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Abstract We extend the notion of the nerve of a category for a small class of crossed
simplicial groups, explicitly describing them using generators and relations. We do this by
first considering a generalised bar construction of a group before looking at twisted versions
of some of these nerves. As an application we show how we can use the twisted nerves to
give equivariant versions of certain derived stacks.
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1 Introduction

Simplicial constructions give us an expansive toolset to use in the theory of many mathemati-
cal topics (see [9] for anoverviewof the theory). There is a natural question—whatmeaningful
extensions of the simplex category are there? Examples of such extensions include Connes’
cyclic category � [4], Segal’s category � [15] and the category of finite rooted trees � [18].
Of interest to us in this article are the categories which have properties similar to the cyclic
category. The cyclic category has the same combinatorics as the simplex category, with the
addition of another generator τn which gives a cyclic action on [n]:
• τnδi = δi−1τi−1 for 1 ≤ i ≤ n,
• τnδ0 = δn ,
• τnσi = σi−1τn+1 for 1 ≤ i ≤ n,
• τnσ0 = σnτ 2n+1,
• τ n+1

n = 1n .
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546 S. Balchin

From these generators one can see that when we take a cyclic set, that is an element of the
presheaf category of�, we have a natural action of Cn + 1, the cyclic group of order n +1, on
Xn . Crossed simplicial groups, as introduced by Loday and Fiedorowicz [8] (and indepen-
dently by Krasauskas under the name of skew-simplicial sets [11]), allow us to consider what
other groups we can replace the cyclic groups by and still get a category with combinatorial
properties like the cyclic category.

Most constructions that can be done in the simplicial setting have an analogue in the
cyclic, and therefore also the crossed simplicial setting. In this paper, we give the explicit
construction of a crossed simplicial version of the nerve and bar constructions of a group G
for some special examples of crossed simplicial groups which arise through a classification
theorem. We then extend this idea further and define crossed simplicial group nerves of
categories.

One place that the classical nerve construction can be used is in the theory of derived
algebraic geometry. It allows us to take a functor valued in groupoids (i.e., a 1-stack) and lift
it to a functor valued in simplicial sets (i.e., an ∞-stack). If we were, for example, to replace
the nerve with the cyclic categorical nerve, then we instead get a functor valued in cyclic
sets (i.e., a “cyclic-∞-stack”). In the last section of this paper, we will pursue this line of
thinking, and investigate the equivariant derived stack of local systems.

2 Crossed Simplicial Group Objects

Crossed simplicial groups are a generalisation of the simplex category � to allow group
actions. They were mainly introduced as tools for use in functor homology [14], but have
recently seen other uses, such as in the theory of structured surfaces [7]. We will begin by
giving the basic definitions and properties of crossed simplicial groups before looking at
some examples.

Definition 2.1 A crossed simplicial group is a category �G equipped with an embedding
i : � ↪→ �G such that:

1. The functor i is bijective on objects.
2. Any morphism u : i[m] → i[n] in �G can be uniquely written as i(φ) ◦ g where

φ : [m] → [n] is a morphism in � and g is an automorphism of i[m] in �G. We call this
decomposition the canonical decomposition.

We will leave the usage of the functor i implicit, and just refer to objects of �G as [n]
for n ≥ 0. To every crossed simplicial group �G we can assign a sequence of groups
Gn = Aut�G([n]).
Example 2.2 Any simplicial group is an example of a crossed simplicial group, with trivial
actions of Gm on Hom�([m], [n]).
Example 2.3 The most well documented example of a crossed simplicial group is Connes’
cyclic category, which is used in the theory of non-commutative geometry (see [3,5]), and
the theory of cyclic homology (see [14]). Let Gn = Cn+1 with generator τn such that
(τn)n + 1 = idn . Then �G = �. To remain consistent with the notation we will be using
throughout, we will now denote this category �C.

Definition 2.4 There is a crossed simplicial group �W called the Weyl crossed simplicial
group where Gn = Wn+1 = C2 � Sn+1, the Weyl group of the Bn root system. The groups
Wn+1 are sometimes referred to as the hyperoctahedral groups (see [1]).
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Crossed Simplicial Group Categorical Nerves 547

Proposition 2.5 ([7, Theorem 1.7]) Let �G be a crossed simplicial group.

1. There is a canonical functor π : �G → �W.
2. For every n ≥ 0, there is an induced short exact sequence of groups

1 → G′
n → Gn → G′′

n → 1

where G′
n is the kernel and G′′

n is the image of the homomorphism πn : Gn → Wn+1.
3. The above short exact sequence assembles to a sequence of functors

�G′
n → �Gn → �G′′

n

where �G′
n is a simplicial group and �G′′

n ⊂ �W is a crossed simplicial subgroup of
�W.

As a consequence of Proposition 2.5, we see that the classification of crossed simplicial
groups reduces to the classification of crossed simplicial subgroups of �W. The following
corollary gives these subgroups, where we take the opportunity to fix the generators for all
groups that we will be interested in.

Corollary 2.6 Any crossed simplicial group �G splits as a sequence of functors

�G′
n → �Gn → �G′′

n

such that �G′ is a simplicial group and �G′′ is one of the following seven crossed simplicial
groups:

• �—The trivial crossed simplicial group.
• �C—The cyclic crossed simplicial group.

Cn = Cn+1 = 〈τn | τ n+1
n = 1〉

• �S—The symmetric crossed simplicial group.

Sn = Sn+1 = 〈σ1, . . . , σn | σ 2
i = 1, σiσ j = σ jσi if j �= i ± 1, (σiσi+1)

3 = 1〉
• �R—The reflexive crossed simplicial group.

Rn = C2 = 〈ω | ω2 = 1〉
• �D - The dihedral crossed simplicial group.

Dn = Dn+1 = 〈τn, ω | τ n+1
n = ω2 = (τnω)2 = 1〉

• �T—The reflexosymmetric crossed simplicial group.

Tn = Tn+1 = C2 � Sn+1

= 〈ω, σ1, . . . , σn | σ 2
i = ω2 = (σiσi+1)

3 = 1, ωσi = σiω, σiσ j = σ jσi 〉
• �W—The Weyl crossed simplicial group.

Wn = Wn+1 = C2 � Sn+1

= 〈σ1, . . . , σn, κ | σ 2
i = κ2 = (σiσi+1)

3 = (σ1κ)4 = (σiκ)2 = 1〉
Definition 2.7 We will call the above seven crossed simplicial groups the simple crossed
simplicial groups. Note that these crossed simplicial groups have the following inclusion
structure in their groups Gn :
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Wn+1

Tn+1

Dn+1 Sn+1

Rn+1 Cn+1

1

Example 2.8 An interesting example of a crossed simplicial group arising from the classifi-
cation theorem uses the braid groups.We denote by Bn the braid group on n braids. There is a
surjectionμ : Bn → Sn which has kernel Pn , the pure braid group. The family of braid groups
(Bn+1)n≥0 assembles to a crossed simplicial group �B which is given by the extension via
the classification theorem:

�P → �B → �S

where �P is the simplicial group of pure braids.

As with the simplex category �, our interest with crossed simplicial groups lies in the
properties of their presheaf categories.

Definition 2.9 Let �G be a crossed simplicial group, C a category. A �G-object in C is
defined to be a functor:

X : (�G)op → C .

We shall denote such a functor as X• with Xn being the image of [n]. If λ : [m] → [n] is a
morphism in �G we shall write λ∗ : Xn → Xm for the associated morphism in X (λ). We
shall denote the category of all such objects as �G-C .

For computational reasons it is more convenient to consider a �G-object as a simplicial
object with some extra structure.

Proposition 2.10 ([8, Lemma 4.2])A �G-object in a categoryC is equivalent to a simplicial
object X• in C with the following additional structure:

• Left group actions Gn × Xn → Xn.
• Face relations di (gx) = di (g)(dg−1(i)x).
• Degeneracy relations si (gx) = si (g)(sg−1(i)x).

In particular a �G-map f• : X• → Y• is the same thing as a simplicial map such that
each of the fn : Xn → Yn is Gn-equivariant.

As a consequence of Proposition 2.10, we can give concrete combinatorial definitions of
crossed simplicial group objects. We will denote the standard face and degeneracy maps of
simplicial objects:

di : [n] → [n − 1],
si : [n] → [n + 1],

subject to the usual relations.
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Example 2.11 For objects over the dihedral category�D, we have a simplicial objects along
with the following additional generators:

ωn, τn : [n] → [n]
subject to the following relations:

ω2
n = τ n+1

n = id : [n] → [n],
(τnωn)2 = id : [n] → [n],

diτn = τn−1di−1 : [n] → [n − 1], siτn = τn+1si−1 : [n] → [n + 1] for 1 ≤ i ≤ n,

diωn = ωn−1dn−i : [n] → [n − 1], siωn = ωn+1sn−i : [n] → [n + 1] for 1 ≤ i ≤ n,

d0τn = dn : [n] → [n − 1], s0τn = τ 2n+1sn : [n] → [n + 1] for n ≥ 1.

3 �G-Bar Constructions of Groups

Recall that for G a group we can construct the bar construction of G which is the simplicial
object B(G)which in dimension n is equal toGn+1, where the facemaps act bymultiplication
and the degeneracy maps act by insertion of the identity element (see [17]). We can extend
this idea to simple crossed simplicial groups, this was done in the cyclic case by Loday [14,
Sect. 7.3.10].

Definition 3.1 (Cyclic bar construction) Let G be a group and let B(G) be the bar con-

struction of G. We define the cyclic bar construction B(G)
C
with the action of the cyclic

generator τn on Bn(G) being:

τn(g0, . . . , gn) = (gn, g0, . . . , gn−1).

This construction is also known in the literature as the cyclic nerve construction.

Lemma 3.2 B(G)
C

is a cyclic group.

Proof All that needs to be checked is that τ n+1
n = id. This follows as the action of τn can be

represented as the cycle (012 · · · n) ∈ Sn+1 which has order n + 1. ��
Bar constructions have been considered for all crossed simplicial groups with an appli-

cation of homology theory. The definitions that we will give for the bar constructions differ
from those which can be found in the literature as the construction presented here is used to
generalise the nerve of the category.

Definition 3.3 (�G-bar construction) Let G be a group:

1. Symmetric—We define B(G)
S

to be B(G) along with the action of the symmetric gen-
erators σi

σi (g0, . . . , gi−1, gi , . . . , gn) = (g0, . . . , gi , gi−1, . . . , gn).

2. Reflexive—We define B(G)
R
to be B(G) along with the action of the reflexive generator

ω

ω(g0, . . . , gn) = (g−1
n , . . . , g−1

0 ).
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3. Dihedral—We define B(G)
D
to be B(G) along with the action of the reflexive generator

ω and the operation of the cyclic generator τ as above.

4. Reflexosymmetric—We define B(G)
T
to be B(G) along with the action of the reflexive

generator ω and the symmetric generators σi as above.

5. Weyl—We define B(G)
W

to be B(G) along with the action of the symmetric generators
σi as above. Additionally we have the generator κ which acts via

κ(g0, . . . , gn) = (g−1
0 , g1, . . . , gn).

Proposition 3.4 Let �G be a simple crossed simplicial group. Then for a group G, we have

the �G-bar construction B(G)
G

, as in Definition 3.3, is a �G-group.

Proof This can be proved case by case, showing that the generators abide to the combina-
torics. We will show that the generators above satisfy the group axioms. It can be checked
that these generators respect the face and degeneracy map operations.

1. Symmetric—〈σ1, . . . , σn | σ 2
i = 1, σiσ j = σ jσi if j �= i ± 1, (σiσi+1)

3 = 1〉.
The first two relations are trivial, so we will only show the last one.

(σiσi+1)
3(g0, . . . , gi−1, gi , gi+1, . . . , gn) = (σiσi+1)

2(g0, . . . , gi+1, gi−1, gi , . . . , gn)

= (σiσi+1)(g0, . . . , gi , gi+1, gi−1, . . . , gn)

= (g0, . . . , gi−1, gi , gi+1, . . . , gn)

2. Reflexive—〈ω | ω2 = 1〉.
This case is obvious as we have (g−1

i )−1 = gi .
3. Dihedral—〈τn, ω | τ n+1

n = ω2 = (τnω)2 = 1〉.
We have already shown the validity of the cyclic and reflexive operator, therefore we
need only show the final relation:

τnωτnω(g0, . . . , gn) = τnωτn(gn, . . . , g0)

= τnω(g0, gn, . . . , g1)

= τn(g1, . . . , gn, g0)

= (g0, . . . , gn)

4. Reflexosymmetric—〈ω, σ1, . . . , σn | σ 2
i = ω2 = (σiσi+1)

3 = 1, ωσi = σiω, σiσ j =
σ jσi 〉.
This follows from the symmetric and reflexive case.

5. Weyl—〈σ1, . . . , σn, κ | σ 2
i = κ2 = (σiσi+1)

3 = (σ1κ)4 = (σiκ)2 = 1〉.
Here the only trivial relation is (σ1κ)4 = id:

(σ1κ)4(g0, g1, . . . , gn) = (σ1κ)3(g1, g−1
0 , . . . , gn)

= (σ1κ)2(g−1
0 , g−1

1 , . . . , gn)

= (σ1κ)(g−1
1 , g0, . . . , gn)

= (g0, g1, . . . , gn) ��

4 �G-Nerves of Categories

We can extend the idea of the bar construction further than just groups. In fact we can
construct a nerve on a category C and endow it with a �G-structure provided that C has
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certain properties. This is formalised in the work of Dykerhoff and Kapranov [7] where
they give a categorical definition of the �G-categorical nerves. In the case of the cyclic and
dihedral category, this construction has been explicitly constructed by Connes and Loday
respectively. We will extend this construction to the remaining simple crossed simplicial
groups, in particular giving constructions for the symmetric and Weyl nerve of C , which
give us the relevant generators for the remaining case of the reflexosymmetric category. The
way we will do this is by considering a crossed simplicial group nerve of a category to be
an (n + 1)-tuple of composable morphisms (a0, . . . , an), and then using the generators from
the bar constructions in the previous sections. In this case we must take special care that the
sources and targets of the morphisms still match up. Note that this construction differs from
the classical nerve construction which is defined to be an n-tuple of composable morphisms
in dimension n, this scenario will be covered by the twisted nerve constructions of Sect. 5.

Definition 4.1 (Cyclic nerve) Let C be a category, its cyclic nerve NCC is defined to be the
simplicial object such that in degree n we have the (n + 1) maps in a diagram of the form:

x0
a0

x1
a1 · · · an−1

xn
an

x0

with the cyclic operator τn being the cyclic rotation of the diagram:

τn

(
x0

a0
x1

a1 · · · an−1
xn

an
x0

)

= xn
an

x0
a0 · · · an−2

xn−1
an−1

xn

This construction works in all generality because the sources and targets of the morphisms
always match up. However, for the reflexive case we will need to be able to reverse the
direction of all of the morphisms, so we will require the category to have some further
properties. This property is encoded in the notion of a dagger category [12].

Definition 4.2 A dagger category is a category C equipped with an involutive functor
† : C op → C that is the identity on objects. That is, to every morphism f : A → B in
C , we associate to it f † : B → A such that for all f : A → B and g : B → C

• idA = id†A : A → A.
• (g ◦ f )† = f † ◦ g† : C → A.
• f †† = f : A → B.

Note, that in particular, a groupoid has a dagger structure, with f † = f −1.

Definition 4.3 (Dihedral Nerve) Let C be a dagger category, its dihedral nerve NCD is
defined to be the simplicial object such that in degree n we have the (n + 1) maps in a
diagram of the form:

x0
a0

x1
a1 · · · an−1

xn
an

x0
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with the reflexive operator ω being begin defined as follows:

ω

(
x0

a0
x1

a1 · · · an−1
xn

an
x0

)

= x0
a†n

xn
a†n−1 · · · a†1

x1
a†0

x0

and the cyclic operators τn as before.

If we wish to consider the symmetric nerve then we face further limitations. We would
like for the symmetric operator σi to swap the morphisms ai and ai−1, while also sending
ai → a†

i and ai−1 → a†
i−1 to match the fact that S2 ∼= Z/2Z. In particular this forces

target(ai−2) = target(ai ). This condition therefore requires all of the objects appearing in
the diagrams to be identical.

Definition 4.4 (Symmetric nerve) Let C be a dagger category, its symmetric nerve NCS

is defined to be the simplicial object such that in degree n we have the (n + 1) maps in a
diagram of the form:

x
a0

x
a1 · · · an−1

x
an

x

The symmetric operator σi acts on the diagram as follows:

σi

(
x

a0
x

a1 · · · ai−2
x

ai−1
x

ai
x

ai+1 · · · an−1
x

an
x

)

= x
a0

x
a1 · · · ai−2

x
a†i

x
a†i−1

x
ai+1 · · · an−1

x
an

x

Definition 4.5 (Weyl nerve) Let C be a dagger category, its Weyl nerve NCW is defined to
be the simplicial object such that in degree n we have the (n + 1) maps in a diagram of the
form:

x
a0

x
a1 · · · an−1

x
an

x

with the symmetric operators σi as above, and the operator κ acts on the diagram as follows:

κ
(

x
a0

x
a1 · · · an−1

x
an

x
)

= x
a†0

x
a1 · · · an−1

x
an

x

Proposition 4.6 The cyclic (resp., dihedral, symmetric, Weyl) nerve is a cyclic (resp., dihe-
dral, symmetric, Weyl) set.

Proof We can apply the proof of Theorem 3.4, which has identical generators. The only extra
data that needs to be proved is the matching of sources and targets of maps, which has been
taken care of in the construction. ��
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5 Twisted Cyclic and Dihedral Categorical Nerves

We now consider a twisted cyclic and dihedral version of the bar construction. In this case we
will take only n copies of G in dimension n, which is the same as in the case of the classical
nerve construction of a category NC . We will again begin by considering how to do such a
construction on a group G, this was done in the cyclic case by Loday [14, Sect. 7.3.3].

Definition 5.1 (Twisted cyclic nerve) Let G be a group and z ∈ G a central element. We
construct the z-twisted cyclic nerve of G, denoted by B(G, z,�C) by first constructing the
nerve BG and defining the action of the cyclic generator τn on BnG by:

τn(g1, . . . , gn) = (
z(g1g2 · · · gn)−1, g1, . . . , gn−1

)

Lemma 5.2 B(G, z,�C) is a cyclic group. In particular if z = 1 we get a canonical cyclic
structure on BG.

Proof To show that this defines a cyclic structure we must show that τ n+1
n = id . Observe

that

τ n+1
n (g1, . . . , gn) = (

zg1z−1, . . . , zgnz−1)

This is the identity because we have chosen z to be a central element. ��
Below we give a twisted nerve construction which works for the dihedral category.

Definition 5.3 (Twisted dihedral nerve) Let G be a group and z ∈ G a central element of
order two. We construct the z-twisted dihedral nerve of G, denoted by B(G, z,�D) by first
constructing the nerve BG and defining the action of the cyclic generator τn on BnG by:

τn(g1, . . . , gn) = (
z(g1g2 · · · gn)−1, g1, . . . , gn−1

)

and the action of the reflexive generator ω to be:

ω(g1, . . . , gn) =
(

zg−1
n , . . . , zg−1

1

)

Proposition 5.4 For a group G, and a central element of order two z ∈ G, the z-twisted
dihedral nerve is an example of a dihedral set.

Proof The z-twisted cyclic nerve already gives us a partial proof with the generator τn .
Therefore we need only show that the generator ω follows the group laws.

ω2(g1, . . . , gn) = (
zg1z−1, . . . , zgnz−1) = id by centrality of z.

(τnω)2 = (
z2g1, g2, . . . , gn

) = id by the fact z has order 2. ��
As we did in the previous section, it would be nice to extend this to a categorical nerve

setting. If we do not twist by any elements, it is possible to construct the cyclic and dihedral
twisted categorical nerves whenever the category can be endowed with a dagger structure
with the additional property:

(∗) : f † f ∼= idA.

That is, f † acts up to isomorphism like an inverse. This can be worded as we require all
morphisms in C to be unitary. An example of such a category would be any groupoid.
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Definition 5.5 (Twisted cyclic categorical nerve) Let C be a dagger category along with

property (∗). Its twisted cyclic nerve ˜NCC is defined to be the simplicial object such that in
degree n we have the n maps in a diagram of the form:

x0
a1

x1
a1 · · · an

xn

with the cyclic operator τn being defined as follows:

xn
(a1···an)†

x0
a1 · · · an−1

xn−1

We can define in an analogous way the twisted dihedral nerve, ˜NCD, of a category with
the same properties by adding in the reflexive action of ω.

Theorem 5.6 Let C be a dagger category with property (∗), then its twisted cyclic (resp.,
dihedral) nerve is a cyclic (resp., dihedral) set.

Proof Weneed only prove that the cyclic generator has the required properties as the reflexive
generator is identical to the non-twisted case. We begin by noting that:

τ 2n

(
x0

a1
x1

a1 · · · an
xn

)

= xn−1

(
(a1···an)†a1···an−1

)†
xn

(a1···an)†

x0 · · · an−2
xn−2

We see that
(
(a1 · · · an)†a1 · · · an−1

)† = (a†
n · · · a†

1a1 · · · an−1)
†

and by property (∗), this becomes (a†
n)† = an . For this map to get back to its original position

it must be shifted n −1 times, for a total of n −1+2 = n +1 applications of τn . Generalising
this ideal to the other maps, it is clear that τ n+1

n = id as required. ��

Corollary 5.7 Let C be a dagger category with property (∗), then its categorical nerve NC
has a natural cyclic and dihedral structure. In particular, the nerve of a groupoid has a
natural cyclic and dihedral structure.

6 Equivariant Derived Moduli

We now arrive at the second portion of this paper, which deals with applying the categorical
nerves that we have developed to the theory of derived algebraic geometry. Due to Corol-
lary 5.7, and the conditions required on the categories for the symmetric (resp., Weyl) nerve,
we will only consider the cyclic and dihedral nerves in this section as they will work in full
generality. We will not discuss the full technicalities of (derived)-stacks, but instead direct
the interested reader to [19] for a readable overview, or [21,22] for the formal theory.

Definition 6.1 A stack is a (lax 2-)functor Affop
τ → Grpd from the opposite (2-)category

of affine schemes to the (2-)category of groupoids satisfying descent with respect to the
Grothendieck topology τ (see [13]). We will denote the category of stacks as Stk(Aff).
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Stacks were introduced as solutions to certain moduli problems. However, as soon as you
want to classify things up to some weaker notion of equivalence, they are not sufficient. As
early as the work of Grothendieck (see [10]), it was realised that one needs to extend the target
category to something “smooth”. With the homotopification program, the correct category
was found, namely sSet.

Definition 6.2 Ahigher stack is a functorAffop
τ → sSet satisfying hyperdescentwith respect

to τ . The category of higher stacks will be denoted Stk(Aff).

Given a stackX ∈ Stk(Aff) it is possible to construct a higher stack NX ∈ Stk(Aff) by
taking the nerve of each groupoidX (A), A ∈ Aff. Furthermore, one can “smooth” the source
category Affop to dAffop := sComm the (homotopy-)category of derived affine schemes,
where sComm is the category of simplicial commutative rings.

Definition 6.3 A derived stack is a functor dAffop
τ → sSet satisfying hyperdescent with

respect to τ . The category of derived stacks will be denoted Stk(dAff).

Given a higher stack X ∈ Stk(Aff), there is an inclusion object j (X ) ∈ Stk(dAff),
(after taking a suitable fibrant replacement), induced by the inclusion j0 : Aff → dAff. In
particular, combining the above ideas, given any stack X , we can construct a derived stack
j (NX ). These ideas can be summed up using the following diagrams:

Affop Stacks

Higher Stacksj0

Grpd

N

Stk(Aff)

N
j◦N

dAffop
Derived Stacks

sSet Stk(Aff)
j

Stk(dAff)

Our intended application is now immediate, for a simple crossed simplicial group �G,
we wish to construct examples of �G-derived stacks:

Definition 6.4 A �G-derived stack is a functor dAffop
τ → �G-Set satisfying equivariant

hyperdescent with respect to τ (which can be made exact using Quillen model structures
as done in [2]). The category of �G-derived stacks will be denoted StkG(dAff). A similar
definition holds for the notion of a �G-higher stack.

A whole range of example of �G-derived stacks can be obtained by just using the nerve
constructions. Take a stackX , and instead of taking the nerve, take the�G-nerve (or twisted
nerve where appropriate) to get a �G-higher stack. We can then take a fibrant replacement
for the inclusion into the category of �G-derived stacks. We will again denote this inclusion
functor j .

For the remainder of the paper we will only consider the twisted cyclic (resp., dihedral
nerve), the reason being is that it renders the following diagram commutative:

Grpd
N

ÑC

sSet

�C-Set

i∗
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where i∗ forgets the cyclic action. Therefore by using the twisted nerve it will be easier
to compare the objects that we get with the non-equivariant case. Of course it would be of
interest to consider what happens in the non-twisted nerves also. This construction allows us
to extend the above diagram to the following (in the case of the cyclic twisted nerve):

Affop Stacks

Higher Stacksj0

Grpd

N

˜NC

Stk(Aff)

ÑC

j◦˜NC

dAffop

Derived Stacks

�C-Derived Stacks

sSet

StkC(Aff)
j

StkC(dAff)

�C-Set

i∗

We now use the ideas above to construct the moduli of equivariant derived local systems
on spaces with S1-action. To do this, we first need to introduce the derived stack of local
systems.

Definition 6.5 Let G be an algebraic group defined over a field k. The classifying stack BG
assigns to a scheme U the groupoid whose objects are principal G-bundles π : E → U , and
the morphisms being isomorphisms of principal G-bundles. We will simplify notation and
write BG for j (NBG), the corresponding derived stack.

Definition 6.6 Let BG be the derived classifying stack of an algebraic group and X a
topological space. The derived stack of G-local systems on X is the stack

RLoc(X, G) : dAffop → sSet

U �→ Map(X, |BG(U )|)
That is, RLoc(X, G)(U ) is the simplicial set of continuous maps from the space X to the
simplicial set BG(U ).

To be able to discuss the cyclic version of this stack, we need the correct analogue of
the realisation functor. We will denote by TopS1 the category of topological spaces with an
S1-action.

Proposition 6.7 ([6, Proposition 2.8]) There exists a cyclic realisation functor
| − |C : �C-Set → TopS1 such that the following diagram commutes up to a natural isomor-
phism:

TopS1

u

�C-Set

|−|C

|i∗−| Top
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where u is the forgetful functor which forgets the circle action, and |i∗ − | is the realisation
of the underlying simplicial set.

Definition 6.8 Let BGC := j ( ˜NBGC) be the cyclic derived classifying stack of an alge-
braic group and X a topological space with an action of S1. The S1-equivariant derived stack
of local systems is the stack

RLocC(X, G) : dAffop → �C-Set

U �→ MapS1(X, |BGC(U )|C)

That is, RLocC(X, G)(U ) is the cyclic set of continuous maps in TopS1 from the space X
to the space |BGC(U )|C.
Remark 6.9 We can adjust the above theory for the twisted dihedral nerve by using the fact
that there is a pair of adjoint functors | − |D : �D-Set � TopO(2) : SD(−) between the
categories of dihedral sets and topological spaces with O(2)-action.

The following theorem explains our choice of terminology, the fact the above construction
really is doing something equivariant.

Theorem 6.10 Let X ∈ TopS1 be a topological space with an action of S1. Denote by X/S1

the orbit space of X, i.e., the space obtained by identifying points of X in the same orbit.
Then

RLocC(X, G) � RLoc(X/S1, G).

Proof We can prove this by looking at each element MapS1(X, |BGC(U )|C). First of all we
use a result from Loday [14, Sect. 7.3.5] which states that the cyclic realisation of the twisted
nerve construction of a group G has trivial S1-action when twisting by the identity element.
As every groupoid is equivalent to the disjoint union of groups, we can conclude that the
action of S1 on |BGC(U )|C is also trivial. Due to the action being trivial, a general result
about S1-spaces, such as in [16, §1.1], allows us to move from mapping spaces in TopS1 to
Top in the following manner:

MapS1(X, |BGC(U )|C) � Map(X/S1, |BG(U )|).
The result then follows from this observation. ��
Corollary 6.11 If X ∈ TopS1 has trivial S1-action then

RLocC(X, G) � RLoc(X, G).

Example 6.12 To conclude, we compute the S1-equivariant derived stack on an a non-trivial
example. Consider the S1-space S3

Hopf to be the 3-sphere along with the action of the Hopf

map (i.e., scalar multiplication). The orbit space S3
Hopf/S1 is homotopic to S2. Therefore by

Theorem 6.10 we get:

RLocC(S3
Hopf, G) � RLoc(S2, G) � [Spec Symk(g

∗[1])/G]
where the final equivalence is computed in the literature, for example, [20, p. 200].
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