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Abstract
The correspondence between the concept of conditional flatness and admissibility in the
sense of Galois appears in the context of localization functors in any semi-abelian category
admitting a fiberwise localization. It is then natural to wonder what happens in the cate-
gory of crossed modules where fiberwise localization is not always available. In this article,
we establish an equivalence between conditional flatness and admissibility in the sense of
Galois (for the class of regular epimorphisms) for regular-epi localization functors. We use
this equivalence to prove that nullification functors are admissible for the class of regular
epimorphisms, even if the kernels of their localization morphisms are not acyclic.

Keywords Crossed modules · Localization functors · Admissibility · Regular
epimorphisms · Conditional flatness · Nullifications

Mathematics Subject Classification 18G45 · 55P60 · 18E50 · 55R70 · 18E13

Introduction

It is a natural question to ask whether the pullback of a nice extension inherits these nice
properties. When working with localization functors or reflections one particularly nice fea-
ture for an extension is flatness. We say that an extension is L-flat, for a localization functor
L, if applying L to the extension yields another extension, see Definition 2.1. The question is
thus to understand when the pullback of an L-flat extension is again L-flat.
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Such questions have been studied first in a homotopical context by Berrick and Farjoun,
[2]. For homotopical localization functors in the category of topological spaces (in the sense
ofBousfield, [7], see also Farjoun’s book [14]), preservation of L-flatness (for fiber sequences)
under pullbacks was shown to be equivalent for L to be a so-called nullification functor. The
situation is surprisingly more delicate in the category of groups. Farjoun and the second
author proved for example that all nilpotent quotient functors have this nice property, which
they called conditional flatness, see [15].

The standard strategy to establish conditional flatness for a localization functor consists in
a few reduction steps culminating in a simpler form, which Gran identified as admissibility in
the sense of Galois for the class of regular epimorphisms [19, Proposition 3.3]. This shifted
the study of conditional flatness in homotopy theory to that of admissibility in semi-abelian
categories, see [16]. Admissibility had been introduced by Janelidze and Kelly in [19] and
has since then played a central role in the categorical study of extensions, let us mention for
example Everaert, Gran, and Van der Linden’s work in [13].

In this article we study admissibility for localization functors in the category of crossed
modules (of groups), a category of interest to both topologists due to Whitehead’s work on
connected 2-types, [27], and algebraists since Brown and Spencer [8] proved the equivalence
between crossed modules and internal groupoids in the category of groups (a result that they
credit to Verdier). This equivalence relates two interesting notions and allows one to deal
with the concept of internal groupoid in an alternative way, which is useful for computa-
tions. Moreover, crossed modules form a semi-abelian category in the sense of Janelidze,
Márki and Tholen, [20]. We adopt the algebraic point of view here and continue our work
started in [24]. Indeed, among the reduction steps we have mentioned above, the first one
calls on fiberwise localization techniques. For group theoretical localization and homotopy
localization functors, it allows one to reduce the study to extensions with local kernel (fiber).
Fiberwise localization techniques are available in the category of groups thanks to work of
Casacuberta and Descheemaeker, [11], but we proved in [24] that they are not at hand in
general for crossed modules. Our aim in this article is thus to modify the strategy to be able
to study admissibility in this setting.

We focus on localization functors such that the co-augmentation morphism �T : T → LT
is a regular epimorphism for all crossed modules T. We call them regular-epi localization
and notice that many examples of interest are provided by nullification functors, as defined in
Definition 1.10. Any crossed module A determines a nullification functor PA that “kills” all
morphisms fromA and there are other regular-epi localization functors such as abelianization.
One first important observationwhichmakes the reduction strategy viable is that, even though
fiberwise localization does not exist in general, even for nullification functors, we can use
this tool for certain extensions.

Lemma 2.5. Let L be a regular-epi localization. Let

T QN1 1
κ α

(1)

be an L-flat exact sequence of crossed modules and g : Q′ → Q a morphism of crossed
modules. Then, we can construct the fiberwise localization of the pullback of (1) along g:

N

N T′

T

Q′

Q

1

1

1

1κ

πT

κ ′

g

πQ′

α
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This allows us to relate conditional flatness with admissibility, in the same spirit as what
was done in the category of groups, [15], or in the wider context of semi-abelian categories
where fiberwise localization exists, [16]. A localization functor L is said to be admissible for
the class of regular epimorphisms if it preserves any pullback of the form

LT

T′ Q

LQ

πLT �Q

πQ

α

where α is a regular epimorphism between L-local objects.

Theorem 3.5. Let L be a regular-epi localization functor. Then the following statements are
equivalent

(1) L is conditionally flat;
(2) L is admissible for the class of regular epimorphisms.

One difference between groups and crossed modules, which is maybe the main source of
complication, is highlighted by the behavior of kernels. This was already the reason why one
cannot always construct fiberwise localization and we were also surprised to find examples
of nullification functors for which the kernel of the nullification morphism �T : T → PAT is
not always PA-acyclic, see [24, Proposition 4.6]. For groups and spaces, this property actually
characterizes nullification functors.

Still we prove here that having acyclic kernels implies admissibility and in Proposition 4.3,
that if the kernels of the localization morphisms are L f -acyclic, then L f is a nullification
functor.Well behaved nullification functors are therefore admissible, but what about arbitrary
nullification functors, for which fiberwise localization does not necessarily exist and for
which the kernel of the nullification is not necessarily acyclic? By carefully looking at the
inductive construction of PAT we show our main result, namely that all nullification functors
are admissible.

Theorem 5.5. Let A be any crossed module. The nullification functor PA is admissible for
the class of regular epimorphisms.

We end this introduction with a short outline. The first section consists of preliminaries
that we use in the rest of the article. Then in Sect. 1 we introduce L-flat exact sequences and
conditionally flat localization functors in the context of crossed modules. We show how to
construct fiberwise localization of L-flat exact sequences. The third section is essential in the
development of a simpler characterization of conditional flatness: It provides an equivalence
with the notion of admissibility in the specific context of regular-epi localization functors.
In Sect. 4 the link between L-acyclicity and admissibility is established and the last section
is devoted to the proof that every nullification functor is admissible.

1 Preliminaries

1.1 The Semi-Abelian Category of CrossedModules

In this subsection, following Norrie [26] and Brown-Higgins [4], we provide the basic defi-
nitions and notation concerning crossed modules.
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Definition 1.1 [27] A crossed module of groups is a pair of groups T1 and T2, an action by
group automorphisms of T2 on T1, denoted by T2 × T1 → T1 : (b, t) �→ bt , together with a
group homomorphism ∂T : T1→T2 such that for any b in T2 and any t , s in T1,

∂T( bt) = b∂T(t)b−1, (2)
∂T(t)s = tst−1. (3)

Hence we often write a crossed module as a triple (T1, T2, ∂T), or simply T for short, and
we refer sometimes to ∂T as the connecting morphism.

Definition 1.2 Let N := (N1, N2, ∂
N) and M := (M1, M2, ∂

M) be two crossed modules. A
morphism of crossed modules α : N → M is a pair of group homomorphisms α1 : N1 → M1

and α2 : N2 → M2 such that the two following diagrams commute

N2

N1 M1

M2

∂N ∂M

α1

α2
M2 × M1

N2 × N1 N1

M1.

α2 × α1 α1

where the horizontal arrows in the diagram on the right are the respective group actions of
the two crossed modules.

We write XMod for the category of crossed modules of groups.

Remark 1.3 The category of groups embeds in this category via two functors which are
respectively left and right adjoint to the truncation functor Tr : XMod → Grp that sends a
crossed module T := (T1, T2, ∂T) to T2. The functor X : Grp → XMod which sends a group
G to the crossed module XG = (1,G, 1) reduced to the group G at level 2 is the left adjoint
functor and the functor R : Grp → XMod : G �→ (G,G, I dG) is the right adjoint functor.
This will help us to import group theoretical results into XMod.

There is an obvious notion of subcrossed module, see [26]. One simply requires the
subobject to be made levelwise of subgroups, the connecting homomorphism and the action
are induced by the given connecting homomorphism and action. The notion of normality is
less obvious.

Definition 1.4 A subcrossed module N := (N1, N2, ∂
N) of T := (T1, T2, ∂T) is normal if the

following three conditions hold

(1) N2 is a normal subgroup of T2;
(2) for any t2 ∈ T2 and n1 ∈ N1, we have t2n1 ∈ N1;
(3) [N2, T1] := 〈 n2 t1t

−1
1 | t1 ∈ T1, n2 ∈ N2〉 ⊆ N1.

In contrast to limits, which are built component-wise, colimits are generally more delicate
to construct. In particular, the construction of cokernels is not straightforward, but when N is
a normal subcrossed module of T the cokernel is simply the levelwise quotient by the normal
subgroups N1 	 T1 and N2 	 T2.

The category of crossed modules shares many nice properties with the category of groups.
The traditional homological lemmas, [1], the Split Short Five Lemma, [5], and the Noether
Isomorphism Theorems, [1], hold. One can recognize pullbacks by looking at kernels or
cokernels, [1, Lemmas 4.2.4 and 4.2.5], and in fact Xmod is a semi-abelian category, as
introduced by Janelidze, Márki, and Tholen in [20]. This is shown in [20]. There is one result
we will use several times in this article, namely [1, Lemma 4.2.5], which we recall now.
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Proposition 1.5 Let C be a semi-abelian (or homological) category. Consider the following
diagram of exact rows:

T ′ Q′N ′

T QN

1

1

1

(2) wu v

κ α

κ ′ α′

Then the following statements hold.

(1) If u is an isomorphism then (2) is a pullback.
(2) If u and w are regular epimorphisms then v is also a regular epimorphism.

1.2 Localization Functors

In this subsection we recall the definition of localization functors in the category of crossed
modules.We also recall some important properties of such functors aswell as some examples.

Definition 1.6 A localization functor in the category of crossed modules is a coaugmented
idempotent functor L : XMod → XMod. The coaugmentation � : Id → L is a natural trans-
formation such that �LX and L�X are isomorphisms.

In particular we have �LX = L�X, see [9, Proposition 1.1].

Definition 1.7 Let L be a localization functor. A crossed module T is L-local if �T : T → LT
is an isomorphism. A morphism f : N → M is an L-equivalence if L( f ) is an isomorphism.

We recall a few basic and useful closure properties of L-equivalences.

Lemma 1.8 (1) The pushout of an L-equivalence is an L-equivalence.
(2) The composition of L-equivalences is an L-equivalence.
(3) A κ-filtered colimit of a diagram Tβ of L-equivalences Tβ → Tβ+1 for all successor

ordinals β + 1 < κ yields an L-equivalence T0 → Tκ = colimβ<κTβ .
(4) Let F be an I -indexed diagram of L-equivalences in the category of morphisms of crossed

modules. Then the colimit colimIF is an L-equivalence.

Sometimes a localization functor L is associated to a full reflexive subcategory L of XMod.
The pair of adjoint functors U : L � XMod : F provides a localization functor L = UF, as
Cassidy, Hébert, and Kelly do in [12]. Some other times there is a morphism f one wishes
to invert so as to construct a localization functor often written L f .

Definition 1.9 Let f be a morphism of crossed modules. A crossed module T is L f -local if
Hom( f , T) is an isomorphism. A morphism g in XMod is an L f -equivalence if Hom(g, T)
is an isomorphism for any L f -local crossed module T.

Such localization functors exist in XMod, see for example Bousfield’s foundational work
[6]. Local objects and local equivalences coincide then with the notions introduced in Defini-
tion 1.7. Lemma 1.8 is the analogue of Hirschhorn’s [17, Proposition 1.2.20 and Proposition
1.2.21].

If the codomain of the morphism f is the trivial crossed module, the functor L f is of
particular interest.

123



37 Page 6 of 23 O. Monjon et al.

Definition 1.10 Let A be a crossed module and f be the morphism A → 1. The localization
functor L f is then written PA and is called a nullification functor. An L f -local object is called
A-null, orA-local and a crossedmodule T isA-acyclic if PAT = 1. The localizationmorphism
�T : T → PAT is written pT .

Proposition 1.11 Let A and T be crossed modules. Then there exists an ordinal λ depending
on A such that PAT is constructed as a transfinite filtered colimit of a diagram of the form
T = T0 → T1 → · · · → Tβ → . . . for β < λ where all morphisms are PA-equivalences and
regular epimorphims.

This inductive construction has been carefully described in [24, Proposition 2.8]. The
reasonwhyeach step is aPA-equivalence and a regular epimorphism is thatTβ+1 is constructed
from Tβ by taking the cokernel of allmorphismsA → Tβ .We recall the details and use them in
Section 5. There is a larger class of localization functors we investigate in this sequel to [24].
They share with PA the property that the localization morphism is a regular epimorphism.

Definition 1.12 A localization functor L is a regular-epi localization if for any crossedmodule
T the coaugmentation �T : T → LT is a regular epimorphism.

Remark 1.13 In the category of crossed modules, a morphism α = (α1, α2) is a regular
epimorphism (a coequalizer of a pair of parallel arrows) if and only if both α1 and α2 are sur-
jective group homomorphisms [22, Proposition 2.2]. A surjective homomorphism of crossed
modules is an epimorphism but there exist epimorphisms that are not surjective. In a pointed
protomodular category such as XMod, regular epimorphisms and normal epimorphisms (the
cokernels of arbitrary morphisms) coincide.

We present now some interesting examples of localization functors that will illustrate our
results in the rest of the article, see also the end of [24, Section 2].

Example 1.14 The nullification functor PXZ with respect to the crossed module XZ is given
by:

PXZ

⎛
⎜⎜⎜⎜⎝

N1

N2

∂

⎞
⎟⎟⎟⎟⎠

=
N1/[N2, N1]

1

Example 1.15 The abelianization functor Ab : XMod → XMod is already described in [25].
It is defined by:

Ab

⎛
⎜⎜⎜⎜⎝

N1

N2

∂

⎞
⎟⎟⎟⎟⎠

=
N1/[N2, N1]

N2/[N2, N2]
∂̃

Example 1.16 Our third and last example of localization functor of crossed modules is
I : XMod → XMod, see [24, Example 2.15]:

I

⎛
⎜⎜⎜⎜⎝

N1

N2

∂N

⎞
⎟⎟⎟⎟⎠

=
N2

N2

I dN2
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This functor is induced by the adjunction between the truncation functor Tr : XMod → Grp,
defined by Tr(T1, T2, ∂T) = T2, see Remark 1.3, and its right adjoint R : Grp → XMod that
sends a group T to (T , T , I dT ).

Remark 1.17 The functor considered in Example 1.14 is a regular-epi localization, since all
nullification functors are so. However regular-epi localizations are not nullification functors
in general as illustrated by the functor Ab in Example 1.15. Indeed, if Abwere a nullification
PA, then A = (A1, A2, ∂

A) would be a perfect crossed module, i.e. one such that Ab(A) =
(1, 1, Id). In particular, the group A2 would be a perfect group. But then PA(XS3) = XS3 since
there are no non-trivial homomorphisms from a perfect group to the symmetric group S3. But
we know that Ab(XS3) = XC2, where C2 is the cyclic group of order two, so abelianization
is not a nullification.

We finally note that a localization functor L f is a regular-epi localization functor if f itself
is a regular epimorphism, an analogous observation appears in [10] for groups.

To conclude these preliminaries, let us recall the notion of fiberwise localization. We
introduced this for crossed modules in [24, Definition 3.1], but this is not new, for spaces a
good reference is [14, Section I.F].

Definition 1.18 Let L : XMod → XMod be a localization functor. An exact sequence

T QN1 1
κ α

admits a fiberwise localization if there exists a commutative diagram of horizontal exact
sequences

T QN

E QLN

1

1

1

1

κ

j

�N

p

α

f

(4)

where f is an L-equivalence.

The following theorem is a fusion of two results from [24] namely Theorem 3.4 and
Corollary 3.7. From now on, every localization functor that we consider is a regular-epi
localization.

Theorem 1.19 Let L : XMod → XMod be a regular-epi localization functor. An exact
sequence of crossed modules

T QN1 1
κ α

(5)

admits a fiberwise localization if and only if we have the following inclusion

[κ2(ker(�N2 )), T1] ⊆ κ1(ker(�
N
1 )) (6)

In this case the morphism f : T → E in (4) is given by the quotient map T → T/κ(ker(�N)).

Remark 1.20 As stated, this theorem seems to give us only an existence result, but we also
proved in [24, Proposition 3.3] that if the fiberwise localization of the exact sequence (5)
exists, then it is unique and must be given by the quotient of T by the image under κ of the
kernel of the localization morphism �N : N → LN. The condition that appears in the theorem
simply guarantees the possibility to construct this quotient.
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2 Fiberwise Localization and Flatness

In this section, we investigate the fiberwise localization of L-flat exact sequences and their
pullbacks in the context of regular-epi localization functors of crossed modules L : XMod →
XMod (even if this notion is not defined only for regular-epi localizations as we will see in
Proposition 5.6). This section will be essential to study the link between conditional flatness
and admissibility in Sect. 3. First, let us recall the definitions of L-flat and conditional flatness.

Definition 2.1 Let L be a localization functor, a short exact sequence

T QN1 1
κ α

is called L-flat if the sequence LT LQLN
L(κ) L(α)

is a short exact
sequence.

Remark 2.2 We recall that limits are computed componentwise in the category of crossed
modules. In the case of pullbacks in XMod they are built as follows [21]. Let α : T → Q and
g : Q′ → Q be two morphisms of crossed modules. Then the pullback of α along g is given
by the following square

T

T′ Q′

Q

πT g

πQ′

α

The object part T′ of the pullback is built component-wise as in the case of groups

(T1 ×Q1 Q
′
1, T2 ×Q2 Q′

2, ∂
′),

where ∂ ′ and the action are induced by the universal property of the pullbacks in Grp. The
projections are the natural ones, given also component-wise.

Following the terminology introduced in [15] for groups and spaces, we define the notion
of conditional flatness for localization functors in crossed modules.

Definition 2.3 Let L be a localization functor. We say that this functor is conditionally flat if
the pullback of any L-flat exact sequence is L-flat.

In Sect. 3 we provide a characterization of conditional flatness. To achieve this goal we
will use a similar strategy to the one applied to groups and topological spaces in [15]. The
authors exploit heavily the existence of fiberwise localization in the categories of groups and
spaces. However, in our article [24], we observed that fiberwise localization does not always
exist for a given localization functor and a given exact sequence in XMod. Fortunately, when
we work with L-flat exact sequences we can show that it is always possible to construct a
fiberwise localization.

Lemma 2.4 Let L be a regular-epi localization. Then any L-flat exact sequence of crossed
modules admits a fiberwise localization.
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Proof Let T QN1 1
κ α

be an L-flat exact
sequence of crossed modules. The L-flatness of the sequence implies in particular that L(κ)

is a monomorphism. Consider the following diagram of exact sequences:

1

1 ker(�T)

(1)

ker(�N) N

T

LN

LT

κ L(κ)

�N

�T

We conclude from [1, Lemma 4.2.4.(1)] that (1) is a pullback since L (κ) is a monomorphism.
Then we have that κ(ker(�N)) is a normal subcrossed module of T as it can be seen as the
intersection of the normal subcrossed modules N and ker(�T) of T. Therefore, we can apply
Theorem 1.19 
�

To understand conditional flatness we must study the pullback of an L-flat exact sequence.
It will thus be very handy in Sect. 3 to know that any such pullback admits a fiberwise
localization.

Lemma 2.5 Let L be a regular-epi localization. Let

T QN1 1
κ α

(7)

be an L-flat exact sequence of crossed modules and g : Q′ → Q a morphism of crossed
modules. Then, we can construct the fiberwise localization of the pullback of (7) along g

N

N T′

T

Q′

Q

1

1

1

1κ

πT

κ ′

g

πQ′

α

Remark 2.6 In the rest of the article, and in particular in the following proof, we identify N
with the normal subcrossed module κ(N) of T and with κ ′(N), normal subcrossed module of
T′. We will therefore omit the use of κ and κ ′. For example an element of the group N1 that
we want to consider in T′

1 will be denoted (n1, 1) instead of κ ′
1(n1) = (κ1(n1), 1).

Proof of Lemma 2.5 Weneed to verify that ker(�N) is a normal subcrossedmodule of T′. Since
N is a subcrossed module of T′, we just need to verify (6) of Theorem 1.19. Let (t1, q1) be
an element in T ′

1 and (x2, 1) be an element of ker(�N2 ), then we have the following equality

(x2,1)(t1, q1)(t1, q1)
−1 = ( x2 t1t

−1
1 , q1q

−1
1 ) = ( x2 t1t

−1
1 , 1).

Indeed, by Lemma 2.4 we know that the original sequence (7) admits a fiberwise localization
which then implies by Theorem 1.19 that [ker(�N2 ), T1] ⊂ ker(�N1 ) i.e for any x2 ∈ ker(�N2 )

and t1 ∈ T1 we have x2 t1t
−1
1 ∈ ker(�N1 ). With the notation introduced in Remark 2.6, this is

equivalent to say that the element ( x2 t1t
−1
1 , 1) belongs to ker(�N1 ). 
�

This lemma is not trivial since the fiberwise localization of an exact sequence of crossed
modules does not always exist as we have proved in [24, Theorem 4.5]. If wewant the strategy
for groups and spaces to be also viable in the study of conditional flatness for crossedmodules,
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we need a final ingredient, namely a commutation rule for the fiberwise localization and the
pullback operations. We speak here about “the” fiberwise localization since it is unique as
mentioned in Remark 1.20.

Proposition 2.7 Let us consider an L-flat exact sequence where L is a regular-epi localization
functor. Then, the pullback of its fiberwise localization is the fiberwise localization of its
pullback.

Proof Let

N

N T′

T

Q′

Q

1

1

1

1κ

πT

κ ′

g

πQ′

α

be the pullback of an L-flat exact sequence. Then we construct the fiberwise localizations of
the two sequences by quotienting out the kernel of the localization morphism �N as in the
following solid arrow diagram:

N1 T′ Q′ 1

N1 T Q 1

LN1 T′/ker(�N) Q′ 1

LN1 T/ker(�N) Q 1

κ ′ πQ′

κ α

gπT

j

j ′

p

p′

g

f ′

f

lN

lN

δ

We complete the diagram by defining a dashed morphism δ : T′/ker(�N) → T/ker(�N)

via the universal property of the cokernel since f ◦ πT ◦ κ ′|ker(�N) = 1, where κ ′|ker(�N) is the
inclusion of the kernel ker(�N) → T′.

ker(�N)

ker(�N) T′

T

T ′/ker(�N)

T /ker(�N)

1

1

1

1
κ|ker(�N)

πT

κ ′|ker(�N) f ′

f

δ

We can check that δ makes the two front faces commute. Indeed, the right and left faces
commute by using the fact that �N and f ′ are epimorphisms.

The commutativity of the above diagram and Proposition 1.5 imply that

LN T′/ker(�N) Q′1 1
j ′ p′

is the pullback of T/ker(�N) QLN 11
j p

along g.

�
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Remark 2.8 In [15], the construction of the fiberwise localization in the category of groups
is functorial. Therefore, from the morphism T′ → T between the pullback sequence and
the sequence itself we have directly a morphism between the fiberwise localization of the
pullback sequence and the fiberwise localization of the original sequence. In other words the
map δ comes for free in contrast to the category of crossed modules where we have to build
the map δ explicitly.

3 Conditional Flatness and Admissibility

In this section, we develop a simpler characterization of conditional flatness, thanks to the
results of the previous section.We introduce the notion of admissibility for the class of regular
epimorphisms and show that it is equivalent to conditional flatness. With this equivalence,
we can easily establish conditional flatness for a given localization functor. We observe that
some properties of localization functors, such as right-exactness, imply directly admissibility
for the class of regular epimorphism.

A first step allows us to restrict the definition of conditional flatness (Definition 2.3) to
fiberwise localizations of L-flat exact sequences (Lemma 3.1). More precisely, we show that
the pullback of an L-flat exact sequence is L-flat if and only if the pullback of its fiberwise
localization is so.

Lemma 3.1 Let L bea regular-epi localization functor. ThenL is conditionally flat if andonly if

for any L-flat exact sequence T QN 11
κ α

with N an L-local crossed module, the pullback sequence along any morphism Q′ → Q is
L-flat.

Proof This is clear since f ′ and �N are L-equivalences in this diagram:

LN

N T′

T′/ker(�N)

Q′

Q′

1

1

1

1
j ′

f ′�N

κ ′ πQ′

p′

The top row is thus L-flat if and only if so is the bottom row. We conclude then by
Proposition 2.7. 
�

The previous lemma allows us to follow the approach introduced in [15]. For the sake of
completeness, we give an explicit proof of the following results even if the arguments are
similar to the group theoretical ones.

Proposition 3.2 Let L be a regular-epi localization functor. Then L is conditionally flat if and
only if the pullback of any exact sequence of L-local objects is L-flat.

Proof By Lemma 3.1 we need only to consider exact sequences with an L-local kernel LN.

Consider thus an L-flat exact sequence T QLN1 1
j p

. We build the fol-
lowing diagramwhere g : Q′ → Q is any morphism of crossed modules and (1) is a pullback.
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LN

LN

LN T′

(1)

(2)

T

LT

Q′

Q

LQ

1

1

1

1

11

j

L( j)

�T �Q

πT

j ′

g

πQ′

L(p)

p

Weobserve that since each row is exact, (2) is a pullback by Proposition 1.5, and then (1)+(2)
is also a pullback. Hence, the top row is the pullback of the bottom exact sequence of L-local
objects along the map �Q ◦ g, which shows the claim. 
�
Definition 3.3 A localization functor L is said to be admissible for the class of regular epi-
morphisms if it preserves any pullback of the form

LT

T′ Q

LQ

πLT �Q

πQ

α

where α is a regular epimorphism.

We start with a very general observation which relates admissibility with conditional
flatness.

Lemma 3.4 Let L be a conditionally flat localization functor. Then L is admissible for the
class of regular epimorphisms.

Proof Let us consider a pullback square as in Definition 3.3. Since L-local objects are closed
under limits the kernel N of α is also L-local. By conditional flatness of L we infer from the
flatness of the bottom exact sequence that of the top exact sequence

T′ QN1 1
πQ

The universal property of the localization �T
′ : T′ → LT′ provides a factorization of πLT

through a morphism LT′ → LT. We conclude by the Short Five Lemma that this morphism
is an isomorphism. 
�

For regular-epi localization functors the previous lemma becomes a characterization of
conditional flatness in the category of crossed modules.

Theorem 3.5 Let L be a regular-epi localization functor. Then the following statements are
equivalent

(1) L is conditionally flat;
(2) L is admissible for the class of regular epimorphisms.
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Proof The implication (1) ⇒ (2) is provided by Lemma 3.4, so let us prove (2) ⇒ (1).
Consider any exact sequence of L-local objects

LT LQLN1 1
α

and any morphism g : A → LQ. By Proposition 3.2, conditional flatness is established if we
prove that the pullback of the exact sequence along g is L-flat. Let us first observe that this
morphism g factors through LA via the universal property of the localization:

A LA

LQ

�A

g g̃

Hence, we can first construct the pullback of LT LQLN1 1
α

along g̃ and then pull back the resulting sequence along �A:

LN

LN

LN T′′

T′

LT

A

LA

LQ

1

1

1

1

11

g

πLT g̃

�A

πA

α

πLA

Since the category of L-local objects is closed under pullbacks, T′ is L-local and we can
apply condition (2) to conclude that the upper row is L-flat. This observation implies that

the pullback of LT LQLN1 1
α

along g is an L-flat
sequence as desired. 
�

Remark 3.6 Admissibility for the class of regular epimorphisms in the context of semi-abelian
categories is studied in [16]. Similar results are proven for localization functors that admit
a functorial fiberwise localization. Note that their result does not imply Theorem 3.5 since
localization functors of crossed modules do not admit functorial fiberwise localizations in
general. However, the implication “(1) implies (2)”, in Theorem 3.5, holds even for not
necessarily regular-epi localization functors as shown in Lemma 3.4.

Proposition 3.7 If L : XMod → XMod is a localization functor that is right exact in XMod,
then L is admissible for the class of regular epimorphisms.
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Proof Let us consider the following pullback of an L-flat exact sequence of crossed modules
along a morphism g : Q′ → Q.

T′ Q′N

T QN

1

1

1

1

(1) gπT

κ

f

κ ′ πQ′

We show next that the top exact sequence is L-flat, proving that L is conditionally flat, which
implies admissibility by Lemma 3.4. By applying L to this diagram, we obtain (since L is
right exact) the following diagram

LT′ LQ′LN

LT LQLN1

1

1

L(g)L(πT)

L(κ) L( f )

L(κ ′) L(πQ′ )

Since L(κ) = L(πT) ◦ L(κ ′) is a (normal) monomorphism, we conclude that L(κ ′) is a
monomorphism. Normality follows then by right-exactness. 
�

Note that this proof holds in any semi-abelian category. In the next corollary we highlight
the admissibility of the abelianization functor in crossed modules. This is not new and has
been used byBourn andGran in [3, Section 4] to study the relationshipwith central extensions
of crossed modules. They developed the theory in a more general context, that of internal
groupoids in a semi-abelian category. In any semi-abelian category, internal groupoids are
equivalent to internal crossed modules [18, (3.15)], then their result applies in XMod seen as
internal groupoids in Grp.

Corollary 3.8 The abelianization functor Ab : XMod → XMod is admissible for the class of
regular epimorphisms.

Proof The abelianization functor Ab : XMod → XMod, see Example 1.15, is right exact.
Since, exactness can be shown component-wise the result follows by Proposition 3.7.


�

Sometimes it is handy to rely on our group theoretical knowledge to construct simple
examples of localization functors and how they behave on crossed modules. The proof of the
following proposition is based on a counter-example coming from groups via the functor X
defined in Remark 1.3.

Proposition 3.9 There are regular-epi localization functors L : XMod → XMod that are not
admissible for the class of regular epimorphisms.

Proof We export via X : Grp → XMod the example in [15, Theorem 5.1] of a localization
functor in groups that is not admissible for the class of regular epimorphisms.

Let Lφ be the localization functor induced by the projection φ : C4 → C2, where Cn

denotes a cyclic group of order n. It gives rise to a localization functor LXφ : XMod → XMod.
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In particular, if we apply X to the extension of Lφ-local groups considered in [15], we obtain
an exact sequence of LXφ-local crossed modules:

(1,Z) (1,C2)(1,Z)1 1

If we pull it back along the morphism of crossed modules Xφ, we obtain the following exact
sequence

(1,Z × C2) (1,C4)(1,Z)1 1

We conclude from [24, Lemma 1.4] that this exact sequence is not LXφ-flat. Indeed, if it
was the case we would have a contradiction with the group theoretical observation in [15].


�

4 Admissibility and Acyclicity

In the categories of groups and topological spaces, a localization functor L is a nullification
functor if and only if the kernels of the localization morphisms are L-acyclic (which means
that Lker(�M) is trivial for any object M). This characterization implies in particular that
any nullification functor is admissible for the class of regular epimorphisms. It is interesting
to notice that even if nullification functors of crossed modules do not have acyclic kernels,
we have a similar result in XMod: the L-acyclicity of the kernels of localization morphisms
implies the admissibility of L.

Proposition 4.1 Let L : XMod → XMod be a regular-epi localization functor such that
ker(�M : M → LM) is L-acyclic for any M ∈ XMod. Then L is admissible for the class
of regular epimorphisms.

Proof Consider the pullback of LT LQLN1 1
κ f

along the coaugmentation morphism �Q : Q → LQ:

LN

LN T′

LT

Q

LQ

1

1

1

1κ

πLT

κ ′

�Q

πQ

f

We need to prove that πLT is an L-equivalence. Since XMod is a pointed protomodular
category and �Q is a regular epimorphism by assumption, we know that πLT is the cokernel of
ker(�Q) ∼= ker(πLT) → T′. Let Y be a local object. For any g : T′ → Y we have the following
diagram:

ker(�Q)

Lker(�Q) = 1

T′ LT

Y
g′

πLT

g g̃

By the universal property of the localization there exists g′ : 1 → Y that makes the left square
commute. Hence, by the universal property of the cokernel there exists a unique g̃ : LT → Y
such that the triangle commutes and we conclude that πLT is an L-equivalence. 
�
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However, localization functors of crossedmodules do not behave like localization functors
of groups. As explained above, in the category of groups (but also of topological spaces), the
kernels of the localization morphisms are L-acyclic if and only if L is a nullification functor
[15]. In the context of crossedmodules, we do not have such a characterization of nullification
functors.

Remark 4.2 Weknowby [24, Proposition 4.6] that there are nullification functors, for example
PXZ defined in Example 1.14, such that the kernels of their localization morphisms are not
acyclic in general. Still, in the next proposition, we prove that if the kernel of the localization
morphism is L-acyclic, as in Proposition 4.1, then the localization functor is a nullification.

The cardinal in the next proof is chosen exactly as in Bousfield’s [7, Theorem 4.4] for
spaces.

Proposition 4.3 Let f : B → C be a morphism of crossed modules and L f : XMod → XMod
be a regular-epi localization functor. If the kernels of the localization morphisms are L f -
acyclic, then L f is a nullifcation functor.

Proof Our strategy is to construct a crossed module A such that we can compare the functor
L f with the nullification functor PA (Definition 1.10) via a natural transformation ψ . We
choose κ to be the first infinite cardinal greater than the number of chosen generators of B
and C, i.e., generators of the groups B1, B2, C1 and C2. We construct the crossed module
A := ∐

Aα , where Aα are all the L f -acyclic crossed modules with less than 2κ generators,
see [7, Theorem 4.4].

The first step of this proof is to show that if a crossedmoduleX is L f -local then it isA-local.
Let φ be a morphism in Hom(A,X) and construct by naturality the following commutative
diagram

1 = L f A

A X

L f X
L f (φ)

∼=

φ

By hypothesis, we have an isomorphism between X and L f X and by construction of A, we
obtain L f A = 1. Therefore, φ factors through the zero object and hence Hom(A,X) = 1,
which is equivalent to say that X is A-local. Now consider the PA-equivalence pT : T → PAT
and the L f -local object L f T. By the above observation, we have that L f T is A-local and by
the universal property we have the desired morphism ψT

T PAT

L f T

pT

�T ψT

We construct next the fiberwise A-nullification of the following exact sequence

T L f Tker(�T)1 1
�T
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By assumption ker(�T) is L f -acyclic, hence also PA-acyclic by design. This implies that

ker
(
pT : ker(�T) → PAker(�T)

)
is equal to ker(�T). Hence, the exact sequence satisfies

condition (6) of Theorem 1.19 and we obtain the following fiberwise nullification

T L f Tker(�T)

T/ker(�T) L f T1

1

1

1

1

pT f

∼=

�T

Since f is a PA-equivalence, so is �T . Hence, we obtain a morphism ϕT in the following
commutative diagram:

T L f T

PAT

ψT

�T

pT ϕT

Byuniversal property,we can conclude that the twocompositions ofψT andϕT are isomorphic
to identities so that L f T ∼= PAT. A similar argument shows the naturality of ψ and ϕ and
therefore L f is a nullification functor, namely PA. 
�

5 Nullification Functors and Admissibility

In the category of groups, the fact that kernels of localization morphisms are L-acyclic was
fundamental to prove that nullification functors are admissible for the class of regular epimor-
phisms. This fact is not true in general for nullification functors in the category of crossed
modules as shown in [24, Proposition 4.6], it is thus natural to ask whether nullification
functors are admissible. We provide an affirmative answer in this final section, but let us first
prove that our counter-example PXZ is admissible.

Proposition 5.1 The nullification functor PXZ is admissible for the class of regular epimor-
phisms.

Proof Theorem 5.1 in [16] implies that PXZ is admissible provided that the reflective category
of XZ-local objects is a Birkhoff subcategory, i.e., it is closed under regular quotients and
subobjects. Here XZ-local objects are crossed modules of the form A → 1 where A is any
abelian group and the connecting homomorphism is the trivial homomorphism. Therefore it
is clearly closed under subobjects. Moreover, the quotient of A → 1 by a normal subcrossed
module N → 1 is the crossed module A/N → 1, which is XZ-local. 
�

The remaining part of the section is devoted to the proof that all nullification functors are
admissible for the class of regular epmorphisms. Consider a nullification functor PA where
A = (A1, A2, ∂) is a crossed module. To show the admissibility, it is enough to prove that
the pullback of an exact sequence of A-local crossed modules along the coaugmentation map
is PA-flat, in other words that the map f in the following commutative diagram of crossed
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modules is a PA-equivalence

W QPAN

PAT PAQPAN

1

1

1

1

(1) pQf

h

g

where (1) is a pullback and g and h are regular epimorphisms. To do so we follow step by
step the inductive construction of PAQ = colimQβ as presented in [24, Proposition 2.8], see
also Proposition 1.11. For each successor ordinal β + 1 we obtain Qβ+1 from Qβ by killing
all morphisms out of A so let us start with the construction of Q1 from Q0 = Q.

Remark 5.2 Let ϕ : A → Q denote a morphism of crossed modules. The crossed module Q1

is the quotient of Q by the normal closure KQ in Q of the image of

ev : M:=
∐

ϕ∈Hom(A,Q)

A −→ Q

which is defined by ϕ on the copy of A indexed by ϕ. The idea behind the construction we
perform next is that we do not need to kill all morphisms from A to the extensionW in order
to construct its nullification PAW, it is sufficient to take care of those factoring through Q.
Beware that given an extension N → T → Q with N an A-acyclic crossed module, it is not
true in general that all morphisms from A to T factor through Q.

By definition of pQ we have the following equality for the composition pQ◦ϕ = 1 = h◦1
as below. Therefore, any morphism from A to Q induces one from A to W:

PAT

W Q

PAQ

A

h

pQf

g

1

ϕ

∃!ψ

(8)

We callψ the morphism determined by ϕ and it makes sense now to consider KW, the normal
closure inW of the image of M → W.

Lemma 5.3 With the same notation as in Remark 5.2, we have an isomorphism KW ∼= KQ.

Proof Limits are computed levelwise for crossed modules, so the pullback W consists of
compatible pairs (x, q) for x ∈ (PAT)i and q ∈ Qi for i = 1, 2. By construction of ψ we
have ψ(a) = (1, ϕ(a)).

Now, we compute the kernels of the cokernels of ev : M → Q and (1, ev) : M → W. We
have the two following descriptions of the kernels:

KQ =
(
ev1(M1)Q2 [ev2(M2)Q2 , Q1], ev2(M2)Q2 , ∂

)

KW =
(
(1, ev1)(M1)W2 [(1, ev2)(M2)W2 ,W1], (1, ev2)(M2)W2 , ∂

′)
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The second group of the crossed module KW is the easier one:

(1, ev2)(M2)W2 = {(t2,q2)(1, ev2(m2)) | (t2, q2) ∈ W2, m2 ∈ M2}
= {(1, q2ev2(m2)) | q2 ∈ Q2, m2 ∈ M2}
= 1 × ev2(M2)Q2 .

where the second equality holds since h is surjective. Via similar computations, we see that
(1, ev1)(M1)W2 = 1 × ev1(M1)Q2 , so we are left with proving that

[(1, ev2)(M2)W2 ,W1] = 1 × [ev2(M2)Q2 , Q1]
This we do via the following equalities:

[(1, ev2)(M2)W2 ,W1] = [(1 × ev2(M2)Q2),W1]
= {(1,x2)(t1, q1)(t1, q1)−1 | x2 ∈ ev2(M2)Q2 , (t1, q1) ∈ W1}
= {(1,x2 q1q−1

1 | x2 ∈ ev2(M2)Q2 , q1 ∈ Q1}
= 1 × [(ev2(M2)Q2 , Q1]

So finally we can conclude that KW = 1 × KQ, in particular KW and KQ are isomorphic.

�

Proposition 5.4 For any ordinal β, we have a commutative diagram

PATWβ

Qβ PAQ

W

Q

(2)hβg

fβ

pQ
β

h

where (2) is a pullback square, the maps fβ : W → Wβ and pQβ : Q → Qβ are PA-
equivalences, and hβ is a regular epimorphism.

Proof Weprove it by induction. Since the nullification uses possibly a transfinite construction
we have to initialize the induction, but the case β = 0 holds by assumption, and then check
the statement for successor and limit ordinals.

The successor case Suppose that for an ordinal β the lemma is proved. Then we consider
the kernels KWβ and KQβ of the cokernels of the evaluation maps ev : ∐

Hom(A,Qβ ) A −→ Qβ

and ev : ∐
Hom(A,Qβ ) A −→ Wβ respectively. They fit in the following diagram of exact

rows:

Wβ+1Wβ

Qβ Qβ+1

KWβ

KQβ

(2)

pQ
(β→β+1)

f(β→β+1)

hβ∼=

iW

iQ

∃!hβ+1

Lemma 5.3 applies here and gives us the isomorphism between KWβ and KQβ . The composition

pQ(β→β+1) ◦ hβ ◦ iW : KWβ → Qβ+1
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is zero by commutativity, yielding by the universal property of the cokernel the morphism
hβ+1 : Wβ+1 → Qβ+1. The isomorphism between the kernels implies that (2) is a pullback
(see Proposition 1.5). By induction hypothesis hβ is a regular epimorphism and the compo-
sition pQ(β→β+1) ◦ hβ : Wβ → Qβ+1 is also a regular epimorphism, hence so is hβ+1. We

show now that pQ(β→β+1) and f(β→β+1) are PA-equivalences.
For the first onewewrite the cokernelQβ+1 as the pushout along the evaluationmorphism:

1

∐
A Qβ

Qβ+1

pQ
(β→β+1)1

ϕ

inc

where the coproduct is taken over Hom(A,Qβ). The trivial map A → 1 is a PA-equivalence,
thus so is the pushout pQ(β→β+1) : Qβ → Qβ+1 by Lemma 1.8 (1). By composing with the

PA-equivalence Q → Qβ we see that pQβ+1 : Q → Qβ+1 is a PA-equivalence as well. The
same argument shows that fβ+1 : W → Wβ+1 is also a PA-equivalence. By the universal
property of the localization, we obtain two maps, one fromWβ+1 to PAT and the other from
Qβ+1 to PAQ such that (2) commutes:

PATWβ+1

Qβ+1 PAQ

W

Q

(2)(1) hβ+1g

fβ+1

pQ
β+1

h

f

pQ

Since (1) and the outer rectangle are pullbacks and hβ+1 is a regular epimorphism, we can
conclude by [1, Proposition 4.1.4] that (2) is a pullback.
The limit case To prove the statement for a general transfinite induction we need to prove it
for a limit ordinal as well. Let γ be a limit ordinal and

Qγ = colimα<γQα Wγ = colimα<γWα

Weassume that pQ(α−1→α) : Qα−1 → Qα is a PA-equivalence for allα < γ . Hence the compo-

sition pQα : Q → Qα is also a PA-equivalence and Lemma 1.8 (3), implies that pQγ : Q → Qγ

is a PA-equivalence. The same reasoning holds for fγ : W → Wγ . The existence of the maps
f : W → PAT and pQ : Q → PAQ gives us two mapsWγ → PAT and Qγ → PAQ as shown
on the diagram below (9).

The nullification PAQ is constructed as filtered colimit of the Qα’s, see Proposition 1.11.
Filtered colimits commute with finite limits, in particular with kernels. Therefore

KQγ := ker(Q → Qγ ) ∼= colimα<γ ker(Q → Qα)

where ker(Q → Qα) will be denoted KQα . The category XMod is a variety of algebras (also
called algebra category of fixed type). Hence, by [23, Proposition IX.1.2], we know that the
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forgetful functor U : XMod → Set creates filtered colimits. In other words we have :

U(colimα<γ KQα ) = colimα<γUKQα =
⋃
α<γ

UKQα

where the colimit in the first term lies in the category of crossed modules and the second
colimit in the category of sets. This means that we know the structure of colimα<γ KQα as a
set. Now since KQα ∼= KWα for all α < γ and KQγ can be written as a union of KQα (as well as

KWγ ) we conclude that KQγ ∼= KWγ . We consider now the diagram:

PATWγ

Qγ PAQ

W

Q

(1)(2) hγg

fγ

pQγ

h

f

pQ

(9)

Since the kernels of fγ and pQγ are isomorphic we deduce that (2) is a pullback. As we

have shown that every map pQ(α→α+1) : Qα → Qα+1 is a regular epimorphism, the morphism

pQα : Q → Qα is also a regular epimorphism, being a composition of regular epimorphisms
in a regular category. The colimit functor being a left adjoint functor, it preserves colimits
and in particular cokernels. In a pointed protomodular category, any regular epimorphism is
a cokernel, therefore

pQγ : Q → Qγ

is a regular epimorphism. The composition pQγ ◦ g is also a regular epimorphism, and we
conclude that so is hγ . With the same argument as for the successor step, we get that (1) is
a pullback, which ends the induction proof. 
�

We are ready now for the main result of this section.

Theorem 5.5 Let A be any crossed module. The nullification functor PA is admissible for the
class of regular epimorphisms.

Proof Let W be the pullback of a regular epimorphism h : PAT → PAQ between A-local
crossed modules along the localization morphism pQ : Q → PAQ. Let λ be the ordinal such
that Qλ

∼= PAQ (see Proposition 1.11). By Proposition 5.4 we have a diagram:

PATWλ

Qλ PAQ

W

Q

(2)

∼=

hλg h

fλ

pQ
λ

where the outer rectangle is a pullback, the morphisms fλ and pQλ are PA-equivalences, and
(2) is a pullback. Since isomorphisms are stable under pullbacks, we have an isomorphism
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Wλ
∼= PAT. We have thus proved that the map f : W → PAT is a PA-equivalence, which

means that the functor PA is admissible. 
�

In this article we have focused on regular-epi localization functors because they appear
naturally when studying conditional flatness and admissibility in the category of groups,
crossed modules, or more general semi-abelian categories. We conclude this section by
observing that the notion of conditional flatness can also be defined for non regular-epi
localization functors. The next proposition gives an example of such a localization functor
which is conditionally flat. Let us stress that we will not a priori have an equivalence with
admissiblity, as was the case for regular-epi localization functors by Theorem 3.5. In the
proof of the following proposition we have thus to verify the more general condition for
conditional flatness, as in Definition 2.3.

Proposition 5.6 There exists a non regular-epi localization functor which is nevertheless
conditionally flat and therefore admissible for the class of regular epimorphisms.

Proof We consider the functor I defined in Example 1.16 which sends any crossed module
(N1, N2, ∂

N) to (N2, N2, I dN2). This functor is not regular-epi because if we consider a
crossed module for which the connecting morphism is not surjective then the localization
morphism will not be a regular epimorphism.

We prove now that I is conditionally flat. Let T QN1 1
κ α

be
any exact sequence of crossed modules. We see that I((N1, N2, ∂

N)) = (N2, N2, I dN2) is
a normal subcrossed module of (T2, T2, I dT2) = I((T1, T2, ∂T) and that I((Q1, Q2, ∂

Q)) =
(Q2, Q2, I dQ2) is the cokernel of κ : N → T. Therefore any exact sequence of crossed
modules is I-flat. In particular any pullback along any morphism of crossed modules of an
I-flat exact sequence is I-flat, hence I is conditionally flat. 
�
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