m → n and can express the action
of ηX as x �→ x ◦ u. We can then define η̂ on each cofactor Xn by sending x �→ x ◦ u ∈ Xm .
It is clear that U (η̂) = ηU (X) by construction.

Finally, we note that c : F(U (X)) → U (X) is constructed such that c = U (ĉ) where
ĉ : F̂(X) → X is given by the maps cσ : X |σ | → X on each cofactor of F̂(X). It then also
follows that F(c) = U (F̂(ĉ)). So all the maps involved in the construction of the rewriting
model are in the image of U , and we can build a lifted model in C whose image under U
returns the original model. The fact that U preserves coproducts means that the lifted model
in C is also a cartesian dynamical system. �	

In the context of functional programming or machine learning, the categories of interestC
are all modelled in Set, meaning that a forgetful functorU : C → Set is always defined, and
will usually have a left adjoint free functor Set → C . Since right adjoints preserve limits, the
product in C will agree with the one in Set and so the product condition in Theorem 7.1 is
immediately satisfied. The subtlety is in the coproduct condition, which is generally satisfied
when C is topological, like smooth manifolds or Euclidean spaces. In algebraic categories
like vector spaces or groups, the condition will break down, as the coproduct has to identify

123

4 Page 30 of 32 I. Jones et al.

the identity elements of its cofactors, and so we cannot define maps separately on each of
them.

It follows that, even thoughwe have defined rewritingmodels in theminimal setting ofSet,
they are actually a universal construction in all categories with the appropriate product and
coproduct structures. This includes the topological categories with continuous or smooth
maps, and the important group-equivariant topological categories of interest in geometric
deep learning. So in the context of machine learning, this means that rewriting models are
compositional. Specifically, if the sets and functions involved all have a desirable property
(i.e. form a category), then the model as a whole also has this property.

Finally, we observe that we can make the totally recursive structure of a rewriting model
explicit as a composition of catamorphisms over N. We can describe the iterated application
of Rp to the term t0 as the catamorphism

1 + N 1 + T l
p

N T l
p

0+succ

1+cata(t0+R)

t0+Rp

cata(t0+Rp)

so that the model is the composition

cata(c) ◦ cata(t0 + Rp) : N → T l
p → X .

Acknowledgements We would like to acknowledge the generous financial support and opportunities for
collaboration that have been given to this work by Hylomorph Solutions. Jeffrey Giansiracusa was supported
by EPSRC grant EP/R018472/1 through the Centre for TDA.

Author Contributions Iolo Jones and Jerry Swan conceived of the rewriting model framework. The main
manuscript was written by Iolo Jones with the supervision of Jeffrey Giansiracusa, and the introduction was
written by Iolo Jones and Jerry Swan. All authors reviewed the manuscript.

Funding Iolo Jones is a consultant to Hylomorph Solutions. Jerry Swan receives a salary from Hylo-
morph Solutions where he is Director of Research. Jeffrey Giansiracusa was supported by EPSRC Grant
EP/R018472/1 through the Centre for TDA.

Declarations

Conflict of interest None.

Consent for Publication All authors consent to the publication of this work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

Algebraic Dynamical Systems... Page 31 of 32 4

References

1. Aloysius, N., Geetha, M. : A review on deep convolutional neural networks. In: 2017 International
Conference on Communication and Signal Processing (ICCSP). (pp. 0588–0592). (2017). https://doi.
org/10.1109/ICCSP.2017.8286426

2. Baader, F., Tobias, N.: Term Rewriting and All That. Cambridge University Press (1998). https://doi.org/
10.1017/CBO9781139172752

3. Stephen, L., Bloom, N.S., Walters, R.F.C.: Matrices, machines and behaviors. Appl. Categorical Struct.
4, 343–360 (1996). https://doi.org/10.1007/BF00122683

4. Michael, M., Bronstein, J.B., Taco C., et al. Geometric deep learning: grids, groups, graphs, geodesics,
and gauges. (2021). arXiv:2104.13478 [cs.LG]

5. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Cham (1981)
6. Cao, H., Tan, C., Gao, Z., et al. A survey on generative diffusion model. (2022). arXiv:2209.02646 [cs.AI]
7. Chamberlain, B.P, Rowbottom, J., Gorinova, M., et al. GRAND: graph neural diffusion. (2021).

arXiv:2106.10934 [cs.LG]
8. Chen, S., Guo, W.: Auto-encoders in deep learning;a review with new perspectives’. Mathematics 11,

2227–7390 (2023). https://doi.org/10.3390/math11081777
9. Cruttwell, G.S.H., Gavranović, B., Ghani, N., et al. Categorical foundations of gradient-based learning.

(2021). arXiv:2103.01931 [cs.LG]
10. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.

(MCSS) 2, 303–314 (1989). https://doi.org/10.1007/BF02551274
11. D’Amour, A., Heller, K., Moldovan, D., et al. Underspecification presents challenges for credibility in

modern machine learning. (2020). arXiv: 2011.03395 [cs.LG]
12. Davenport, M.A., Romberg, J.: An overview of low-rank matrix recovery from incomplete observations.

IEEE J. Sel. Topics Signal Process. 10, 608–622 (2016). https://doi.org/10.1109/JSTSP.2016.2539100
13. Davison, A. J.: FutureMapping: the computational structure of spatial AI systems. In: CoRR

abs/1803.11288 (2018). arXiv:1803.11288
14. Diskin, Z.: Supervised categorical learning as change propagation with delta lenses. In: CoRR

abs/1911.12904 (2019). arXiv:1911.12904
15. Elliott, C. Compiling to categories. In: Proc. ACM Program. Lang. 1.ICFP (2017). https://doi.org/10.

1145/3110271
16. Elliott, C.: The simple essence of automatic differentiation. In: Proceedings of the ACM on Programming

Languages (ICFP). (2018). http://conal.net/papers/essence-of-ad/
17. Fong, B., Johnson, M.: Lenses and learners. (2019). arXiv:1903.03671 [cs.LG]
18. Fong, B., Spivak, D.I., Tuyéras, R.: Backprop as Functor: a compositional perspective on supervised

learning. (2019). arXiv:1711.10455 [math.CT]
19. Galor, O., et al. Discrete dynamical systems. In: GE, Growth, Math Methods, Econ-WPA. available at

http://ideas.repec.org/p/wpa/wuwpge/0504001.html (2005)
20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and Harnessing Adversarial Example”. In: CoRR

abs/1412.6572 (2014). arXiv:1412.6572
21. Hughes, N., Chang Y., Hu, S., et al. Foundations of spatial perception for robotics: hierarchical represen-

tations and real-time systems. (2023). arXiv: 2305.07154 [cs.RO]
22. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)
23. Kondor, I.R.: Group Theoretical Methods in Machine Learning. PhD thesis. Columbia University, (2008)
24. Lambek, J.: A fixpoint theorem for complete categories. Math. Zeitschrift 103, 151–161 (1968). (http://

eudml.org/doc/170906)
25. Lipton, Z.C., Berkowitz J., Elkan C., A critical review of recurrent neural networks for sequence learning.

(2015). arXiv:1506.00019 [cs.LG]
26. Malcolm, G.: Algebraic data types and program transformation. PhD thesis. University of Groningen:

Faculty of Science and Engineering, (1990)
27. Gary, F.: Marcus. The Algebraic Mind. MIT Press (2001)
28. Master, J.: Composing behaviors of networks. (2021). arXiv:2105.12905 [math.CT]
29. McCarthy, J.,Minsky,M. L., Rochester, N.: et al. A Proposal for the dartmouth summer research project on

artificial intelligence. (1955). http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
30. Myers,D.Z.:Categorical systems theory. http://davidjaz.com/Papers/DynamicalBook.pdf. In preparation.

(2022)
31. Paul, N.: ARIMA model building and the time series analysis approach to forecasting. J. Forecast. 2,

23–35 (1983). https://doi.org/10.1002/for.3980020104
32. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors.

Nature 323, 533–536 (1986)

123

https://doi.org/10.1109/ICCSP.2017.8286426
https://doi.org/10.1109/ICCSP.2017.8286426
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1007/BF00122683
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2209.02646
http://arxiv.org/abs/2106.10934
https://doi.org/10.3390/math11081777
http://arxiv.org/abs/2103.01931
https://doi.org/10.1007/BF02551274
http://arxiv.org/abs/2011.03395
https://doi.org/10.1109/JSTSP.2016.2539100
http://arxiv.org/abs/1803.11288
http://arxiv.org/abs/1911.12904
https://doi.org/10.1145/3110271
https://doi.org/10.1145/3110271
http://conal.net/papers/essence-of-ad/
http://arxiv.org/abs/1903.03671
http://arxiv.org/abs/1711.10455
http://ideas.repec.org/p/wpa/wuwpge/0504001.html
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/2305.07154
http://eudml.org/doc/170906
http://eudml.org/doc/170906
http://arxiv.org/abs/1506.00019
http://arxiv.org/abs/2105.12905
http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://davidjaz.com/Papers/DynamicalBook.pdf.
https://doi.org/10.1002/for.3980020104

4 Page 32 of 32 I. Jones et al.

33. Stuart, J.: Russell, Peter, Norvig: Artificial Intelligence: A Modern Approach. Prentice Hall (2010)
34. Franco, S., Chung, T.A.: Universal approximation using feedforward neural networks: a survey of some

existing methods, and some new results. Neural Netw. 11, 15–37 (1998). https://doi.org/10.1016/S0893-
6080(97)00097-X

35. Schölkopf, B.: Causality for machine learning. In: Probabilistic and Causal Inference. ACM, (pp. 765–
804). (2022). https://doi.org/10.1145/3501714.3501755

36. Dan, S., Bruno, G., Paul, W.W.: Category theory in machine learning. In: CoRR abs/2106.07032 (2021).
arXiv:2106.07032

37. Randall, S.C., Peter, C.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5,
56–68 (1986). https://doi.org/10.1177/027836498600500404

38. Smithe, T.S.C.: Bayesian updates compose optically. (2020). arXiv:2006.01631 [math.CT]
39. Spivak, D.I.: Learners’ languages. Electron. Proc. Theor. Comput. Sci. 372, 14–28 (2022). https://doi.

org/10.4204/eptcs.372.2
40. Spivak, D.I.: Poly: an abundant categorical setting for mode-dependent dynamics. (2020). https://doi.org/

10.48550/ARXIV.2005.01894
41. Jerry, S.: Harmonic analysis and resynthesis of Sliding-Tile Puzzle heuristics’. In: 2017 IEEECongress on

Evolutionary Computation (CEC). (pp. 516–524)). (2017). https://doi.org/10.1109/CEC.2017.7969355
42. Jerry, S., Krzysztof, K., Zoltan, K.A.: Stochastic synthesis of recursive functions made easy with bananas,

lenses, envelopes and barbed wire’. Genetic Program Evol Mach 20, 327–350 (2019). https://doi.org/10.
1007/s10710-019-09347-3

43. Swan, J., Nivel, E., Kant, N., et al.: The Road to General Intelligence. Springer, Cham (2022). https://
doi.org/10.1007/978-3-031-08020-3

44. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick
1980: proceedings of a symposium held at the University of Warwick 1979/80. Springer. (pp. 366–381).
(2006)

45. Vaswani, A., Shazeer N.„ Parmar, N., et al. Attention is All you Need”. In: Advances in
Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S. Bengio, et al.
Vol. 30. Curran Associates, Inc., (2017). https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

46. Yu, Y., Si, X., Hu, C., et al.: A review of recurrent neural networks: LSTM cells and network architectures.
Neural Comput. 31, 1235–1270 (2019). https://doi.org/10.1162/neco_a_01199

47. Yun, S., Jeong, M., Kim, R., et al. Graph transformer networks’. In: Advances in Neu-
ral Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, et al.
Vol. 32. Curran Associates, Inc., 2019. https://proceedings.neurips.cc/paper_files/paper/2019/file/
9d63484abb477c97640154d40595a3bb-Paper.pdf

48. Zhou, J., Cui, G., Hu, S., et al. Graph neural networks: a review of methods and applications. (2021).
arXiv:1812.08434 [cs.LG]

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/S0893-6080(97)00097-X
https://doi.org/10.1016/S0893-6080(97)00097-X
https://doi.org/10.1145/3501714.3501755
http://arxiv.org/abs/2106.07032
https://doi.org/10.1177/027836498600500404
http://arxiv.org/abs/2006.01631
https://doi.org/10.4204/eptcs.372.2
https://doi.org/10.4204/eptcs.372.2
https://doi.org/10.48550/ARXIV.2005.01894
https://doi.org/10.48550/ARXIV.2005.01894
https://doi.org/10.1109/CEC.2017.7969355
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1007/s10710-019-09347-3
https://doi.org/10.1007/978-3-031-08020-3
https://doi.org/10.1007/978-3-031-08020-3
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/neco_a_01199
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9d63484abb477c97640154d40595a3bb-Paper.pdf
http://arxiv.org/abs/1812.08434

	Algebraic Dynamical Systems in Machine Learning
	Abstract
	1 Introduction
	1.1 Structural Constraints in Machine Learning
	1.2 Non-numerical Data and Structured Models
	1.3 Universal Algebra and Compositionality
	1.4 Dynamical Systems and Term Rewriting

	2 Algebraic Constraints in Machine Learning
	2.1 Static Models
	2.2 Dynamic Models

	3 Related Work
	4 Discrete Dynamical Systems
	4.1 Recurrence relations
	4.2 Dynamical Systems

	5 Universal Algebra and Rewriting
	5.1 Terms and Algebras
	5.2 Reduction Relations and Rewriting Functions

	6 Rewriting Models
	7 Compositionality of Rewriting Models
	Acknowledgements
	References

