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Abstract
We study the Yoneda lemma for arbitrary simplicial spaces. We do that by introducing left
fibrations of simplicial spaces and studying their associated model structure, the covariant
model structure. In particular, we prove a recognition principle for covariant equivalences
over an arbitrary simplicial space and invariance of the covariantmodel structure with respect
to complete Segal space equivalences.
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0 Introduction

0.1 Fibrations and the Yoneda Lemma

The Yoneda lemma is a fundamental result in classical category theory. It states that the
value of a set-valued functor F : C → Set at an object c is uniquely determined by natural
transformations HomC(c,−) ⇒ F . Using the Yoneda lemma we can embed every category
into a larger category via the Yoneda embedding, that shares many pleasant features with the
category of sets. As a concrete example, we can use the Yoneda lemma and our understanding
of limits in the category of sets, to give a precise description of limits in an arbitrary category
[45, 63].

In recent decades there has been an effort to generalize the notion of a category to an
(∞, 1)-category, which satisfies the conditions of a category only up to coherent homotopies
and is thus better suited to study objects that arise naturally in homotopy theory. This first hap-
pened via several models: quasi-categories [11], complete Segal spaces [58], Kan enriched
categories [3], and many other models [4, 6]. More recent developments have focused on
general concepts that incorporate these models, such as ∞-cosmoi [65].
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Given the important role of the Yoneda lemma for classical categories, we would expect
a similarly important role for the Yoneda lemma for (∞, 1)-categories. However, unlike
the 1-categorical case, the study of the Yoneda lemma for (∞, 1)-categories depends on
the particular model we are working with. When we are using the model of Kan enriched
categories, we can rely on the extensive literature regarding enriched categories to obtain a
Yoneda lemma for Kan enriched categories [63, Lemma 7.3.5], [41, 1.9]. However, other
common models of (∞, 1)-categories, such as quasi-categories or complete Segal spaces,
are not strict categories and so we need to use an alternative approach. Indeed, even trying
to define an analogue to the representable functor HomC(c,−) would require us to choose
compositions, which are only defined up to a contractible choice.

Here we can take another look at the historical development of the Yoneda lemma in the
setting of classical categories. Starting with ideas of Grothendieck [28], but also important
figures such asGray [27] andBénabou [68], a certain full subcategory ofCat/C, nowknown as
discrete Grothendieck opfibrations over C, was recognized as an alternative characterization
of the functor category, meaning it is equivalent to the category of set-valued functors out
of the category C, via the Grothendieck construction. In particular, this means there is also
a fibrational Yoneda lemma, which states that for every object c there exists a representable
Grothendieck opfibration Cc/ → C such that for every discrete Grothendieck opfibration
p : D → C amorphismCc/ → D overC (a “natural transformation”) is uniquely determined
by an element in the fiber of p over c (the “value of c”).

Such discrete Grothendieck opfibrations are characterized via a lifting property and are
hence much more amenable to generalizations to the (∞, 1)-categorical setting. It was in
fact Joyal who first realized that the lifting condition can be generalized to quasi-categories,
introducing left fibrations of simplicial sets [38, 39]. Since then,many other approaches to left
fibrations and the Yoneda lemma have been studied for several models of (∞, 1)-categories:

• Quasi-categories:After Joyal also studied by Lurie [42]. Has since been reworked using
different methods byHeuts–Moerdijk [31, 33], Stevenson [67], Cisinski [16] andNguyen
[49].

• ∞-Cosmoi: Introduced and proven by Riehl and Verity [65, Chapter 5].
• Segal spaces: Studied by de Brito [19] and Kazhdan–Varshavsky [40].

In this work we want to focus on left fibrations and Yoneda lemma for general simplicial
spaces. Concretely we want to tackle the following previously unanswered questions:

(1) How can we define left fibrations over an arbitrary simplicial space?
(2) For a given simplicial space X can we define a homotopy theory of left fibrations over

X (in the form of a model structure)?
(3) For a given simplicial space X and a choice of point x can we construct a representable

left fibration Lx → X and prove the Yoneda lemma for simplicial spaces: A morphism
of left fibrations Lx → L over X is uniquely determined by a choice of element in the
fiber of p : L → X over x?

(4) Given an arbitrary simplicial space X , what is the relation between left fibrations over
X and left fibrations over its free complete Segal space (i.e. the fibrant replacement)?

Answering these questions (and many more) is the goal of this work, the major outcomes of
which have been summarized more precisely in Sect. 0.4.
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0.2 Why Simplicial Spaces?

Given that most results here appeared in one form or another in the language of quasi-
categories or ∞-cosmoi why present the material in the language of simplicial spaces? Here
we will list several valuable implications:

Simplified Arguments: Using the approach via simplicial spaces permits very straight-
forward definitions and proofs, a key example being the Grothendieck construction for left
fibrations over categories. In the simplicial space approach we can simply use the classical
Grothendieck construction level-wise, as we prove in Theorem 4.18, thus giving a com-
putationally much more feasible description. In particular, one aspect of the Grothendieck
construction is its naturality. This is stated without proof in [42, Proposition 2.2.1.1], only
to be recently proven (using an intricate argument) in [30, Sect. 6]. The simplified construc-
tion given here enables us to give a similar naturality proof in a much more straightforward
manner.

Internalization: The study of left fibrations via simplicial sets are build on the specific
combinatorial properties of the category of simplicial sets. In the simplicial space approach,
however, we characterize left fibrations as morphisms of simplicial spaces, which are sim-
plicial diagrams in spaces. Hence this approach does not rely on the same combinatorial
techniques (beyond possibly what is necessary to construct Kan complexes in the first place).
As a result this approach can be effectively generalized to many settings beyond spaces. An
elegant example is recent work by Martini, who studies left fibrations (using the definition
given here) via simplicial diagrams in an arbitrary Grothendieck ∞-topos [47].

Synthetic ∞-Category Theory: Homotopy Type Theory is a new foundation for mathe-
matics that is axiomatically homotopy invariant1 and thus in many ways better suited for
homotopical constructions [69]. One long term goal is to use Homotopy Type Theory to
introduce a synthetic notion of ∞-categories. A first step in this regard has been taken by
Riehl and Shulman [64] who introduced a notion of a Rezk type as a way to define (∞, 1)-
categories in Homotopy Type Theory. The notion of a Rezk type is motivated by complete
Segal spaces and so in particular their approach to fibrations and the Yoneda lemma corre-
sponds to fibrations of complete Segal spaces rather than quasi-categories. Recently there
has been new development, which takes ideas regarding left fibrations of Segal spaces to
study higher category theory (such as limits and adjunctions) in the setting of Homotopy
Type Theory [12, 46, 71].

Completeness: One defining property of (∞, 1)-categories is completeness, first intro-
duced by Rezk [58] and then also by Voevodsky in the context of Homotopy Type Theory,
where it is introduced as the univalence axiom [69]. A more precise comparison between the
univalence axiom in a type theory and completeness of the corresponding Segal object can
be found in [66].

From a foundational perspective we want to determine which results in (∞, 1)-category
theory depend on the univalence axiom (i.e. require completeness) and which ones hold in
a more general foundation. However, we cannot directly use quasi-categories to address this
problem as quasi-categories are automatically complete. Rather it would require us to use
technical tools such as flagged ∞-categories [1]. On the other hand complete Segal spaces
can be easily generalized to Segal spaces and so give us a direct computational way to study
the necessity of completeness: We simply have to check whether a result only holds for
complete Segal spaces or can be generalized to Segal spaces.

1 More precisely, type theoretic constructors are invariant under identities, which by the univalence axiom
correspond to equivalences.
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Let us give two concrete examples to illustrate possible results. In Sect. 5.2 we observe
that we can define and study limits and colimits in a Segal space without any reference
to the completeness condition. On the other hand, in order to establish the equivalence of
several notions of left adjoints, Riehl and Shulman need to explicitly require the completeness
condition [64, Theorem 11.23].

Decomposition Spaces: Decomposition spaces, also known as 2-Segal spaces, are a gen-
eralization of Segal spaces with relevance in algebraic K -theory [10], combinatorics [23, 24]
and representation theory [22]. This has motivated the study of decomposition spaces and
their relevant morphisms, known as CULF morphisms. It was proven by Hackney and Kock
[29] that the ∞-category of CULF morphisms over a given simplicial space is equivalent to
right fibrations over its edge-wise subdivision (which is generally not a Segal space). Hence,
studying right fibrations over general simplicial spaces provides us with effective tools to
better understand decomposition spaces and CULF morphisms as well.

Fibrations of (∞, n)-Categories: The same way that 1-categories have been generalized
to (∞, 1)-categories, strict n-categories have been generalized to (∞, n)-categories. Similar
to the (∞, 1)-categorical case there is now a long list of models [5], however, unlike in the
(∞, 1)-categorical case, many important questions about (∞, n)-categories have remained
unanswered.

First of all it is not yet proven that the common models of (∞, n)-category that appear
in the literature are actually equivalent. For example, it is known that �n-spaces [60] are
equivalent to n-fold complete Segal spaces [2] as proven byBergner andRezk [8, 9].However,
it is not known whether they are equivalent to complicial sets [70] and both of those are not
known to be equivalent to comical sets [14]. These are just some of the models that appear
in the literature and clearly illustrate the challenges that lie ahead.

On the other hand eachmodel has its own applications in various branches ofmathematics.
For example, n-fold complete Segal spaces have been the primary model in the study of
topological field theories and the cobordism hypothesis [13, 43] and thus merit a theory of
fibrations. However, given the difficulties we currently face comparing different models and
the fact that the theory of fibrations has not been developed for any of the models, transferring
results from one model to another (the way we could for (∞, 1)-categories) is currently not
possible. It is thus imperative to study fibration of n-fold complete Segal spaces in their own
right.

The fact that n-fold complete Segal spaces are a direct generalization of complete Segal
spaces thus means that an important first step towards realizing this goal is to study left
fibrations of complete Segal spaces.

In all three examples, what is important is not just to know that a certain result holds,
but rather how to prove the desired results. For example, the study of fibrations of n-fold
complete Segal spaces is expected to be a direct generalization of the results for simplicial
spaces proven here.

0.3 Relation to OtherWork

The idea of working on a Yoneda lemma for simplicial spaces was suggested to me by my
advisor Charles Rezk in 2015, as at that time the literature had mostly focused on the study
of quasi-categories. Since then however, significant progress has been made:

• DeBrito developed left fibrations of Segal spaces in [19] and so several result proven here
(independently) already appear in [19], which have been pointed out when appropriate.
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• Building on the ideas of this paper, several subsequent papers have been written studying
(Cartesian) fibrations of complete Segal spaces by the author [52, 53, 55].

• The key ideas of this paper have also been generalized in [54] to the setting of (∞, n)-
categories in the particular model of n-fold complete Segal spaces (and various other
models of (∞, n)-categories introduced by Bergner and Rezk [9]).

• Independently Nuiten [50] has also studied fibrations of n-fold complete Segal spaces,
which imply certain results proven here, when restricting to n = 1.

Themain benefit of thiswork consists in uniting different results that have already appeared
before, as well as generalizing them to arbitrary simplicial spaces. This in particular includes,
but is not limited to, the recognition principle for covariant equivalences (Theorem 4.41) and
the invariance of the covariant model structure under CSS equivalences (Theorem 5.1).

0.4 Main Results

The paper focuses on the study of left fibrations. A left fibration is a Reedy fibration of
simplicial spaces p : Y → X such that for all n ≥ 0 the commutative square

Yn Xn

Y0 X0

pn

<0>∗ <0>∗

p0

is a homotopy pullback square of spaces (Definition 3.2). It generalizes the unique lifting
condition of a discrete Grothendieck opfibration for categories (Definition 1.15). It is well-
established that discrete Grothendieck opfibrations model covariant functors valued in sets
(Proposition 1.10) and by analogy we think of left fibrations as a model for covariant functors
valued in spaces, which guides our work throughout this paper.2

Unlike Grothendieck opfibrations, the study of left fibrations requires (∞, 1)-categorical
techniques, which is why we will use the theory of model categories (Appendix A). Con-
cretely, we will show that for each simplicial space X there is a unique simplicial model
structure on the category of simplicial spaces over X , denoted sS/X and called the covariant
model structure, such that the cofibrations are exactly monomorphisms and fibrant objects
are precisely the left fibrations (Theorem 3.12).

One important model of an (∞, 1)-category is a complete Segal space, which is a sim-
plicial space that satisfies the certain lifting conditions that endows it with the structure of
a homotopy-coherent generalization of a category (Definition 2.21). As a first step, we thus
expect that left fibrations over complete Segal spaces share some of the attributes of discrete
Grothendieck opfibrations over categories. We will in fact take a more general step and study
left fibrations over Segal spaces (Definition 2.15), getting the following generalization of the
Yoneda lemma (here F(n) is the representable simplicial discrete space Sect. 2.3(5)).

Theorem 3.49 Let W be a Segal space and x : F(0) → W be an object. Let

Wx/ = WF(1)s ×
W

{x} F(0)
t−→ W

be the under-category projection, which is a left fibration (Theorem 3.44). Then the map

2 Left fibrations are a special case of coCartesian fibrations, which themselves can be thought of as (∞, 1)-
categorical analogues of general Grothendieck opfibrations.

123



27 Page 6 of 92 N. Rasekh

F(0) Wx/

W

{idx }
�

{x}
t

is a covariant equivalence over the Segal space W and so in particular for every left fibration
L → W the induced map

{idx }∗ : Map/W (Wx/, L) → Map/W (F(0), L)

is a Kan equivalence (Corollary 3.50).

If the Segal space is the nerve of a category C, then we can give a very precise relationship
between left fibrations over NhC (Notation 2.23) and functors out of C valued in spaces.

Theorem 4.18 Let C be a small category. The two simplicially enriched adjunctions

Fun(C, S)proj (sS/NhC)cov Fun(C, S)proj
s
∫
C

sHC

⊥
sTC

sIC

⊥

are Quillen equivalences, which are (up to equivalence) natural in C. Moreover, the derived
counit map s

∫
C QsHCL → L is in fact a Reedy equivalence. Here Fun(C, S) has the pro-

jective model structure and sS/NhC has the covariant model structure over NhC.

The result in particular implies (Corollary 4.22) that a morphism of simplicial spaces
X → Y over NhC is a covariant equivalence if and only if for all objects c in C the morphism

NhC/c ×NhC X → NhC/c ×NhC Y

is a diagonal equivalence. One new and important aspect of this work is that we generalize
this last result from nerves of categories to arbitrary simplicial spaces. The key input is the
following natural zig-zag of equivalences.

Theorem 4.39 Let p : Y → X be a map of simplicial spaces. For every {x} : F(0) → X,
there is a natural zig-zag of diagonal equivalences (Theorem 2.11)

Rx ×
X
Y

�−−→ Rx ×
X
Ŷ

�←−− F(0) ×
X
Ŷ .

Here i : Y → Ŷ is a choice of a left fibrant replacement of Y over X and Rx → X is a
contravariant fibrant replacement of {x} : F(0) → X (Remark 4.25).

Building on this zig-zagwe can nowestablish the recognition principle, classifying general
covariant equivalences.

Theorem 4.41 (Recognition principle) For everymorphism {x} : F(0) → X fix a contravari-
ant fibrant replacement Rx → X. Let g : Y → Z be a morphism over X. Then g : Y → Z
over X is a covariant equivalence over X if and only if for every {x} : F(0) → X

Rx ×
X
Y → Rx ×

X
Z

is a diagonal equivalence.
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The second is the invariance property of the covariant model structure.

Theorem 5.1 (Invariance property) Let f : X → Y be a CSS equivalence (Theorem 2.22).
Then the adjunction

(sS/X )cov (sS/Y )cov
f!

f ∗
⊥

is a Quillen equivalence. Here both sides have the covariant model structure.

Using the invariance property, we can finally establish the Yoneda lemma for simplicial
spaces (Corollary 5.10), generalizing the Yoneda lemma for Segal spaces (Corollary 3.50).
For a simplicial space X fix a CSS fibrant replacement i : X ↪→ X̂ . Then, for any point
x : F(0) → X and left fibration L → X , there is an equivalence of Kan complexes

{s0(x)}∗ : Map/X (Xx/, L)
�−−→ Map/X (F(0), L),

where Xx/ = X ×X̂ X̂ F(1) ×X̂ F(0). Finally, relying on these results we can establish the
following further facts.

Theorem 5.11 The covariant model structure is a localization of the CSS model structure on
sS/X .

Theorem 5.15 Base change by left fibrations preserves CSS equivalences.

0.5 Outline

In Sect. 1 we review the classical Yoneda lemma in Sect. 1.1, the Grothendieck construction
in Sect. 1.2 and the fibrational Yoneda lemma for categories in Sect. 1.3 with an eye towards
a generalization to simplicial spaces.

Section 2 is a reviewof necessary background concepts: Joyal–Tierney calculus (Sect. 2.1),
spaces (Sect. 2.2), simplicial spaces (Sect. 2.3), the Reedy model structure (Sect. 2.4) and
complete Segal spaces (Sect. 2.6).

In Sect. 3 we begin the study of left fibrations. In Sect. 3.1 we introduce left fibrations
and give various alternative characterizations. We then move on in Sect. 3.2 to define a
model structure for left fibrations, the covariant model structure, over arbitrary simplicial
spaces (Theorem 3.12). Finally, in Sect. 3.3 we study left fibrations over Segal spaces and in
particular prove the Yoneda lemma for Segal spaces (Theorem 3.49).

In the next section, Sect. 4, we first take a technical digression in Sect. 4.1 and focus on the
covariant model structure over nerves of categories and in particular prove the Grothendieck
construction in Theorem 4.18. We then use these new technical results in Sect. 4.2 to prove
the recognition principle for covariant equivalences (Theorem 4.41).

In the final section, Sect. 5, we study the relation between left fibrations and complete Segal
spaces. In particular, in Sect. 5.1 we prove the invariance of the covariant model structure
(Theorem 5.1) and several important implications. Finally, in Sect. 5.2 we apply these result
to the study of colimits in Segal spaces.

There are two appendices. In Appendix A we review some key lemmas about model
categories. In Appendix B we prove that the covariant model structure for simplicial spaces
is Quillen equivalent to the covariant model structure for simplicial sets studied in [42].
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0.6 Background

The main language here is the language of model categories and complete Segal spaces. So,
we assume familiarity with both throughout. Only a few results are explicitly stated here. For
a basic introduction to the theory of model categories see [21, 34, 35]. For an introduction
to complete Segal spaces see the original source [58].

0.7 Notation

We mostly follow the notation as introduced in [58] and will be reviewed in Sect. 2. We use
categories with different enrichments and use the following notation to distinguish between
them. Fix a category C and two objects x, y.

• We denote the set of maps between them by HomC(x, y). For a further object z and maps
g : y → x, f : z → x , we will denote the set of maps HomC/x (y, z) by Hom/x (y, z).

• There is one exception to the previous rule. If C is a category of functors, then we denote
the set of natural transformations from F to G by Nat(F,G), following conventional
notation.

• If C is enriched over the category of simplicial sets, we denote the mapping simplicial
set by MapC(x, y) or, if C is clear from the context, by Map(x, y). Similar to the last one
we will, instead of MapC/x

(y, z), use Map/x (y, z).
• If C is Cartesian closed, we denote the internal mapping object by yx .
• There is one exception to the previous rule. For two categories C, D, we denote the

category of functors by Fun(C,D), following conventional notation.
• IfW is a Segal space, then for two objects x, y inW there is a mapping space, which we

denote by mapW (x, y) (Definition 2.17).

For a functor between small categories F : C → D and a bicomplete category E we use the
following notation for the induced functors at the level of functor categories:

Fun(C,E) Fun(D,E)

F!

F∗

F∗

Here F∗ is defined by precomposition, F! is the left Kan extension and F∗ the right Kan
extension.

Similarly, for a given morphism f : c → d in a locally Cartesian closed category C with
small limits and colimits we denote the adjunctions

C/c C/d

f!

f∗

f ∗

where f! is the postcomposition functor, f ∗ the pullback functor and f∗ is the right adjoint
to f ∗.

Finally, letC be a category with final object 1. Then for a givenmorphism {y} : 1 → Y , we
use the notation {y} : X → Y for the unique map that factors through the map {y} : 1 → Y
that picks out the element y in Y .
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1 Another Look at the Yoneda Lemma for Classical Categories

The Yoneda lemma is an important result in classical category theory and is thus well known
among practitioners of category theory. A lesser known aspect of the Yoneda lemma is that
it can be expressed in several different ways. Concretely we want to review four different
faces of the Yoneda lemma, which are summarized in this table:

Hom Tensor

Functor Nat(HomC(c, −), F)
∼=−→ F(c) HomC(c, −) ⊗

C
F

∼=−→ F(c)

Lemma 1.1 Lemma 1.4

Fibration Hom/C(C/c,D)
∼=−→ {c} ×

C
D Cc/ ⊗

C
D

∼=−−−→ {c} ⊗
C
D

Lemma 1.21 Lemma 1.22

Let us start with the most common form of the Yoneda lemma, which can be found in
any introductory book on classical category theory. Here is a version that appears in [45,
Page 61].

Lemma 1.1 (Hom version of Yoneda for functors) If F : C → Set is a functor fand c ∈ C

an object, then the natural map

Nat(HomC(c,−), F) F(C)

[α : HomC(c,−) → F] αc(idc)

∼=

is a bijection.

There is, however, a different way this equivalence can be phrased. It relies on the Hom-
Tensor Adjunction.

1.1 Tensor Product of Functors andYoneda Lemma

Most of the material in this subsection can be found in greater detail in [44, VII.2]. For this
subsection let C be a fixed category and F : C → Set and P : Cop → Set be two functors.
Then we define the tensor product as the following colimit diagram F ⊗C P

∐

c,c′∈C
P(c) × HomC(c, c′) × F(c)

∐

c∈C
P(c) × F(c) F ⊗

C
P

ϕ

ψ
,

where ϕ(a, f , b) = (P( f )(a), b) and ψ(a, f , b) = (a, F( f )(b)). So the tensor product
of two functors is the product of the values quotiented out by the mapping relations. This
definition generalizes the tensor product of a right and left module over a ring, which is the
motivation for this notation. Similar to the case of rings this definition of a tensor product
fits into a hom-tensor adjunction.

Theorem 1.2 Let C be a category and F : C → Set a functor. Then we have the adjunction

Fun(Cop, Set) Set
−⊗CF

HomSet(F(−),−)
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27 Page 10 of 92 N. Rasekh

where the left adjoint takes P to P ⊗C F and the right adjoint takes a set S to the functor
which takes an object C to HomSet(F(c), S).

Remark 1.3 Note that we could have made the same construction for the case where Set is
replaced with any category which has all colimits. However, here we do not need to work at
this level of generality. For more details on the general construction see [44, Page 358].

With the tensor product at hand we can state another version of the Yoneda lemma.

Lemma 1.4 (Tensor version of Yoneda for functors) If P : Cop → Set is a functor and C ∈ C

an object, then the natural map

Nat(HomC(c,−), F) F(C)

[α : HomC(c,−) → F] αc(idc)

∼=

is a bijection.

This version of the Yoneda lemma has the following basic corollaries, which should look
quite familiar.

Corollary 1.5 Let C be a category and C,C ′ two objects. Then we have the following iso-
morphism.

HomC(c,−) ⊗
C
HomC(−, c′) ∼= HomC(c, c′)

Corollary 1.6 Let C be a category and P, Q : Cop → Set be two functors. Then a natural
transformation α : P → Q is a natural isomorphism if and only if

HomC(c,−) ⊗
C
P → HomC(c,−) ⊗

C
Q

is a bijection for every object C ∈ C.

1.2 From Functors to Fibrations: The Grothendieck Construction

We want to now translate the Yoneda lemma from a statement about set-valued functors to
a statement about fibrations. This requires us to translate between functors and fibrations
which we will do via the Grothendieck construction.

Remark 1.7 We will need a careful understanding of the Grothendieck construction in the
coming sections. Thus the review in this section is self-contained. However, the ideas are in
no way new and a more detailed approach can be found in many places, such as [44, I.5], or
[36, A1.1.7, B1.3.1].

Definition 1.8 Let C be a category. Define
∫

C
: Fun(C, Set) → Cat/C

as the functor that takes F : C → Set to the category
∫
C F → C with

• Objects: Pairs (c, x) where c is an object in C and x ∈ F(c).
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• Morphisms: For two objects (c, x), (d, y) we have

Hom∫
C F ((c, x), (d, y)) = { f ∈ HomC(c, d) : F( f )(x) = y}.

It comes with an evident projection map πF : ∫
C F → C. Moreover, for a natural transfor-

mation α : F ⇒ G, the functor
∫
C α : ∫

C F → ∫
C G is given as (c, x) �→ (c, αcx).

Notice, by construction the fiber of πF : ∫
C F → C over an object c is the discrete

category with object set F(c). This functor has a left adjoint and a right adjoint that we want
to define in detail.

Definition 1.9 Let C be a category. We define the functor

C/− : C → Cat/C

that takes an object to the over-category C/c and a morphism f : c → d to the post-
composition f! : C/c → C/d .

Similarly, define the functor

C−/ : Cop → Cat/C

that takes an object to the under-category Cc/ and a morphism f : c → d to the precompo-
sition f ∗ : Cd/ → Cc/.

For a given category over C, p : D → C define

TC(p : D → C) : C → Set

as the composition

C
C/−−−−→ Cat/C

−×CD−−−−−→ Cat
π0−−→ Set

in other words we have TC(c) = π0(C/c ×C D). Similarly, define

HC(p : D → C) : C → Set

as the composition

C
(C−/)

op

−−−−−→ (Cat/C)op
Hom/C(−,D)−−−−−−−−−→ Set

meaning we haveHC(c) = Hom/C(Cc/,D). We claim that TC is the left adjoint andHC is
the right adjoint to

∫
C.

Proposition 1.10 We have the following diagram of adjunctions

Fun(C, Set) Cat/C
∫
C

HC

⊥

TC

⊥
.

Proof We first prove the right adjoint. First of all notice
∫
C commutes with colimits. Indeed,

for a given diagram G : I → Fun(C, Set) it is direct computation that the induced cocone∫
C Gi → ∫

C colim I Gi satisfies the universal property of the universal cocone. Now, by [44,
Corollary I.5.4], every colimit preserving functor out of Fun(C, Set) is the left Kan extension
of its restriction to Cop → Fun(C, Set), meaning we have the following left Kan extension
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Cop Cat/C

Fun(C, Set)

C−/

Yon ∫
C

which means it has a right adjoint given byHC(p : D → C) = HomC(C−/,D).
For the left adjoint, we first show that TC commutes with colimits. As colimits are com-

puted point-wise this means we have to prove that for every object c the functor

π0(C/c ×C −) : Cat/C → Set

commutes with colimits. This functor is a composition and so we check separately that both
are left adjoints:

(1) C/c ×C − is a left adjoint because C/c → C is a Conduché functor [17].
(2) π0 is the left adjoint of the inclusion functor Set → Cat.

Now, we prove that TC is the left adjoint. Recall that [n] is the category given via the
poset structure {0 ≤ 1 ≤ . . . ≤ n} and that every category over C is a colimit of functors
α : [n] → C and so the result follows from the following natural isomorphisms:

Hom/C(α : [n] → C,
∫
C G) Hom/C(α ◦ {0} : [0] → C,

∫
C G) G(α(0))

Nat(Hom(α(0),−),G) Nat(TC(α : [0] → C),G) Nat(TC(α : [n] → C),G)

{0}∗
∼=

α(0)
∼=

Yonα(0)

∼=
∼= ∼=

.

Let us explain the various natural isomorphisms that require a justification.
Notice a morphism in

∫
C G is of the form f : (c, x) → (d,G( f )(x)), where f : c → d

is a morphism in C. Hence, for a given functor α : [n] → C, which we can depict by a chain

of n morphisms in C, c0
f1−−→ c1

f2−−→ . . .
fn−−→ cn , a functor [n] → ∫

C G over C that lifts

α is of the form (c0, x)
f0−−→ (c1,G( f0)(x))

f1−−→ . . .
fn−−→ (c1,G( fn ◦ . . . ◦ f1 ◦ f0)(x)),

meaning it is uniquely determined by the value of the object 0 in [n].
The third isomorphism is the Yoneda lemma. The fourth isomorphism follows from the

fact that TC(α : [0] → C) = π0(C/c×C [0]) ∼= π0(Hom(α(0), c)) = Hom(α(0), c). Finally,
for the last isomorphism we observe that two objects of the form α(0) → α(1) → . . . →
α(n) → c in C/c ×C [n] are in the same path-component if they compose to the same
morphism α(0) → c giving us the desired bijection TC(α ◦ {0}∗ : [0] → C) ∼= TC(α :
[n] → C) = π0(C/c ×C [n]). ��

In fact
∫
C has even more desirable properties.

Lemma 1.11
∫
C : Fun(C, Set) → Cat/C is fully faithful.

Proof Let F,G : C → Set be two functors. We need to prove that the map

Nat(F,G) → Hom/C(

∫

C
F,

∫

C
G)

is a bijection of sets. For that we will construct an inverse. Concretely, we define

IC : Hom/C(

∫

C
F,

∫

C
G) → Nat(F,G)
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as follows. For a given functor H : ∫
C F → ∫

C G overCwe define the natural transformation
IC(H)c(x) = H(c, x). The functoriality of H implies that I(H) is natural.

It remains to show these are inverses. For a given natural transformationα : F ⇒ G we
have

(IC

∫

C
(α))c(x) =

∫

C
(α)(c, x) = αc(x)

and on the other side
∫

C
(IC(H))(c, x) = (IC(H))c(x) = H(c, x)

finishing the proof. ��
This has a direct implication for TC andHC.

Corollary 1.12 TC is a localization functor andHC is a colocalization functor.

Weend this subsection byobserving thatwhile
∫
C is fully faithful, it is in fact not essentially

surjective.

Definition 1.13 A functor p : D → C is conservative if it reflects isomorphisms.

Lemma 1.14 Let F : C → Set be a functor. Then πF : ∫
C F → C is conservative.

Proof Let f : (c, x) → (d, y) be a morphism in
∫
C F such that the underlying morphism

πF ( f ) : c → d is an isomorphism. We need to show that f in
∫
C F is an isomorphism and

we will do so by providing an inverse. Let f −1 : d → c in C be the inverse of πF ( f ) in C.
The inverse is now given by the lift f −1 : (d, y) → (c, x). ��

Thus we need to restrict our attention to the essential image of
∫
C, which leads us to

discrete Grothendieck fibrations.

1.3 Yoneda Lemma for Grothendieck Fibrations

In this subsection we want to use the fully faithful functor
∫
C to translate both versions of

the Yoneda lemma from a functorial statement to a fibrational one.
This might not be amajor improvement when studying 1-categories, however, in the world

of higher categories functors can be difficult to study, because of the homotopy coherence.
On the other hand, fibrations can be defined and studied in a straightforward manner. Thus
a fibrational approach to the Yoneda lemma is an excellent first step for a generalization to a
Yoneda lemma for simplicial spaces.

Aswe observed inLemma1.11,
∫
C is fully faithful, however, it is not essentially surjective!

Definition 1.15 A functor P : D → C is a discrete Grothendieck opfibration over C if it is
in the essential image of

∫
C, meaning there exists a functor F : C → Set and isomorphism

∫
C F

∼=−−→ D over C.

Fortunately, there is also an internal characterization of discreteGrothendieck opfibrations.

Lemma 1.16 A functor P : D → C is a discrete Grothendieck opfibration over C if and only
if for any map f : c → c′ in C and object d in D such that P(d) = c, there exists a unique
lift f̂ : d → d ′ such that P( f̂ ) = f .
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Proof Let F : C → Set be a functor. Then
∫
C F → C satisfies the lifting condition stated in

the lemma. Indeed, for a morphism f : c → c′ and a lift (c, x) where x ∈ F(c), there is a
unique lift given by the morphism f : (c, x) → (c′, F( f )(x)).

On the other hand let us assume that P : D → C satisfies the lifting condition of the
lemma. Then we will construct a functor F : C → Set such that

∫
C F ∼= D over C.

First note that the unique lifting condition implies that the fiber of P over every given
point c, P−1(c), is a discrete category i.e. a set. Indeed let f be a morphism in D such that
P( f ) = idC . Then by the uniqueness assumption f = id.

Now define F as follows:

• Objects: For an object c in C define F(c) = P−1(c)
• Morphisms: For a morphism f : c → c′ define F( f ) : F(c) → F(c′) as the map that

takes x ∈ F(c) to the target of the unique lift of f in D.

The standard projection π : ∫
C F → C exactly recovers P : D → C. ��

The previous characterization allows us to give a contravariant version of Grothendieck
opfibrations.

Definition 1.17 P : D → C is called a discrete Grothendieck fibration if for any map
f : c → c′ in C and object d ′ inD such that P(d ′) = c′, there exists a unique lift f̂ : d → d ′
such that P( f̂ ) = f .

Remark 1.18 Note that it is very rare that a functor p : D → C is a discrete Grothendieck
fibration as well as a discrete Grothendieck opfibration. Concretely it only happens if D ∼=∫
C F over C where F : C → Set takes every morphism to an isomorphism.

Remark 1.19 DiscreteGrothendieckfibrations are a special case ofmoregeneralGrothendieck
fibrations that correspond to functors valued in categories. See [68] for a readable introduction
to general Grothendieck fibrations.

We now want to move on to the Yoneda lemma for discrete Grothendieck fibrations, but
for that we need the analogue of representable functors.

Example 1.20 Let us determine the category
∫
C Hom(c,−). Its objects are pairs (d, f : c →

d) and a morphism (d, f : c → d) → (d ′, f ′ : c → d ′) is a morphism g : d → d ′ such
that g f = f ′ : c → d ′. Thus we just rediscovered the projection from the under-category
Cc/ → C.

With the previous remarks at hand we can now phrase the first fibered version of the
Yoneda Lemma.

Lemma 1.21 (Hom version of Yoneda for fibered categories) Let P : D → C be a discrete
Grothendieck opfibration. Then the natural map between the sets of functors

Hom/C(Cc/,D) Hom/C({c},D) {c} ×
C
D

[F : Cc/ → D] F(idc)

∼=

is a bijection. Here Hom/C denotes the hom set in the category Cat/C and idc : c → c is
seen as an object in Cc/.
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Proof Let F : C → Set be a functor such that
∫
C F ∼= D over C. We now have the following

commutative diagram

Hom/C(Cc/,D) Hom/C({idc},D) {c} ×
C
D

Nat(HomC(c,−), F) F(c)

∼=

Yon

∼=

∫
C

∼= ∼=

Here the left morphism is a bijection as
∫
C is fully faithful and the bottom morphism is a

bijection by the Yoneda lemma. ��
Similar to the previous part we also have a tensor version of the Yoneda lemma for fibered

categories. First, however, we have to define a notion of tensor product for fibered categories.
Recall that the tensor product of two functors F : C → Set, P : Cop → Set is given by
a quotient on the set

∐
c∈C F(c) × P(c), which reminds us of a fibered product. Hence the

fibrational analogue of the tensor product of a discrete Grothendieck opfibrationD → C and
discrete Grothendieck fibration E → C is given by

D ⊗
C
E = π0(D ×

C
E)

whereπ0 is the set of connected components.With this definition we can state our last version
of the Yoneda lemma.

Lemma 1.22 (Tensor version of Yoneda for fibered categories) Let P : D → C be a discrete
Grothendieck opfibration. Then the natural map

C/c ⊗
C
D {c} ×

C
D

[( f : c′ → c, d ′)] Codomain( f̂ )

∼=

is a bijection (here f̂ is the unique lift of f with domain d ′).

Proof Notice P : D → C is a discrete Grothendieck opfibration and so the fiber {c} ×C D

is already a discrete category, and so we can directly establish a bijection of sets. For every
arbitrary morphism ( f : c′ → c, d ′), the elements ( f : c′ → c, d ′) and (idc : c →
c,Codomain( f̂ )) are in the same equivalence class ofC/c⊗CD. Moreover, (idc : c → c, d)

and (idc : c → c, d ′) are in the same equivalence class if and only if d = d ′. This proves
that the assignment (idc, d) �→ d induces the desired bijection. ��

Our goal in the coming sections is to build the necessary machinery to generalize these
statements to the setting of simplicial spaces. In particular, wewill define the correct analogue
to discrete Grothendieck opfibrations, study their properties and prove the Yoneda lemma.

Concretely, we have the following generalizations:

Statement Category Higher Category

Grothendieck Construction Proposition 1.10 Theorem 4.18
Fibration Definition 1.15/Lemma 1.16 Definition 3.2
Conservativity Lemma 1.14 Lemma 3.36
Yoneda Lemma (Hom) Lemma 1.21 Corollary 3.50/Corollary 5.10
Yoneda Lemma (Tensor) Lemma 1.22 Theorem 4.39/Remark 4.40
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2 Basics and Conventions

In this section we review some basic concepts that we will need in the coming sections. In
particular, we review the Joyal–Tierney calculus (Sect. 2.1) [37] as a powerful notational tool.
Moreover, we review notation for simplicial sets (Sect. 2.2), simplicial spaces (Sect. 2.3) and
its associated Reedy model structure (Sect. 2.4) along with two localizations of the Reedy
model structure (Sect. 2.5). Finally, we use complete Segal spaces as our model of higher
categories and thus will end the section with a quick review following [58] (Sect. 2.6).

2.1 Joyal–Tierney Calculus

As we primarily work with simplicial spaces it is helpful to first set up some notation that
will simplify many statements. The notation introduced here is due to Joyal and Tierney [37,
Sect. 7].

Notation 2.1 For this subsection let C be a locally Cartesian closed bicomplete category.

Definition 2.2 Let f : A → B and g : C → D be two maps in C. We define the pushout
product as the universal map out of the pushout

f �g : A × D
∐

A×C

B × C → B × D

induced by the commutative square

A × C A × D

B × C A × D
∐

A×C

B × C

B × D

idA×g

f ×idC

f ×idD

idB×g

f �g

�
.

Moreover, for two sets of maps A and B we use the notation

A�B = { f �g : f ∈ A, g ∈ B}.
Definition 2.3 For twomaps f : A → B and p : Y → X we define the pullback exponential

exp( f , p) : Y B → Y A ×
X A

X B

induced by the commutative square

Y B

Y A ×
X A

X B Y A

X B X A

exp( f ,p)

Y f

p f
� pA

X f

.
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Moreover, for two sets of maps A and X we use the notation

exp(A,X ) = {exp( f , p) : f ∈ A, p ∈ X }
These two functors give us an adjunction of arrow categories:

C[1] C[1]
−� f

exp( f ,−)

⊥ .

The key result about these two constructions is that they can help us better understand lifting
conditions.

Notation 2.4 Let L andR be two sets of morphisms in C. If every morphism in L has the left
lifting property with respect to morphisms in R then we use the notation L � R.

Proposition 2.5 ( [37, Proposition 7.6]) Let A, B and X be three sets of morphisms in C.
Then:

A�B � X ⇔ A � exp(B,X ) ⇔ B � exp(A,X ).

2.2 Simplicial Sets

S will denote the category of simplicial sets. Following [58, 2.1] we will also use the termi-
nology spaces. We will use the following notation with regard to spaces:

(1) � is the indexing category with objects posets [n] = {0, 1, . . . , n} and mappings maps
of posets.

(2) We will denote a morphism [n] → [m] by a sequence of numbers < a0, . . . , an >,
where ai is the image of i ∈ [n].

(3) �[n] denotes the simplicial set representing [n] i.e. �[n]k = Hom�([k], [n]).
(4) ∂�[n] denotes the boundary of �[n] i.e. the largest sub-simplicial set which does not

include id[n] : [n] → [n]. Similarly 
[n]l denotes the largest simplicial set in �[n]
which does not include the lth face.

(5) For a simplicial set S we denote the face maps by di : Sn → Sn−1 and the degeneracy
maps by si : Sn → Sn+1.

(6) Let I [l] be the category with l objects and one unique isomorphism between any two
objects. Then we denote the nerve of I [l] as J [l]. It is a Kan fibrant replacement of �[l]
and comes with an inclusion �[l] � J [l], which is a Kan equivalence.

(7) We say a space K is discrete if for each n, Kn = K0 and all simplicial operators are
identity maps.

2.3 Simplicial Spaces

sS = Fun(�op, S) denotes the category of simplicial spaces (bisimplicial sets). We have the
following basic notations with regard to simplicial spaces:

(1) We embed the category of spaces inside the category of simplicial spaces as constant
simplicial spaces (i.e. the simplicial spaces S such that Sn = S0 for all n and all simplicial
operator maps are identities).

(2) More generally we say a simplicial space is homotopically constant if all simplicial
operator maps Xn → Xm are weak equivalences (and in particular Xn are all equivalent
to X0).
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(3) On the other hand we say a simplicial space X is a simplicial discrete space if for all n,
the space Xn is discrete.

(4) For a given simplicial space X we use the notation s, the source map, for d1 : X1 → X0

and t , the target map, for d0 : X1 → X0. This is motivated by thinking of a simplicial
diagram as a generalization of a directed graph.

(5) Denote F(n) to be the simplicial discrete space defined as

F(n)k = Hom�([k], [n]).
(6) Similar to Sect. 2.2(3) we denote a morphism F(n) → F(m) by < a0, . . . , an >.
(7) ∂F[n] denotes the boundary of F(n). Similarly L(n)l denotes the largest simplicial space

in F(n) which lacks the lth face.
(8) The category sS is enriched over spaces via

MapsS(X , Y )n = HomsS(X × �[n], Y ).

(9) The category sS is also enriched over itself via

(Y X )kn = HomsS(X × F(k) × �[n], Y ).

(10) By the Yoneda lemma, for a simplicial space X we have an isomorphism of spaces

Xn ∼= MapsS(F(n), X).

2.4 ReedyModel Structure

The category of simplicial spaces has a Reedy model structure [56], which is defined as
follows:

(F) A map f : Y → X is a (trivial) Reedy fibration if for each n ≥ 0 the following map of
spaces is a (trivial) Kan fibration

MapsS(F(n), Y ) → MapsS(∂F(n), Y ) ×
MapsS(∂F(n),X)

MapsS(F(n), X).

(W) A map f : Y → X is a Reedy weak equivalence if it is a level-wise Kan weak equiva-
lence.

(C) A map f : Y → X is a Reedy cofibration if it is an inclusion.

The Reedy model structure is very helpful as it enjoys many features that can help us while
doing computations. In particular, it is cofibrantly generated, simplicial andproper.Moreover,
it is also compatible with Cartesian closure, by which we mean that if i : A → B and
j : C → D are cofibrations and p : X → Y is a fibration then the map i� j is a cofibration
and exp(i, p) is a fibration, which are trivial if any of the involved maps are trivial.

These properties in particular imply that we can apply Bousfield localizations to the Reedy
model structure. See AppendixA for more details.

2.5 Diagonal and KanModel Structure

In the coming sections we will use various localizations of simplicial spaces with the Reedy
model structure that are equivalent to the Kan model structure. Although these results have
been studied before, we will make ample use of the notation and thus will do a careful review
here.

First we need two adjunctions between spaces and simplicial spaces.
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Notation 2.6 Let

Diag : � → � × �

be the diagonal functor that takes an object [n] to the pair ([n], [n]) and let

π1, π2 : � × � → �

be the projection functors that take an object ([n], [m]) to the projections [n] or [m], respec-
tively. Finally, let

i1, i2 : � → � × �

be the inclusion functors that take an object [n] to ([n], 0) or (0, [n]), respectively.
These functors give us three adjunctions

sS S sS S
Diag∗

Diag∗

(π1)
∗

(π1)∗

(i1)∗

(i1)∗
.

Remark 2.7 These adjunctions (Diag∗,Diag∗), ((π1)
∗, (π1)∗) and ((i1)∗, (i1)∗) are in fact

enriched adjunctions, meaning that we have a natural isomorphism of spaces

MapS(Diag∗X , Y ) ∼= MapsS(X ,Diag∗Y ),

MapsS((π1)
∗X , Y ) ∼= MapS(X , (π1)∗(Y )),

MapS((i1)
∗X , Y ) ∼= MapsS(X , (i1)∗(Y )).

Remark 2.8 Our notation convention, Sect. 2.3(1), implies that for a space K we denote the
simplicial space (π1)

∗(K ) by K as well.

Remark 2.9 Notice we have π1 ◦ i1 = id and so (i1)∗ ◦ (π1)
∗ = id. More importantly, for

every simplicial set X

(π1)∗(X)n ∼= HomS(�[n], (π1)∗(X)) ∼= HomsS((π1)
∗�[n], X) = HomsS(�[n], X) ∼= X0n,

hence (π1)∗ = (i1)∗. Thus, we can also think of (i1)∗ as the right adjoint to (π1)∗.

Before we move on we want to give very detailed descriptions of these functors.
For a simplicial space X we have:

(Diag∗X)n = Xnn,

(π1)∗(X)n = (i1)
∗(X)n = X0n .

Also, for a simplicial set K we have:

Diag∗(K )n = K�[n],
(π1)

∗(K )n = K ,

(i1)∗(K )n = Kn+1.

Remark 2.10 The direct computation above in particular implies that for a givenKan complex
K there is a natural map

(π1)
∗K → Diag∗(K )

that is a Reedy trivial cofibration. Indeed, we have a retract diagram K → K�[n] → K , that
we can make into a deformation retract via morphism �[n] × �[1] → �[n] induced by the
morphism [n] × [1] → [n] given by (i, 0) �→ i and (i, 1) �→ n.
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We want to show that the category of simplicial spaces has two model structures that
makes the three adjunctions above into Quillen equivalences and that will play an important
role in the coming sections.

The first one is the diagonal model structure on simplicial spaces. Given its prominent
role in homotopy theory, it has already been considered in a variety of settings, such as,
among others, by Moerdijk [48, Proposition 1.2], Rezk–Schwede–Shipley [61, Lemma 4.3],
Dugger [20, Example 5.6], and Cisinski [15, Corollary 3.16].

Theorem 2.11 There is a unique, cofibrantly generated, simplicial model structure on sS,
called the diagonal model structure and denoted by sSdiag, with the following specifications.

(W) A map f : X → Y is a weak equivalence if the diagonal map of spaces

Diag∗( f ) : Diag∗(X) → Diag∗(Y )

is a Kan equivalence.
(C) A map f : X → Y is a cofibration if it is an inclusion.
(F) A map f : X → Y is a fibration if it satisfies the right lifting condition for trivial

cofibrations.

In particular, an object W is fibrant if and only if it is Reedy fibrant and a homotopically
constant simplicial space.

Proof Let L be the following set of cofibrations

L = {< 0 >: F(0) → F(n) : n ≥ 0}.

Then by Theorem A.7 there is a localized model structure on sS such that cofibrations are
inclusions and fibrant objects are Reedy fibrant simplicial spaces K such that

Kn ∼= MapsS(F(n), K ) → MapsS(F(0), K ) ∼= K0

is a Kan equivalence.
In order to finish the proof we only need to prove that f : X → Y is a weak equivalence

in the localized model structure if and only if Diag∗( f ) is a Kan equivalence. For that we
first observe that for a given fibrant simplicial space K , we have the following diagram

(π1)
∗K0 K

Diag∗K0 F(0)

�

� �
γK .

Here the left hand morphism is the Reedy trivial cofibration described in Remark 2.10,
implying the existence of a lift γK : Diag∗K0 → K , which by 2-out-of-3 is a Reedy
equivalence as well.

Now, notice also that Diag∗(K0) is Reedy fibrant, as the Reedy morphism is given by the
Kan fibration (K0)

�[n] → (K0)
∂�[n]. Hence, for the fibrant simplicial space K we have the

following diagram
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MapsS(Y , K ) MapsS(X , K )

MapsS(Y ,Diag∗(K0)) MapsS(X ,Diag∗(K0))

MapS(Diag∗Y , K0) MapS(Diag∗X , K0)

�(γK )∗

∼=

� (γK )∗

∼=

.

Here the vertical morphisms in the top square are equivalences, because γK : Diag∗K0 → K
is a Reedy equivalence between Reedy fibrant objects and the vertical morphisms in the bot-
tom square are isomorphisms because of the simplicially enriched adjunction (Diag∗,Diag∗).

Now the map f : X → Y is an equivalence in this localized model structure if and only if
the top horizontal map is a Kan equivalence for all fibrant objects K (as the model structure
is simplicial), which by the diagram above is equivalent to the bottom map being a Kan
equivalence for all Kan complexes K0.

The equivalence above holds in particular when K is a simplicial space of the form
Diag∗L , where L is an arbitrary Kan complex, which, combined with the fact that the Kan
model structure is simplicial, implies that this is equivalent to

Diag∗ f : Diag∗X → Diag∗Y

being a Kan equivalence, which is exactly the desired statement and finishes the proof. ��
Theorem 2.12 There is a unique, cofibrantly generated, simplicial model structure on sS,
called the Kan model structure and denoted by sSKan, with the following specifications.

(W) A map f : X → Y is a weak equivalence if

(π1)∗ f : (π1)∗X → (π1)∗Y

is a Kan equivalence.
(C) A map f : X → Y is a cofibration if it is an inclusion.
(F) A map f : X → Y is a fibration if it satisfies the right lifting condition for trivial

cofibrations.

In particular, an object W is fibrant if and only if it is Reedy fibrant and the map

MapsS(F(n),W ) → MapsS(∂F(n),W )

is a trivial Kan fibration for n > 0.

Proof Let L be the following set of cofibrations

L = {∂F(n) → F(n) : n ≥ 1}.
Then by Theorem A.7 there is a localized model structure on sS such that cofibrations are
inclusions and fibrant objects are Reedy fibrant simplicial spaces K such that

MapsS(F(n), K ) → MapsS(∂F(n), K )

is a Kan equivalence.
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Before we can finish the proof, we need a better understanding of the fibrant objects in
this model structure. A Reedy fibrant simplicial space X is fibrant if and only if the map
Xn → (X0)

n+1 is an equivalence. Thus a Reedy fibrant simplicial space X is fibrant in this
model structure if and only if the natural map X → (i1)∗(X0) is a Reedy equivalence.

In order to finish the proof we only need to prove that f : X → Y is a weak equivalence
in this localized model structure if and only if (π1)∗( f ) is a Kan equivalence. Fix a map
of simplicial spaces X → Y and a fibrant simplicial space Z . Then we have the following
diagram of spaces:

MapsS(Y , Z) MapsS(X , Z)

MapsS(Y , (i1)∗(Z0)) MapsS(X , (i1)∗(Z0))

MapS((π1)∗Y , Z0) MapS((π1)∗X , Z0)

� �

∼= ∼=

.

The vertical maps in the top square are Kan equivalences as Z and (i1)∗(Z0) are both Reedy
fibrant, and moreover, by the explanation in the previous paragraph, Z → (i1)∗(Z0) is a
Reedy equivalence. Indeed, (i1)∗(Z0)0 = Z0 is Kan fibrant and for n > 0, the morphism
MapsS(F(n), (i1)∗(Z0)) → MapsS(∂F(n), (i1)∗(Z0)) is the identity. The vertical maps in
the bottom square are isomorphisms because (i1)∗ is the right adjoint to (π1)∗ as explained
in Remark 2.9.

Now the map f : X → Y is an equivalence in this localized model structure if and only if
the top horizontal map is a Kan equivalence for all fibrant objects Z (as the model structure
is simplicial), which by the diagram above is equivalent to the bottom map being a Kan
equivalence for all Kan complexes Z0.

We can in particular apply this equivalence to the fibrant simplicial space (i1)∗(L) for an
arbitrary Kan complex L , meaning the result holds for an arbitrary Kan complex and the Kan
model structure is simplicial. Hence this is equivalent to

(π1)∗ f : (π1)∗X → (π1)∗Y

being a Kan equivalence of simplicial sets. ��
We are finally in a position to prove the existence of the chain of Quillen equivalences.

Theorem 2.13 The following three simplicially enriched adjunctions

sSdiag SKan sSKan SKan
Diag∗

Diag∗

(π1)
∗

(π1)∗

(i1)∗

(i1)∗

are Quillen equivalences.

Proof Quillen Adjunctions: The fact that these three adjunctions are Quillen adjunctions is
similar for all three cases and so we will combine the argument. In all three cases we observe
that the left adjoint Diag∗, (π1)

∗, (i1)∗ preserve inclusions and weak equivalences and thus
preserves cofibrations and trivial cofibrations, which imply they are left Quillen functors.
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Indeed, the fact that they preserve inclusions is immediate. The fact that they preserve
weak equivalences is an immediate observation for (π1)

∗ and (i1)∗ and for Diag∗ follows
from Theorem 2.11.

Quillen Equivalence: We move on to prove that these are Quillen equivalences. First we
prove that (π1)

∗ and (i1)∗ are derived inverses of each other. Notice that for every simplicial
set K , (i1)∗(π1)

∗(K ) = K . So, in order to prove they are derived inverses it suffices to prove
there is a natural equivalence

(π1)
∗(i1)∗(X)

�−−→ X

for every simplicial space X fibrant in the Kan model structure on simplicial spaces. This
will then imply that ((π1)

∗, (π1)∗) and ((i1)∗, (i1)∗) are Quillen equivalences and in fact are
inverses of each other.

We have (π1)
∗(i1)∗(X)n = X0 and so the natural map (π1)

∗(i1)∗(X) → X is an equiva-
lence in the Kan model structure on simplicial spaces.

Next we move on to prove that (Diag∗,Diag∗) is a Quillen equivalence. Based on
Lemma A.4 it suffices to prove that Diag∗ reflects weak equivalences and the derived counit
map (which is the actual counit map as all objects are cofibrant) Diag∗Diag∗K → K is a
Kan equivalence of simplicial sets, for K a Kan complex.

The fact that Diag∗ reflects weak equivalences is part of Theorem 2.11. Before we move
on to the second part we first observe that

(Diag∗Diag∗K )n = (Diag∗K )nn = Hom(�[n] × �[n], K ).

This in particular means that Diag∗Diag∗K is a Kan complex. Indeed, we need to witness
that for all n ≥ 0 and 0 ≤ l ≤ n Hom(�[n],Diag∗Diag∗K ) → Hom(
[n]l ,Diag∗Diag∗K )

is surjective, which is equivalent to Hom(�[n] × �[n], K ) → Hom(
[n]l × 
[n]l , K )

being surjective, which follows from the fact that 
[n]l × 
[n]l → �[n] × �[n] is a trivial
cofibration in the Kan model structure [26, Corollary 4.6].

Now, the counit map

�∗ : Hom(�[•] × �[•], K ) → Hom(�[•], K )

is induced by the diagonal map � : �[•] → �[•] × �[•]. By 2-out-of-3 it suffices to show
that the morphism (π1)

∗ : Hom(�[•], K ) → Hom(�[•] × �[•], K ) is a Kan equivalence
as (π1)

∗ and �∗ compose to the identity.
We will now construct an explicit deformation retract of Kan complexes for

(π1)
∗ : Hom(�[•], K ) → Hom(�[•] × �[•], K ),

finishing the proof. As π1 ◦ i1 is the identity, we only need a morphism γ : �[•] × �[•] ×
�[1] → �[•] × �[•], which satisfies γ (−,−, 0) = i1π1 and γ (−,−, 1) = id. We can
obtain such a morphism, by defining the morphism of posets g : [n]× [n]× [1] → [n]× [n]
with g(i, j, 0) = g(i, 0, 0) and g(i, j, 1) = (i, j) and then applying nerves. ��
Remark 2.14 Composing the two Quillen equivalences (Diag∗,Diag∗) and ((π1)

∗, (π1)∗)
we get a Quillen equivalence

sSdiag sSKan
(π1)

∗Diag∗

Diag∗(π1)∗

however, this Quillen equivalence is not the identity adjunction. Thus theKanmodel structure
and diagonal model structure on simplicial spaces are Quillen equivalent, but not the same
model structures (as their set of weak equivalences and fibrations differ).
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2.6 Complete Segal Spaces

The Reedy model structure can be localized such that it models (∞, 1)-categories [58]. This
is done in two steps. First we define Segal spaces. For that let αi : [1] → [n] be the morphism
given by αi (0) = i and αi (1) = i + 1, where 0 ≤ i < n.

Definition 2.15 [58, Page 11] A Reedy fibrant simplicial space X is called a Segal space if
the map

(α∗
0), . . . , α

∗
n−1) : Xn

�−−→ X1 ×
X0

. . . ×
X0

X1

is a Kan equivalence for n ≥ 2.

Segal spaces come with a model structure, namely the Segal space model structure.

Theorem 2.16 [58, Theorem 7.1] There is a simplicial closed model category structure on
the category sS of simplicial spaces called the Segal space model category structure, and
denoted sSSeg, with the following properties.

(1) The cofibrations are precisely the monomorphisms.
(2) The fibrant objects are precisely the Segal spaces.
(3) The weak equivalences are precisely the maps f such that MapsS( f ,W ) is a weak

equivalence of spaces for every Segal space W.
(4) A Reedy weak equivalence between any two objects is a weak equivalence in the Segal

space model category structure, and if both objects are themselves Segal spaces then the
converse holds.

(5) For two cofibrations i and j , i� j is a cofibration, which is trivial if either of i or j are.
(6) The model structure is the localization of the Reedy model structure with respect to the

maps

G(n) = F(1)
∐

F(0)

. . .
∐

F(0)

F(1) → F(n)

for n ≥ 2.

ASegal space already has many characteristics of a category, such as objects and morphisms.

Definition 2.17 Let W be a Segal space. Then an object x in W is a point in W0. Moreover
for two objects x, y we define the mapping space as the pullback

mapW (x, y) W1

�[0] W0 × W0
({x},{y})

.

Unlike classical categories, the mapping spaces of a Segal space do not come with strict
composition maps. Rather there is a natural zig-zag. For more details see [58, Sect. 5]. On
the other hand we do get an actual homotopy category:

Definition 2.18 Let W be a Segal space. We define the homotopy category of W , denoted
HoW , as the following category:
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(1) Objects of HoW are objects of W .
(2) For two objects x, y we have

HomHoW (x, y) = π0(mapW (x, y)).

This indeed gives us a category [58, 5.5].Moreover, amorphism f inW is aweak equivalence
precisely if the morphism [ f ] in HoW is an isomorphism.

Segal spaces do not give us a model of (∞, 1)-categories. For that we need complete Segal
spaces.

Definition 2.19 Let J [n] be the fibrant replacement of �[n] in the Kan model structure
on simplicial sets (Sect. 2.2(6)). We define the simplicial discrete space E(n) as E(n) =
(π2)

∗ J [n]. where (π2)
∗ was defined in Notation 2.6. In particular, E(1) is the free invertible

arrow, meaning a morphism of Segal spaces E(1) → W is precisely given by a choice of
weak equivalence in W .

Definition 2.20 LetW be a Segal space. We define the space of weak equivalencesWhoequiv

as

Whoequiv = MapsS(E(1),W ).

Notice Whoequiv → W1 is an equivalence when restricted to each path compo-
nent in Whoequiv . Moreover, for any two objects x, y in W define hoequivW (x, y) =
Whoequiv ×W0×W0 �[0] and notice the morphism hoequivW (x, y) → mapW (x, y) is also an
equivalence on each path component of hoequivW (x, y).

Definition 2.21 A Segal space W is called a complete Segal space if it satisfies one of the
following equivalent conditions.

(1) The inclusion map

W0 ↪→ Whoequiv

is a weak equivalence.
(2) The map

< 0 >∗: Whoequiv = Map(E(1),W ) → Map(F(0),W ) = W0

is a trivial Kan fibration.
(3) The map

< 1 >∗: Whoequiv = Map(E(1),W ) → Map(F(0),W ) = W0

is a trivial Kan fibration.

Complete Segal spaces come with their own model structure, the complete Segal space
model structure.

Theorem 2.22 [58, Theorem 7.2] There is a simplicial closedmodel category structure on the
category sS of simplicial spaces, called the complete Segal space model category structure,
and denoted sSCSS, with the following properties.

(1) The cofibrations are precisely the monomorphisms.
(2) The fibrant objects are precisely the complete Segal spaces.
(3) The weak equivalences are precisely the maps f such that MapsS( f ,W ) is a weak

equivalence of spaces for every complete Segal space W.
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(4) A Reedyweak equivalence between any two objects is a weak equivalence in the complete
Segal space model category structure, and if both objects are themselves complete Segal
spaces then the converse holds.

(5) For two cofibrations i and j , i� j is a cofibration, which is trivial if either of i or j are.
(6) The model structure is the localization of the Segal space model structure with respect

to the map

< 0 >: F(0) → E(1).

A complete Segal space is a model for an (∞, 1)-category. For a better understanding of
complete Segal spaces see [58, 6] and for a comparison with other models see [7, 37].

We end this section with reviewing the relationship between categories and (complete)
Segal spaces. For that we first establish the following notational conventions.

Notation 2.23 For a given category C, following our notational convention (Remark 2.8)
(π1)

∗NC = NC. Hence, we introduce the notation NhC = (π2)
∗NC, called the horizontal

nerve and note the resulting simplicial space is a Segal space with NhCn a discrete space.

While NhC is a Segal space (and in fact the Kan equivalences in Definition 2.15 are
isomorphisms of discrete simplicial sets), it is usually not complete. That is why there is an
alternative construction, the classifying diagram, given as follows.

Definition 2.24 Let C be a category. Then the classifying diagram of C is the simplicial space
defined as N (C, Iso)kn = Fun([k] × I [n],C).

We now have the following results in [58, Proposition 6.1].

Proposition 2.25 Let C be a category, then N (C, Iso) is a complete Segal space, moreover,
the evident morphism NhC → N (C, Iso) is a complete Segal space equivalence of Segal
spaces.

3 Left Fibrations and the Covariant Model Structure

This section is focused on the study of left fibrations. We first focus on various characteri-
zations of left fibrations (Sect. 3.1). Then we show that left fibrations can be seen as fibrant
objects in a model structure, the covariant model structure (Sect. 3.2). Finally, we do a careful
analysis of left fibrations over Segal spaces (Sect. 3.3).

Remark 3.1 Historical note on left fibrations for simplicial spaces: Left fibrations for com-
plete Segal spaces were first considered by Charles Rezk, motivated by his paper on complete
Segal spaces [58], however, he never published those ideas.

The first record of left fibrations for Segal spaces can be found in the work of de Brito
[19, 0.1] andKazhdan-Varshavsky [40, Definition 2.1.1], where both authors (independently)
give the same definition of a left fibration for Segal spaces.

The definition of left fibration given here was suggested to the author by Charles Rezk
and generalizes those definitions from Segal spaces to an arbitrary simplicial space.

3.1 TheMany Faces of Left Fibrations

In this section we first define left fibrations (Definition 3.2) and then prove they can be
characterized in several alternative ways: Lemmas 3.5, 3.6, Proposition 3.7, Lemma 3.10.
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There is one final characterization of left fibrations, Lemma 3.20, which we relegate to the
next section.

We want to generalize the definition of a discrete Grothendieck opfibration (Defini-
tion 1.15) to simplicial spaces. The guiding principle towards a working definition is the
following idea:

uniqueness in set theory ⇔ contractibility in homotopy theory

Thus we need to find an appropriate contractibility condition. Using our intuition from
Segal spaces for a given simplicial space X we should think of the space X0 as the space
of objects, X1 as the space of morphisms and the simplicial map s : X1 → X0 as map that
takes a morphism to its source (Sect. 2.3(4)).

This motivates the following definition:

Definition 3.2 Amap of simplicial spaces p : L → X is called a left fibration if it is a Reedy
fibration such that the following square is a homotopy pullback square for all n ≥ 0

Ln L0

Xn X0

<0>∗

pn

�
p0

<0>∗

(3.3)

where the horizontal maps come from the map < 0 >: [0] → [n] taking the point to 0 ∈ [n].
More generally, a morphism of simplicial spaces is a left morphism if it satisfies the pullback
condition in 3.3.

Remark 3.4 As we observed in Lemma 1.16, for a given category C, discrete Grothendieck
opfibrations over C correspond to functors C → Set. Given that left fibrations are the homo-
topical analogue of Grothendieck opfibrations they are expected to model functors valued
in spaces. We will in fact prove this statement for the specific case where X = NhC (Theo-
rem 4.18) and use this idea as a guide towards studying left fibrations over general simplicial
spaces.

The proof of the general case can be found for quasi-categories in [42, Theorem 2.2.1.2],
[31, Theorem C].

Let us start with a simple, alternative way of characterizing left fibrations.

Lemma 3.5 Let p : Y → X be a Reedy fibration. The following are equivalent:

(1) p is a left fibration.
(2) For each n ≥ 0, the map

(pn,< 0 >∗) : Yn → Xn ×
X0

Y0

is a Kan equivalence.
(3) For each n ≥ 0, the map

(pn,< 0 >∗) : Yn � Xn ×
X0

Y0

is a trivial Kan fibration.
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Proof (1 ⇔ 2) This follows from the definition of a homotopy pullback and right-properness
of the Kan model structure.

(2 ⇔ 3) The map < 0 >: F(0) → F(n) is a cofibration, which implies that

MapsS(F(n), Y ) → MapsS(F(0), Y ) ×
MapsS(F(0),X)

MapsS(F(n), X)

or, equivalently, the map

Yn → Xn ×
X0

Y0

is a Kan fibration. Thus it is a weak equivalence if and only if it is a trivial Kan fibration. ��
Next we give an alternative, inductive characterization of left fibrations.

Lemma 3.6 Let p : Y → X be a Reedy fibration. The following two are equivalent:

(1) The commutative square

Yn Y0

Xn X0

<0>∗

pn

�
p0

<0>∗

is a homotopy pullback square for all n ≥ 0, meaning p is a left fibration.
(2) The commutative square

Yn Yn−1

Xn Xn−1

<0,...,n−1>∗

pn

�
pn−1

<0,...,n−1>∗

is a homotopy pullback square for all n ≥ 1.

Proof We have the following diagram:

Yn Yn−1 Y0

Xn Xn−1 X0

<0,...,n−1>∗

pn

<0>∗

pn−1 p0

<0,...,n−1>∗
<0>∗

.

(1 ⇒ 2) In this case the rectangle and the right square is a homotopy pullback and therefore
the left hand square is also a homotopy pullback.

(2 ⇒ 1) For this case we use induction. The case n = 1 is clear. If it is true for n − 1
then this means that in the diagram above the right hand square is a homotopy pullback. By
assumption the left hand square is a homotopy pullback and so the whole rectangle has to be
a homotopy pullback and we are done. ��

Next we give a characterization of left fibrations via lifting conditions.
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Proposition 3.7 Let p : Y → X be a Reedy fibration. Then the following are equivalent:

(1) p is a left fibration.
(2) p satisfies the right lifting property with respect to maps of the form

(< 0 >: F(0) → F(n))�(∂�[l] → �[l]),
for all n ≥ 0 and l ≥ 0.

(3) The map of simplicial sets (π1)
∗(exp(< 0 >: F(0) → F(n), p)) (where π1 was intro-

duced in Notation 2.6) satisfies the right lifting property with respect to maps of the
form

∂�[l] → �[l],
for all n ≥ 0 and l ≥ 0.

Proof By Lemma 3.5, the map p : Y → X is a left fibration if and only if

(Yn � Xn ×X0 Y0) = (π1)∗(exp(< 0 >: F(0) → F(n), p : Y → X))

is a trivial fibration, where π1 was introduced in Notation 2.6. This is equivalent to
(π1)∗(exp(< 0 >: F(0) → F(n), p : Y → X)) having the right lifting property with
respect to the inclusion maps ∂�[l] → �[l]. Using the adjunction ((π1)

∗, (π1)∗), this is
equivalent to exp(< 0 >: F(0) → F(n), p : Y → X) having the right lifting property with
respect to (π1)

∗(∂�[l]) → (π1)
∗�[l], which by our notation convention (Remark 2.8) we

denote by ∂�[l] → �[l].
Thus, p : Y → X is a left fibration is and only if

∂�[l] → �[l] � exp(< 0 >: F(0) → F(n), p : Y → X).

Now using Proposition 2.5 with the set of morphisms:

• A = {< 0 >: F(0) → F(n) : n ≥ 0}
• B = {∂�[l] → �[l] : l ≥ 0}
• L = {left fibrations}

we have

A � exp(B,L) ⇔ A�B � L ⇔ B � exp(A,L).

Hence we are done. ��
Thepullback characterization of left fibrations (Lemma3.5) immediately has the following

implication.

Lemma 3.8 Let f : Y → X, g : Z → Y and h : W → V be three Reedy fibrations.

(1) If f and g are left fibrations then f g is also a left fibration.
(2) If f and f g are left fibrations then g is also a left fibration.
(3) If f and h are weakly equivalent Reedy fibrations, then f is a left fibration if and only

if h is a left fibration.

The fact that left fibrations are given via a right lifting property has the following formal
consequence.

Lemma 3.9 The pullback of a left fibration is a left fibration.
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We can use the pullback stability of left fibrations to give several local characterizations
of left fibrations.

Lemma 3.10 Let p : L → X be a Reedy fibration. Then the following are equivalent:

(1) p is a left fibration.
(2) For every map F(n) × �[l] → X the pullback L ×X (F(n) × �[l]) → F(n) × �[l] is

a left fibration.
(3) For every map F(n) → X the pullback L ×X F(n) → F(n) is a left fibration.

Proof (1 ⇒ 3) This follows from Lemma 3.9.
(2 ⇒ 1)By Proposition 3.7 it suffices to prove that the map p has the right lifting property

with respect to the maps (F(0) → F(n))�(∂�[l] → �[l]), meaning we have to show the
following diagram has a lift

F(n) × ∂�[l]
∐

F(0)×∂�[l]
�[l] L

F(n) × �[l] X

p

f

.

We can now take a pullback of p along f to obtain the following diagram

F(n) × ∂�[l]
∐

F(0)×∂�[l]
�[l] f ∗L L

F(n) × �[l] F(n) × �[l] X

p∗ f

p

id

f̂

f

.

By assumption f ∗L → F(n)×�[l] is a left fibration, which means the lift f̂ exists. Hence,
p∗ f ◦ f̂ is the desired lift for the original diagram.

(3 ⇒ 2) Fix a map f : F(n) × �[l] → X . The map < 0 >: �[0] → �[l] gives us the
following pullback square

( f ◦ (id × 0))∗(L) f ∗L

F(n) F(n) × �[l]

�

id×<0>
�

.

The bottom map is a Reedy equivalence, which implies the top map is also a Reedy equiva-
lence. The maps f ∗ p and ( f ◦ (id × 0))∗(p) are Reedy fibrations and so, by Lemma 3.8(3),
f ∗ p is a left fibration if and only if ( f ◦ (id × 0))∗(p) is a left fibration, which holds by
assumption. ��

Using the same argument as in the previous proof we can prove the analogous statement
about diagonal fibrations that will become useful later on.

Lemma 3.11 Let p : Y → X be a Reedy fibration. Then the following are equivalent:
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(1) p is a diagonal fibration.
(2) For every map F(n) × �[l] → X the pullback Y ×X (F(n) × �[l]) → F(n) × �[l] is

a diagonal fibration.
(3) For every map F(n) → X the pullback Y ×X F(n) → F(n) is a diagonal fibration.

Proof Following [61, Definition 3.3, Lemma 4.3] a morphism p : Y → X is a fibration in the
diagonal model structure if and only if p is a Reedy fibration and for all di : [n] → [n + 1]
the induced morphism (di , pn+1) : Yn+1 → Yn ×Xn Xn+1 is a weak equivalence, where
0 ≤ i ≤ n. This means p is a diagonal fibration if it is a Reedy fibration and satisfies the
right lifting property with respect to morphisms di�(∂�[l] → �[l]). The result now follows
from applying the same proof as the one given in Lemma 3.10 with the set of morphisms
di�(∂�[l] → �[l]), where 0 ≤ i ≤ n. ��

3.2 The Covariant Model Structure

Let X be a simplicial space. In this subsectionwedefine amodel structure on the over-category
sS/X , the covariant model structure, which has fibrant objects precisely the left fibrations
over X (Theorem 3.12). We end the subsection by giving a useful criterion for determining
covariant equivalences by generalizing deformation retracts from classical homotopy theory
(Theorem 3.27).

Theorem 3.12 Let X be a simplicial space. There is a unique simplicial left proper model
structure on the over-category sS/X , called the covariant model structure and denoted by
(sS/X )cov , which satisfies the following conditions:

(1) The fibrant objects are the left fibrations over X.
(2) Cofibrations are monomorphisms.
(3) A map f : A → B over X is a covariant weak equivalence if

MapsS/X
(B, L) → MapsS/X

(A, L)

is a Kan equivalence for every left fibration L → X.
(4) A weak equivalence (covariant fibration) between fibrant objects is a level-wise equiva-

lence (Reedy fibration).

Proof Let L be the collection of maps of the following form

L = {F(0)
<0>−−−→ F(n) → X : n ≥ 0}.

Note that L is a set of cofibrations in sS/X with the Reedy model structure. This allows us
to use the theory of Bousfield localizations (Theorem A.7) with respect to L on the category
sS/X . The resulting model structure immediately satisfies all the conditions above and in
particular the fibrant objects are precisely the left fibrations by Lemma A.12. ��
Remark 3.13 This model structure is also constructed in [19, Proposition 1.10] for the par-
ticular case where the base X is a Segal space, and so the theorem could be deduced from
that result as well.

We can actually say more about the fibrations in the covariant model structure.

Lemma 3.14 Let p : L → X and q : L ′ → X be two left fibrations. A map f : L → L ′
over X is a fibration in the covariant model structure if and only if it is a left fibration.
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Proof As p and q are fibrant, f is a fibration if and only if it is a Reedy fibration (Theo-
rem 3.12(4)). The statement now follows from Lemma 3.8 as q f = p. ��

Note the covariant model structure behaves well with respect to base change.

Theorem 3.15 Let f : X → Y be map of simplicial spaces. Then the following adjunction

(sS/X )cov (sS/Y )cov
f!

f ∗
⊥

is a Quillen adjunction, which is a Quillen equivalence if f is a Reedy equivalence. Here f!
is the composition map and f ∗ is the pullback map.

Proof This is the special case of Lemma A.9 when L = {< 0 >: F(0) → F(n) : n ≥ 0}. ��
Remark 3.16 Later we will prove a much stronger result, namely if f is an equivalence
in the CSS model structure then the Quillen adjunction is actually a Quillen equivalence
(Theorem 5.1).

Theorem 3.17 The following is a Quillen adjunction

(sS/X )cov (sS/X )diag
id

id
⊥

which is a Quillen equivalence if X is a homotopically constant simplicial space. Here
the left side has the covariant model structure and the right side has the induced diagonal
model structure (Proposition A.5). This implies that the diagonal model structure over X is
a localization of the covariant model structure over X.

Proof If we localize the Reedy model structure on sS/X with respect to maps of the form
F(0) → F(n) → X we get the covariant model structure (Theorem 3.12) whereas if we
localize the Reedy model structure on sS with respect to maps < 0 >: F(0) → F(n) we
get the diagonal model structure (Theorem 2.11). This means we can apply Theorem A.13
to deduce that this a Quillen adjunction.

Now let us assume X is homotopically constant. Let j : X → X̂ be a Reedy fibrant
replacement of X . Then X̂ is also homotopically constant, which means it is fibrant in the
diagonal model structure (Theorem 2.11). We now have the following diagram of Quillen
adjunctions

(sS/X )cov (sS/X )diag

(sS
/X̂ )cov (sS

/X̂ )diag

id
⊥

j!

⊥

id

j!

⊥

id
⊥

j∗

id

j∗ .

The left hand vertical adjunction is a Quillen equivalence as j is a Reedy equivalence and
by Lemma A.9. The right hand Quillen adjunction is a Quillen equivalence as the diagonal
model structure is right proper and [59, Proposition 2.5]. The bottom horizontal adjunction is
a Quillen equivalence because X̂ is fibrant in the diagonalmodel structure and TheoremA.13.
Thus, 2-out-of-3 implies that the top adjunction is a Quillen equivalence as well. ��
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Remark 3.18 The theorem implies that every covariant equivalence is a diagonal equivalence,
whereas the opposite direction is obviously not true. On the other hand, in Sect. 4.2 we will
prove that we can determine whether a map is a covariant equivalence by checking whether
a certain collection of maps consists of diagonal equivalences (Theorem 4.41).

Example 3.19 One very important instance is the case X = F(0). The theorem shows that
sScov is the same as sSdiag .

Using the covariant model structure we can add one final alternative characterization of
left fibrations.

Lemma 3.20 Let p : L → X be a Reedy fibration. Then the following are equivalent:

(1) p is a left fibration.
(2) For all n ≥ 0

MapsS(F(n) × F(1), L) MapsS(F(n) × F(1), X)

MapsS(F(n), L) MapsS(F(n), X)

(3.21)

is a homotopy pullback square.
(3) exp(< 0 >: F(0) → F(1), p) is a trivial Reedy fibration.

Proof (1 ⇒ 2)First, let us assume p is a left fibration. Fix amorphism p : F(n)×F(1) → X .
We can write F(n) × F(1) as a colimit of a diagram

F(n + 1) ← F(n) → . . . ← F(n) → F(n + 1) (3.22)

over X such that all maps F(n) → F(n + 1) take 0 to 0 (for a more detailed description of
this diagram see [58, Diagram 10.4]). Thus, by applying 2-out-of-3 to the diagram F(0) →
F(n) → F(n+1)over X , themaps in 3.22 are covariant equivalences over X .As the covariant
model structure is left proper (Theorem 3.12) this implies that F(n) × {0} → F(n) × F(1)
is a covariant equivalence over X . As the covariant model structure is simplicial, this implies
that the morphism Map/X (F(n) × F(1), L) → Map/X (F(n), L) is a Kan equivalence. As
the morphism is precisely the fiber of the diagram of Kan fibrations
Map(F(n) × F(1), L) Map(F(n), L) ×Map(F(n),X) Map(F(n) × F(1), X)

Map(F(n) × F(1), X)

over the point p : F(n) × F(1) → X , this proves, by Corollary A.2, that the square 3.21
is a homotopy pullback square for all n ≥ 0.

(2 ⇒ 1) Let 3.21 be a homotopy pullback square for all n ≥ 0, which means

MapsS(F(n) × F(1), L) → MapsS(F(n), L) ×MapsS(F(n),X) MapsS(F(n) × F(1), X)

(3.23)

a trivial Kan fibration.
Let r : [n] × [1] → [n + 1] be the functor given by r(i, 0) = i , r(i, 1) = n + 1. Then

notice the following is a retract diagram
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F(n) F(n) F(n)

F(n + 1) F(n) × F(1) F(n + 1)

id

<0,...,n>

id

id×<0,...,0> <0,...,n>

<(0,0),...,(n,0),(n,1)> Nr

.

Let us denote i =< (0, 0), ..., (n, 0), (n, 1) >: F(n + 1) → F(n) × F(1). The diagram
gives us the following retract diagram of morphisms

MapsS(F(n + 1), L) MapsS(F(n), L) ×MapsS(F(n),X) MapsS(F(n + 1), X)

MapsS(F(n) × F(1), L) MapsS(F(n), L) ×MapsS(F(n),X) MapsS(F(n) × F(1), X)

MapsS(F(n + 1), L) MapsS(F(n), L) ×MapsS(F(n),X) MapsS(F(n + 1), X)

(Nr)∗ id×(Nr)∗
�

i∗ id×i∗

.

As the middle horizontal diagram is a weak equivalence, by 3.23, it follows that the top
morphism is a weak equivalence. By Lemma 3.6, this implies that p : L → X is a left
fibration.

(2 ⇔ 3) The map exp(< 0 >: F(0) → F(1), p) is a trivial Reedy fibration if and only
if it is a level-wise weak equivalence, meaning the maps 3.21 are Kan equivalences for all
n ≥ 0. ��
Remark 3.24 One interesting implication of this lemma is that we can get the covariant model
structure on sS/X (Theorem 3.12) also by localizing with respect to the maps

{< (0, 0) >: F(0) → F(1) × F(n) → X : n ≥ 0}.
Indeed, Lemma 3.20 implies that the left Bousfield localization with respect to the two sets
of morphisms {< (0, 0) >: F(0) → F(1) × F(n) → X : n ≥ 0}. and {< 0 >: F(0) →
F(n) → X : n ≥ 0} have the same cofibrations (monomorphisms) and fibrant objects (left
fibrations) and hence are the same model structure (the covariant model structure over X ).

We can apply this argument inductively to conclude that we can also obtain the covariant
model structure by localizing with respect to

{< (0, . . . , 0) >: F(0) → F(1)n → X : n ≥ 0}.
One important goal in the coming sections is to give a recognition principle for covariant

equivalences. This will be done in Theorem 4.41 and needs us to first discuss the simplicial
Grothendieck construction (Theorem 4.18). However, there are certain instances, motivated
by classical homotopy theory,where recognizing covariant equivalences is quite easy. Firstwe
need to prove an important lemma about closure properties of some covariant equivalences.

Lemma 3.25 Let L be the class of monomorphisms of simplicial spaces that have the left
lifting property with respect to all left fibrations.

(1) If i : A → B ∈ L and j is a cofibration then i� j is in L.
(2) If p is a left fibration and j a cofibration then exp( j, p) is a left fibration.
(3) If i : A → B ∈ L and B → X is an arbitrary morphism, then i over X is a covariant

equivalence.
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Proof (1), (2)By Proposition 2.5 and the fact that left fibrations are described via right lifting
property (Proposition 3.7), the first two statements are equivalent and so it suffices to prove
the second one. Following Lemma 3.20, we only have to prove that exp(< 0 >: F(0) →
F(1), exp( j, p)) is a trivial fibration. Now, we have the following chain of isomorphisms

exp(< 0 >: F(0) → F(1), exp( j, p)) ∼= exp((< 0 >: F(0) → F(1))� j, p)
∼= exp( j, exp(< 0 >, p)).

By Lemma 3.20, exp(< 0 >: F(0) → F(1), p) is a trivial fibration. Moreover, as the
Reedy model structure is Cartesian closed (Sect. 2.4), exp( j, exp(< 0 >, p)) is also a trivial
fibration. Hence, exp(< 0 >: F(0) → F(1), exp( j, p)) is a trivial fibration and we are
done.

(3) We need to prove that for every g : B → X and left fibration p : L → X , the induced
morphism Map/X (B, L) → Map/X (A, L) is a Kan equivalence. This morphism is obtained
by considering the morphism t : Map(B, L) → Map(B, X) ×Map(A,X) Map(A, L) over
Map(B, X) and then taking the fiber over g. Hence, by Corollary A.2, it suffices to show that
t is a Kan equivalence.

By Sect. 2.3(9) and the definition of pullback exponentials (Definition 2.3), we have
t = exp(i, p)0, meaning in order to complete this proof it suffices to show that exp(i, p) is a
Reedy weak equivalence. We will in fact prove it is a trivial fibration, by establishing it has
the right lifting property with respect to all cofibrations j . By Proposition 2.5, this claim is
equivalent to i� j having the left lifting property with respect to p, which holds by (1). ��

This lemma has a useful corollary.

Corollary 3.26 Let L → X be a left fibration and Y a simplicial space, then LY → XY is a
left fibration.

Proof This follows from the previous result if we use the cofibration ∅ → Y . ��

With the technical lemma at hand, we can give a helpful characterization of covariant
equivalences.

Theorem 3.27 Let i : A → B be a monomorphism over X. Then i is a trivial cofibration in
the covariant model structure on sS/X if there exists a retraction r : B → A (not necessarily
over X) and a H : B×F(1) → B (relative to A) such that H(−, 0) = ir and H(−, 1) = idB.

Proof For the proof we simply adapt the argument in [33, Lemma 2.1] to simplicial spaces.

Let Z
p−→ Y → X be a fibration in the covariant model structure over X . We need to prove

that a lift of the following diagram exists:

A Z

X

B Y

f

i p

g

.

Let j = (< 0 >: F(0) → F(1))�(i : A → B). Using the homotopy H and the map j , we
can factor this diagram as follows:
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A F(1) × A
∐

F(0)×A

F(0) × B Z

X

B B × F(1) Y

i
j

f πA
∐

f r

p

idB×<1> gH

.

It suffices to show the right hand square has a lift. For that we need to show that j is a trivial
cofibration in the covariant model structure over X . However, this follows immediately from
the fact that < 0 >: F(0) → F(1) has the left lifting property with respect to all left
fibrations (Proposition 3.7) and so, by Lemma 3.25, j is a covariant equivalence over X . ��
Remark 3.28 As already stated in the proof, this theoremwas stated and proven for simplicial
sets by Heuts and Moerdijk [33, Lemma 2.1].

We will use this result in the next subsection to study left fibrations of Segal spaces.

3.3 Yoneda Lemma for Segal Spaces

In this subsection we want to use the results we have proven until now to study left fibrations
over Segal spaces. In particular, we prove theYoneda lemma for Segal spaces (Theorem3.49).

We will start by simplifying the definition of a left fibration over Segal spaces.

Lemma 3.29 Let p : Y → X be a Reedy fibration and X a Segal space. The following are
equivalent:

(1) Y is a Segal space and the following is a homotopy pullback square:

Y1 Y0

X1 X0

<0>∗

f1

�
f0

<0>∗

.

(2) p is a fibration in the Segal space model structure and the following is a homotopy
pullback square:

Y1 Y0

X1 X0

<0>∗

f1

�
f0

<0>∗

.

(3) p is a left fibration.

Proof (1 ⇔ 2) This follows immediately from the fact that a Reedy fibration between Segal
spaces is a Segal fibration (Theorem 2.16).

(3 ⇔ 1) For all n ≥ 2 we have the following diagram:
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Yn

Y1

Yn−1

Y0

Xn

X1

Xn−1

X0

<n−1,n>∗
<0,...,n−1>∗

pn
0∗

p1

(n−1)∗

pn−1

p0

<n−1,n>∗

<0,...,n−1>∗

0∗
(n−1)∗

.

We have the following facts about this diagram:

• The bottom square is a homotopy pullback for all n ≥ 1 if and only if X is a Segal space.
• Similarly, the top square is a homotopy pullback for all n ≥ 1 if and only if Y is a Segal

space.
• The four squares around the cube are homotopy pullback squares if and only if p is a left

fibration (Lemma 3.6).

The result now follows from checking homotopy pullback squares. The bottom square is
always a homotopy pullback square.

If we assume (2) then the top square and the right hand square are homotopy pullback
squares, which directly implies that left hand square is a homotopy pullback square (by the
cancellation property of homotopy pullbacks) and so, by Lemma 3.6, p is a left fibration.

If we assume (3) then all four squares around are homotopy pullback squares which
implies that the top square is a homotopy pullback square as well. ��
Remark 3.30 Note that [19] and [40] use the characterization in Lemma 3.29 as a definition
of left fibrations rather than the definition we have given here (Definition 3.2). Hence this
lemma proves that our definition agrees with theirs when the base is a Segal space and thus
is a proper generalization of their definition.

Note that a left fibration of Segal spaces generalizes a discrete Grothendieck opfibration
between categories.

Lemma 3.31 Let W be a Segal space and p : L → W be a left fibration. Then the induced
functor on homotopy categories Ho(p) : Ho(L) → Ho(W ) is a discrete Grothendieck
opfibration.

Proof By Lemma 3.29 L is a Segal space. Thus Ho(p) : Ho(L) → Ho(W ) is a functor. We
want to prove it is a discrete Grothendieck opfibration. Let [ f ] : x → y be a morphism in
Ho(W ) and x̂ be a lift of x in Ho(L). We need to prove there is a unique lift ˆ[ f ] of f such
that Ho(p)( ˆ[ f ]) = [ f ].

Let f in W1 be a representative for the class [ f ] ∈ π0(W1). Then (x̂, f ) is a point in
L0 ×W0 W1. The fact that p : L → W is a left fibration implies that

L1 � L0 ×W0 W1

is a trivial Kan fibration and so the fiber over (x̂, f ), which we denote by Ff , is contractible.
This means π0(Ff ) = { ˆ[ f ]} has a single element, which is precisely the unique lift. ��

There is an inverse argument to Lemma 3.31.
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Lemma 3.32 Let p : D → C be a Grothendieck opfibration. Then Nh(p) : NhD → NhC is
a left fibration.

Proof Notice NhD and NhC are simplicial discrete spaces, which means Nh(p) is a Reedy
fibration. Moreover, NhD and NhC are nerves of categories and hence Segal spaces. Thus
by Lemma 3.29 we have to show that the square

NhD1 NhD0

NhC1 NhC0

s

s

is a pullback square. However, this is precisely the lifting condition of a Grothendieck opfi-
bration (Lemma 1.16). ��

We will see later (Proposition 5.20) that this result also holds when we replace the nerve
with the classifying diagram (Definition 2.24). We can use the connection between left
fibrations and Grothendieck opfibrations to study conservativity of left fibrations.

Definition 3.33 A map of Segal spaces p : V → W is conservative if the square

Vhoequiv V1

Whoequiv W1

(3.34)

is a homotopy pullback square.

We can characterize conservativity via the homotopy category.

Lemma 3.35 Let p : V → W be a morphism of Segal spaces. Then the following are
equivalent:

(1) p is conservative.
(2) For all objects x, y in V , the square

hoequivV (x, y) mapV (x, y)

hoequivW (px, py) mapW (px, py)

is a homotopy pullback square.
(3) The functor of categories Ho(p) : Ho(C) → Ho(D) is conservative.

Proof (1) ⇔ (2) The square 3.34 is a homotopy pullback square if and only if the morphism
Vhoequiv → Whoequiv ×W1 V1 is a weak equivalence, which is equivalent to being a weak
equivalence over W0 × W0 in the following diagram
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Vhoequiv Whoequiv ×W1 V1

W0 × W0

.

Now, as both legs of the triangle are Kan fibrations, by Corollary A.2, the top morphism is
an equivalence if and only if it is a fiber-wise equivalence. However, by Definition 2.17 and
Definition 2.20 for a given point (x, y) : �[0] → W0 × W0, the fiber is precisely given by
the morphism

hoequivV (x, y) → hoequivW (px, py) ×mapW (px,py) mapV (x, y)

finishing the proof.
(2) ⇔ (3) Fix two arbitrary objects x, y in W . By Definition 2.20, the morphism

hoequivW (x, y) → mapW (x, y) is an equivalence when restricted to each path-component
and so

hoequivV (x, y) → hoequivW (px, py) ×mapW (px,py) mapV (x, y)

is a weak equivalence if and only if

π0hoequivV (x, y) → π0hoequivW (px, py) ×π0mapW (px,py) π0mapV (x, y)

is a bijectionof sets.However, bydefinitionπ0mapW (x, y) = HomHoW (x, y)π0hoequivW (x, y) =
IsoHoW (x, y),meaning this is equivalent to IsoHo(V )(x, y) → IsoHo(W )(px, py)×HomHo(W )(px,py)

HomHo(V )(x, y) being a bijection, which by Definition 1.13, is equivalent to Ho(p) being
conservative. ��

We can finally relate conservativity and left fibrations.

Lemma 3.36 Let W be a Segal space and p : L → W a left fibration. Then p is conservative.

Proof By Lemma 3.29, L is a Segal space and so p is a map of Segal spaces. Thus, by
Lemma 3.35, p is conservative if and only if the functorHop : HoW → HoV is conservative.
However, by Lemma 3.31, p is a discrete Grothendieck opfibration and thus is conservative.

��
Remark 3.37 This result was proven for quasi-categories in [39, Proposition 4.9], which could
give us the analogous argument for complete Segal spaces. However, this proof generalizes
the result to arbitrary Segal spaces.

We can use conservativity to characterize left fibrations over complete Segal spaces.

Lemma 3.38 Let W be a complete Segal space and p : V → W be a left fibration. Then V
is a complete Segal space.

Proof We have the diagram

Vhoequiv V1 V0

Whoequiv W1 W0

�

.
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The left hand square is a homotopypullback square as p is a left fibration and thus conservative
(Lemma 3.36). The right hand square is a pullback square because of p is a left fibration.
Hence the whole rectangle is a homotopy pullback.

Now completeness of W implies that the bottom map is an equivalence (Definition 2.21)
and, as the square is a homotopy pullback, this means Vhoequiv → V0 is an equivalence.
Hence, again by Definition 2.21, this means that V is a complete Segal space. ��

We can combine Lemmas 3.29 and 3.38 into the following very useful result.

Proposition 3.39 Let W be a Segal space. Then the adjunction

(sS/W )Seg (sS/W )cov
id

id
⊥

is a Quillen adjunction, where the left hand side has the induced Segal space model structure
and the right hand side has the covariant model structure.

Moreover, if W is also complete then the adjunction

(sS/W )CSS (sS/W )cov
id

id
⊥

is a Quillen adjunction, where the left hand side has the CSS model structure and the right
hand side has the covariant model structure.

Proof Let us focus on the case for Segal spaces first. As, following Theorem A.13, the
induced and the localized Segal space model structures coincide when W is a Segal space,
we can apply Corollary A.10. This means it suffices to prove that the left adjoint preserves
monomorphisms and the right adjoint preserves Reedy fibrations and fibrant objects. It is
evident that the identity functor preserves monomorphisms and Reedy fibrations. For the last
part, observe that fibrant objects in the induced Segal space model structure are precisely
Segal fibrations overW . Thuswe only have to prove that ifW is a Segal space and p : V → W
is a left fibration then p is a Segal fibration, which is precisely the statement of Lemma 3.29.

The case for complete Segal spaces is identical except in the last step we use the fact that
a left fibration over a complete Segal space is a complete Segal space fibration as shown in
Lemma 3.38. ��
Remark 3.40 The assumption that the base simplicial space is fibrant is not necessary and this
proposition can be generalized to arbitrary simplicial spaces as we will do in Theorem 5.11.
However, before we can do that we need to understand invariance properties of the covariant
model structure (Theorem 5.1).

Having a better understanding of left fibrations over Segal spaces, we can move on to
prove the Yoneda lemma for Segal spaces.

Definition 3.41 LetW be a Segal space and x an object inW . Thenwe define the under-Segal
space Wx/ as

Wx/ = WF(1)s ×
W

{x} F(0)

Remark 3.42 In the particular case when W is a complete Segal space, it comes with an
underlying quasi-category, denoted i∗1W [37] (see Appendix B for more details regarding
i∗1 ). This suggests the natural question how i∗1 (Wx/) compares with (i∗1W )x/.
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The common definition of an under-quasi-category (for example the one that can be found
in [42]) relies on the join of simplicial sets. Hence, i∗1 (Wx/) (as constructed inDefinition 3.41)
would not be isomorphic as a simplicial set to (i∗1W )x/, as constructed in [42, Proposition
1.2.9.2] via the join. However, in Appendix Bwe prove that i∗1 in fact induces a Quillen equiv-
alence of covariant model structures, which in particular implies that the quasi-categories
(i∗1W )x/, i∗1 (Wx/) are equivalent left fibrations over i∗1W .

An alternative argument that shows that the constructions of under-categories via joins
and pullbacks are equivalent (in a general ∞-cosmos) can be found in [62, Corollary 4.2.8].

Notice the under-Segal space is in fact a Segal space.

Lemma 3.43 For a Segal space W and an object x, the projection Wx/ → W is a Segal
space fibration and so the under-Segal space Wx/ is a Segal space.

Proof We have the following pullback diagram

Wx/ WF(1)

F(0) × W W × W

(s,t)

{x}×idW

.

The right hand map is a fibration in the Segal space model structure as it is the pullback
exponential of a cofibration and a fibrant object (Theorem 2.16). Thus the pullback is a Segal
fibration. The result now follows from the fact that W itself is a Segal space. ��

We have shown that the projection map Wx/ → W that takes each morphism to its target
is a fibration in the Segal space model structure. We want to show that it is actually a left
fibration.

Theorem 3.44 Let W be a Segal space and x an object in W. Then the projection map
Wx/ → W is a left fibration.

Proof In order to simplify notation we will denote the four vertices F(1) × F(1) by {00, 01,
10, 11}.

By Lemma 3.29 it suffices to prove that the map

π : (Wx/)1 � (Wx/)0 ×
W0

W1

is a trivial Kan fibration.
Notice

(Wx/)0 ×
W0

W1 ∼= �[0] ×
W0

W1 ×
W0

W1 ∼= �[0] ×
W0

MapsS(G(2),W )

and

(Wx/)1 = �[0] ×
W1

(WF(1))1 ∼= �[0] ×
W0

W0 ×W1 (WF(1))1

∼= �[0] ×
W0

MapsS(F(0)
∐

F(1)

<10,11>
(F(1) × F(1)),W ).

123



27 Page 42 of 92 N. Rasekh

Thus, (recalling the definition of G(2) in Theorem 2.16) it suffices to prove the map

MapsS(F(0)
∐

F(1)

<10,11>
(F(1) × F(1)),W ) → MapsS(G(2),W )

is a trivial Kan fibration, or, equivalently, the map

< 00, 01 >
∐

<01>

< 01, 11 >: G(2) ↪→ F(0)
∐

F(1)

(F(1) × F(1)) (3.45)

is a trivial cofibration in the Segal space model structure (as W is a Segal space).
This map factors as

G(2) ↪→ F(2)
<00,01,11>−−−−−−−→ F(0)

∐

F(1)

(F(1) × F(1))

and so we only need to show the second map is a Segal equivalence. Using the isomorphism

F(1) × F(1) ∼= F(2)<0,2> ∐

F(1)

<0,2>
F(2),

the map < 00, 01, 11 > is the pushout of the following diagram:

F(1) F(1) F(2)

F(0)
∐

F(1)

F(2) F(1) F(2)

id <0,2>

= =

<0,2> <0,2>

.

So, the result follows from knowing that the left hand map is a trivial cofibration, as the Segal
space model structure is left proper by Theorem 2.16. The left hand map itself is the pushout
of the following diagram:

F(0) F(1) G(2)

F(0) F(1) F(2)

� �

<1,2>

�

<1,2>

.

As all vertical arrows are equivalences in the Segal space model structure and the Segal space
model structure is left proper, the pushout is a Segal space equivalence as well. Hence we
are done. ��
Remark 3.46 In order to better understand the proof it might be helpful to visualize the map
3.45 as:

< 00, 01 >
∐

<01>

< 01, 11 >:

0 1 00 01

2 11

.
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Remark 3.47 The fact that the left fibration Wx/ → W happened to be a Segal fibration
is not a coincidence. We will later see that every left fibration is indeed a Segal fibration
(Theorem 5.11).

Remark 3.48 The Segal space condition in Theorem 3.44 is in fact a key condition and the
theorem does not hold for general Reedy fibrant simplicial spaces, as we will show with
G(2). We want to prove that G(2)0/ → G(2) is not a left fibration. For that it suffices to
observe that the map

π : (G(2)0/)1 → (G(2)0/)0 ×
G(2)0

G(2)1

is not a trivial Kan fibration.
Notice that

(G(2)0/)0 ×
G(2)0

G(2)1 = {00, 01} ×
{0,1,2}

{00, 01, 11, 12, 22}
= {(00, 00), (00, 01), (01, 11), (01, 12)}.

On the other hand we have

(G(2)0/)1 = {α : F(1) × F(1) → G(2) : α(0, 0) = 0}
and the map π simply restricts α : F(1) × F(1) → G(2) to the pair (α◦ < (0, 0), (0, 1) >

, α◦ < (0, 1), (1, 1) >). Hence, the point (01, 12) has no lift along π as any choice of lift α
necessarily satisfies α(1, 1) = 2, which is impossible.

We are now at the point where we can prove the Yoneda lemma for Segal spaces.

Theorem 3.49 Let W be a Segal space and x an object. Then the map {idx } : F(0) → Wx/

is a covariant equivalence over W.

Proof Let mul : F(1) × F(1) → F(1) be the map defined by mul(i, j) = i j where
i, j = 0, 1. Moreover, let mul∗ : WF(1) → WF(1)×F(1). Using the adjunction between

product and exponential, we get a morphism ̂mul∗ : F(1)×WF(1) → WF(1), which fits into
the following diagram:

F(0) × WF(1)

F(1) × WF(1) WF(1)

F(0) × WF(1)

s0s
<0>×id

m̂ul∗

id
<1>×id

.

Now, notice we have the following diagram

Wx/ (Wx/)
F(1)

WF(1) (WF(1))F(1)

mul∗

mul∗
,
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as mul∗ takes a morphism f : x → y to the square

x x

x y

=
= f

f

This means we can restrict the diagram via the inclusionWx/ ↪→ WF(1) to get the following
diagram

F(0) × Wx/

F(1) × Wx/ Wx/

F(0) × Wx/

{idx }
<0>×id

m̂ul∗

id<1>×id

.

Notice, by definition of ̂mul∗ we have the commutative diagram

F(1) × {idx } F(1) × Wx/

{idx } Wx/

π2 m̂ul∗ ,

meaning ̂mul∗ is a homotopy between id and {idx } : Wx/ → Wx/ relative to {idx }. Hence,
by Theorem 3.27, the map {idx } : F(0) → Wx/ over W is a covariant equivalence. ��

Why do we call this the Yoneda lemma? The next corollary makes the connection more
clear:

Corollary 3.50 Let W be a Segal space and L → W be a left fibration. Then the map of
spaces

{idx }∗ : Map/W (Wx/, L) → Map/W (F(0), L)

is a trivial Kan fibration.

Proof Follows fromTheorem 3.49 and the fact that the covariant model structure is simplicial
(Theorem 3.12). ��
Remark 3.51 This Yoneda lemma for Segal spaces has also been proven (independently)
by Boavida [19, Lemma 1.31]. The analogous version for quasi-categories, meaning a
Kan equivalence Map/S(Sx/, L) → Map/S(�[0], L), where L → S is a left fibration
of quasi-categories and Sx/ → S is the under-quasi-category projection, has also been
established in the literature. It was proven directly by Joyal [39, Chapter 11], but is also
an implication of the straightening construction by Lurie [42, Theorem 2.2.1.2]. Finally,
there is an analogous statement in an arbitrary ∞-cosmos, meaning a Kan equivalence
Map/S(Sx/, L) → Map/S(�[0], L), where S is an∞-category in an∞-cosmosK, L → S a
left fibration (there called discrete coCartesian fibration [62, Definition 5.5.3]) and Sx/ → S
the under-∞-category [62, Theorem 5.7.3].
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We can use this result to study the relation between initial objects and representable
functors. LetW be a Segal space. Then for two objects x, y we can define the mapping space
mapW (x, y) (Definition 2.17). We would hope that this choice is functorial, meaning we get
a functor mapW (x,−). This would require an actual composition map

f∗ : mapW (x, y) → mapW (x, z)

for any map f : y → z in W . However, composition of morphisms in a Segal space is only
defined up to contractible ambiguity. For more details on composition in Segal spaces see
[58, Sect. 5]

We will thus take a fibrational approach. We observed in Example 1.20 that the
Grothendieck opfibration associated to the representable functor Hom(a,−) : C → Set
is the under-category Ca/ → C. This motivates the following definition:

Definition 3.52 A left fibration p : V → W is called representable if there exists an object
x in W and a Reedy equivalence f : Wx/ → V over X .

Using covariant equivalences we can relate representable left fibrations with the concept
of initiality.

Definition 3.53 Let W be a Segal space. An object x in W is called initial if the map {x} :
F(0) → W is a covariant equivalence over W .

Remark 3.54 Initial objects are a special kind of colimit as we shall see in Sect. 5.2. Initial
objects were thus studied in the context of colimits in quasi-categories [42, 1.2.12], [38,
10.1].

Theorem 3.55 Let p : L → W be a left fibration. Then the following are equivalent:

(1) p is representable.
(2) L has an initial object

Proof (1) ⇒ (2) If p is representable then L is Reedy equivalent to Wx/ for some object x
in W . Thus it suffices to prove Wx/ has an initial object. We have the following diagram.

(Wx/)idx/

F(0) Wx/

W

π

x

{ididx }
�

{idx }
�

p

.

Wx/ is a left fibration over W . By Lemma 3.8 (Wx/)idx/ is also a left fibration over W as the
composition of left fibrations is a left fibration. By Theorem 3.49, the map {idx } is a covariant
equivalence over W . By the same argument the map {ididx } is a covariant equivalence over
Wx/, which implies it is also a covariant equivalence overW (Theorem 3.15). By 2-out-of-3,
we get that π is a covariant equivalence over W . But π is a map between left fibrations over
W and thus must be a trivial Reedy fibration (Theorem 3.12).
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(2) ⇒ (1)Let {x} : F(0) → L be a covariant equivalence over L . Then, by Theorem 3.15,
{l} : F(0) → L is a covariant equivalence over W . By Theorem 3.49, F(0) → Wp(l)/ is a
trivial covariant cofibration over W and, by assumption, L → W is a left fibration and thus
a covariant fibration over W and so we can lift the diagram below

F(0) L

Wp(l)/ W

{x}
�

{idp(l)} � p .

As the top map is a covariant equivalence over W , by 2-out-of-3, the lift Wp(l)/ → L is a
covariant equivalence over W . As both are left fibrations, by Theorem 3.12, this map is a
Reedy equivalence. ��
Remark 3.56 Notice the second condition only depends on L . Thus representability of a left
fibration p : L → W is independent of the map p and base W .

4 From the Grothendieck Construction to the Yoneda Lemma

In Sect. 3.3 we studied many important features of the covariant model structure over Segal
spaces. The goal is to generalize all those results to the covariant model structure over
an arbitrary simplicial space. An important step is to have a precise characterization of
left fibrations over F(n) and a computationally feasible way for characterizing covariant
equivalences over an arbitrary simplicial space. The goal of this section is to address both
these concerns.

In Sect. 4.1 we prove the simplicial Grothendieck construction for categories (Theo-
rem 4.18), which in particular gives us a characterization of left fibrations over F(n). In
Sect. 4.2, we will then use this characterization to prove the recognition principle for covari-
ant equivalences (Theorem 4.41).

Notation 4.1 For this section, recall that for a given category C, NhC is the simplicial space
given as (π2)

∗NC, which is a (generally non-complete) Segal space with (π2)
∗NCn being a

discrete simplicial set given by the set Fun([n],C) (Notation 2.23).

4.1 Grothendieck Construction over Categories

In Proposition 1.10 we constructed an adjunction between set-valued functors out of C and
functors over C, which gives us an equivalence when we restrict to discrete Grothendieck
opfibrations.

In this subsection we generalize this result and prove two Quillen equivalences between
a model category of space valued functors out of C and a model category of left fibrations
over NhC. We will then use this result to give a precise characterization of left fibrations over
F(n).

Definition 4.2 Let C be a small category. We define the projective model structure on the
functor category Fun(C, S) as follows.

(F) A natural transformation α : G → H is a projective fibration if and only if for every
object c in C the map αc : G(c) → H(c) is a Kan fibration.
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(W) A natural transformation α : G → H is a projective equivalence if and only if for every
object c in C the map αc : G(c) → H(c) is a Kan equivalence.

(C) A natural transformation is a projective cofibration if it satisfies the left lifting property
with respect to all trivial projective fibrations.

The projective model structure on Fun(C, S) exists [42, Proposition A.2.8.2]. Recall that
for a given simplicial set S we denote the constant functor as {S} : C → S (Sect. 0.7).

Remark 4.3 The projective model structure has many desirable properties.

(1) It is proper.
(2) It is combinatorial.
(3) It is a simplicial model category, with simplicial enrichment given by

Map(F,G)n = Nat(F × {�[n]},G).

(4) It is compatiblewithCartesian closure of the underlying category: If A → B andC → D
are cofibrations then (A → B)�(C → D) is a cofibration, which is trivial if either is
trivial.

Remark 4.4 Using the isomorphism of functor categories

Fun(C, S) ∼= Fun(�op,Fun(C, Set))

we can think of a space valued functorG : C → S as a simplicial object in set valued functors
G• : C → Set. Thus we will often switch between those when required.

Our first step is to generalize the adjunction from Proposition 1.10.

Definition 4.5 Let

s
∫

C
: Fun(C, S) → sS/NhC

be the functor that applies
∫
C level-wise to the functor G : C → S, meaning (s

∫
C G)nl =

(N
∫
C(Gl))n .

Remark 4.6 By direct computation, the simplicial space s
∫
C G is level-wise equal to

(

s
∫

C
G

)

n
=

∐

c0→···→cn

G(c0)

with projection (s
∫
C G)n → NhCn taking an element (c0 → · · · → cn, x) to c0 → · · · → cn .

Definition 4.7 Let

sTC : sS/NhC → Fun(C, S)

be the functor defined as the left Kan extension of the functor

sTC(p : F(n) × �[l] → NhC) = Hom(p(0, 0),−) × �[l]
Definition 4.8 Let

sHC : sS/NhC → Fun(C, S)
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be the functor that takes a map p : Y → NhC to the functor

C
C−/−−→ Cat/C

Nh−−→ sS/NhC

Map
/NhC(−,Y )

−−−−−−−−−→ S

meaning that for an object c in C the value is given by

sHC(p : Y → NhC)(c) = Map/NhC(NhCc/, Y ).

Lemma 4.9 The functors sTC, s
∫
C, sHC give us two adjunctions (sTC � s

∫
C), (s

∫
C � sHC)

Fun(C, S) sS/NhCs
∫
C

sHC

⊥

sTC

⊥
.

Moreover, the adjunction (s
∫
C � sHC) is simplicially enriched.

Proof By definition sTC commutes with colimits. Hence it suffices to observe that we have
the following natural bijections

Nat(sTC(p : F(n) × �[l] → NhC),G) ∼= Nat(Hom(p(0, 0),−) × �[l],G) ∼= Gl(p(0, 0)) ∼=
Hom/NhC(p : F(n) × �[l] → NhC, s

∫

C
G)

which establishes the adjunction sTC � s
∫
C (here Gl : C → Set is as described in

Remark 4.4).
On the other hand we have

Hom/NhC(s
∫

C
(Hom(c,−) × �[l]) → NhC, p : Y → NhC) ∼=

Hom/NhC(NhCc/ × �[l] → NhC, p : Y → NhC) = sHC(p : Y → NhC)l(c) ∼=
Nat(Hom(c,−) × �[l], sHC(p : Y → NhC))

which establishes the adjunction s
∫
C � sHC.

Following [63, Proposition 3.7.10], in order to show the adjunction is simplicially enriched
it suffices to show that the adjunction preserves the simplicial tensor. Following the explicit
description of the tensor given in Sect. 2.3 and Remark 4.3, this means we need to prove

s
∫
C(F × K ) ∼= (s

∫
C F) × K

π1−→ s
∫
C F → NhC. However, it is an immediate computation

that s
∫
C{K } = K × NhC

π2−−→ NhC. Moreover, s
∫
C is a right adjoint and hence commutes

with products and so we have s
∫
C(F × K ) ∼= s

∫
C F ×NhC K ×NhC ∼= s

∫
C F × K over NhC

and hence we are done. ��
We would like to prove that if a functor G : C → S is valued in Kan complexes then the

map of simplicial spaces s
∫
C G → NhC is a left fibration. However, this does not hold in

general and so we instead have the following lemma.

Lemma 4.10 Let G : C → S be a functor. Then s
∫
C G → NhC is a left morphism. Moreover,

let Rs
∫
C G → NhC be a Reedy fibrant replacement of s

∫
C G → NhC. Then Rs

∫
C G → NhC

is a left fibration.

Proof First we observe that s
∫
C G → NhC is a left morphism. Notice the square
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∐

c0→...→cn

G(c0)
∐

c0

G(c0)

NhCn NhC0

is a pullback as an element in
∐

c0→...→cn G(c0)k is precisely a choice of c0 → . . . → cn in
NhCn alongwith a choice of element inG(c0)k . Moreover, the diagram is already a homotopy
pullback square as NhCn → NhC0 is a Kan fibration.

Now, let Rs
∫
C G → NhC be a Reedy fibrant replacement. Notice, it is a Reedy fibration

by definition and so we only need to verify the locality condition. As NhC is a discrete
simplicial space, the map NhCn → NhC0 is a Kan fibration for all n, and so by right
properness of theKanmodel structure the inducedmaponpullbacks (s

∫
C G)0×NhC0

NhCn →
(Rs

∫
C G)0 ×NhC0

NhCn is a Kan equivalence. Hence, for every n ≥ 1, we have the following
commutative diagram where three sides are weak equivalences

(s
∫
C G)n (Rs

∫
C G)n

(s
∫
C G)0 ×NhC0

NhCn (Rs
∫
C G)0 ×NhC0

NhCn

�

∼=
�

and so the desired result follows from 2-out-of-3. ��
We can use this observation to determine when s

∫
C α is a covariant equivalence.

Lemma 4.11 Let α : G → H be a natural transformation. Then α is a projective equivalence
if and only if s

∫
C α is a covariant equivalence.

Proof Let Rs
∫
C α : Rs

∫
C G → Rs

∫
C H be a Reedy fibrant replacement of s

∫
C α. By the

previous lemma Rs
∫
C G → NhC, Rs

∫
C H → NhC are left fibrations and so s

∫
C α is an

equivalence if and only if (Rs
∫
C G)0 → (Rs

∫
C H)0 is a Kan equivalence. We now have the

following diagram

∐
c0 G(c0)

∐
c0 H(c0)

(Rs
∫
C G)0 (Rs

∫
C H)0

� � .

The vertical maps are Kan equivalences as Reedy equivalences are level-wise Kan equiv-
alences. Hence the top map is an equivalence (which is equivalent to α being a projective
equivalence) if and only if the bottom map is an equivalence (which is equivalent for s

∫
C α

to be a covariant equivalence). ��
Although s

∫
C G → NhC has many desirable properties it is generally not a left fibration,

because it is not a Reedy fibration. Hence, we need to define an alternative, yet equivalent,
functor that takes projectively fibrant functors to left fibrations. The following remark can
help guide us towards a working definition.
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Remark 4.12 In Proposition 1.10 the left adjoint of
∫
C, denoted TC, was defined as TC(p :

D → C)(c) = π0(C/c ×C D). This exactly coincides with the left Kan extension of the
functor that takes the functor p : [n] → C to the representable functor Hom(p(0),−).

This would suggest that the correct simplicial generalization should take Nh p : NhD →
NhC to the functor which takes c to the simplicial set N (C/c ×CD), as in that case we would
have an isomorphism of set valued functors π0(N (C/− ×C D)) ∼= TC(p : D → C). Indeed
for any category C we have a bijection π0NC ∼= π0C.

However, this is clearly not the case. Indeed, as we proved in Lemma 4.9, the left adjoint
is given by the functor sTC, which, following Definition 4.7, satisfies sTC(p : F(n) →
NhC) = HomC(p(0),−), which is clearly not the same as N (C/− ×C [n]).

Building on this remark, wewant to define an appropriate analogue of sTC with the correct
values, which we will label sTC.

Definition 4.13 Let

sTC : sS/NhC → Fun(C, S)

be the functor that takes a map Y → NhC to the functor

C
C/−−−−→ Cat/C

Nh−−→ sS/NhC

−×NhCY−−−−−→ sS
Diag∗
−−−→ S,

concretely meaning the values are given as follows

sTC(Y → NhC)(c) = Diag∗(NhC/c ×NhC Y ) = NC/c ×NC Diag∗(Y ).

For the next definition we use the fact that a map F(n) × �[l] → NhC corresponds to a
functor [n] → C.

For the next definition recall that there is an isomorphism of categories Fun(((� ×
�)/NhC)op, Set) ∼= sS/NhC [44, Page 157]. Here (� × �)/NhC is the full subcategory of
sS/NhC with objects F(n) × �[l] → NhC.

Definition 4.14 Define

sIC : Fun(C, S) → sS/NhC

as the functor that via the adjunction between products and exponentials corresponds to

Nat(sTCYon(−),−) : ((� × �)/NhC)op × Fun(C, Set) → Set,

using the isomorphism Fun(((� × �)/NhC)op, Set) ∼= sS/NhC. Unwinding this definition, it
takes G to the simplicial space sIC(G) → NhC, whose morphisms from p : F(n)×�[l] →
NhC over NhC are given by

Hom/NhC(F(n) × �[l], sIC(G)) ∼= Nat(N ([n] ×C C/−) × {�[l]},G).

Here [n] → C is the functor that corresponds to the map p : F(n) × �[l] → NhC.

It will follow from Theorem 4.18 that for a projectively fibrant functor G, sIC(G) is in
fact a left fibration and equivalent to s

∫
C G, giving us a fibrant replacement.

We now establish that these functors are in fact adjoints.
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Proposition 4.15 The functors sTC, sIC form a simplicially enriched adjunction

sS/NhC Fun(C, S)
sTC

sIC

⊥

that is natural up to isomorphism in C.

Proof First we show the functor sTC commutes with colimits. As colimits in Fun(C, S)

are evaluated point-wise, we only need to confirm that for every object c in C, the functor
NC/c ×NC Diag∗(−) : sS/NhC → S preserves colimits. This follows immediately from
the fact that Diag∗ preserves colimits (it is a left adjoint) and that NhC/c ×NhC − preserves
colimits (S is locally Cartesian closed). Now, following [44, Corollary I.5.4], every colimit
preserving functor out of sS/NhC is uniquely determined by its restriction to �×�/NhC and
has a right adjoint, which is by definition given by sIC.

We now move on to show the adjunction is enriched. Again, by [63, Proposition 3.7.10],
we need to prove that sTC preserves the simplicial tensor. Based on Sect. 2.3 and Remark 4.3

we need to prove that for a given simplicial set K , sTC(Y ×K
π1−→ Y → NhC) ∼= sTC(Y →

NhC) × {K }. This is a direct computation as for every object c in C we have

sTC(Y × K
π1−→ Y → NhC)(c) = (Diag∗(Y ) ×NC NC/c) × K .

Hence, giving us the desired isomorphism of functors sTC(Y × K
π1−→ Y → NhC) ∼=

sTC(Y → NhC) × {K }.
Finally, we move on to show the adjunction is natural. Fix a functor α : C → D. We want

to show the diagram of adjunctions

sS/NhC Fun(C, S)

sS/NhD Fun(D, S)

sTC

⊥

α!⊥

sIC

α!⊥

sTD

⊥

α∗

sID

(α)∗

commutes up to isomorphism. By uniqueness of right adjoints it suffices to show that the
diagram of left adjoints commute. As left adjoints commute with colimits it suffices to prove
that α! ◦ sTC(F(n) × �[l] → NhC) ∼= sTD ◦ α!(F(n) × �[l] → NhC). We have shown
that sTC, sTD are simplicially enriched. Moreover α! : Fun(C, S) → Fun(D, S) is also
simplicially enriched [42, Proposition A.3.3.6]. Hence, we can reduce the computation to
showing that α! ◦ sTC(F(n) → NhC) ∼= sTD ◦ α!(F(n) → NhC).

We will start with the case n = 0. In that case a morphism {c} : F(0) → NhC is
given by a choice of object in C and by direct computation (Definition 4.13) sTC(F(0) →
NhC) = HomC(c,−) and sTD(F(0) → NhC → NhD) = HomD(α(c),−) thought of as a
discrete simplicial sets. The desired result α!HomC(c,−) ∼= HomD(α(c),−) is now a direct
computation (see also [45, Page 236]).

We move on to the case n > 0. Fix a morphism F(n) → NhC given by a chain c0 →
. . . → cn . Notice for k ≥ 0, we have

sTC(F(n) → NhC)k =
∐

γ :[k]→[n]
HomC(cγ (k),−).
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Hence, we can repeat the argument of the previous paragraph level-wise (using the fact that
left adjoints commute with coproducts) to deduce the desired isomorphism α! ◦sTC(F(n) →
NhC) ∼= sTD ◦ α!(F(n) → NhC), finishing the proof. ��

We now want to prove that these adjunctions are Quillen adjunctions. For that we first
need to show that they interact well with the model structures.

Lemma 4.16 The functor s
∫
C takes (trivial) projective cofibrations to (trivial) covariant cofi-

brations.

Proof It suffices to check s
∫
C preserves the generating cofibrations and trivial cofibrations,

which, following [42,RemarkA.2.8.5], are given by the cofibrations ∂�[n]×HomC(c,−) →
�[n]×HomC(c,−) and the trivial cofibrations
[n]i×HomC(c,−) → �[n]×HomC(c,−).

Observe that s
∫
C takes the generating cofibrations

∂�[n] × HomC(c,−) → �[n] × HomC(c,−)

to the cofibrations

∂�[n] × N (Cc/) → �[n] × N (Cc/)

and similarly the generating trivial cofibrations


[n]i × HomC(c,−) → �[n] × HomC(c,−)

to the morphisms


[n]i × N (Cc/) → �[n] × N (Cc/),

which is a trivial cofibration in the Reedymodel structure overNhC and hence also a covariant
equivalence. ��
Lemma 4.17 The functor sIC takes (trivial) projective fibrations to (trivial) fibrations in the
covariant model structure over NhC.

Proof Let α : G → H be a projective fibration. We need to prove that sIC(α) has the right
lifting property with respect to maps

• (∂F(n) → F(n))�(
[l]i → �[l]) → NhC,
• (F(0) → F(n))�(∂�[l] → �[l]) → NhC.

Using the adjunction (sTC � sIC) this is equivalent to proving that

• sTC((∂F(n) → F(n))�(
[l]i → �[l]) → NhC),
• sTC((F(0) → F(n))�(∂�[l] → �[l]) → NhC)

are trivial projective cofibrations in Fun(C, S).
By direct computation these are equal to

• sTC(∂F(n) → F(n) → NhC)�{
[l]i } → {�[l]},
• sTC(F(0) → F(n) → NhC)�{∂�[l]} → {�[l]}.

The map {
[l]i } → {�[l]} is a trivial projective cofibration and {∂�[l]} → {�[l]} is
a projective cofibration. Hence, by Remark 4.3, it suffices to prove that sTC(∂F(n) →
F(n) → NhC) is a projective cofibration and sTC(F(0) → F(n) → NhC) is a projective
trivial cofibration.

Fix a morphism α : F(n) → NhC and notice it comes from a functor [n] → C, which we
also denote by α. By Proposition 4.15, we now have the following commutative diagram of
adjunctions
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(sS/F(n))
cov Fun([n], S)proj

(sS/NhC)cov Fun(C, S)proj

sT[n]
⊥

α!⊥

sI[n]

α!⊥

sTC

⊥

α∗

sIC

(α)∗ .

The right hand adjunction is a Quillen adjunction of projective model structures [42,
Proposition A.2.8.7], meaning α! preserves (trivial) cofibrations. Hence it suffices to prove
sT[n](∂F(n) → F(n) → F(n)) is a cofibration and sT[n](F(0) → F(n) → F(n)) is a
trivial cofibration. By direct computation for i < n we have

sT[n](∂F(n) → F(n))(i) = Diag∗(∂F(n) ×F(n) F(i)) = Diag∗(F(n) ×F(n) F(i))

= sT[n](F(n) → F(n))(i)

and for i = n we have

sT[n](∂F(n) → F(n))(n) = Diag∗(∂F(n) ×F(n) F(n)) = ∂�[n].
This means we have the following pushout square in Fun(C, S)

Hom(n,−) × ∂�[n] sT[n](∂F(n) → F(n))

Hom(n,−) × �[n] sT[n](F(n) → F(n))
�

proving the desired morphism is a projective cofibration.
Finally, by direct computation

sT[n](F(0) → F(n))(i) = Diag∗(F(0) ×F(n) F(i)) = �[0] �−−→ �[i]
= Diag∗(F(n) ×F(n) F(i)) = sT[n](F(n) → F(n))(i),

giving us the desired equivalence.
Now, let us assume that α : G → H is a trivial projective fibration. We need to prove

that sIC(α) has the right lifting property with respect to maps of the form (∂F(n) →
F(n))�(∂�[l] → �[l]) → NhC, which is equivalent to establishing that

sTC((∂F(n) → F(n))�(∂�[l] → �[l])) ∼= sTC(∂F(n) → F(n) → NhC)�{∂�[l]} → {�[l]}
is a projective cofibration. However, we already showed above that sTC(∂F(n) → F(n) →
NhC) is a projective cofibration and so the desired result follows from the fact that the
projective model structure is simplicial. ��
Theorem 4.18 Let C be a small category. The two simplicially enriched adjunctions

Fun(C, S)proj (sS/NhC)cov Fun(C, S)proj
s
∫
C

sHC

⊥
sTC

sIC

⊥

are Quillen equivalences, which are (up to equivalence) natural in C. Moreover, the derived
counit map s

∫
C QsHCL → L is in fact a Reedy equivalence. Here Fun(C, S) has the pro-

jective model structure and sS/NhC has the covariant model structure over NhC.
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Proof Firstwe showboth areQuillen adjunctions. ByLemma4.16, s
∫
C preserves cofibrations

and trivial cofibrations and so is a left Quillen functor. On the other hand, by Lemma 3.14,
a fibration between fibrant objects in the covariant model structure is a left fibration. By
Lemma 4.17, sIC takes projective fibrations to left fibrations, which means it takes projective
fibrations between fibrant objects to covariant fibrations. By the same lemma, sIC takes trivial
projective fibrations to trivial covariant fibrations. Hence, by Lemma A.3, it is a right Quillen
functor.

Wemove on to prove they are Quillen equivalences. Notice, the composition functor sTC◦
s
∫
C : Fun(C, S) → Fun(C, S) is a colimit preserving functor that takes Hom(c,−) × {�[l]}

to the functor N (Cc/ ×CC/−)×{�[l]}, which is naturally equivalent to Hom(c,−)×{�[l]}.
Hence, the composition functor is naturally weakly equivalent to the identity and so a Quillen
equivalence. Thus in order to prove both adjunctions are Quillen equivalences by 2-out-of-3
it suffices to prove s

∫
C � sHC is a Quillen equivalence.

By Lemma A.4, it suffices to prove that the derived counit map is an equivalence and
s
∫
C reflects weak equivalences. We already proved that s

∫
C reflects weak equivalences in

Lemma 4.11. Let L → NhC be a left fibration. We want to prove that s
∫
C QsHCL → L

is a covariant equivalence, where QsHCL → sHCL is a cofibrant replacement of sHCL
in the projective model structure on Fun(C, S). We will in fact prove the derived counit is a
Reedy equivalence, hence also proving the second statement of the theorem and so finishing
the proof. It suffices to do so fiber-wise.

Fix a map F(n) → NhC that we can represent by a diagram c0 → . . . → cn . As L is a
left fibration we have an equivalence of spaces

Map/NhC(F(n), L) → Map/NhC({c0}, L),

that restricts along the inclusion < 0 >: F(0) → F(n). Moreover, by Remark 4.6,

Map/NhC(F(n), s
∫

C
QsHCL) ∼= (QsHCL)(c0)

�
� (sHCL)(c0) = Map/NhC(NhCc0/, L),

which also restricts a morphism F(n) → s
∫
C sHCL along < 0 >: F(0) → F(n) to an

element in sHCL(c0). Hence, in order to establish the Quillen equivalence, we only have to
show that the composition map

Map/NhC(NhCc0/, L) � Map/NhC(F(n), s
∫

C
QsHCL) → Map/NhC(F(n), L)

→ Map/NhC({c0}, L)

is a Kan equivalence. However, tracing through these morphisms, this morphism is induced
by restricting along {idc} → Cc/. Hence, this is an equivalence precisely by the statement of
the Yoneda lemma for Segal spaces (Theorem 3.49).

Let α : C → D be a functor. In order to finish the proof, we need to show that the diagram
of adjunctions

Fun(C, S)proj (sS/NhC)cov Fun(C, S)proj

Fun(D, S)proj (sS/NhD)cov Fun(D, S)proj

s
∫
C

α!⊥

sHC

⊥
sTC

α!⊥

sIC

⊥

α!⊥

s
∫
D

α∗

sHD

⊥
sTD

α∗

sID

⊥

α∗
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commutes up to natural equivalence. We have shown in Proposition 4.15 that the right hand
square commutes up to natural isomorphism, so we only need to prove the left hand square
commutes up to weak equivalence. We will prove that the right Quillen functors sHC ◦ α∗
and α∗ ◦ sHD are naturally equivalent for fibrant objects.

Fix a left fibration p : L → NhD. Then

sHCα∗L(c) = Map/NhC(NhC/c, α
∗L) ∼= Map/NhD(NhC/c, L).

Hence, in order to establish a natural projective equivalence sHC ◦ α∗L � α∗ ◦
sHDL it suffices to prove that the natural morphism α∗ : Map/NhD(NhC/c, L) →
Map/NhD(NhD/α(c), L) is a Kan equivalence. However, this again follows from the Yoneda
lemma for Segal spaces (Theorem 3.49) combined with 2-out-of-3, as the morphism

F(0)
{idc}−−→ C/c

α−→ D/α(c) induces a commutative diagram

Map/NhC(NhC/c, L)

Map/NhD(F(0), L)

Map/NhD(NhD/α(c), L)

α∗

{idc}∗
�

{idα(c)}∗
�

where the two left hand morphisms are Kan equivalences. ��
Remark 4.19 It is interesting to note how this result compares to a similar result in [33,
Theorem C]. There the authors study a functor very similar to s

∫
C using quasi-categories,

however, as they are using simplicial sets, their functor h! is the diagonal of the level-wise
Grothendieck construction. Thus, they cannot simply take a Reedy fibrant replacement (as we
did in Lemma 4.11) to get a left fibration and thus have to applymore complicated techniques.

Remark 4.20 The left side of the two Quillen equivalences has also been proven to be an
equivalence by deBrito [19, TheoremA].Moreover, both equivalences have been generalized
to the (∞, n)-categorical setting, which in particular would restrict to the equivalences given
here [54, Theorem 5.50]

The Quillen equivalence can help us find fibrant replacements.

Corollary 4.21 Let Y → NhC be a map of simplicial spaces. Then the derived unit map
Y → sICRsTCY is the covariant fibrant replacement of Y → NhC.

There is one key example which we want to consider more explicitly. Let C = [n]. Then
NhC = F(n) (usingNotation 4.1). and so the result implies that we haveQuillen equivalences

Fun([n], S)proj (sS/F(n))
cov Fun([n], S)proj

s
∫
[n]

sH[n]
⊥

sT[n]

sI[n]
⊥ .

The main result (Theorem 4.18) and this diagram has important corollaries that we will use
extensively.

Corollary 4.22 Amorphism of simplicial spaces X → Y overNhC is a covariant equivalence
if and only if for all objects c in C the morphism

NhC/c ×NhC X → NhC/c ×NhC Y
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is a diagonal equivalence. In particular, a map of simplicial spaces X → Y over F(n) is a
covariant equivalence if and only if for all maps < 0, . . . , i >: F(i) → F(n) the induced
map

F(i) ×F(n) X → F(i) ×F(n) Y

is a diagonal equivalence for all 0 ≤ i ≤ n.

Proof By Theorem 4.18, sTC reflects weak equivalences meaning a morphism X → Y over
NhC is a weak equivalence if and only if sTC(X → NhC) → sTC(Y → NhC) is a projective
equivalence. By definition of projective weak equivalences (Definition 4.2) this is equivalent
to sTC(X → NhC)(c) → sTC(Y → NhC)(c) being a Kan equivalence for all objects c
in C, which is the same as Diag∗(NhC/c ×NhC X) → Diag∗(NhC/c ×NhC Y ) being a Kan
equivalence, which, by Theorem 2.11, means NhC/c×NhC X → NhC/c×NhCY is a diagonal
equivalence for all objects c in C.

Finally, by direct computation Nh([n]/i ) → Nh([n]) is exactly the map < 0, . . . , i >:
F(i) → F(n). This means for a given morphism X → F(n), we have sT[n](X →
F(n))(i) = Diag∗(F(i) ×F(n) X) and so the result follows from the previous paragraph.

��
Corollary 4.23 Every left fibration L → F(n) is Reedy equivalent to a colimit (and hence a
homotopy colimit) of left morphisms (< 0, . . . , i > ◦π1) : F(i) × �[l] → F(n).

Proof Let L → F(n) be a left fibration. Then by Theorem 4.18 there exists a func-
tor G : [n] → S and a Reedy equivalence L � s

∫
[n] G over F(n) (concretely we

can take G = sHC(L)). But G is a simplicial presheaf and so there is an isomorphism
G ∼= colim(Hom([i],−) × �[l]) and so

L � s
∫

[n]
G ∼= colim(s

∫

[n]
Hom([i],−) × �[l]) ∼= colim((< 0, . . . , i > ◦π1) : F(i)

×�[l] → F(n))

giving us the desired result. ��
Corollary 4.24 Let L → F(n) × �[l] be a left fibration. Then there is a Reedy equivalence

L � colim
(
(< 0, . . . , i > ×id�[l]) ◦ π1 : (F(i) × �[l]) × �[ j] → F(n) × �[l])

over F(n) × �[l].
Proof The projection map π1 : F(n) × �[l] → F(n) is a Reedy equivalence and so by
Theorem 3.15 gives us a Quillen equivalence

(sS/F(n)×�[l])cov (sS/F(n))
cov

(π1)!

(π1)
∗

⊥

which implies that the derived unit map L → L̂ × �[l] is a Reedy equivalence of left
fibrations over F(n) × �[l]. Here L̂ is given as the left fibrant replacement of the morphism
L → F(n) × �[l] → F(n). Now, by the previous corollary we have a Reedy equivalence
L̂ � colim((< 0, . . . , i > ◦π1) : F(i) × �[l] → F(n)) over F(n). We can pull back
this equivalence along F(n) × �[l] → F(n) to get an equivalence L̂ × �[l] � colim((<

0, . . . , i > ◦π1) : F(i) × �[l] → F(n)) × �[l]), using the fact that − × �[l] : S → S
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preserves weak equivalences between non-fibrant simplicial sets. Finally, the desired result
follows from the fact that colimits commute with products, giving us

L � L̂ × �[l] � [colim((< 0, . . . , i > ◦π1) : F(i) × �[ j] → F(n))] × �[l] ∼=
colim

(
(< 0, . . . , i > ×id�[l]) ◦ π1 : (F(i) × �[l]) × �[ j] → F(n) × �[l])

over F(n) × �[l]. ��
In the coming sectionswewill need the contravariant version of fibrations, right fibrations.

Remark 4.25 Until now we have focused on the covariant approach to fibrations. However,
there is also a contravariant analogue. A morphism of simplicial spaces p : R → X is a
right fibration if the morphism pop : Rop → Xop is a left fibration. Explicitly this means a
right fibration p : R → X is a Reedy fibration such that for all n ≥ 0, the induced morphism

(pn,< n >) : Yn �−−→ Xn ×X0 Y0 is a Kan equivalence.
We can now repeat all the results in Sects. 3 and 4.1 using the fact that we can define

right fibrations in terms of left fibrations. However, instead of repeating all theorems for right
fibrations we introduce the following table, which simply states the terminology relevant to
right fibrations.

Left Fibration (Morphism) Right Fibration (Morphism)

(pn ,< 0 >∗) : Yn �−−→ Xn ×X0 Y0 (pn ,< n >∗) : Yn �−−→ Xn ×X0 Y0
Covariant Model Structure Contravariant Model Structure
Under-Segal Space Over-Segal Space
Wx/ = F(0){x} ×s

W W F(1) W/x = WF(1)t ×{x} F(0)
initial object final object
s
∫
C : Fun(C, S)proj → (sS/NhC)cov s

∫ op
C : Fun(Cop, S)proj → (sS/NhC)contra

Having defined left and right fibrations, we can use our previous results to generalize
Remark 1.18 from categories to simplicial spaces.

Theorem 4.26 Let p : L → X be a left fibration. Then the following are equivalent:

(1) p is a right fibration.
(2) For every map f : F(1) → X the map f ∗L → F(1) is a right fibration.
(3) p is a diagonal fibration.
(4) For every map f : F(1) → X the map f ∗L → F(1) is a diagonal fibration.

Proof By Lemmas 3.10, 3.11 p is a left, right or diagonal fibration if and only if f ∗ p :
f ∗L → F(n) is such a fibration for every map F(n) → X . We will hence assume that
X = F(n).

(1 ⇔ 2) One side is a special case. For the other side, as F(n) is a Segal space, by
Lemma 3.29, it suffices to show that (p1,< 1 >∗) : L1 → L0 ×F(n)0 ×F(n)1 is an
equivalence over F(n)1. By Corollary A.2, this is equivalent to a fiber-wise equivalence,
meaning we need to show that for every α in F(n)1 the induced map on fibers

L1 ×F(n)1 �[0] → L0 ×F(n)0 ×F(n)1 ×F(n)1 �[0] ∼= L0 ×F(n)0 �[0]
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is a Kan equivalence. Fix one α in F(n)1 and notice this corresponds to a morphism of
simplicial spaces {α} : F(1) → F(n), meaning α is precisely the image of the identity
{α}1 : F(1)1 → F(n)1. Hence, by the pasting property of pullbacks, the map above is
isomorphic to the map

({α}∗L)1 ×F(1)1 �[0] → ({α}∗L)0 ×F(1)0 �[0],

which is an equivalence as {α}∗L → F(1) is a right fibration.
(1⇔ 3) Every diagonal fibration is a left fibration and right fibration. Before we prove the

opposite direction, we make the following observation regarding diagonal fibrations. Let K
be a Kan complex, then, by Remark 2.10, Diag∗K gives us a Reedy fibrant replacement of
K and so F(n)×Diag∗K → F(n) is a Reedy fibration that is in fact a diagonal fibration, as
it satisfies the conditions given in [61, Definition 3.3], which precisely describe the diagonal
fibrations by [61, Lemma 4.3]. Hence, in order to prove a Reedy fibration L → F(n) is
a diagonal fibration, it suffices to show it is Reedy equivalent to a morphism of the form
F(n) × K → F(n) for some Kan complex K .

Now, let L → F(n) be a right and left fibration. As it is a left fibration, by Theorem 4.18,
there exists a functor G : [n] → S such that s

∫
[n] G is Reedy equivalent to L over F(n).

We can assume without loss of generality that G takes value in Kan complexes (by fibrantly
replacing in the projective model structure).

Following the argument in the first paragraph, in order to finish the proof we only need to

prove there is a Reedy weak equivalence F(n) × G(0)
�−−→ s

∫
[n] G over F(n). Let {G(0)} :

[n] → S be the constant functor and notice it comes with an evident natural transformation
α : {G(0)} ⇒ G. Moreover, s

∫
[n]{G(0)} = G(0) × F(n), hence we need to establish that

s
∫
[n] α is a Reedy weak equivalence. By Remark 4.6, at level k the morphism is given by

∐
c0→...→ck G(0) → ∐

c0→...→ck G(c0) and Kan equivalences are closed under coproducts,
meaning we only have to show that the morphisms G(0) → G(i) are equivalences for all
0 ≤ i ≤ n.

Let f : 0 → i be the unique morphism in [n] from 0 to i . Taking fiber of the commutative
diagram

(s
∫
[n] G)1 (s

∫
[n] G)0

L1 L0

<1>∗

� �

<1>∗

over f in F(n)1 gives us the diagram

G(0) G(i)

L1 ×F(n)1 �[0] L0 ×F(n)0 �[0]

G( f )

� �

<1>∗

.

Here the vertical morphisms are equivalences because s
∫
[n] G → L is a Reedy equivalence

and the bottom vertical morphism is a weak equivalence because L → F(n) is a right
fibration, it hence follows that the top morphism is also a weak equivalence.

(2 ⇔ 4) We can use the same argument as in the previous part. ��
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4.2 The Yoneda Lemma

We are finally in a position to prove the recognition principle for covariant equivalences. The
proof has three main steps:

(1) Study how right and left fibrations interact: Theorem 4.29.
(2) Characterize covariant equivalences between left fibrations: Theorem 4.35.
(3) Prove the recognition principle for covariant equivalences: Theorem 4.41.

However, before we can start we need one technical lemma.

Lemma 4.27 Let L = {A j → Nh(C j )} j∈J be a set of monomorphisms in sS. For every
simplicial space X denote by (sS/X )MX the left Bousfield localization of the induced Reedy
model structure with respect to the set of monomorphisms {A j → Nh(C j ) → X : j ∈ J } in
sS/X . Then the following are equivalent:

(1) For every simplicial space X and every right fibration p : R → X over X, the adjunction

(sS/X )MX (sS/X )MX

p! p∗

p∗ p∗
⊥

is a Quillen adjunction.
(2) For every j ∈ J , every object c in C j and map i : A j → Nh(C j ) in L the pullback map

Nh(πc)
∗(i) : Nh(πc)

∗(A j ) → Nh((C j )/c)

is a trivial cofibration in (sS/NhC j
)
MNhC j . Here πc : (C j )/c → C j is the projection

map.

Proof (1 ⇒ 2) This is just the special case of (1) applied to the right fibration Nh(C j )/c →
NhC j .

(2 ⇒ 1) The proof consists of several reduction steps.
(I) Reduce to Fibrant Objects: First, by Corollary A.10 it suffices to show p! p∗ preserves

cofibrations, p∗ p∗ preserves Reedy fibrations and fibrant objects Y → X . The fact that p! p∗
preserves cofibrations and that p∗ p∗ preserves Reedy fibrations follows from the fact that
(p! p∗, p∗ p∗) is a Quillen adjunction when both sides just have the induced Reedy model
structure, as the Reedy model structure is right proper (Sect. 2.4). So, we only have to prove
that for every fibrant object Y → X , p∗ p∗(Y ) → X is also fibrant.

(II) Reduce to Local Objects: Next notice that p∗ p∗(Y ) → X is fibrant if and only if it is
Reedy fibrant and local with respect to maps A j → Nh(C j ) → X , where i : A j → Nh(C j )

is in L. Again the Reedy fibrancy follows from the previous paragraph and so it suffices to
prove that p∗ p∗(Y ) → X is local. Thus we need to prove that

i∗ : Map/X (Nh(C j ), p∗ p∗(Y )) → Map/X (A j , p∗ p∗(Y ))

is a Kan equivalence for all j and all morphisms NhC j → X .
(III) Reduce to Local Trivial Cofibration: Using the fact that p∗ p∗ has a left adjoint this

is equivalent to

(p! p∗i)∗ : Map/X (p! p∗Nh(C j ), Y ) → Map/X (p! p∗A j , Y )

being a Kan equivalence. As the model structureMX is simplicial and Y → X is an arbitrary
fibrant object, this is equivalent to

p! p∗i : p! p∗A j → p! p∗Nh(C j )
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being a weak equivalence in (sS/X )MX for all j ∈ J and NhC j → X . Here the morphism
p! p∗NhC j → X is given as p! p∗NhC j → NhC j → X , where the first morphism is the
counit.

(IV) Reduce to Categorical base: Fix a j ∈ J and morphism A j
i−→ NhC j

m−−→ X . Then
we have the following pullback square

S R

NhC j X

k

q p

m

.

Now the Beck-Chevalley condition for pullback squares [25, 1.2] implies that we have an
isomorphism p∗m!(i) ∼= k!q∗(i). However, notice k! preserves weak equivalences. Thus to
prove that p! p∗i is a weak equivalence over X it suffices to prove that q∗i : q∗A j → q∗NhC j

is a weak equivalence over NhC j in the MNhC j
model structure.

(V) Reduce to Representable Right Fibrations: By Lemma 3.9, right fibrations are stable
under pullback and so q : S → NhC j is also a right fibration. However, by the contravari-
ant analogue of Corollary 4.23, every right fibration over NhC j is Reedy equivalent to
colim(Nh(C j )/c × �[l]) (and so a homotopy colimit). Thus we can reduce the argument
to proving that for all j ∈ J and object c in C j

A j ×NhC j
Nh(C j )/c × �[l] → Nh(C j )/c × �[l]

is a weak equivalence in sS/NhC j
.

(VI) Reduce to the desired condition: Finally, using the fact that (sS/NhC j
)
MNhC j is a

simplicial model structurewith all objects cofibrant, for every object X → NhC j , the induced
morphism idX× < 0 >: X × �[0] → X × �[n] is a weak equivalence over NhC j in the
MNhC j

model structure. Hence the previous condition is equivalent to

Nh(πc)
∗(A) = A ×NhC j

Nh(C j )/c → Nh(C j )/c

being a trivial cofibration in sS/NhC j
in theMNhC j

model structure, for all j ∈ J and objects
c in C j . ��
Remark 4.28 We can use the same argument to prove an analogous result for pulling back
along left fibrations. Concretely,

(sS/X )MX (sS/X )MX

p! p∗

p∗ p∗
⊥

is a Quillen adjunction for every left fibration p : L → X if and only if

Nh(πc)
∗(i) : Nh(πc)

∗(A j ) → Nh((C j )c/)

is a trivial cofibration in (sS/NhC j
)
MNhC j for every j ∈ J and object c in C j .

We can now use this result to give the desired connection between right fibrations and
covariant equivalences.

Theorem 4.29 Let p : R → X be a right fibration. Then the adjunction

(sS/X )cov (sS/X )cov
p! p∗

p∗ p∗
⊥
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is a Quillen adjunction where both sides have the covariant model structure.

Proof The covariant model structure is given by localization with respect to maps F(0)
<0>−−→

F(n) → X , where n ≥ 1. The over-category [n]/i → [n] is given by the map of simplicial
spaces < 0, . . . , i >: F(i) → F(n). Thus, by the previous lemma, we only need to prove
that the pullback map F(0) = F(0) ×F(n) F(i) → F(i) is a covariant equivalence over
F(n). However, that is true by definition. ��
Remark 4.30 By Remark 4.28 and the analogous argument to Theorem 4.29, for every left
fibration p : L → X , we get a Quillen adjunction (p! p∗, p∗ p∗) between contravariant model
structures.

Remark 4.31 The analogous result for quasi-categories (namely that pulling back along right
fibrations of simplicial sets preserves equivalences in themodel structure for quasi-categories)
was proven independently by Lurie [42, Proposition 4.1.2.15], Joyal [39, Theorem 11.9], and
Nguyen [49, Proposition 4.12].

We can also use this lemma to prove a relationship between right fibrations and complete
Segal spaces.

Theorem 4.32 Let W be a Segal space and p : R → W be a right or left fibration. Then the
adjunction

(sS/W )Seg (sS/R)Seg
p∗

p∗
⊥

is a Quillen adjunction where both sides have the induced Segal space model structure
(Proposition A.5).

If W is also complete, then the same statement holds for the adjunction

(sS/W )CSS (sS/R)CSS
p∗

p∗
⊥

where now both sides have the induced complete Segal space model structure (Proposi-
tion A.5).

Proof Wewill assume p is a right fibration. The argument for left fibrations follows similarly,
using the adjustment in Remark 4.28.

Let W be a Segal space. We can extend the adjunction above as follows

(sS/W )Seg (sS/R)Seg (sS/W )Seg
p∗ p!

p∗
⊥

p∗
⊥ .

In order to show that (p∗, p∗) is a Quillen adjunction, we have to prove p∗ preserves cofibra-
tions and trivial cofibrations in the Segal space model structure. It is evident that p∗ preserves
cofibrations, as they are just monomorphisms. Moreover, by Proposition A.5, p! preserves
and reflects trivial Segal cofibrations. Hence p∗ preserves trivial cofibrations if and only if
p! p∗ preserves trivial cofibrations, which is equivalent to proving that

(sS/W )Seg (sS/W )Seg
p! p∗

p∗ p∗
⊥
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is a Quillen adjunction, where both sides have the Segal space model structure. We can thus
apply Lemma 4.27.

By TheoremA.13 the induced Segal space model structure over a Segal space is just given
by localizing with respect to the maps G(n) → F(n) → W , where n ≥ 2. Thus we only
need to check the map G(n) → F(n) satisfies the desired condition in Lemma 4.27. We
know the over-category over i is given by < 0, . . . , i >: F(i) → F(n). Thus we only need
to show that G(i) = G(n) ×F(n) F(i) → F(i) is an equivalence in the Segal space model
structure, which is true by definition.

Now let us assume also in addition that W is complete. By the explanation given at the
beginning of the proof, it suffices to show that

(sS/W )CSS (sS/W )CSS
p! p∗

p∗ p∗
⊥

is a Quillen adjunction, where both sides have the complete Segal space model structure.
This means we can again use Lemma 4.27.

By TheoremA.13 the induced complete Segal spacemodel structure is given by localizing
with respect to maps G(n) → F(n) → W and F(0) → E(1) → W . We already observed
that G(n) → F(n) satisfies the condition of Lemma 4.27 so we only need to prove the same
statement for the map F(0) → E(1).

However, E(1) = Nh(I [1]), where I [1] is the category with two objects and one unique
isomorphism (Definition 2.19). By direct computation I [1]/0 = I [1]/1 = I [1] and so the
projection map from the over-category is just the identity map. Hence we are done. ��

This theorem has the following useful corollary.

Corollary 4.33 Let the following diagram be given

p∗X L

X W

p∗ f

p

�
f

where W is a complete Segal space, p : L → W is a left or right fibration and f is a
complete Segal space weak equivalence. Then p∗ f : p∗X → L is a complete Segal space
weak equivalence.

Remark 4.34 The assumptions in the previous theorem seem too strong, the result should
also hold if the base simplicial space W is not a Segal space. This is in fact correct and we
will prove this in Theorem 5.15 / Theorem 5.16. However, before we can do that we need to
understand the invariance of left fibrationswith respect to complete Segal space equivalences,
which is the goal of Theorem 5.1.

We can now move on to the second step and characterize covariant equivalences between
left fibrations.

Theorem 4.35 Let L → X and L ′ → X be left fibrations and f : L → L ′ a map over X.
The following are equivalent:

(1) f is a covariant equivalence.
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(2) f is a Reedy equivalence.
(3) f is a Kan equivalence.
(4) f is a fiber-wise Reedy equivalence ( f ×X F(0) : L ×X F(0) → L ′ ×X F(0) is a Reedy

equivalence for every map F(0) → X).
(5) f is a fiberwise Kan equivalence ( f ×X F(0) : L ×X F(0) → L ′ ×X F(0) is a Kan

equivalence for every map F(0) → X).
(6) f is a fiberwise diagonal equivalence ( f ×X F(0) : L ×X F(0) → L ′ ×X F(0) is a

diagonal equivalence for every map F(0) → X).

Remark 4.36 By Theorem 4.18, a left fibration L → NhC is Reedy equivalent to s
∫
C G →

NhC for some functor G : C → S. Thus a map of left fibrations L → L ′ over NhC

is an equivalence if and only if the corresponding natural transformation G → G ′ is an
equivalence.

Theorem 4.35 can thus be seen as a generalization of this observation to an arbitrary
simplicial space X : We are comparing two left fibrations over X , by comparing their fibers,
which we should think of as their “values”.

Proof (1 ⇔ 2) Follows from the definition of localization as left fibrations are the fibrant
objects in the covariant model structure (Theorem 3.12).

(2 ⇔ 3) Clearly (2) implies (3). For the other side let f be a Kan equivalence, then
f0 : L0 → L ′

0 is a Kan equivalence of spaces. This implies that in the diagram

Ln L ′
n

L0 ×
X0

Xn L ′
0 ×
X0

Xn

�

fn

�

( f0,id)

�

the two vertical maps and the bottom horizontal map are Kan equivalences. Thus fn : Yn →
Zn is a Kan equivalence as well, which implies that f is a Reedy equivalence.

(3 ⇔ 5) This is precisely the statement of Corollary A.2.
(4 ⇔ 5) By Example 3.19, left fibrations over F(0) are diagonal fibrations and hence

homotopically constant, which means f ×X F(0) : L ×X F(0) → L ′ ×X F(0) is a Kan
equivalence if and only if it is a Reedy equivalence.

(4 ⇔ 6 ) By Lemma 3.9, F(0) ×X L → F(0) is a left fibration, which by Example 3.19
means that L ×X F(0) is diagonally fibrant. Thus f ×X F(0) : L ×X F(0) → L ′ ×X F(0)
is a Reedy equivalence if and only if it is a diagonal equivalence (Theorem 2.11). ��
Remark 4.37 Note we can reduce condition (5) in Theorem 4.35 to proving that there exists
x : F(0) → X such that f ×X F(0) is a fiberwise Kan equivalence for every path component
of X0. Indeed, if x and y are in the same path-component then we have an equivalence of
fibers f0 ×

X0

x �[0] � f0 ×
X0

y �[0].

Remark 4.38 Covariant equivalences of left fibrations have also been studied by de Brito,
Moerdijk and Heuts [19, Proposition 1.10], [18, Lemma 4.3], [32, Proposition 13.8].

We can now move on to the general case.
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Theorem 4.39 Let p : Y → X be a map of simplicial spaces. For every {x} : F(0) → X,
there is a natural zig-zag of diagonal equivalences

Rx ×
X
Y

�−−→ Rx ×
X
Ŷ

�←−− F(0) ×
X
Ŷ

Here i : Y → Ŷ is a choice of a left fibrant replacement of Y over X and Rx → X is a
contravariant fibrant replacement of {x} : F(0) → X.

Proof Fix a covariant fibrant replacement i : Y → Ŷ over X . Then we have the following
zig-zag of equivalences

Y ×
X
Rx

cov�−−−−→ Ŷ ×
X
Rx

contra�←−−−−−− Ŷ ×
X
F(0)

ByTheorem 4.29 the first map is a covariant equivalence because Rx → X is a right fibration.
By the covariant version of the same lemma the second map is a contravariant equivalence
because Ŷ → X is a left fibration. So, by Theorem 3.17, both are diagonal equivalences. ��

In the case X is a Segal space, we can replace the zig-zag of equivalences with an actual
map.

Remark 4.40 Let X be a Segal space. Let p : Y → X be amap of simplicial spaces and Y
i−→

Ŷ
p̂−→ X its fibrant replacement in the covariant model structure. Then, by Theorem 3.49,

{idx } : F(0) → F(0) ×X X F(1) is a covariant fibrant replacement of {x} : F(0) → X over
X . Now we have the following diagram:

Y p ×
X

s (XF(1) t ×
X

{x} F(0)) Ŷ p̂ ×
X

s (XF(1) t ×
X

{x} F(0)) Ŷ p̂ ×
X

{x} F(0)

Ŷ F(1) t( p̂F(1)) ×
X

{x} F(0)

i×
X
X F(1)×

X
F(0)

�

sec

Ŷ×
X
{idx }
�

� (s, p̂F(1))×X F(0)

t

.

By Lemma 3.20, the map Ŷ F(1) → Ŷ ×X X F(1) is a trivial Reedy fibration and so we can
pick a section

sec : Ŷ p̂ ×
X

s X F(1) t ×
X

{x} F(0) → Ŷ F(1) t( p̂F(1)) ×
X

{x} F(0).

By Theorem 4.39, Ŷ ×
X

{idx } is a diagonal equivalence and so, by 2-out-of-3, s is a diagonal
equivalence. Hence

s ◦ sec ◦ (i ×
X
X/x ) : Y ×

X
X/x → Ŷ ×

X
F(0)

is the desired diagonal equivalence.

We can finally prove the recognition principle for covariant equivalences.

Theorem 4.41 (Recognition principle) For everymorphism {x} : F(0) → X fix a contravari-
ant fibrant replacement Rx → X. Let g : Y → Z be a morphism over X. Then g : Y → Z
over X is a covariant equivalence over X if and only if for every {x} : F(0) → X

Rx ×
X
Y → Rx ×

X
Z

is a diagonal equivalence.
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Proof Let the diagram

Y Ŷ

Z Ẑ

i
�

g ĝ

j
�

be a left fibrant replacement of g over X . By Theorem 3.12, g : Y → Z is a covariant
equivalence if and only if ĝ : Ŷ → Ẑ is a Reedy equivalence. We now have the following
diagram:

Y ×
X
Rx Z ×

X
Rx

Ŷ ×
X
Rx Ẑ ×

X
Rx

Ŷ ×
X
F(0) Ẑ ×

X
F(0)

g×id

�i×id � j×id

ĝ×id

ĝ×id

� �

.

By Theorem 4.39, all vertical maps are diagonal equivalences and so the top horizontal map
is a diagonal equivalence if and only if the bottom horizontal map is one. But the bottom
map is a diagonal equivalence for every x : F(0) → X if and only if Ŷ → Ẑ is a Reedy
equivalence (Theorem 4.35). Hence, we are done. ��

In the case of Segal spaces the equivalence takes on a very simple form.

Corollary 4.42 Let X be a Segal space and f : Y → Z a map over X. Then f is a covariant
equivalence if and only if

Y ×X X/x → Z ×X X/x

is a diagonal equivalence for every object x.

Proof By Theorem 3.49, X/x → X is the contravariant fibrant replacement of {x} : F(0) →
X . The result now follows from Theorem 4.41. ��
Remark 4.43 A similar result has been established by Heuts and Moerdijk [33, Proposition
G] using quasi-categories, to characterize covariant equivalences of simplicial sets over a
given quasi-category. Notice, we cannot use the Quillen equivalence between complete Segal
spaces and quasi-categories to prove Corollary 4.42 using [33, Proposition G] as the proof
here holds for all Segal spaces.

Remark 4.44 Corollary 4.42 should verymuch remind us of the behavior of sTC, which takes
a map Y → NhC to the functor sTC(Y ) with value sTC(Y )(c) = Diag∗(Y ×NhC NhC/c).
The functor sTC was only defined over nerves of categories, but Corollary 4.42 suggests
that a map of Segal spaces Y → X should via the covariant model structure correspond to a
functor with value Diag∗(Y ×X X/x ).
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5 Complete Segal Spaces and Covariant Model Structure

In this section we want to study the relation between complete Segal spaces and left fibra-
tions. Concretely, while the covariant model structure is invariant under Reedy equivalences,
meaning aReedy equivalence induces aQuillen equivalence of covariantmodel structures,we
will prove (the very non-trivial fact) that the covariant model structure is invariant under CSS
equivalences as well (Theorem 5.1). We further witness that (although not initially defined
this way) the covariant model structure is a Bousfield localization of the complete Segal
space model structure (Theorem 5.11), which in particular implies that every left fibration is
a complete Segal space fibration (Corollary 5.13). We will use this connection to generalize
results regarding Segal spaces proven in Sect. 3.3 to arbitrary simplicial spaces, and in par-
ticular establish the Yoneda lemma for simplicial spaces (Corollary 5.10). Finally, we apply
our new understanding of left fibrations to study colimits in Segal spaces (Definition 5.26)
and establish Quillen’s Theorem A (Theorem 5.40) in this setting in Sect. 5.2.

5.1 Invariance of the Covariant Model Structure

Until nowwehave seen several results that suggest a deep connection between complete Segal
spaces and left fibrations, in particular over a Segal space. For example the left fibration
W/x → W is in fact a Segal fibration (Lemma 3.43). Or pulling back a right fibration
of complete Segal spaces R → X preserves CSS equivalences (Theorem 4.32). In this
subsection we want to prove that these types of results generalize to an arbitrary simplicial
space. The key input is the invariance theorem for the covariantmodel structure, which proves
that the covariant model structure is invariant under equivalences in the complete Segal space
model structure.

Theorem 5.1 (Invariance property) Let f : X → Y be a CSS equivalence. Then the adjunc-
tion

(sS/X )cov (sS/Y )cov
f!

f ∗
⊥

is a Quillen equivalence. Here both sides have the covariant model structure.

Remark 5.2 As the proof is quite long here is an overview of the essential steps:

(1) By the diagram in 5.3, we can reduce the proof to a fibrant replacement morphism
obtained via the small object argument i : X → X̂ .

(2) We first prove the derived counit map is an equivalence in 5.4.
(3) We thenmove on to the derived unit map. By the small object argument the proof reduces

to checking for a generating set of trivial cofibrations for the Reedy model structure
(1), the morphisms characterizing Segal spaces (2), and the morphisms giving us the
completeness condition (1), of which only the case of morphisms for the Segal condition
(2) require a longer argument.

(4) By direct computation we can reduce the case for Segal maps to proving that F(0) →
G(n) is a covariant equivalence over G(n) (5.5).

(5) We prove this by induction in (5.6).

Proof As the first step of the proof we fix a fibrant replacement for X in the complete Segal
space model structure. By Theorem 2.22 a complete Segal space is characterized via right
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lifting property with respect to three sets of morphisms, which we explicitly name as the
Reedy, Segal and completeness maps:

(1) Reedy: (∂F(n) → F(n))�(
[l]i → �[l])
(2) Segal: (G(n) → F(n))�(∂�[l] → �[l])
(3) Completeness: (F(0) → E(1))�(∂�[l] → �[l])
Hence, applying the small object argument [34, Proposition 10.5.16] to the morphism X →
F(0) in sS gives us a factorization X

i−→ X̂ → F(0) that satisfies the following properties:

• i : X → X̂ is a cell complex, meaning it is transfinite composition of pushouts of
coproducts of the three sets of morphisms.

• The morphism X̂ → F(0) satisfies the right lifting property with respect to the three
classes of morphisms, which means X̂ is a complete Segal space.

Use the same argument on Y to obtain a morphism i ′ : Y → Ŷ with the same properties. For
the remainder of the proof we will use the fixed i : X → X̂ and i ′ : Y → Ŷ obtained via this
argument.

Now, pick a morphism f̂ : X̂ → Ŷ that makes the following diagram commute (using
the lifting property of i against Ŷ )

X Y

X̂ Ŷ

f
�CSS

i �CSS i ′�CSS

f̂

�Ree

.

Then all maps in the diagram are equivalences in the CSS model structure and so the bottom
horizontal map is a Reedy equivalence as X̂ and Ŷ are themselves complete Segal spaces
(Theorem 2.22).

This diagram gives us the following diagram of adjunctions:

(sS/X )cov (sS/Y )cov

(sS
/X̂ )cov (sS

/Ŷ )cov

f!
⊥

i!

⊥

f ∗

(i ′)!

⊥

f̂!
⊥

i∗

f̂ ∗

(i ′)∗ . (5.3)

By Theorem 3.15, all four are Quillen adjunctions and the bottom horizontal Quillen adjunc-
tion is a Quillen equivalence. So, if we proved that the two vertical Quillen adjunctions are
Quillen equivalences, it would then follow from 2-out-of-3 that the top horizontal adjunction
is a Quillen equivalence as well. As both vertical Quillen adjunctions are given by a fibrant
replacement map, it suffices to prove the left vertical Quillen adjunction (i!, i∗) is a Quillen
equivalence.

We will prove that the derived unit and derived counit maps are weak equivalences. First
we prove that the derived counit map i!i∗L → L is a covariant equivalence for every left
fibration p : L → X̂ (notice again that the derived counit map is the actual counit map as all
objects are cofibrant).
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The counit map comes from the diagram

i∗L L

X X̂

p

i

. (5.4)

As p is a left fibration over a complete Segal space and i is a CSS equivalence, it follows
from Theorem 4.32 that i∗L → L is a CSS equivalence. Finally, by Proposition 3.39, a CSS
equivalence over the CSS X̂ is also a covariant equivalence over X̂ finishing this part of the
proof.

We move on to prove that the derived unit map is an equivalence. As explained in the
beginning of the proof i is given as the transfinite composition of pushouts of coproducts
of the three sets of morphisms, the Reedy, Segal and completeness morphisms, specified
in the beginning of the proof. We claim it suffices to check these three cases separately to
deduce that (i!, i∗) is a Quillen equivalence. Indeed, let P be the collection of cofibrations
f : A → B such that ( f!, f ∗) is a Quillen equivalence between covariant model structures.
It suffices to show that P is closed under transfinite composition, coproducts and pushouts.

• Let A0
f0−−→ A1

f1−−→ . . . be a chain of morphisms such that fi ∈ P for all i . Then, the
transfinite composition f∞ : A0 → A = colim(A0 → A1 → . . .) is in P as the ( f∞)∗

is given as the projection from the limit of the tower sS/A = lim(. . . → sS/A1

( f0)∗−−−−→
sS/A0) → sS/A0 and so if every functor in the diagram is a right Quillen equivalence,
( f∞)∗ is a Quillen equivalence as well. Hence,P is closed under transfinite composition.

• For a collection of morphisms { f j : A j → Bj } j∈J we have an isomorphism between
(
∐

j f j )∗ : sS/
∐

j B j → sS/
∐

j A j and
∏

j

(
( f j )∗ : sS/Bj → sS/A j

)
and so if all ( f j )∗

are right Quillen equivalences then so is (
∐

j f j )∗. Hence, P is closed under arbitrary
coproducts.

• If k : A → B is a monomorphism of simplicial spaces and f : A → C a morphism,
then we have a pullback square

sS/B
∐

A C sS/B

sS/C sS/A

(ι1)
∗

(ι2)
∗ k∗

f ∗
.

So, if k∗ is a right Quillen equivalence, then so is the induced functor (ι2)
∗. Hence, P is

closed under pushouts.

We now prove the three types of maps give us Quillen equivalences. The case for Reedy
maps follows from Theorem 3.15. The case for the completeness maps follows from the fact
that in the diagram of Quillen adjunctions induced by the functor [0] → I [1]

Fun([0], S)proj sScov

Fun(I [1], S)proj (sS/E(1))
cov

s
∫
[0]
⊥

{0}!⊥

sH[0]

{0}!⊥

s
∫
I [1]
⊥

{0}∗

sHI [1]

{0}∗
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the horizontal maps are Quillen equivalences (Theorem 4.18) and the left hand side is also a
Quillen equivalence ({0} : [0] → I [1] is an equivalence of categories) and so by 2-out-of-3
the right hand vertical adjunction is also a Quillen equivalence. Hence we only need to focus
on the case of Segal maps.

To simplify notation we denote the map (G(n) → F(n))�(∂�[l] → �[l]) by jn :
G(n, l) → F(n, l). Let p : L → G(n, l) be a left fibration.Wewant to prove the derived unit
map L → j∗n R( jn)!L is a covariant equivalence overG(n, l). Here L → R( jn)!L is a fibrant
replacement in the covariant model structure over F(n, l). The key idea towards the proof is
the appropriate fibrant replacement. The morphism π1 : F(n) × �[l] → F(n) is a Reedy
equivalence and so, by Theorem 3.15, we have an equivalence R( jn)!L � (π1)

∗R(π1 jn)!L ,
meaning we can obtain a fibrant replacement of L over F(n, l) by taking the fibrant replace-
ment over F(n) and pulling back the replacement via π1 : F(n, l) → F(n).

Now, by Corollary 4.21, a fibrant replacement of (π1 jn)! p : L → F(n) is given by
the derived unit map L → sI[n]RsT[n]L , where RsT[n]L is the fibrant replacement of the
functor sT[n]L : [n] → S in the projective model structure. Hence, the derived unit map of
p : L → G(n, l) is given by the morphism L → j∗n (π1)

∗(sI[n]RsT[n]L) over G(n, l). We
can summarize this construction in the following diagram:

L

j∗n (π1)
∗(sI[n]RsT[n]L) (π1)

∗sI[n]RsT[n]L sI[n]RsT[n]L

G(n, l) F(n, l) F(n)

p

�F(n)

jn π1

.

By Theorem 4.35, it suffices to prove that L → j∗n (π1)
∗(sI[n]RsT[n]L) is fiber-wise a Kan

equivalence. Fix an object m : F(0) → G(n, l). On the one hand, as L → G(n, l) is a left
fibration, the fiber over m : F(0) → G(n, l) is homotopically constant (Example 3.19) and
so (L ×G(n,l) F(0))0 → Diag∗(L ×G(n,l) F(0)) is a Kan equivalence. On the other hand, we
have the following chain of equivalences:

((π1 jn )∗(sI[n]RsT[n]L) ×G(n,l) F(0))0 ∼= (sI[n]RsT[n]L ×F(n) F(0))0 definition of pullback

∼= Map(N ([0]{m} ×[n] [n]/−), RsT[n]L) Definition 4.14

∼= Map(Hom[n](m, −), RsT[n]L) computation

∼= RsT[n]L(m) Lemma 1.1

�←− sT[n]L(m) Definition 4.2

∼= Diag∗(L ×F(n) F(n)/m ) Definition 4.13

where Map denotes the mapping space of the functor category, using the fact that the
projective model structure is simplicial (Remark 4.3).

Notice, if we compose the chain of morphisms we get an equivalence Diag∗(L ×F(n)

F(n)/m) → ((π1 jn)∗(sI[n]RsT[n]L) ×G(n,l) F(0))0, which takes an element σ ∈
Diag∗(L ×F(n) F(n)/m)l to the natural transformation

N ([0]{m} ×[n] [n]/−)
∼=−−→ Hom[n](m,−) → (sT[n]L)l → (RsT[n]L)l ,

where the middle natural transformation is uniquely determined via the Yoneda lemma
(Lemma 1.1) by the element σ ∈ (sT[n]L)(m)l = Diag∗(L ×F(n) F(n)/m)l .
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Now, by Proposition 4.15, we have that sT[n]({m} : �[l] → F(n)) = N ([0]{m} ×[n]
[n]/−) × {�[l]}. This means the second line in the chain of equivalences above is precisely
given via the adjunction between sT[n] and sI[n]. Hence, by definition of the unit of an
adjunction, the unit map (L ×G(n,l) F(0))0 → (sI[n]RsT[n]L)0 at the level of l-simplices is
also given via the morphism

Hom/F(n)(�[l], L) → Hom/F(n)(�[l], sI[n]RsT[n]L) ∼= Nat(N ([0]{m} ×[n] [n]/−)

×{�[l]}, RsT[n]L),

that takes an element σ to the natural transformation N ([0]{m} ×[n] [n]/−) × {�[l]} →
RsT[n]L described above. This means if we restrict the chain of equivalences above via the
evident inclusion ι : (L ×G(n,l) F(0))0 → Diag∗(L ×F(n) F(n)/m) it becomes equal to the
unit map. In other words, we have established that the following diagram commutes, where
the top map is induced by the unit map

(L ×G(n,l) F(0))0 ((π1 jn)∗(sI[n]RsT[n]L) ×G(n,l) F(0))0

Diag∗(L ×G(n,l) F(0)) Diag∗(L ×F(n) F(n)/m)

� ι � .

We already observed above that the two vertical morphisms are equivalences. So, by 2-out-
of-3, in order to show that the top morphism is a Kan equivalence is suffices to show that the
bottom morphism is a Kan equivalence, or in other words, the map of fibers given as

L ×G(n,l) F(0) → L ×F(n) F(n)/m ∼= L ×G(n,l) G(n, l) ×F(n) F(n)/m (5.5)

is a diagonal equivalence.
It suffices to prove that F(0) → G(n, l)×F(n) F(n)/m is a contravariant equivalence over

G(n, l). Indeed, in that case, by Theorem 4.29, themap 5.5 is also a contravariant equivalence
(as L → G(n, l) is a left fibration) and hence a diagonal equivalence by Theorem 3.17.

By direct computation F(n)/m → F(n) is given by < 0, . . . ,m >: F(m) → F(n) and
so we have an isomorphism

G(n, l) ×F(n) F(n)/m ∼= G(m, l).

Now, the map F(0) → G(m, l) factors as F(0) → F(0) × �[l] → G(m, l). The first map
is a Reedy equivalence (as �[l] is contractible) and so we need to show that F(0) × �[l] →
G(m, l) is a covariant equivalence over G(n, l). The map is the homotopy pushout (in the
Reedy model structure) of the diagram

F(0) × �[l] F(0) × ∂�[l] F(0) × ∂�[l]

G(m) × �[l] G(m) × ∂�[l] F(m) × ∂�[l]

.

Thus it suffices to prove the vertical maps are contravariant equivalences over G(n, l) (as the
contravariant model structure is left proper by Theorem 3.12).

The contravariant model structure is simplicial (Theorem 3.12) and so we can reduce it
to checking that < 0 >: F(0) → G(m) is a contravariant equivalence over G(n, l). The
map is a composition of maps g : G(i) → G(i + 1) and thus it suffices to show that g is a
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contravariant equivalence over G(n, l). By Theorem 3.15, we can reduce that to proving that
g : G(i) → G(i + 1) is a contravariant equivalence over G(i + 1).

Finally, we have the following pushout square:

F(0) F(1)

G(i) G(i + 1)

<0>
�

<i> <i,i+1>

�
�

. (5.6)

The top horizontal map is a covariant equivalence by definition, which implies that the
bottom horizontal map is a contravariant equivalence over G(i + 1). ��
Remark 5.7 This result is also proven by Lurie [42, Remark 2.1.4.11], however, there it relies
on translating the problem into the world of simplicial categories and then proving it there,
which we managed to avoid. On the other side, it is also proven by Heuts and Moerdijk [33,
Proposition F] with simplicial sets, using a very similar approach. In the special case where
the domain and codomain are Segal spaces, the result also follows from [19, Proposition 5.5].

Remark 5.8 Interestingly enough the result does not hold if we replace “CSS equivalence”
with covariant or contravariant equivalence. For that it suffices to look at the simple case
of F(0) → F(1), as the covariant model structure over F(0) is just the diagonal model
structure, which is certainly not equivalent to the covariant or contravariant model structure
over F(1). Note, following [59, Proposition 2.5], this in particular implies that the covariant
model structure is not right proper.

Remark 5.9 Notice, there are maps which are not CSS equivalences, but still induce a Quillen
equivalence of covariant model structures, as we shall explain. In Appendix B we prove that
the covariant model structure over a simplicial set S (as defined in [42, Proposition 2.1.4.7])
is equivalent, via a left Quillen equivalence p∗

1 , to the covariant model structure over the
simplicial space p∗

1 S (Theorem B.12). Hence, it suffices to witness a morphism of simplicial
sets that is not an equivalence in the Joyal model structure (the model structure for quasi-
categories), but induces an equivalence of covariant model structures over simplicial sets.

Examples of such maps can be found in [42, Sects. 4.4.5 and 5.1.4]. Indeed, [42, Sect.
5.1.4] studies idempotent completions of∞-categories and proves in [42, Proposition 5.1.4.9,
Corollary 4.4.5.15] that any such idempotent completion induces an equivalence on ∞-
categories of presheaves. Hence, the same argument given in [42, Remark 2.1.4.11] (that
relies on the straightening construction [42, Theorem 2.2.1.2]) implies that any non-trivial
idempotent completion S → Ŝ is a map of simplicial sets that is not an equivalence in the
Joyal model structure, but induces an equivalence on covariant model structures.

We can now use this theorem to finally establish a Yoneda lemma for simplicial spaces
generalizing Theorem 3.49.

Corollary 5.10 Let X be a simplicial space and i : X ↪→ X̂ be a chosen CSS fibrant replace-
ment of X. Then for any point x : F(0) → X the covariant fibrant replacement is given by
{s0(x)} : F(0) → Xx/ = F(0)×X̂ X̂

F(1)×X̂ X inducedby the composition i{x} : F(0) → X̂ .
In particular, for any left fibration L → X there is an equivalence of Kan complexes

{s0(x)}∗ : Map/X (Xx/, L)
�−−→ Map/X (F(0), L).

123



27 Page 72 of 92 N. Rasekh

Proof For the first part, according to Theorem 3.49, F(0) ×X̂ X̂ F(1) → X̂ is the covariant

fibrant replacement of x : F(0) → X̂ and then by Theorem 5.1 the covariant equivalence
is preserved by pulling back along i . Now, the second part follows from the fact that the
covariant model structure is simplicial (Theorem 3.12). ��

In Proposition 3.39we proved that a left fibration over a complete Segal space is a complete
Segal space fibration. Using the invariance theorem, Theorem 5.1, we can now generalize it
to left fibrations over every simplicial space.

Theorem 5.11 Let X be a simplicial space. Then the following adjunction

(sS/X )CSS (sS/X )cov
id

id
⊥

is a Quillen adjunction. Here the left hand side has the induced CSS model structure (Defi-
nition A.5) and the right hand side has the covariant model structure.

This implies that the covariant model structure over X is a localization of the induced
CSS model structure over X.

Proof We want to prove that the left adjoint preserves cofibrations and trivial cofibrations.
Clearly it preserves cofibrations as they are just the monomorphisms. Let i : Y → Z be a
trivial CSS cofibration over X . Then, Theorem 5.1 gives us a Quillen equivalence

(sS/Y )cov (sS/Z )cov
i!

i∗
⊥ .

Thus, in particular, the counit map i!i∗Z → Z is a covariant equivalence over Z . However,
we have i!i∗(idZ ) = i : Y → Z , which means i is a covariant equivalence over Z . Finally,
by Theorem 3.15, i is also a covariant equivalence over X . ��
Remark 5.12 Note that we can use the same proofs with the contravariant model structure to
show that the contravariant model structure is a localization of the CSS model structure as
well.

The result above has the following very important corollary.

Corollary 5.13 Every left (and right) fibration is a CSS fibration.

Remark 5.14 This result generalizes [19, Sect. 1.4], which proved that left fibrations over
Segal spaces are CSS fibrations. Lurie proves the same result over an arbitrary simplicial set
[42, Theorem 3.1.5.1], but relies on the straightening construction.

In Theorem 4.32we proved that pulling back along right and left fibrations over a complete
Segal space preserves CSS equivalences. Using the invariance theorem, Theorem 5.1, we can
generalize this to arbitrary right and left fibrations.

Theorem 5.15 Let p : R → X be a right or left fibration. Then the adjunction

(sS/X )CSS (sS/R)CSS
p∗

p∗
⊥

is a Quillen adjunction. Here both sides have the induced CSS model structure (Proposi-
tion A.5).
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Proof We will assume that p is a right fibration, the case for left fibrations follows similarly.
In order to prove (p∗, p∗) is a Quillen adjunction is suffices to prove p∗ preserves

cofibrations and trivial cofibrations. Evidently, p∗ preserves cofibrations as they are just
monomorphisms. Hence we are left with proving that for a given CSS equivalence Y → Z
over X , the map Y ×X R → Z ×X R is a CSS equivalence over R.

First of all, observe that this property is invariant under Reedy equivalences, meaning if

g : R �−−→ R′ areReedy equivalent fibrations over X , and pulling back along R preservesCSS
equivalences, then so does pulling back along R′. Indeed, for an arbitrary CSS equivalence
f : Y → Z over X we have the following diagram

Y ×X R Y ×X R′

Z ×X R Z ×X R′

Y×X g

f ×X R f ×X R′
Z×X g

.

The horizontal morphisms are Reedy equivalences, as the Reedy model structure is right
proper and R → X , R′ → X are fibrations [34, Proposition 13.3.9]. Hence, the left hand
morphism is a CSS equivalence if and only if the right hand morphism is a CSS equivalence.

Now, let R → X be a right fibration and fix a CSS fibrant replacement i : X → X̂ . Then,
by Theorem 5.1, there is a Reedy equivalence of right fibrations R → i∗ î!R over X , where
î!R is the contravariant fibrant replacement of i!R → X̂ . So by the previous paragraph it
suffices to show that pulling back along i∗Rî!R → X preserves CSS equivalences.

In order to simplify notationwe denote î!R → X̂ by R̂ → X̂ and i∗Rî!R → X by R → X
and notice we now have the following pullback square

R R̂

X X̂

j

p p̂

i

.

Now, by the Beck-Chevalley condition for pullback squares, we have a natural isomorphism
j! p∗ ∼= p̂∗i! [25, 1.2]. By Proposition A.5, j! reflects weak equivalences and so p∗ preserves
weak equivalences if and only if j! p∗ does, which, by the natural isomorphism is equivalent
to p̂∗i! preserving weak equivalences. However, this follows directly from the fact that i!
always preserves weak equivalences and p̂∗ does so by Theorem 4.32. ��

The exact same proof can be used to prove the following theorem.

Theorem 5.16 Let p : R → X be a right or left fibration. Then the adjunction

(sS/X )Seg (sS/R)Seg
p∗

p∗
⊥

is a Quillen adjunction. Here both sides have the induced Segal space model structure (A.5).

Remark 5.17 This same result is stated in [39, Remark 11.10] in the language of quasi-
categories, however without a proof.

The theorem has the following helpful corollary.

Corollary 5.18 Let X → Y be a CSS equivalence and F → Y either a right or left fibration
over Y . Then the map X ×Y F → F is also a CSS equivalence.
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This result is indeed helpful, as the CSS model structure is not right proper i.e. generally
weak equivalences are not preserved by pullbacks along fibrations in the complete Segal
space model structure. We can easily see this in the following example.

Example 5.19 The map G(2) → F(2) is a Segal equivalence. Let F(1) → F(2) be the
unique map that takes 0 to 0 and 1 to 2. Note that this map is a CSS fibration but neither a
left fibration nor a right fibration. Now the pullback

F(1) ×
F(2)

G(2) → F(1)

is clearly not a Segal equivalence as the left hand side is just F(0)
∐

F(0).

We will end this subsection with a generalization of Lemma 3.32 using Theorem 5.1. For
that recall the classifying diagram N (C, Iso) defined in Definition 2.24.

Proposition 5.20 Let p : D → C be a discreteGrothendieck opfibration. Then N (D, Iso) →
N (C, Iso) is a left fibration of complete Segal spaces.

Proof It follows from the same argument as in [58, Lemma 3.9] that N (D, Iso) → N (C, Iso)
is a Reedy fibration. We now have a pullback diagram

NhD N (D, Iso)

NhC N (C, Iso)

�
�

�
.

The horizontal morphisms are equivalences in the complete Segal space model structure
(Proposition 2.25). Hence, by Theorem 5.1, the left hand morphism is a left fibration if and
only if the right hand map is a left fibration. However, we established in Lemma 3.32 that
the left hand morphism is a left fibration and so we are done. ��

5.2 Colimits, Cofinality and Quillen’s Theorem A

One intricate subject in the theory of (∞, 1)-categories is the study of limits and colimits.
Accordingly, there are now many sources dedicated to the study of colimits of quasi-
categories, such as [38, 42]. Thus if we are interested in understanding colimits in a complete
Segal space, we can translate those results from quasi-categories to complete Segal spaces
using the work of Joyal and Tierney [37], or specialize the model independent approach to
colimits via ∞-cosmoi to the case of complete Segal spaces [65].

In Sect. 0.2 we discussed how we want to understand whether results about (∞, 1)-
categories, such as various results about their colimits, still hold if we drop the completeness
condition. This cannot be directly translated from the corresponding results about quasi-
categories or ∞-cosmoi and needs to be proven directly.

In this final section we will apply our knowledge about left fibrations of Segal spaces to
prove several classical results about colimits in the context of Segal spaces. In particular, we
prove that a cocone out of a diagram corresponds to a map out of its colimit (Theorem 5.29),
that final maps give us equivalent colimits (Theorem 5.37), and Quillen’s theorem A for
simplicial spaces (Theorem 5.40) and in particular Segal spaces (Corollary 5.41).

Remark 5.21 In this section we focus on using left fibrations to study colimits. We can
analogously study limits via right fibrations.
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Definition 5.22 Let X be a Segal space and p : K → X be a map of simplicial spaces. We
define the Segal space of cocones under K , denoted by X p/, as the pullback

X p/ (XK )F(1)

X ∼= F(0) × X XK × XK

π (s,t)

{p}×�

where � : X → XK is the map induced by the final map K → F(0).

Remark 5.23 Recall that if X is a complete Segal space, then the underlying quasi-category
of the under-complete Segal space i∗1 (Wx/) is equivalent to the under-quasi-category i∗1 (W )x/
(as defined in [42, Proposition 1.2.9.2]), but not isomorphic (Remark 3.42). Again, by [42,
Proposition 1.2.9.2], the same applies to the Segal space of cocones. Concretely, this means
that if X is a complete Segal space and p : K → X a morphism of simplicial spaces, then the
equivalence of covariant model structures established in Appendix B implies an equivalence
of left fibrations i∗1 (Wp/) � i∗1 (W )i∗1 (p)/ although the constructions will not be isomorphic.

Example 5.24 If X is a Segal space and K = F(0) then p is determined by a choice of
point x in X and we have X p/ = Xx/, the Segal space of objects under x , as defined in
Definition 3.41.

Lemma 5.25 Let X be a Segal space and p : K → X be a map of simplicial spaces. The
projection map

π : X p/ → X

is a left fibration.

Proof In the following pullback diagram

X p/ F(0) ×
XK

(XK )F(1) = (XK )p/

X XK

�

the right vertical map is a left fibration, by Theorem 3.44, and so the left vertical map must
be a left fibration as well, as left fibrations are closed under pullbacks (Lemma 3.9). ��
Definition 5.26 Let X be a Segal space and p : K → X a map of simplicial spaces. We say
p has a colimit if the Segal space X p/ has an initial object (Definition 3.53).

Remark 5.27 This approach to colimits has already been studied for quasi-categories [42,
Definition 1.2.13.4].

The next lemma can help us better understand the definition of a colimit.

Lemma 5.28 Let X be a Segal space and p : K → X be a map of simplicial spaces. Then
the following are equivalent:
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(1) p has a colimit.
(2) There is a covariant equivalence {σ } : F(0) → X p/ over X.
(3) There is a Reedy equivalence

Xv/ → X p/

where v is an object in X.

Proof (1 ⇒ 2) If p is a colimit, then X p/ has an initial object σ which, by Definition 3.53,
means {σ } : F(0) → X p/ is a covariant equivalence over X .

(2 ⇒ 3) Assume we have a covariant equivalence {σ } : F(0) → X p/ over X and let
{v} = π ◦ {σ } : F(0) → X . Then the commutative square

F(0) X p/

Xv/ X

�

�

has a lift. Indeed, X p/ → X is a left fibration (Lemma 5.25) and so a fibration in the covariant
model structure and F(0) → Xv/ is a covariant equivalence over X (Theorem 3.49). As the
top and left hand maps are covariant equivalences over X , the map Xv/ → X p/ is also a
covariant equivalence over X . Finally, as both Xv/ and X p/ are left fibrations over X , the
covariant equivalence is in fact a Reedy equivalence (Theorem 3.12).

(3 ⇒ 1) By Theorem 3.55, Xv/ has an initial object and so by the Reedy equivalence X p/

also has an initial object. ��
We call the object σ in X p/ the universal cocone and, by abuse of language, the object v

in X the colimit.
For the remainder of this section we want to use our knowledge of left fibrations to study

colimits of Segal spaces. First, we prove the Segal space analogue to the fact that maps out
of a colimit are equivalent to maps of cocones.

Theorem 5.29 Let X be a Segal space and p : K → X be a map of simplicial spaces and
assume it has universal cocone σ : F(0) → X p/ with colimit v. Then for any object y in X
we have a natural equivalence

comp : mapX (v, y)
�−−→ mapXK (p, {y}).

Proof By Lemma 5.28, we have a Reedy equivalence Xv/ → X p/ over X . Fix an object
y : F(0) → X , which gives us a point y : �[0] → X0. Then, using Definition 2.17, we get
a Kan equivalence

comp : mapX (v, y) = Map/X (F(0), Xv/) → Map/X (F(0), X p/) = mapXK (p, {y})
and hence we are done. ��

We nowmove on to study computational aspects of colimits in Segal spaces. In particular,
we introduce final maps and prove they give us equivalent colimits.

Definition 5.30 A map f : X → Y is called final if f is a contravariant equivalence over Y .
Similarly, f : X → Y is called initial if f is a covariant equivalence over Y .

Remark 5.31 The notion of final maps of quasi-categories was first studied in [38, 8.11].
They also have been studied by Lurie [42, Definition 4.1.1.1] where they are called cofinal.
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Initial and final maps are a generalization of initial and final objects.

Example 5.32 A map {x} : F(0) → X is initial in the sense of Definition 5.30 if and only if
the object x is initial in the sense of Definition 3.53.

Lemma 5.33 Let f : X → Y be a map of simplicial spaces. The following are equivalent:

(1) f is a final map.
(2) For any map g : Y → Z the map f is a contravariant equivalence over Z.
(3) For any right fibration R → Y the induced map

Map/Y (Y , R) → Map/Y (X , R)

is a Kan equivalence.

Proof (1 ⇒ 2) As f : X → Y is a covariant equivalence over Y , g!(X → Y ) is a covariant
equivalence over Z (Theorem 3.15).

(2 ⇒ 1) This is just a special case where g = idY .
(1 ⇔ 3) Follows from the definition of contravariant equivalence (Theorem 3.12). ��

Remark 5.34 Although final maps are defined as certain contravariant equivalences, they do
not always behave similar to weak equivalences in the model categorical sense. In particular,
they do not satisfy the 2-out-of-3 property. For example, in the chain

F(0)
<0>−−→ F(1)

<0,0>−−−−−→ F(0)

the map < 0, 0 > and the composition < 0 > are final, but < 0 >: F(0) → F(1) is not.

Corollary 5.35 If f : X → Y is a CSS equivalence then it is final.

Proof This follows directly from Theorem 5.11. ��

Before we move on let us note that this gives us one exception to Remark 5.34.

Lemma 5.36 Let X
f−→ Y

g−→ Z be a chain of maps such that g is a CSS equivalence. Then
f is a final map if and only if g f is a final map.

Proof First note that g is a final map. So, if f is final then it is a contravariant equivalence
over Z (Lemma 5.33) and so the composition g f is also a covariant equivalence over Z ,
which by definition means it is final.

On the other side, let us assume g f = g!( f ) is a final map. Then, by Theorem 5.1, the
following adjunction is a Quillen equivalence:

(sS/Y )contra (sS/Z )contra
g!

g∗
⊥

which implies that f : X → Y is a contravariant equivalence over Y if and only if g!( f ) :
X → Y is a contravariant equivalence over Z , and so f is a final map as well. ��

Having discussed final maps we can now show how it allows us to simplify colimit
diagrams.
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Theorem 5.37 Let g : A → B be a final map and X be a Segal space. Then for any map
f : B → X the induced map

X f / → X f g/

is a Reedy equivalence.

Proof Fix an object x in the Segal space X . Using adjunctions between products and expo-
nentials, we have the following isomorphism

Map(F(1), XB) ∼= Map(F(1) × B, X) ∼= Map(B, XF(1)) (5.38)

Let Mapres(F(1) × B, X) be the full subspace of Map(F(1) × B, X) consisting of maps
H : F(1) × B → X such that H |{0} = f : B → X and H |{1} = {x} : B → X . Then
restricting the two isomorphisms in 5.38 gives us the isomorphisms

Map/X (F(0), X f /) ∼= Mapres(F(1) × B, X) ∼= Map/X (B, X/x ).

This isomorphism is natural is B and hence the map g : A → B gives us a commutative
diagram:

Map/X (F(0), X f /) Map/X (F(0), X f g/)

Map/X (B, X/x ) Map/X (A, X/x )

g∗

∼= ∼=

f ∗
�

.

By the explanation above the vertical maps are isomorphisms. Moreover, X/x → X is a right
fibration (Theorem 3.44) and so, by Definition 5.30, the bottom map is a Kan equivalence.
Hence the top map is a Kan equivalence for every map x : F(0) → X . As g∗ : X f / → X f g/

is a map of left fibrations over X , this implies that it is a Reedy equivalence (Theorem 4.35).
��

Notice, this statement has also been proven in the context of quasi-categories in [42,
Proposition 4.1.1.7].

Corollary 5.39 Let X be a Segal space and g : A → B be a final map of simplicial spaces.
Then a map f : B → X has a colimit if and only if g f : A → X has a colimit and in that
case they are equivalent objects in X.

We end this section by giving a useful criterion for classifying final maps of simplicial
spaces, motivated by Quillen’s Theorem A [51].

Theorem 5.40 Let f : X → Y be a map of simplicial spaces and {Ly → Y }{y}:F(0)→Y a
collection of covariant fibrant replacements of {y} : F(0) → Y .The followingare equivalent:

(1) f is a final map.
(2) For any y : F(0) → Y , the simplicial space Ly ×Y X is diagonally contractible.

Proof By Theorem 4.41, f : X → Y is a contravariant equivalence over Y if and only if

Ly ×Y f : Ly ×Y X → Ly ×Y Y ∼= Ly

is a diagonal equivalence for all y : F(0) → Y . By assumption F(0) → Ly is a covariant
equivalence over Y and thus, by Theorem 3.17, a diagonal equivalence. Hence, Ly ×Y f is
a diagonal equivalence if and only if Ly ×Y X is diagonally contractible. ��
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In the case of Segal spaces we can simplify the statement.

Corollary 5.41 Let Y be a Segal space and f : X → Y be a map of simplicial spaces. Then
f is final if and only if for every object y in Y the simplicial space Yy/ ×Y X is diagonally
contractible.

Remark 5.42 This result was proven for quasi-categories in [42, Theorem 4.1.3.1] where it
is attributed to Joyal. Thus, Corollary 5.41 generalizes Quillen’s theorem A to Segal spaces.
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Appendix A: Some Facts about Model Categories

We primarily used the theory of model categories to tackle issues of higher category theory.
In this section we will not introduce model categories as there are already several excellent
sources. For instance, we refer the reader to [21] for a short introduction to this subject and
to [34, 35] for a more detailed discussion. Here we will only state some technical lemmas
we have used throughout.

First, wemake ample use of the following very classical result about trivial Kan fibrations.

Lemma A.1 Let p : S → T be a Kan fibration in S. Then p is a trivial Kan fibration if and
only if each fiber of p is contractible.

For a readable proof of this statement see [57, Sect. 38]. This lemma has the following
important corollary.

Corollary A.2 Let p : S → K and q : T → K be two Kan fibrations. A map f : S → T
over K is a Kan equivalence if and only if for each point {k} : �[0] → K the map between
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fibers

S ×
K

{k} → T ×
K

{k}

is a Kan equivalence.

Next we have two important results that help us study Quillen adjunctions.

Lemma A.3 ( [37, Proposition 7.15], [34, Proposition 8.5.4]) Let M and N be two model
categories and

M N
F

G
⊥

be an adjunction of model categories, then the following are equivalent:

(1) (F,G) is a Quillen adjunction.
(2) F takes cofibrations to cofibrations and G takes fibrations between fibrant objects to

fibrations.
(3) G preserves trivial fibrations and takes fibrations between fibrant objects to fibrations.

Lemma A.4 (Special case of [37, Proposition 7.17, Proposition 7.22]) Let

M N
F

G
⊥

be a Quillen adjunction of model categories. Then the following are equivalent:

(1) (F,G) is a Quillen equivalence.
(2) F reflects weak equivalences between cofibrant objects and the derived counit map

FLG(n) → n is an equivalence for every fibrant-cofibrant object n ∈ N (Here LG(n)

is a cofibrant replacement of G(n) inside M).
(3) G reflects weak equivalences between fibrant objects and the derived unit map m →

GRF(m) is an equivalence for every fibrant-cofibrant object m ∈ M (Here RF(m) is
a fibrant replacement of F(m) inside N ).

We move on to the main topic of this appendix, namely the existence of two localized
model structures on the category of simplicial spaces over a fixed simplicial space and their
comparison.

Proposition A.5 [34, Theorem 7.6.5] LetM be amodel structure on sS. Let X be a simplicial
space. There is a simplicial model structure on sS/X , which we call the induced model
structure and denote by (sS/X )M, and which satisfies the following conditions:

(F) A map f : Y → Z over X is a (trivial) fibration if Y → Z is a (trivial) fibration inM.
(W) A map f : Y → Z over X is a weak equivalence if Y → Z is a weak equivalence in

M.
(C) A map f : Y → Z over X is a (trivial) cofibration if Y → Z is a (trivial) cofibration in

M.

Remark A.6 The induced model structure can be defined for any model category and not just
for model structures on sS, but for our work there is no need for further generality.
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Theorem A.7 Let X be a simplicial space and L be a set of monomorphisms in sS/X . There
exists a cofibrantly generated, simplicial model category structure on sS/X with the following
properties:

(1) The cofibrations are exactly the monomorphisms.
(2) The fibrant objects (calledL-local objects) are exactly theReedy fibrationsW → X ∈ sS

such that

Map/X (B,W ) → Map/X (A,W )

is a weak equivalence of spaces for all maps f : A → B over X in L.
(3) The weak equivalences (calledL-local weak equivalences) are exactly themaps g : Y →

Z over X such that for every L-local object W → X, the induced map

Map/X (Z ,W ) → Map/X (Y ,W )

is a weak equivalence.
(4) Let f : Y → Z be a map over X.

• If f is a Reedy weak equivalence over X then it is a L-local weak equivalence.
• If f is a L-local fibration then it is a Reedy fibration.

The opposite of both statements hold if Y and Z are L-local.
We call this model category the localized model structure.

The model structure is given as the left Bousfield localization of the induced Reedy
model structure on sS/X . For a careful and detailed proof of the existence of left Bousfield
localizations see [34, Theorem 4.1.1] (notice we are using the fact that the induced Reedy
model structure on sS/X is proper and cellular [34, Proposition 12.1.6]). For a nice summary
of this proof that goes over the main steps see [58, Proposition 9.1].

Remark A.8 Notice, we can in particular take X to be the final object in which case the
theorem gives us a localization model structure of the Reedy model structure on sS.

Note any such model structure is invariant under Reedy equivalences.

Lemma A.9 LetL be a set of monomorphisms in sS and let f : X → Y be amap of simplicial
spaces. Then the adjunction

(sS/X )MX (sS/Y )MY

f!

f ∗
⊥

is a Quillen adjunction which is a Quillen equivalence if f is a Reedy equivalence. Here the
left hand side has the localization model structure with respect to maps A → B → X for all
maps A → B in L and the right hand side has the localization model structure with respect
to maps A → B → Y for all maps A → B in L.

Proof First we use Lemma A.3 to prove it is a Quillen adjunction. Clearly the left adjoint
f! preserves monomorphisms and thus cofibrations. On the other hand, fibrations between
fibrant objects are just Reedy fibrations, which are preserved by f ∗. Thus we only need to
prove that f ∗ preserves fibrant objects. However, the fibrant objects are just Reedy fibrations
which satisfy the right lifting property with respect to maps A → B in L and the class of
such maps is clearly closed under pullback.
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Next we assume that f is a Reedy equivalence and prove that the adjunction is a Quillen
equivalence. We will prove that the derived unit and derived counit maps are equivalences.
Beforewe can analyze the derived unitmapweneed to better understandfibrant replacements.

Let p : Z → X be a fibrant object (meaning p is a local Reedy fibration) and let Z
i−→

Ẑ
f̂!(p)−−−−→ Y be a Reedy fibrant replacement of f!(p) : Z → Y . As p and ̂f!(p) are Reedy

equivalent and p is local, it follows that ̂f!(p) is a local fibration as well, meaning that
i : Z → Ẑ is in fact already a fibrant replacement in the localized Reedy model structure.

Now, the derived unit map, f ∗R f!, is given by taking the fibrant replacement in the
localized model structure of the map Z → X → Y in sS/Y and then pulling it back along
f : X → Y . This can be depicted as the following diagram:

Z f ∗ Ẑ Ẑ

X Y

p

i
�

u

f ∗ f̂!(p)

�

f̂!(p)

f
�

where (as we explained in the previous paragraph) i : Z → Ẑ is taken to be the Reedy fibrant
replacement. Themap f ∗ Ẑ → Ẑ is aReedy equivalence asReedy equivalences are preserved
by pullbacks along fibrations. Thus, by 2-out-of-3, the derived unit map u : Z → f ∗ Ẑ is a
Reedy weak equivalence.

We move on to the derived counit map. As all objects are cofibrant the derived counit
map is simply given by the actual counit map. Let W → Y be a fibrant object (meaning a
fibration). Then we have the diagram

f ∗W W

X Y

�

f
�

.

As the Reedy model structure is right proper (Sect. 2.4) and thus Reedy weak equivalences
are preserved by pullback, the counit map f ∗W → W is a Reedy equivalence and so also
an equivalence in the localized model structure (Theorem A.7). ��

Our precise understanding of the fibrant objects in the localized model structure allows
us to simplify the conditions in Lemma A.3.

Corollary A.10 Let X be a simplicial space and let (sS/X ,M) and (sS/X ,N ) be two localized
model structures of the induced Reedy model structure. Then an adjunction

(sS/X )M (sS/X )N
F

G
⊥

is a Quillen adjunction if it satisfies the following conditions:

(1) F takes cofibrations to cofibrations.
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(2) G takes fibrant objects to fibrant objects.
(3) G takes Reedy fibrations to Reedy fibrations.

Remark A.11 Let X be a simplicial space and L be a set of monomorphisms over X . Then
we can construct two model structures on sS/X using L:
(1) Using Theorem A.7 we can construct a localized model structure on the induced model

structure sS/X . This is the localized model structure on sS/X .
(2) We can projectL to sS to get a set of monomorphisms in sS and then use TheoremA.7 to

construct a localized model structure on sS and finally take the induced model structure
on sS/X . We call this the induced localized model structure on sS/X .

We want to understand how these two model structures compare to each other. Before we
can do that we need a precise characterization of the fibrant objects in the localized model
structure on sS/X in terms of the Reedy model structure on sS.

Lemma A.12 Let X be a simplicial space andL a set of monomorphisms. An object p : Y →
X in sS/X is fibrant in the localized model structure if and only if it is a Reedy fibration and
for every morphism f : A → B in L the commutative square

Map(B, Y ) Map(A, Y )

Map(B, X) Map(A, X)

f ∗

p∗ p∗

f ∗

is a homotopy pullback square of spaces.

Proof The square is a homotopy pullback square if and only if the horizontal map below is
an equivalence

Map(B, Y ) Map(A, Y ) ×Map(A,X) Map(B, X)

Map(B, X)

p∗ π2
.

By Corollary A.2, this is equivalent to proving that for each map g : B → X the induced
map

Map/X (B, Y ) → Map/X (A, Y )

is an equivalence, which is exactly the condition of being fibrant in the localized model
structure (Theorem A.7). ��
Theorem A.13 Let X be a simplicial space and L be a set of monomorphisms in sS/X . Then
the adjunction

(sS/X )locM (sS/X )M
id

id
⊥

is a Quillen adjunction, which is a Quillen equivalence if X is fibrant in the localized model
structure. In fact, in this case the two model structures are isomorphic. Here the left hand side
has the localized model structure and the right hand side has the induced localized model
structure (Remark A.11).
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Proof Both sides have the same set of cofibrations. By [42, Corollary A.3.7.2], in order to
finish the proof it suffices to show that every fibrant object in the induced localized model
structure on sS/X is fibrant in the localized model structure on sS/X and that the opposite
holds if X is fibrant in the localized model structure.

Let p : Y → X be a Reedy fibration and f : A → B a morphism in L. Then we have the
following diagram:

Map(B, Y ) Map(A, Y )

Map(B, X) Map(A, X)

f ∗

p∗ p∗

f ∗

.

If p is fibrant in the induced localized model structure on sS/X , then the square above is a
homotopy pullback square as the induced localized model structure on sS/X is a simplicial
model structure and f : A → B is a trivial cofibration in the localized model structure on
sS. However, by Lemma A.12, this is equivalent to p : Y → X being fibrant in the localized
model structure on sS/X . This finishes one side and proves the adjunction above is a Quillen
adjunction.

On the other hand, let us assume X is fibrant in the localized model structure on sS and
p : Y → X is fibrant in the localized model structure on sS/X . The fibrancy of p : Y → X
implies, again by Lemma A.12, that the square

Map(B, Y ) Map(A, Y )

Map(B, X) Map(A, X)

f ∗
�

p∗ p∗

f ∗
�

is a homotopy pullback square for all morphisms f : A → B in L and the fibrancy of X
implies the bottommap is a Kan equivalence. Hence the topmap is a Kan equivalence as well.
This means that Y is fibrant in the localized model structure on sS. Thus, by Theorem A.7,
the map p : Y → X is a fibration in the localized model structure on sS, as Reedy fibrations
between fibrant objects are fibrations in the localized model structure. ��

Appendix B: Comparison with Quasi-Categories

In this part we confirm that the covariant model structure on simplicial sets coincides with
the covariant model structure on simplicial spaces, by proving they are Quillen equivalent,
via two different Quillen equivalences.

The trick is to realize that the Quillen equivalences between the model structure for
quasi-categories (which we will henceforth call the Joyal model structure) and the model
structure for complete Segal spaces constructed by Joyal and Tierney [37] descend to Quillen
equivalences between their respective covariant model structures.

We will thus start by giving a quick review of the relevant results in [37] and review the
relevant definitions of the covariant model structure on simplicial sets. We will only focus
on specific results that we need in this section and refer the reader to the vast literature for
any details [33, 42].
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Notation B.1 This section focuses on the interaction between complete Segal spaces and
quasi-categories and more specifically relies on [37]. We will hence use different notation in
this section alone to match existing literature. Concretely, we use the following notation:

• Weuse sSetJoy for the Joyalmodel structure on the category of simplicial sets (withfibrant
objects quasi-categories) and, for a given simplicial set S, use the notation (sSet/S)cov

for the covariant model structure on simplicial sets over S (defined in Definition B.3).
• Following the notation in [37, Sect. 2] we denote p1 : � × � → � defined as

p1([n], [m]) = [n] and i1 : � → � × � defined as i1([n]) = ([n], [0]).
Definition B.2 [42, Definition 2.0.0.3] A map f : S → T of simplicial sets is a left fibration
if it satisfies the right lifting property with respect to all horn conclusions of the form 
n

i →
�[n], where 0 ≤ i < n.

Definition B.3 [42, Definition 2.1.4.5, Proposition 2.1.4.7, Proposition 2.1.4.8] Let S be a
simplicial set. There is a left proper, combinatorial, simplicial model structure on sSet/S ,
called the covariant model structure and denoted by (sSet/S)cov , which satisfies the following
conditions:

(1) A map T → U over S is a cofibration if it is a monomorphism.
(2) The fibrant objects are the left fibrations

We can also characterize the fibrations between fibrant objects.

Corollary B.4 [42, Corollary 2.2.3.14] A map between left fibrations is a fibration in the
covariant model structure if and only if it is a left fibration.

There are several important theorems about the covariant model structure we are going to
need later on.

Theorem B.5 [42, Theorem 3.1.5.1] Let S be a simplicial set. Then the following adjunction

(sSet/S)Joy (sSet/S)cov
id

id
⊥

is a Quillen adjunction, where the left hand side has the Joyal model structure and the right
hand side has the covariant model structure. This implies that the covariant model structure
is a localization of the Joyal model structure.

Theorem B.6 [42, Proposition 2.1.4.10, Remark 2.1.4.11] Let f : S → T be a map of
simplicial sets. Then the adjunction

(sSet/S)cov (sSet/T )cov
f!

f ∗
⊥

is a Quillen adjunction, which is a Quillen equivalence if f is a categorical equivalence.
Here both sides have the covariant model structure.

We now move on to review the main results in [37]. We will hence use the notation given
in [37, Sect. 2] instead of the notation we have used before. Concretely, p1 : � × � → �

is given by p1 ∗ ([n], [m]) = [n]
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Theorem B.7 [37, Theorem 4.11] The functors p1, i1 (Notation B.1) induce the following
adjunction

sSetJoy sSCSS
p∗
1

i∗1
⊥ ,

which is a Quillen equivalence, where sSet has the Joyal model structure and sS has the CSS
model structure.

Theorem B.8 [37, Theorem 4.12] Let t! : sS → sSet be the left Kan extension of the map
which is defined on the generators F(n) × �[l] as t!(F(n) × �[l]) = �[n] × J [l]. Let
t ! : sSet → sS be the right adjoint of this construction, i.e. t !(S)nl = HomsS(�[n]× J [l], S).
Then this defines a Quillen equivalence

(sS)CSS (sSet)Joy
t!

t !
⊥

with sS having the CSS model structure and sSet having the Joyal model structure.

The two adjunctions (p∗
1, i

∗
1 ), (t!, t !) do interact well with each other.

Lemma B.9 [37, Proposition 4.10] Let S be a quasi-category. Then the natural map

gS : p∗
1 S → t !S

is an equivalence in the CSS model structure.

There is an analogous statement for complete Segal spaces.

Lemma B.10 Let X be a complete Segal space, then the natural map

hX : i∗1 X → t!X

induced by applying t! to the counit map p∗
1 i

∗
1 X → X and using t! p∗

1 = id is a categorical
equivalence.

We now move on to the main topic of this section: the two Quillen equivalences (Theo-
rems B.12 and B.14).

Remark B.11 Let C be a category with pullbacks and let

C D
F

G
⊥

be an adjunction of categories and C an object in C. Then we get an adjunction

C/C D/FC

F

u∗G
⊥

where the left adjoint takes a map f : D → C to F f : FD → FC and the right adjoint
takes a map f : D → FC to the pullback u∗(G( f )) : u∗G(D) → C , where u : C → GFC
is the unit map.
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Theorem B.12 Let S be a simplicial set. The adjunction

(sSet/S)cov (sS/p∗! S)
cov

p∗
1

u∗i∗1
⊥

is a Quillen equivalence, where both sides have the covariant model structure.

Proof We break down the proof in several steps. In Lemma B.15 we prove the adjunction is
a Quillen adjunction. Then, in Remark B.17 we reduce the proof of the Quillen equivalence
to the case when S is a quasi-category. Finally, we show the Quillen adjunction is a Quillen
equivalence when S is a quasi-category in Lemma B.18 and hence we are done. ��
Remark B.13 In the particular case where the base is of the form i∗1 X , where X is a com-
plete Segal space, the adjunction (p∗

1 , u
∗i∗1 ) has been shown to be a Quillen equivalence

independently by de Brito [19, Theorem 1.22].

Theorem B.14 Let X be a simplicial space. The adjunction

(sS/X )cov (sSet/t!X )cov
t!

u∗t !
⊥

is a Quillen equivalence, where both sides have the covariant model structure.

Proof The proof involves several separate steps. In Lemma B.15 we prove the adjunction
is a Quillen adjunction. Then, again in Remark B.17 we reduce the proof of the Quillen
equivalence to the case when X is a complete Segal space. Finally, we show the Quillen
adjunction is a Quillen equivalence when X is a complete Segal space in Lemma B.19
finishing the proof. ��

We start with the Quillen adjunctions.

Lemma B.15 Let S be a simplicial set. The adjunction

(sSet/S)cov (sS/p∗
1 S

)cov
p∗
1

u∗i∗1
⊥

is a Quillen adjunction, where both sides have the covariant model structure.

Proof We use Lemma A.3. Clearly, p∗
1 takes cofibrations to cofibrations as they are just

inclusions. So, all that is left is to show that u∗i∗1 takes fibrations between fibrant objects to
fibrations. By Lemma 3.14 a fibration between fibrant objects is just a left fibration. Thus
it suffices to prove that u∗i∗1 preserves left fibrations. The map u∗ just pulls back along the
unit, which preserves left fibrations, as it is given by a right lifting property (Definition B.2).
So it suffices to prove that i∗1 preserves left fibrations.

Let p : L → p∗
1 S be a left fibration. We have to show that i∗1 (p) satisfies the right lifting

property with respect to horns 
[n]i → �[n] where 0 ≤ i < n (Definition B.2). Using the
adjunction (p∗

1 , i
∗
1 ) This is equivalent to p having the right lifting property with to the maps

j : L(n)i → F(n), which means we have to prove j is a trivial cofibration in sSwith respect
to the covariant model structure over p∗

1 S.
From Corollary 4.22 and the fact that < 0, . . . , k > ×idF(n)

j : F(k) ×F(n) L(n)i →
F(k) is a diagonal equivalence (both sides are diagonally contractible), we deduce that j
is a covariant equivalence over F(n) and so is a covariant equivalence over p∗

1 S as well
(Theorem 3.15). ��
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Lemma B.16 For a left fibration of simplicial sets p : L → S, t !L → t !S is a left fibration
of simplicial spaces. In particular, for every simplicial space X the adjunction

(sS/X )cov (sSet/t!X )cov
t!

u∗t !
⊥

is a Quillen adjunction where both sides have the covariant model structure.

Proof By Theorem B.5, p : L → S is a fibration in the Joyal model structure and so t !(p) is
a CSS fibration, by Theorem B.8, and so in particular a Reedy fibration. Thus we only have
to prove that for every map F(n) → X the induced map

< 0 >∗: Map/S(F(n), t !(p)) → Map/S(F(0), t !(p))

is a Kan equivalence. By adjunction, this is equivalent to proving that < 0 >: �[0] =
t!(F(0)) → t!(F(n)) = �[n] is a covariant equivalence over t !S. However, it is a well-
established fact that the map < 0 >: �[0] → �[n] is a covariant equivalence over �[n] and
so in particular over S (by Theorem 3.15). For an elegant proof of this fact see [33, Lemma
2.5].

We now move on to the adjunction. We will show the adjunction satisfies the three
conditions of Lemma A.3. Clearly, t! takes cofibrations to cofibrations as they are just
monomorphisms. Thus we only need to prove that u∗t ! preserves fibrant objects and fibra-
tions between fibrant objects. By Corollary B.4, a fibration between fibrant objects is a left
fibration, thus it suffices to prove that u∗t ! preserves left fibrations. By Lemma 3.9, it suffices
to prove that t ! preserves left fibrations, which we established in the previous paragraph. ��

Next we will reduce the proof to the case of complete Segal spaces and quasi-categories.

Remark B.17 Let S be a simplicial set and choose a quasi-category fibrant replacement i :
S → Ŝ and let X be a simplicial space and choose a complete Segal space fibrant replacement
j : X → X̂ . Then we have the following diagram of Quillen adjunctions:

(sSet/S)cov (sS/p∗
1 S

)cov (sS/X )cov (sSet/t!X )cov

(sSet
/Ŝ)

cov (sS
/p∗

1 Ŝ
)cov (sS

/X̂ )cov (sSet
/t! X̂ )cov

p∗
1

⊥

i!

⊥

u∗i∗1

(p∗
1 (i))!

⊥

t!
⊥

j!

⊥

u∗t !

(t!( j))!

⊥

p∗
1

⊥

i∗

u∗i∗1

(p∗
1 (i))

∗

t!
⊥

j∗

u∗t !

(t!( j))∗ .

All vertical Quillen adjunctions are Quillen equivalences (Theorems B.6, 5.1) thus the top
horizontal Quillen adjunctions are Quillen equivalences if and only if the bottom Quillen
adjunctions are Quillen equivalences.

We are now ready to move on to the last step.

Lemma B.18 Let S be a quasi-category. Then the adjunction

(sSet/S)cov (sS/p∗
1 S

)cov
p∗
1

u∗i∗1
⊥

is a Quillen equivalence, where both sides have the covariant model structure.
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Proof We prove that the derived unit and counit maps are equivalences.
First we prove the derived counit map is an equivalence. Let p : L → p∗

1 S be a left
fibration. We need to prove that the map p∗

1u
∗i∗1 L → L is a covariant equivalence over p∗

1 S.
By Theorem B.7, u : S → i∗1 p∗

1 S is the identity map. Hence we only need to prove that
p∗
1 i

∗
1 L → L is a covariant equivalence over p∗

1 S. However, this follows immediately from
the fact that p∗

1 i
∗
1 L → L is a complete Segal space equivalence (by Theorem B.7) and hence

a covariant equivalence over p∗
1 S (Theorem 5.11).

We move on to prove that the derived unit map is an equivalence. Let p : L → S be a
left fibration. Then p∗

1L → p∗
1 S is generally not a left fibration and so we need to find a left

fibrant replacement. We have the following diagram:

p∗
1L

(gS)∗t !L t !L

p∗
1 S t !S

gL
�

�

gS
�

.

By Lemma B.16, t !L → t !S is a left fibration and so (gS)∗(t!L) → p∗
1 S is a left fibration

(Lemma 3.9). Moreover, (gS)∗t !L → t !L is a CSS equivalence, as pulling back along
left fibrations preserves CSS equivalences (Theorem 5.15) and gL is a CSS equivalence by
Lemma B.9. Thus p∗

1L → (gS)∗t !L is a CSS equivalence over p∗
1 S and so a covariant

equivalence over p∗
1 S (by Theorem 5.11). Hence, p∗

1L → (gS)∗t !L is a fibrant replacement
of p∗

1 p in (sS/p∗
1 S

)cov .
Thus, in order to prove the derived unit is an equivalence we only need to show that

L → i∗1 p∗
1L → (i∗1 )(gS)∗t !L

is a covariant equivalence over p∗
1 S. However, both maps are just the identity map and hence

we are done. ��
Lemma B.19 Let X be a complete Segal space. Then the adjunction

(sS/X )cov (sSet/t!X )cov
t!

u∗t !
⊥

is a Quillen equivalence, where both sides have the covariant model structure.

Proof We have the following chain of Quillen adjunctions:

(sSet/i∗1 X )cov (sS/p∗
1 i

∗
1 X

)cov (sS/X )cov (sSet/t!X )cov
p∗
1 c!

u∗i∗1

t!

c∗ u∗t !
.

Here c : p∗
1 i

∗
1 X → X is the counit map of the adjunction.

The first adjunction is a Quillen equivalence by Lemma B.18. The middle one is a Quillen
equivalence by Theorem 5.1, as c is an equivalence of complete Segal spaces (as proven in

Theorem B.7). Finally, the composition takes a morphism S
p−→ i∗1 X to t! p∗

1 S → t! p∗
1 i

∗
1 X →
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t!X . By definition of hX (Lemma B.10) this morphism is equal to S
p−→ i∗1 X

hX−→ t!X meaning
the composition is precisely the Quillen adjunction

(sSet/i∗1 X )cov (sSet/t!X )cov
(hX )!

(hX )∗
⊥ .

Now, by Lemma B.10, hX is a categorical equivalence and so ((hX )!, (hX )∗) is a Quillen
equivalence and so by 2-out-of-3, the Quillen adjunction (t!, u∗t !) is also a Quillen equiva-
lence. ��

The Quillen equivalence in Theorem B.12 has an interesting corollary.

Corollary B.20 The covariant model structure on (sSet/S)cov is the localization of the Joyal
model structure with respect to the set of maps < 0 >: �[0] → �[n] → S.

Remark B.21 Essentially we proved that the two Quillen equivalences that Joyal and Tierney
introduced remain an equivalence after we localize at both sides. Theoretically, we could
have just proven these theorems using the fact that localizing with respect to the "same"
maps on both sides preserves Quillen equivalences. However, the issue is that we did not
have a good enough understanding of the localization of the Joyal model structure (i.e. it is
not clear which maps we are localizing with respect to). It is just after this proof that we get
a clear sense of the localizing maps.
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