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Abstract
This is the last part of a series of three strongly related papers in which three equivalent
structures are studied:

– Internal categories in categories of monoids; defined in terms of pullbacks relative to a
chosen class of spans

– Crossed modules of monoids relative to this class of spans
– Simplicial monoids of so-called Moore length 1 relative to this class of spans.

The most important examples of monoids that are covered are small categories (treated as
monoids in categories of spans) and bimonoids in symmetric monoidal categories (regarded
as monoids in categories of comonoids). In this third part relative simplicial monoids are
analyzed. Their Moore length is introduced and the equivalence is proven between relative
simplicial monoids of Moore length 1, and relative categories of monoids in Part I. This
equivalence is obtained in one direction by truncating a simplicial monoid at the first two
degrees; and in the other direction by taking the simplicial nerve of a relative category.

Keywords Simplicial monoid · Moore length · Internal category · Bimonoid

1 Introduction

Whitehead’s crossed modules of groups [22] received a lot of attention because of their
appearance in many different contexts; see the review articles [17–19] and the references
in them. In many of the applications they did not appear in their original form; but in the
disguise of the equivalent notion of internal groupoid in the category of groups—also called
a strict 2-group—(see [6,7,13] for proofs of the equivalence).

Groups can be regarded as (distinguished) monoids in the cartesian monoidal category of
sets. In our antecedent papers [3] and [4] we worked out the notion of crossed module of
monoids in more general, not necessarily cartesian monoidal categories, relative to a chosen
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2 G. Böhm

suitable class of spans. The main examples described by the theory are crossed modules of
monoids in [16], groupoids in [5] and crossed modules of Hopf monoids in [1,10–12,15].

The aimof this article is to extend to this level of generality a third equivalent description of
crossed modules of groups: as simplicial groups whose Moore complex has length 1. Recall
that for any simplicial group, the Moore complex is the associated chain complex, which is
given at each degree by the joint kernel of the face maps of positive label, and the restriction
of the zero’th face map as the differential (this is part of the Dold-Kan correspondence). A
chain complex—so in particular the Moore complex—is said to have length � if it is trivial
for all degrees greater than �.

We consider simplicial monoids; that is, functors from the opposite of the simplicial
category� to the category of monoids in somemonoidal category C. Assuming the existence
of certain relative pullbacks (cf. [3]), in Sect. 2 we associate to a simplicial monoid a sequence
of morphisms which yields a chain complex whenever the monoidal unit of C is a terminal
(hence zero) object in the category of monoids in C. It can be seen as a generalization of the
Moore complex of a simplicial group. We also give a meaning to its length, and study the
consequences of its having some finite length n.

Section 3 contains some technical material about the invertibility of a certain canonical
morphism playing an essential role in the theory.

The main result can be found in Sect. 4 where we prove an equivalence between the
category of relative categories in the category of monoids in C (cf. [3]) and the category
of relative simplicial monoids in C whose Moore length is 1. The functors establishing the
equivalence carry transparent meanings. For obtaining a relative category from a simplicial
monoid we truncate it at the first two degrees. In the opposite direction, a simplicial monoid
is obtained from a relative category of monoids as the (relative) simplicial nerve.

In the particular monoidal category of spans over a given set, we obtain an equivalence
between the categories of certain double categories, and of certain simplicial categories. These
equivalent categories contain, as equivalent full subcategories, the category of 2-groupoids
on one hand, and the category of crossed modules of groupoids on the other hand.

In the particular monoidal category of comonoids in some symmetric monoidal category
M, we obtain an equivalence between the categories of certain category objects in the cat-
egory of bimonoids in M, and of certain simplicial bimonoids. These equivalent categories
contain, as equivalent full subcategories, the category of internal categories in the category
of cocommutative Hopf monoids in M on one hand, and the category of simplicial cocom-
mutative Hopf monoids of Moore length 1 on the other hand. This includes, in particular,
the equivalence in [8] between the category objects in the category of cocommutative Hopf
algebras over a field, and the category of simplicial cocommutative Hopf algebras whose
Moore complex has length 1.

Throughout, we freely use definitions, notation and results from [3,4]. The composition

of some morphisms A
g

B and B
f

C in an arbitrary category will be denoted by

A
f ·g

C . Identitymorphismswill be denoted by 1 (without any reference to the (co)domain
object if it causes no confusion). In any monoidal category C the monoidal product will be
denoted by juxtaposition and the monoidal unit will be I . For the monoidal product of n
copies of the same object A also the power notation An will be used. For any monoid A in

C, the multiplication and the unit morphisms will be denoted by A2 m
A and I

u
A ,

respectively. If C is also braided, then for the braiding the symbol c will be used.
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Crossed Modules of Monoids III… 3

2 TheMoore Length

Recall that a simplicial object in an arbitrary category C is a functor S from the opposite of
the simplicial indexing category to C. Explicitly, this means objects and morphisms of C in

S0 σ0 S1
∂0

∂1

σ0

σ1
S2 · · · Sn−1∂1

∂0

∂2

σ0

σn−1

Sn · · ·

∂0

∂1
...

∂n

(1)

subject to the following simplicial relations.

∂i · ∂ j = ∂ j−1 · ∂i if i < j

σ j · σi = σi · σ j−1 if i < j
∂i · σ j =

⎧
⎨

⎩

σ j−1 · ∂i if i < j
1 if i ∈ { j, j + 1}

σ j · ∂i−1 if i > j + 1

In the category of groups (and in more general semi-abelian categories [14]), a chain
complex—the so called Moore complex—can be associated to any simplicial object. The
full subcategory of those simplicial objects whose Moore complex has length 1, turns out to
be equivalent to the category of crossed modules and to the category of internal categories
in the semi-abelian category in question, see e.g. [19] (in the case of the category of groups)
and [9,21] (more generally).

However, as in [3] and [4], here we work in categories (of monoids in some monoidal
categoryC) where the existence of zero objects is not assumed. So the notion of chain complex
is not available. We shall see below, however, that when certain relative pullbacks exist, we
can still associate to a simplicial object S a sequence of composable morphisms (reproducing
the Moore complex whenever the monoidal unit of C is terminal in the category of monoids
in C). Although the chain condition can not be formulated at this level of generality, there
is a natural way to define the length of this sequence that we call the Moore length of the
simplicial monoid S.

The construction of this sequence of composable morphisms is based on Assumption 2.1
below.

Recall that a class S of spans in an arbitrary category is said to be admissible if it satisfies
the following two properties in ([3], Definition 2.1).

(POST) If X A
f g

Y ∈ S then X ′ X
f ′

A
f g

Y
g′

Y ′ ∈ S too, for any mor-

phisms X
f ′

X ′ and Y
g′

Y ′ .

(PRE) If X A
f g

Y ∈ S then X A
f

B
h h

A
g

Y ∈ S, for any morphism

B
h

A .

The relative pullbackof a cospan A
f

B C
g

with respect to such a classSwas introduced

in ([3], Definition 3.1) as a span A A�
B
C

pA pC
C in S satisfying the following properties.
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4 G. Böhm

– Commutativity of the diagram

A�
B
C

pC

pA

C

g

A
f

B.

– Universality. For any A X
f ′ g′

C ∈ S such that f · f ′ = g · g′, there is a unique

morphism X
h

A�
B
C which satisfies pA · h = f ′ and pC · h = g′.

– Reflection. If both

A A�
B
C

pA
D

k l
E and C A�

B
C

pC
D

k l
E

belong to S then also A�
B
C D

k l
E belongs to S; and symmetrically, if

E D
l k

A�
B
C

pA
A and E D

l k
A�

B
C

pC
C

belong to S then also E D
l k

A�
B
C belongs to S.

A class S of spans in amonoidal category is said to bemonoidal if it satisfies the following
two conditions in ([3], Definition 2.5).

(UNITAL) For any morphisms f and g whose domain is the monoidal unit I ,

X I
f g

Y ∈ S.
(MULTIPLICATIVE) If both X A

f g
Y ∈ S and X ′ A′f ′ g′

Y ′ ∈ S then also

XX ′ AA′f f ′ gg′
YY ′ ∈ S.

Assumption 2.1 Let S be a monoidal admissible class of spans—in the sense of ([3], Def-
initions 2.1 and 2.5)—in some monoidal category C. For any simplicial object S in the
category of monoids in C let us use the notation of (1) and consider the following successive
assumptions.

(1) Assume that for any positive integer n there exists the S-relative pullback—in the sense
of ([3], Definition 3.1)—S(1)

n in

S(1)
n+1

pI

pSn+1

∂
(1)
k

S(1)
n := Sn �

Sn−1

I
pI

pSn

I

u

Sn+1
∂k

Sn
∂n

Sn−1.

123



Crossed Modules of Monoids III… 5

Since ∂k is compatible with the units of the monoids Sn and Sn−1; and by the simplicial
relation ∂n·∂k = ∂k·∂n+1 for any 0 ≤ k ≤ n, we may apply ([3], Proposition 3.5 (1)) to
conclude on the existence of the unique morphism ∂

(1)
k := ∂k �1 rendering commutative

the above diagram.
(2) In addition to the assumption in item (1) above, assume that for all n ≥ 2 there exists

the S-relative pullback S(2)
n in

S(2)
n+1

pI

p
S(1)
n+1

∂
(2)
k

S(2)
n := S(1)

n
�
S(1)
n−1

I
pI

p(1)
Sn

I

u

S(1)
n+1

∂
(1)
k

S(1)
n

∂
(1)
n−1

S(1)
n−1.

Since ∂
(1)
k is compatible with the units of themonoids S(1)

n and S(1)
n−1, and by the simplicial

relation ∂n−1·∂k = ∂k·∂n for any 0 ≤ k ≤ n−1, we may apply ([3], Proposition 3.5 (1)) to
conclude on the existence of the uniquemorphism ∂

(2)
k := ∂

(1)
k �1 rendering commutative

the above diagram.
...

(l) In addition to the assumptions in all items (1)· · · (l-1) above, assume that for all n ≥ l
there exists the S-relative pullback S(l)

n in

S(l)
n+1

pI

p
S(l−1)
n+1

∂
(l)
k

S(l)
n := S(l−1)

n
�

S(l−−1)
n−1

I
pI

p(l−1)
Sn

I

u

S(l−1)
n+1

∂
(l−1)
k

S(l−1)
n

∂
(l−1)
n−(l−1)

S(l−1)
n−1 .

Since ∂
(l−1)
k is compatible with the units of the monoids S(l−1)

n and S(l−1)
n−1 ; and by the

simplicial relation ∂n−(l−1)·∂k = ∂k ·∂n+1−(l−1) for any 0 ≤ k ≤ n − (l − 1), we may
apply ([3], Proposition 3.5 (1)) to conclude on the existence of the unique morphism
∂

(l)
k := ∂

(l−1)
k �1 rendering commutative the above diagram.

...

Example 2.2 For this example note that in any monoidal category M the monoidal unit I
carries a trivial monoid structure which is initial in the category of monoids in M. Symmet-
rically, I carries a trivial comonoid structure which is terminal in the category of comonoids
in M. Whenever M is braided, the trivial monoid and comonoid structures of I combine to a
bimonoid which is thus the zero object in the category of bimonoids in M.

If moreover M has equalizers which are preserved by taking the monoidal product with
any object, then the category of bimonoids inM has equalizers—see ([3], Example 3.3)—and
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6 G. Böhm

thus kernels. The kernel of any bimonoid morphism A
f

B is computed as the equalizer
in M of

f̂ := A
δ

A2 δ1
A3 1 f 1

ABA (2)

and û·ε = A
δ

A2 1u1
ABA, see [2].

So letM be a symmetric monoidal category in which equalizers exist and are preserved by
taking the monoidal product with any object. Let C be the monoidal category of comonoids
in M and consider the monoidal admissible class S of spans in C from ([3], Example 2.3).
Since ε is the counit, the diagram

A
δ

δ
g

A2 c

εg

A2

gε

A2
gε B

commutes for any bimonoid morphism g proving that

B A
g ε

I ∈ S. (3)

FromExample 3.3 and Proposition 3.7 in [3] we know that allS-relative pullbacks exist in the
category of bimonoids in M; hence any simplicial bimonoid in M—that is, any functor from
�op to the category of monoids in C—satisfies the successive assumptions of Assumption
2.1 for any positive integer. Still—say, for an easier comparison with [8]—below we present
a more explicit description of the objects S(k)

n .
For any positive integer n and any 0 < k ≤ n the desired objects S(k)

n are constructed as
the joint kernels of the morphisms {∂n, ∂n−1, · · · , ∂n−k+1} in the category of bimonoids in
M; that is, as the joint equalizers

S(k)
n

j (k)n
Sn

∂̂n

∂̂n−1
...

∂̂n−k+1

1u1·δ

SnSn−1Sn

in M (where the “hat notation” of (2) is used). By construction they are bimonoids. Using
the universality of the equalizer (inM) in the bottom rows, for k > 1 we construct bimonoid
morphisms in

S(k)
n

j (k)n

p
S(k−1)
n

S(k−1)
n

j (k−1)
n

Sn

∂̂n

∂̂n−1
.
.
.

∂̂n−k+2

1u1·δ

Sn Sn−1Sn

S(k−1)
n

∂
(k−1)
n−k+1

j (k−1)
n

Sn

∂n−k+1

∂̂n

∂̂n−1
.
.
.

∂̂n−k+2

1u1·δ

Sn Sn−1Sn

∂n−k+1∂n−k+1∂n−k+1

S(k−1)
n−1

j (k−1)
n−1

Sn−1

∂̂n−1

∂̂n−2
.
.
.

∂̂n−k+1

1u1·δ

Sn−1Sn−2Sn−1
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Crossed Modules of Monoids III… 7

(note the serial commutativity of the right-hand diagram thanks to the simplicial identities)
and show that they give rise to the S-relative pullback

S(k)
n

ε

p
S(k−1)
n

I

u

S(k−1)
n

∂
(k−1)
n−k+1

S(k−1)
n−1 .

(4)

From (3) we infer S(k−1)
n−1 S(k)

n

p
S(k−1)
n ε

I ∈ S. The square of (4) commutes since

j (k−1)
n−1 in the right vertical side of the commutative diagram

S(k−1)
n

∂
(k−1)
n−k+1

j (k−1)
n

S(k−1)
n−1

j (k−1)
n−1

S(k)
n

j (k)n

j (k)n

p
S(k−1)
n

ε

Sn
∂n−k+1

Sn−1

Sn
ε

I u

u

S(k−1)
n−1

j (k−1)
n−1

is a monomorphism. In order to check the universality of (4), take a bimonoid morphism

C
g

S(k−1)
n such that the exterior of the left-hand diagram of

C
g̃

ε

g

S(k)
n

ε

p
S(k−1)
n

I

u

S(k−1)
n

∂
(k−1)
n−k+1

S(k−1)
n−1

C
g

g̃

S(k−1)
n

j (k−1)
n

S(k)
n

j (k)n

Sn

∂̂n

∂̂n−1
...

∂̂n−k+1

1u1·δ=̂u·ε

SnSn−1Sn

(5)

commutes (we know that S(k−1)
n C

g ε
I ∈ S by (3)). Then a filler g̃ of the left-hand

diagram of (5) is constructed using the universality of the equalizer in the bottom row of
the right-hand diagram of (5). The occurring morphism j (k−1)

n ·g renders commutative the
diagrams
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8 G. Böhm

C
g

S(k−1)
n

j (k−1)
n

j (k−1)
n

Sn

∂̂i

Sn 1u1·δ SnSn−1Sn

C
g

g
u·ε

S(k−1)
n

j (k−1)
n

∂
(k−1)
n−k+1

Sn

∂n−k+1S(k−1)
n−1 j (k−1)

n−1

S(k−1)
n

j (k−1)
n

Sn u·ε Sn−1

for n − k + 1 < i ≤ n. Thus since it is a comonoid morphism, it equalizes the parallel
morphisms of the right-hand diagram of (5). The so constructed morphism g̃ renders com-
mutative the left-hand diagram of (5) since the right column and the bottom row of the
left-hand commutative diagram in

C
g̃

g

S(k)
n

p
S(k−1)
n

j (k)n

S(k−1)
n

j (k−1)
n

S(k−1)
n

j (k−1)
n

Sn .

C

h

g̃

g
S(k)
n

j (k)n

S(k)
n

p
S(k−1)
n

j (k)n

S(k−1)
n

j (k−1)
n

Sn

(6)

are equal monomorphisms. Finally g̃ is the unique filler of the left-hand diagram of (5); as if
also h makes the left-hand diagram of (5) commute then also the right-hand diagram of (6)
commutes. Since j (k)n is a monomorphism, this proves h = g̃. In order to see that the span (4)
satisfies the reflection property of ([3], Definition 3.1) on the right, take bimonoid morphisms

D C
h g

S(k)
n such that D C

h g
S(k)
n

p
S(k−1)
n

S(k−1)
n ∈ S; equivalently, the large

square on the left of the diagram

C
δ

δ

C2 c
C2

hg

DS(k)
n

1 j (k)n

1p
S(k−1)
n

C2
hg

DS(k)
n

1p
S(k−1)
n

1 j (k)n

DS(k−1)
n

1 j (k−1)
n

DSn

commutes. Since DS(k−1)
n

1 j (k−1)
n

DSn is a monomorphism, this is equivalent to the com-

mutativity of the exterior diagram. Since also DS(k)
n

1 j (k)n
DSn is a monomorphism, this

is further equivalent to hg·c·δ = hg·δ; that is, to D C
h g

S(k)
n ∈ S. Reflectivity on the

left follows symmetrically.

Proposition 2.3 Let S be a monoidal admissible class of spans in some monoidal cate-
gory C and let S be a simplicial monoid in C which satisfies the successive conditions
in Assumption 2.1 for any positive integer. For any positive integer n, the morphisms
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Crossed Modules of Monoids III… 9

Dn−1 := S(n)
n

p
S(n−1)
n

S(n−1)
n

∂
(n−1)
0

S(n−1)
n−1 (where S(0)

n := Sn and ∂
(0)
0 := ∂0) render

commutative the diagram

S(n+1)
n+1

Dn

pI

S(n)
n

Dn−1

I u S(n−1)
n−1 .

In particular, whenever the monoidal unit I is a zero object in the category of monoids in C,
there is a chain complex

· · · Dn+1
S(n+1)
n+1

Dn
S(n)
n

Dn−1 · · · D1
S(1)
1

D0
S0. (7)

Proof The morphisms Dn are clearly well-defined and they render commutative

S(n+1)
n+1 p

S(n)
n+1

pI

Dn

S(n)
n+1

∂
(n)
0

∂
(n)
1

p
S(n−1)
n+1

S(n)
n

p
S(n−1)
n

Dn−1

I u S(n)
n

p
S(n−1)
n

S(n−1)
n+1

∂
(n−1)
0

∂
(n−1)
1

S(n−1)
n

∂
(n−1)
0S(n−1)

n

∂
(n−1)
0

I u S(n−1)
n−1 S(n−1)

n−1

��
Example 2.4 The definition of cartesianmonoidal category includes the fact that themonoidal
unit is a terminal object, which is therefore a zero object in the category of monoids.
Thus Proposition 2.3 implies the well-known fact that any simplicial monoid in a cartesian
monoidal category admits a Moore complex (7).

Example 2.5 If M is a symmetric monoidal category in which equalizers exist and are pre-
served by taking the monoidal product with any object, then we know from Example 2.2
that Assumption 2.1 holds for any simplicial bimonoid in M (that is, for any functor from
�op to the category of monoids in the category of comonoids in M). Since in the category
of bimonoids in M the monoidal unit is the zero object, we conclude by Proposition 2.3 that
any simplicial bimonoid in M admits a Moore complex (7).

Definition 2.6 Let S be a monoidal admissible class of spans in some monoidal category C.
We say that a simplicial monoid S in C has Moore length l if the successive conditions in

Assumption 2.1 hold for any positive integer and I
u

S(n)
n and S(n)

n
pI

I are mutually
inverse isomorphisms for all n > l.

Lemma 2.7 Let S be a monoidal admissible class of spans in some monoidal category C.
For a simplicial monoid S in C of Moore length l, there are mutually inverse isomorphisms

I
u

S(n−i)
n and S(n−i)

n
pI

I for any non-negative integer i and any n > i + l.
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10 G. Böhm

Proof We proceed by induction on i .
For i = 0 and n > l the claim holds by definition.
Assume that it holds for some fixed value of i and all n > l + i .
If n > l + i + 1 then in the S-relative pullback in the inner square of

S(n−i−1)
n

p−1

S(n−i−1)
n

pI

S(n−i)
n

pI

p
S(n−i−1)
n

I

u

S(n−i−1)
n

∂
(n−i−1)
i+1

S(n−i−1)
n−1

(8)

the right column is an isomorphism by the induction hypothesis. We claim that so is then the
left vertical of the inner square. By the monoidality of S, I I I ∈ S, hence by ([3],

Lemma 3.4 (2)) also S(n−i−1)
n S(n−i−1)

n
pI

I ∈ S. The exterior of (8) commutes by the
commutativity of

S(n−i−1)
n

∂
(n−i−1)
i+1

pI
I

u

S(n−i−1)
n−1

pI

S(n−i−1)
n−1

where the bottom triangle commutes by the induction hypothesis. Then by the universality of
the S-relative pullback in (8) there is a unique morphism p−1

S(n−i−1)
n

in (8). It is the right inverse

of p
S(n−i−1)
n

by construction and also the left inverse since S(n−i−1)
n S(n−i)

n

p
S(n−i−1)
n pI

I
are jointly monic and the following diagrams commute

S(n−i)
n

p
S(n−i−1)
n

S(n−i)
n p

S(n−i−1)
n

S(n−i−1)
n

p−1

S(n−i−1)
n

S(n−i−1)
n

S(n−i−1)
n

p−1

S(n−i−1)
n

pI

S(n−i)
n

pI

S(n−i)
n pI

p
S(n−i−1)
n

I

Using that also I
u

S(n−i)
n is an isomorphism by the induction hypothesis, so is the com-

posite morphism I
u

S(n−i)
n

p
S(n−i−1)
n

S(n−i−1)
n = I

u
S(n−i−1)
n , and this completes

the proof. ��

Lemma 2.8 Let S be a monoidal admissible class of spans in some monoidal category C and
let S be a simplicial monoid in C for which the successive conditions of Assumption 2.1 hold

for any positive integer. If there is some non-negative integer k for which I
u

S(k)
n and
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Crossed Modules of Monoids III… 11

S(k)
n

pI
I are mutually inverse isomorphisms for all n ≥ k, then also I

u
S(k+1)
n and

S(k+1)
n

pI
I are mutually inverse isomorphisms for all n > k.

Proof We need to show that under the standing assumptions the inner square of

X
g

g

f

I

u

I

u

S(k)
n

∂
(k)
n−k

S(k)
n−1

is an S-relative pullback for all n > k. Commutativity of this square is immediate by the

unitality of the morphism in the bottom row and S(k)
n I

u
I ∈ S by the unitality of S.

For the universality observe that since the verticals are isomorphisms by assumption, the exte-

rior of our diagram commutes if and only if g is equal to X
f

S(k)
n

∂
(k)
n−k

S(k)
n−1

pI
I =

X
f

S(k)
n

pI
I ; if and only if f is equal to X

g
I

u
S(k)
n . Hence the (obviously

unique) filler is g. The top row of the inner square is the identity morphism. Therefore the
reflection property in ([3], Definition 3.1) of relative pullback trivially holds. ��

Corollary 2.9 Let S be a monoidal admissible class of spans in some monoidal category C.
For a simplicial monoid S in C which satisfies the successive conditions of Assumption 2.1
for any positive integer, the following assertions are equivalent.

(i) S has Moore length l.

(ii) I
u

S(l+1)
n and S(l+1)

n
pI

I are mutually inverse isomorphisms for all n > l.

Proof Statement (i) implies (ii) by Lemma 2.7, and (ii) implies (i) by Lemma 2.8. ��

3 Invertibility of Some Canonical Morphisms

As in [([4], Theorems 1.1, 2.1 and 3.10), also in the forthcoming equivalence between relative
categories and certain simplicial monoids a crucial role is played by the invertibility of some
canonical morphisms discussed in this section.

Consider a monoidal admissible class of spans in an arbitrary monoidal category C. Take a
simplicial monoid S as in (1) in C for which the successive conditions in Assumption 2.1 hold
for any positive integer. For any non-negative integer n, for 0 ≤ i ≤ n and for 0 ≤ k ≤ n− i ,

we define a morphism S(k)
n

σ
(k)
i

S(k)
n+1 iteratively as follows.

• σ
(0)
i := σi .

123



12 G. Böhm

• For 0 < k ≤ n − i we define σ
(k)
i as the unique filler in

S(k)
n

pI

p
S(k−1)
n

σ
(k)
i

S(k)
n+1

pI

p
S(k−1)
n+1

I

u

S(k−1)
n

σ
(k−1)
i

S(k−1)
n+1

∂
(k−1)
(n+1)−(k−1)

S(k−1)
n

It is well-defined by the simplicial identity ∂(n+1)−(k−1)·σi = σi·∂n−(k−1) and the unitality

of σ
(k−1)
i , see ([3], Proposition 3.5).

With these morphisms σ
(k)
i at hand, we introduce for any positive integer n and 0 ≤ k < n

the morphisms

y(n,k) := S(k+1)
n S(k)

n−1

p
S(k)
n

σ
(k)
n−1−k

(S(k)
n )2

m
S(k)
n . (9)

Note that they are natural in the following sense. For a simplicial monoid morphism

{ Sn
fn

S′
n }n≥0, let us define inductively the morphisms f (0)

n := fn and for 0 < k ≤ n the

unique morphism f (k)
n which renders commutative

S(k)
n

pI

p
S(k−1)
n

f (k)
n

S′(k)
n

pI

p
S′(k−1)
n

I

u

S(k−1)
n

f (k−1)
n

S′(k−1)
n

∂
′(k−1)
n−k+1

S′(k−1)
n−1 .

(This definition makes sense—see ([3], Proposition 3.5)—since { fn}n≥0 is a morphism of
simplicial monoids by assumption, hence so is { f (k−1)

n }n≥0 and therefore

S(k−1)
n

∂
(k−1)
n−k+1

f (k−1)
n

S(k−1)
n−1

f (k−1)
n−1

I
u

S′(k−1)
n

∂
′(k−1)
n−k+1

S′(k−1)
n−1 Iu

123



Crossed Modules of Monoids III… 13

commutes.) These morphisms and y(n,k) fit into the commutative diagram

S(k+1)
n S(k)

n−1
p
S(k)
n

σ
(k)
n−k−1

f (k+1)
n f (k)

n−1

y(n,k)

(S(k)
n )2 m

f (k)
n f (k)

n

S(k)
n

f (k)
n

S′(k+1)
n S′(k)

n−1

p
S′(k)
n

σ
′(k)
n−k−1

y′
(n,k)

(S′(k)
n )2

m
S′(k)
n .

(10)

Lemma 3.1 Consider amonoidal admissible class of spans in an arbitrarymonoidal category
C. Take a simplicial monoid S as in (1) in C for which the successive conditions in Assumption
2.1 hold for any positive integer. If for some positive integer n and some 0 ≤ k < n − 1 the
morphism y(n,k) of (9) is invertible then also y(n−1,k) is invertible.

Proof It follows by the commutativity of both diagrams

S(k+1)
n S(k)

n−1
p
S(k)
n

σ
(k)
n−1−k

y(n,k)

∂
(k+1)
i ∂

(k)
i

(S(k)
n )2

m

∂
(k)
i ∂

(k)
i

S(k)
n

∂
(k)
i

S(k+1)
n−1 S(k)

n−2

p
S(k)
n−1

σ
(k)
n−2−k

y(n−1,k)

(S(k)
n−1)

2 m
S(k)
n−1

S(k+1)
n−1 S(k)

n−2
p
S(k)
n−1

σ
(k)
n−2−k

y(n−1,k)

σ
(k+1)
i σ

(k)
i

(S(k)
n−1)

2
m

σ
(k)
i σ

(k)
i

S(k)
n−1

σ
(k)
i

S(k+1)
n S(k)

n−1

p
S(k)
n

σ
(k)
n−1−k

y(n,k)

(S(k)
n )2

m
S(k)
n

(11)
for any 0 ≤ i < n − k − 1 together with the simplicial identity ∂i ·σi = 1 that y(n−1,k) has
the inverse

S(k)
n−1

σ
(k)
i

S(k)
n

y−1
(n,k)

S(k+1)
n S(k)

n−1

∂
(k+1)
i ∂

(k)
i

S(k+1)
n−1 S(k)

n−2.

��
Note that in addition to the diagrams of (11), y(n,k) renders commutative also

S(k+1)
n S(k)

n−1 p
S(k)
n

1

y(n,k)

∂
(k+1)
n−k−11

S(k)
n S(k)

n−1
1σ (k)

n−1−k

∂
(k)
n−k−11

(S(k)
n )2 m

∂
(k)
n−k−1∂

(k)
n−k−1

S(k)
n

∂
(k)
n−k−1

S(k+1)
n−1 S(k)

n−1 p
S(k)
n−1

1
(S(k)

n−1)
2

m S(k)
n−1 and

S(k+1)
n S(k)

n−1 p
S(k)
n

1

y(n,k)

pI 1

S(k)
n S(k)

n−1
1σ (k)

n−1−k

∂
(k)
n−k1

(S(k)
n )2 m

∂
(k)
n−k∂

(k)
n−k

S(k)
n

∂
(k)
n−k

S(k)
n−1

u1
(S(k)

n−1)
2 (S(k)

n−1)
2 m

S(k)
n−1.

(12)
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14 G. Böhm

Proposition 3.2 Let S be a monoidal admissible class of spans in some monoidal category
C. For a simplicial monoid S in C of Moore length l, the following assertions hold.

(1) The morphism y(n,k) of (9) is invertible for all l < k < n.
(2) For any n > l the following are equivalent.

(i) y(n,l) of (9) is invertible.

(ii) S(l)
n−1

σ
(l)
n−1−l

S(l)
n is invertible.

(iii) The morphisms S(l)
n−1

σ
(l)
0

S(l)
n , S(l)

n−1

σ
(l)
1

S(l)
n , · · · , S(l)

n−1

σ
(l)
n−1−l

S(l)
n

are equal isomorphisms. Their inverse is equal to ∂
(l)
0 = ∂

(l)
1 = · · · = ∂

(l)
n−l .

Proof (1) In the unitality diagram

I

uu

I

u

S(k+1)
n S(k)

n−1 y(n,k)
S(k)
n

the vertical arrows are isomorphisms by Lemma 2.7. Then the bottom row is an isomor-
phism too.
(2) The equivalence of (i) and (ii) follows by the commutativity of the diagram

S(l)
n−1

σ
(l)
n−1−l

u1

S(l)
n

u1

S(l+1)
n S(l)

n−1

y(n,l)

p
S(l)
n

σ
(l)
n−1−l

(S(l)
n )2

m
S(l)
n

whose left vertical arrow is an isomorphism by Lemma 2.7.
Assertion (iii) trivially implies (ii). Conversely, ifσ (l)

n−1−l is invertible then by the simplicial

relations its inverse is ∂
(l)
n−1−l = ∂

(l)
n−l which is then invertible too. Again by the simplicial

relations the inverse of ∂
(l)
n−1−l = ∂

(l)
n−l is σ

(l)
n−1−l = σ

(l)
n−2−l . Iterating this reasoning we

conclude that (iii) holds. ��
Example 3.3 For a simplicial category S (that is, a functor S from �op to the category of
monoids in the category of spans over a fixed set in [[4], Example 1.2]), S(k+1)

n is the subcate-
gory of those morphisms in S(k)

n which are taken by the functor ∂(k)
n−k to an identity morphism.

Hence for a simplicial groupoid S, the category S(k)
n is a groupoid for all 0 ≤ k ≤ n. In this

case all morphisms {y(n,k)}0≤k<n of (9) are invertible by the same argument applied to the
morphism (1.3) in ([4], Example 1.2).

Example 3.4 Let M be a symmetric monoidal category in which equalizers exist and are
preserved by taking the monoidal product with any object. Let C be the monoidal category of
comonoids inM and let S be the monoidal admissible class of spans in C from ([3], Example
2.3). Take a simplicial monoid S in C (that is, a simplicial bimonoid in M) such that for all
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Crossed Modules of Monoids III… 15

non-negative integers n, Sn is a cocommutative Hopf monoid in M. Then y(n,k) of (9) is
invertible for all 0 ≤ k < n. This can be seen as follows.

Recall from Example 2.2 that S(k)
n is now a joint kernel in the category of bimonoids inM,

hence it is a sub bimonoid of the cocommutative bimonoid Sn . Thus S
(k)
n is a cocommutative

bimonoid. Moreover, by the cocommutativity of Sn , its antipode is a comonoid morphism

Sn
zn

Sn for all n ≥ 0. So we can use the universality of the equalizer in C in the bottom
row of

S(k)
n

z(k)n

j (k)n
Sn

zn

∂n

∂n−1
...

∂n−k+1

u·ε

Sn−1

zn−1

S(k)
n

j (k)n

Sn

∂n

∂n−1
...

∂n−k+1

u·ε

Sn−1

(13)

to define the antipode z(k)n for all n > 0 and 0 ≤ k ≤ n as the restriction of zn . The
diagramof (13) is serially commutative since anybimonoidmorphismbetweenHopfmonoids
is compatible with the antipodes, thus so are in particular the parallel morphisms of the
rows. This makes S(k)

n a cocommutative Hopf monoid for all 0 ≤ k ≤ n. By construction

the morphisms S(k)
n

∂
(k)
n−k

S(k)
n−1 and S(k)

n−1

σ
(k)
n−k−1

Sn(k) are morphisms of bimonoids and

therefore of Hopf monoids.

Summarizing, S(k)
n−1

σ
(k)
n−k−1

S(k)
n

∂
(k)
n−k

is a split epimorphism of bimonoids in M for which

conditions (1.a) and (1.b) of ([4], Proposition 1.5) hold; hence by ([4], Proposition 1.5) (see
also [20]) the corresponding morphism y(n,k) in ([4], Theorem 1.1 (1.b)) is invertible.

The above assumption about the cocommutativity of each Sn may look quite strong.
Note however, that for the application of ([4], Proposition 1.5) we need the assumption that

S(k)
n S(k)

n
∂

(k)
n−k

S(k)
n−1 belongs to the class S. By ([3], Lemma 2.4) 1 this is equivalent

to the cocommutativity of S(k)
n−1. This should hold for all n > 0 and 0 ≤ k < n; so in

particular for k = 0.

4 Equivalence of Relative Categories and Simplicial Monoids of Moore
Length 1

Theorem 4.1 Consider a monoidal admissible class S of spans in a monoidal cate-
gory C such that there exist the S-relative pullbacks of those cospans in C whose
legs are in S (cf. ([3], Assumption 4.1])). The equivalent categories CatMonS(C) and
XmodS(C) of ([4], Theorem 3.10) are equivalent also to the category Simp1MonS(C) whose

1 Apologies about a regrettable typo in the first line of ([3], Lemma 2.4), interchanging the symbols A and B.
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16 G. Böhm

objects are simplicial monoids in C (that, is functors S from �op to the category of monoids
in C) such that the following conditions hold.

(a) S has Moore length 1.

(b) Using the notation from (1), S0 S1
∂1

S1 and S1 S1
∂0

S0 belong to S.
(c) The morphisms y(n,k) of (9) and the morphisms

qn := S(1)
1 S

�
S0
n−1

1

pS1 1
S1S

�
S0
n−1

1
(1�σ0�···�σ0)(σ0�1)

(S
�
S0
n

1 )2
m

S
�
S0
n

1

are invertible for all n > 0 and 0 ≤ k < n.

morphisms are simplicial monoid morphisms (that is, natural transformations between the
functors from �op to the category of monoids in C).

Proof The proof consists of the construction of mutually inverse equivalence functors
between Simp1MonS(C) and CatMonS(C).

The functor Simp1MonS(C) → CatMonS(C) sends an object S in (1) to the S-relative

category whose underlying reflexive graph is S0 σ0 S1
∂0

∂1

. By construction this is an

object of the category ReflGraphMonS(C) in ([4], Theorem 2.1) for which the morphisms
qn of ([4], (3.3)) are invertible. By ([4], Proposition 3.8) it extends uniquely to an object of
CatMonS(C) since the following diagram commutes.

S1S
(1)
1

1pS1

S21

(σ0�1)(1�σ0)

1y−1
(1,0)=1q−1

1

(S1�
S0
S1)2

m

q−1
2 q−1

2

S1�
S0
S1

q−1
2

S(1)
1 S1

σ
(1)
0 1

pS1 1

S1S
(1)
1 S0

u11σ0

1pS1σ0

(S(1)
1 S1)2

σ
(1)
0 1σ (1)

0 1

pS1 1pS1 1

(S(1)
2 S1)2

m

y(2,0) y(2,0)

S(1)
2 S1

y(2,0)

S31
u111

1m

S41
σ0σ1σ0σ1

S42
mm

∂1∂1∂1∂1

S22
m

S2

∂1S41
mm

S22

m

∂1∂1

S21 S21 m
S1 S21m

S21

σ0σ1

Recall from Proposition 3.2 that S(1)
1

σ
(1)
0

S(1)
2 and S(1)

2

∂
(1)
0

S(1)
1 are mutually inverse

isomorphisms. Hence the regions of the above diagram sharing the dashed arrow commute
because both q2·∂(1)

0 1 and y(2,0) are multiplicative by [[3], Lemma 1.5], with respect to the
multiplications induced by the respective distributive laws

S1S
(1)
2

1∂(1)
0

S1S
(1)
1

1pS1
S21

(σ0�1)(1�σ0)
(S1�

S0
S1)

2 m
S1�

S0
S1

q−1
2

S(1)
1 S1

σ
(1)
0 1

S(1)
2 S1

and S1S
(1)
2

σ1 pS2
S22

m
S2

y−1
(2,0)

S(1)
2 S1
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whose equality follows by the commutativity of the diagrams

S2S
(1)
2

1pS2

∂0∂
(1)
0

S22
m

∂0∂0

S2
y−1
(2,0)

∂0
(11)

S(1)
2 S1

∂
(1)
0 1

S(1)
1 S1

q2

1∂0 [[4], (3.8)]

S1�
S0
S1

p1S1S
(1)
1 1pS1

S1S
(1)
1

∂01

σ1σ
(1)
0

1pS1

S0S
(1)
1

σ01

1pS1

S21
m

S1
y−1
(1,0)=q−1

1
S(1)
1 S0

q1
S1

S0S1 σ01

S21

∂01

(σ0�1)(1�σ0)

(S1�
S0
S1)2

p1 p1

m

S1�
S0
S1

p1

S2S
(1)
2

1pS2

∂2 pI

S22
m

∂2∂2

S2
y−1
(2,0)

∂2 (12)

S(1)
2 S1

∂
(1)
0 1

pI 1

S(1)
1 S1

q2

pI 1 [[4], (3.9)]

S1�
S0
S1

p2

S1S
(1)
1

1pI

σ1σ
(1)
0

1pS1

S1

1u

1u
S1S0 1σ0

S21
m

S1 S1 S1 S1

S21

1∂1

(σ0�1)(1�σ0)

(S1�
S0
S1)2

p2 p2

m

S1�
S0
S1.

p2

A morphism S
F

S′ in Simp1MonS(C) is sent to the morphism of reflexive graphs

( S0
F0

S′
0 , S1

F1
S′
1 ); it is an S-relative functor by ([4], Proposition 3.9).

In the opposite directionCatMonS(C) → Simp1MonS(C), we send anS-relative category

B i A
s

t
A�

B
A

d
to its ‘S-relative nerve’

B i A
t

s

1�i

i�1
A�

B
A · · · A�

B
n−1

d

p1

p2

σ0

σn−1

A�
B
n · · ·

∂0

∂1
...

∂n

where for any positive integer n we put

σk := 1�n−k−1 � i �1�k for 0 ≤ k < n
∂0 := 1�n−1 � t = p1···n−1

∂k := 1�n−k−1 �d �1�k−1 for 0 < k < n
∂n := s �1�n−1 = p2···n .
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18 G. Böhm

By the functoriality of �—cf. ([3], Proposition 3.5)—they constitute a simplicial monoid
which obeys property (b) by construction and for which the morphisms qn of part (c) are
invertible. In order to see that it has Moore length 1, note first that A(1) = A�

B
I exists; see

([4], Theorem 1.1). We claim that also for any n > 0 there is an S-relative pullback

A�
B
I

pI

pA

I

u

u

A
1�i�···�i

s
B

i�···�i

A�
B
n

p2···n A�
B
n−1

determining (A�
B
n
)(1). By construction A A�

B
I

pIpA
I ∈ S hence by (POST) also

A�
B
n

A
1�i�···�i

A�
B
I

pIpA
I ∈ S. If some morphisms f and g render commutative

the left-hand diagram of

X
h

g

f

A�
B
I

pI

pA

I

uA
1�i�···�i

A�
B
n

p2···n A�
B
n−1

X
h

g

f
A�

B
I

pI

pA

I

u

A�
B
n

p1
A s B

then they make commute the right-hand diagram as well by the commutativity of

X
g

f

I
u u

uA�
B
n p2···n

p1

A�
B
n−1 p1

A

t

A s B

Whenever A�
B
n

X
f g

I ∈ S also A A�
B
np1

X
f g

I ∈ S by (POST). Hence by
the universality of the S-relative pullback in the right-hand diagram, it has a unique filler h.
But the same morphism h is a filler also for the left-hand diagram by the commutativity of
both diagrams
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A�
B
n

p1

X
f

A�
B
n p1

A

1�i�···�i

A

A�
B
n p1

A
1�i�···�i

s

A�
B
n

p2···n

X
g

f

f

I
u

u

B
i�···�i

A�
B
n−1

.

A�
B
n

p2···n

The unique filler of the right-hand diagram is the unique filler for the left-hand diagram
since any filler h of the left-hand diagram is clearly a filler for the right-hand diagram
as well. For the reflection property let us use again that 1� i � · · · � i is a monomorphism

split by p1. Then if Y X
f g

A�
B
I

pA
A

1�i�···�i
A�

B
n ∈ S then by (POST) also

Y X
f g

A�
B
I

pA
A ∈ S . So, whenever also Y X

f g
A�

B
I

pI
I ∈ S, it fol-

lows from the reflection property of the relative pullback span A A�
B
I

pA pI
I (in the

sense of ([3], Definition 3.1)) that Y X
f g

A�
B
I ∈ S. The reflection property on the

left is proven symmetrically.
With this we proved that (A�

B
n
)(1) exists for any n > 0 and it is isomorphic to A(1) = A�

B
I .

The morphism ∂
(1)
n−1 is the identity morphism, being defined as the unique morphism fitting

the left-hand commutative diagram of

A�
B
I

∂
(1)
n−1

pI

pA A�
B
I

pI

pA

I

uA
1�i�···�i

A
1�i�···�i

A�
B
n

d�1�···�1A
�
B
n−1

p2···n−1
A�

B
n−2

I

u

I

u

A�
B
I A�

B
I .

Since A�
B
I I

u
I ∈ S by the unitality of S, the right-hand diagram is obviously an

S-relative pullback. This proves that for any n > 1

(A�
B
n
)(2) = (A�

B
n
)(1) �

(A
�
B
n−1

)(1)

I ∼= (A�
B
I ) �

A�
B
I
I

exists and it is isomorphic to I . Then by Corollary 2.9 S has Moore length 1. Above we

proved that (A�
B
n
)(1)

∂
(1)
n−1

(A�
B
n−1

)(1) is invertible; then so is its inverse σ
(1)
n−2. Therefore

by Proposition 3.2 the morphism y(n,k) of (9) is invertible for all 0 < k < n. For any n > 0
the morphism y(n,0) takes now the form
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20 G. Böhm

(A�
B
n
)(1)A�

B
n−1 ∼= (A�

B
I )A�

B
n−1 pA1

AA�
B
n−1 (1�i�···�i)(i�1)

(A�
B
n
)2

m
A�

B
n

in which we recognize the invertible morphism qn . This proves that the nerve of an object of
CatMonS(C) is indeed an object of Simp1MonS(C). A morphism

(B i A
s

t
A�

B
A)

d (b,a)
(B ′ i ′ A′

s′

t ′
A′�

B′A
′)d ′

is sent to the family ( B
b

B ′ , { A�
B
n a�n

A
′�
B
n }n>0) which is clearly a morphism of sim-

plicial monoids.
It remains to see that the above constructed functors are mutually inverse equivalences.

Sending an S-relative category (and S-relative functor, respectively) to its nerve and then
truncating it as above, we clearly re-obtain the S-relative category (and S-relative functor,
respectively) that we started with. Composing the functors in the opposite order, an object S
of Simp1MonS(C) is sent to

S0 σ0 S1
∂0

∂1

1�σ0

σ0�1
S1�

S0
S1 · · · S�

S0
n−1

1d

p1

p2

σ̃0

σ̃n−1

S
�
S0
n

1 · · ·

∂̃0

∂̃1
...

∂̃n

(14)

where d = S1�
S0
S1

q−1
2

(S1�
S0
I )S1

pS1 1
S21

m
S1 (see ([4], Proposition 3.8)) and for any

positive integer n,

σ̃k := 1�n−k−1 �σ0 �1�k for 0 ≤ k < n
∂̃0 := 1�n−1 �∂0 = p1···n−1

∂̃k := 1�n−k−1 �d �1�k−1 for 0 < k < n
∂̃n := ∂1 �1�n−1 = p2···n .

Note that together with the family of morphisms {qn}n>0 they render commutative the fol-
lowing diagrams. For all 0 ≤ i < n,

S(1)
1 S

�
S0

n−1

1 pS1 σ̃n−1

1σ̃i

qn

S1S
�
S0

n

1 σ̃01

1σ̃i

· · ·
σ̃01

S
�
S0

n−i

1 S
�
S0

n

1

σ̃0 σ̃i

σ̃01
· · ·

σ̃01
(S

�
S0

n

1 )2
m

σ̃i σ̃i

S
�
S0

n

1

σ̃i

S(1)
1 S

�
S0

n

1

pS1 σ̃n

qn+1

S1S
�
S0

n+1

1
σ̃01 · · · σ̃01

S
�
S0

n+1−i

1 S
�
S0

n+1

1
σ̃01 · · · σ̃01

(S
�
S0

n+1

1 )2
m

S
�
S0

n+1

1 .

(15)
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For 1 < i < n,

S(1)
1 S

�
S0
n

1 pS1 σ̃n

1̃∂i

qn+1

S1S
�
S0
n+1

1 σ̃01

1̃∂i

· · ·
σ̃01

S
�
S0
n−i

1 S
�
S0
n+1

1

1̃∂i

σ̃01
S

�
S0
n+1−i

1 S
�
S0
n+1

1

∂̃0 ∂̃i

σ̃01
· · ·

σ̃01 (S
�
S0
n+1

1 )2 m

∂̃i ∂̃i

S
�
S0
n+1

1

∂̃i

S(1)
1 S

�
S0
n−1

1

pS1 σ̃n−1

qn

S1S
�
S0
n

1
σ̃01 · · · σ̃01

S
�
S0
n−i

1 S
�
S0
n

1
σ̃01 · · · σ̃01

(S
�
S0
n

1 )2
m

S
�
S0
n

1

(16)
and for 0 ≤ i ≤ 1 < n the analogous one

S(1)
1 S

�
S0

n

1 pS1 σ̃n

1̃∂i

qn+1

S1S
�
S0

n+1

1 σ̃01

1̃∂i

· · ·
σ̃01

S
�
S0

n

1 S
�
S0

n+1

1

1̃∂i

σ̃01 (S
�
S0

n+1

1 )2 m

∂̃i ∂̃i

S
�
S0

n+1

1

∂̃i

S(1)
1 S

�
S0

n−1

1

pS1 σ̃n−1

qn

S1S
�
S0

n

1

σ̃01 · · · σ̃01
(S

�
S0

n

1 )2
m

S
�
S0

n

1 .

(17)
We claim that a natural isomorphism from S to its image in (14) can be constructed iteratively
for all n ≥ 0 as

• w0 := 1

• wn := Sn
y−1
(n,0)

S(1)
n Sn−1

∂
(1)
0 1 · · · ∂

(1)
0 1

S(1)
1 Sn−1

1wn−1
S(1)
1 S

�
S0
n−1

1
qn

S
�
S0
n

1 .
(18)

Note that it gives w1 = 1, but non-trivial higher components. Let us prove by induction on
n the equality

Sn
wn

S
�
S0
n

1
p1

S1 = Sn
∂0 · · · ∂0

S1 for n > 0. (19)

For n = 1 both sides yield the identity morphism thus the equality holds. If it holds for some
n > 0 then the following diagram commutes
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22 G. Böhm

Sn+1
y−1
(n+1,0)

wn+1

∂0

(11)

S(1)
n+1Sn

∂
(1)
0

· · ·
∂

(1)
0

S(1)
1 Sn−1 1wn

1∂0

(IH)

S(1)
1 S

�
S0
n

1 qn+1

1p1

[[4], (3.8)]

S
�
S0
n+1

1

p1
...

1∂0

...

1∂0

S(1)
1 S1

1∂0

S1
y−1
(1,0)

S(1)
1 S0 S(1)

1 S0
q1

S1

proving (19) for all positive n. (The region marked by (IH) commutes by the induction
hypothesis.)

The morphisms wn of (18) are composites of isomorphisms (see Proposition 3.2) hence
they are invertible. They are compatible with the units of the domain and codomain monoids
by the unitality of the constituentmonoidmorphisms.Multiplicativity is checked by induction
on n again. Trivially, w0 = 1 is multiplicative. If wn−1 is multiplicative for some n > 0 then
by ([3], Corollary 1.7) so are both isomorphisms

S(1)
1 Sn−1

σ
(1)
0 1 · · · σ

(1)
0 1

S(1)
n Sn−1

y(n,0)
Sn and S(1)

1 Sn−1
1wn−1

S(1)
1 S

�
S0

n−1

1

qn
S

�
S0

n

1 (20)

with respect to the multiplications induced by the respective distributive laws

Sn−1S
(1)
1

1σ (1)
0 · · · 1σ (1)

0
Sn−1S

(1)
n

σn−1 pSn
S2n

m
Sn

y−1
(n,0)

S(1)
n Sn−1

∂
(1)
0 1 · · · ∂

(1)
0 1

S(1)
1 Sn−1

Sn−1S
(1)
1

wn−11

S
�
S0
n−1

1 S(1)
1

1pS1

S
�
S0
n−1

1 S1

(σ0�1)(1�σ0�···�σ0)

(S
�
S0
n

1 )2

m

S
�
S0
n

1

q−1
n

S(1)
1 S

�
S0
n−1

1

1w−1
n−1

S(1)
1 Sn−1.

Their equality follows by the commutativity of the diagrams of Fig. 1, whose right vertical
arrows are jointly monomorphic.

Since wn is the composite of the right-hand morphism of (20) with the inverse of the
left-hand one, we conclude that it is multiplicative too.

Next we check by induction on n that {wn}n≥0 is a simplicial morphism; that is,

Sn
wn

σi

S
�
S0
n

1

σ̃i

Sn+1 wn+1
S

�
S0
n+1

1

Sn+1
wn+1

∂ j

S
�
S0
n+1

1

∂̃ j

Sn wn
S

�
S0
n

1

(21)

commute for all n ≥ 0 and 0 ≤ i ≤ n and 0 ≤ j ≤ n + 1. Note that the induction must be
started with n = 1 because the left-hand diagram of (24) below only makes sense for n > 0.
For n = 0 the diagrams of (21) commute because w0 and w1 are the identity morphisms and

the equalities S0
σ̃0

S1 = S0
σ0

S1 and S1
∂̃i

S0 = S1
∂i

S0 hold for i = 0, 1 by
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construction. For n = 1 commutativity of the diagrams of (21) is checked as follows.

S1
y−1
(1,0)

σ0 (11)

S(1)
1 S0

σ
(1)
0 σ0

S(1)
1 S0 q1

1σ0 (15)

S1

σ̃0

S2
y−1
(2,0)

w2

S(1)
2 S1

∂
(1)
0 1

S(1)
1 S1

q2
S1�

S0

S1

S1

u1
σ1

S1

σ̃1

u1

S2
y−1
(2,0)

w2

S(1)
2 S1

∂
(1)
0 1

S(1)
1 S1

q2
S1�

S0

S1

S2
w2

∂0

(19)

S1�
S0
S1

∂̃0=p1

S1 S1

S2
y−1
(2,0)

∂1

(12)

w2

S(1)
2 S1

∂
(1)
0 1=∂

(1)
1 1

S(1)
1 S1 q2

S1�
S0
S1

q−1
2

∂̃1

S(1)
1 S1

pS1 1

S21
m

S1 S1

S2
y−1
(2,0)

∂2

w2

S(1)
2 S1

∂
(1)
0 1

pI 1(12)

S(1)
1 S1 q2

pI 1 [[4], (3.9)]

S1�
S0
S1

∂̃2=p2

S1 S1 S1 S1

Now assume that the left-hand diagram of (21) commutes for some n > 0 and all 0 ≤ i ≤ n.
By the commutativity of the diagrams

Sn+1
y−1
(n+1,0)

σi

wn+1

(11)

S(1)
n+1Sn

∂
(1)
0 1

1σi
σ

(1)
i σi

· · ·
∂

(1)
0 1

S(1)
1 Sn

1wn

(IH)1σi

S(1)
1 S

�
S0
n

1
qn+1

1σ̃i (15)

S
�
S0
n+1

1

σ̃i

Sn+2

y−1
(n+2,0)

wn+2

S(1)
n+2Sn+1

∂
(1)
0 1=∂

(1)
i 1

S(1)
n+1Sn+1

∂
(1)
0 1 · · · ∂

(1)
0 1

S(1)
1 Sn+1

1wn+1
S(1)
1 S

�
S0
n+1

1

qn+2
S

�
S0
n+2

1

Sn+1

σn+1
u1

Sn+1
wn+1

u1

S
�
S0
n+1

1

σ̃n+1
u1

Sn+2

y−1
(n+2,0)

wn+2

S(1)
n+2Sn+1

∂
(1)
0 1 · · · ∂

(1)
0 1

S(1)
1 Sn+1

1wn+1
S(1)
1 S

�
S0
n+1

1

qn+2
S

�
S0
n+2

1

(where the region marked by (IH) commutes by the induction hypothesis) we conclude that
the left-hand diagram of (21) commutes for all n > 0 and all 0 ≤ i ≤ n.
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Assume next that the right-hand diagram of (21) commutes for some n > 0 and all
0 ≤ j ≤ n + 1. Then the following diagrams commute for all 0 ≤ j ≤ n.

Sn+2
y−1
(n+2,0)

∂ j

wn+2

(11)

S(1)
n+2Sn+1

∂
(1)
0 1=∂

(1)
j 1

S(1)
n+1Sn+1

∂
(1)
0 1

1∂ j

· · ·
∂
(1)
0 1

S(1)
1 Sn+1

1wn+1

1∂ j (IH)

S(1)
1 S

�
S0

n+1

1
qn+2

1̃∂ j (16)

S
�
S0

n+2

1

∂̃ j

Sn+1

y−1
(n+1,0)

wn+1

S(1)
n+1Sn

∂
(1)
0 1

· · ·
∂
(1)
0 1

S(1)
1 Sn

1wn
S(1)
1 S

�
S0

n

1

qn+1
S

�
S0

n+1

1

(22)

Sn+2
y−1
(n+2,0)

∂n+2

wn+2

(12)

S(1)
n+2Sn+1

∂
(1)
0 1

pI 1

· · ·
∂

(1)
0 1

S(1)
1 Sn+1

1wn+1

pI 1

S(1)
1 S

�
S0

n+1

1
qn+2

pI 1 [[4], (3.9)]

S
�
S0

n+2

1

p2···n+2 ∂̃n+2=

Sn+1 Sn+1 Sn+1 wn+1
S

�
S0

n+1

1 S
�
S0

n+1

1

(23)

The missing case j = n + 1 follows by the commutativity of the following diagrams whose
vertical arrows are jointly monomorphic.

S
�
S0

n+2

1

∂̃n+1

∂̃0

S
�
S0

n+1

1

∂̃0

p1

S
�
S0

n+1

1
∂̃n

(IH)

S
�
S0

n

1

∂̃0

p1

(19)

.

.

.

∂̃0

Sn+2

wn+2

∂n+1

∂0

(22)

Sn+1
∂n

wn+1

Sn
∂0

wn

(19)

· · · ∂0
S1

Sn+1

∂0

wn+1
S

�
S0

n+1

1

p1

S
�
S0

n+2

1

∂̃n+1

∂̃n+2

S
�
S0

n+1

1

∂̃n+1 p2···n+1=

S
�
S0

n+1

1 ∂̃n+1

(IH)Sn+2

wn+2

∂n+1

∂n+2

(23)

Sn+1

∂n+1

wn+1

S
�
S0

n

1

Sn
wn

(IH)

Sn+1

∂n+1

wn+1
S

�
S0

n+1

1

p2···n+1=∂̃n+1

(24)
This proves that the right-hand diagram of (21) commutes for all stated values of n and j
and thus w is a simplicial morphism.
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Finally, naturality of w is proven by induction on n. For any simplicial monoid morphism

{ Sn
fn

S′
n }n≥0 and n = 1 the left-hand diagram of

Sn
wn

fn

S
�
S0

n

1

f �n
1

S′
n

w′
n

S
′�
S′
0

n

1

Sn+1
y−1
(n+1,0)

fn+1 (10)

wn+1

S(1)
n+1Sn ∂

(1)
0 1

f (1)
n+1 fn

· · ·
∂

(1)
0 1

S(1)
1 Sn

1wn

f (1)
1 fn (IH)

S(1)
1 S

�
S0

n

1
qn+1

f (1)
1 f �n

1

S
�
S0

n+1

1

f �n+1
1

S′
n+1

y′−1
(n+1,0)

w′
n+1

S′(1)
n+1S

′
n

∂
′(1)
0 1 · · · ∂

′(1)
0 1

S′(1)
1 S′

n

1w′
n

S′(1)
1 S

′�
S0

n

1

q ′
n+1

S
′�
S0

n+1

1

evidently commutes. If the left-hand diagram commutes for some non-negative integer n
then so does the right-hand one too. ��

The functor Simp1MonS(C) → CatMonS(C) in the above proof can be composed with
the functor CatMonS(C) → XmodS(C) in the proof of ([4], Theorem 3.10). The resulting
equivalence functor sends an object S to

(S0, S
(1)
1 , S(1)

1
pI

I , S(1)
1

D0
S0 , S0S

(1)
1

σ0 pS1
S21

m
S1

q−1
1

S(1)
1 S0 ),

where D0 is the same morphism in Proposition 2.3.

Example 4.2 As in [4], Example 1.2, take the (evidently admissible and monoidal) class of
all spans in the category C of spans over a given set X . The equivalent categories of [4],
Example 3.11 are equivalent also to the following category.

Simp1Mon(C) whose
objects are simplicial categories S such that the object set of Sn for each n ≥ 0 is the

given set X and the following conditions hold.

(a) The Moore complex of S has length 1.
(c) Themorphismsqn and y(n,k) ofTheorem4.1 are invertible for all 0 ≤ k < n (equivalently,

q1, y(n,0) and y(n,1) are invertible for all 0 < n).

(There is no condition (b) because we are working with the class of all spans.)
morphisms are the simplicial functors.

This category contains as a full subcategory the category of simplicial groupoids ofMoore
length 1; which is therefore equivalent to the category of internal categories in the category
of groupoids; and also to the category of crossed modules of groupoids, see [[4], Example
3.11].

Example 4.3 Let M be a symmetric monoidal category in which equalizers exist and are
preserved by taking the monoidal product with any object. Take C to be the category of
comonoids in M with the monoidal admissible class S in ([3], Example 2.3) of spans in C.
The equivalent categories of ([4], Example 3.12) are also equivalent to the category

Simp1MonS(C) whose
objects are simplicial bimonoids S in M such that
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(a) For all n > 0 and for ∂̂i := Sn
δ

S2n
δ1

S3n
1∂i1

SnSn−1Sn for 0 < i ≤ n,

I
u

Sn

∂̂n

∂̂n−1
...

∂̂1

1u1·δ

SnSn−1Sn (25)

is a joint equalizer inM (that is; the Moore complex of S has length 1, see Examples 2.2
and 2.5).

(b) ∂01·δ = ∂01·c·δ and ∂11·δ = ∂11·c·δ.
(c) The morphisms qn and y(n,k) of Theorem 4.1 are invertible for 0 ≤ k < n (equivalently,

q1, y(n,0) and y(n,1) are invertible for all 0 < n).

morphisms are the simplicial bimonoid morphisms.

As a simple consequence we obtain the following result in [8].

Proposition 4.4 Let M be a symmetric monoidal category in which equalizers exist and are
preserved by taking the monoidal product with any object. Take C to be the category of
comonoids in M with the monoidal admissible class S in ([3], Example 2.3) of spans in C.
The equivalent categories in ([4], Example 3.12) and in Example 4.3 have equivalent full
subcategories as follows.

• The full subcategory of CatMonS(C) for whose objects B i A
s

t
A�

B
A

d
both A

and B are cocommutative Hopf monoids in M.

• The full subcategory of XmodS(C) for whose objects (B, Y , BY
l

Y , Y
k

B ) both
Y and B are cocommutative Hopf monoids in M.

• The full subcategory of ReflGraphMonS(C) for whose objects B i A
s

t
the following

conditions hold.

– A and B are cocommutative Hopf monoids (with antipodes z)
– for the morphisms

−→s := A
δ

A2 1s
AB

1z
AB

1i
A2 m

A ,
←−
t := A

δ
A2 t1

BA
z1

BA
i1

A2 m
A

the following diagram commutes.

A2
−→s ←−

t

−→s ←−
t

A2 c
A2

m

A2
m A

(26)

• The full subcategory of Simp1MonS(C) for whose objects S the following conditions
hold.

– Sn is a cocommutative Hopf monoid in M for all n ≥ 0.
– The Moore complex of S has length 1; that is, (25) is a joint equalizer in M for all

n > 1.
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28 G. Böhm

Proof We need to show that the category listed last is a subcategory of the category in
Example 4.3. Condition (b) of Example 4.3 becomes trivial thanks to the cocommutativity
assumption. Concerning condition (c), the morphisms qn are invertible by ([4], Proposition
3.13) and the morphisms y(n,k) are invertible by Example 3.4. ��
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