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Abstract Based on the generalized Hamilton’s principle, the nonlinear governing equa-
tion of an axially functionally graded (AFG) pipe is established. The non-trivial equi-
librium configuration is superposed by the modal functions of a simply supported beam.
Via the direct multi-scale method, the response and stability boundary to the pulsating
fluid velocity are solved analytically and verified by the differential quadrature element
method (DQEM). The influence of Young’s modulus gradient on the parametric reso-
nance is investigated in the subcritical and supercritical regions. In general, the pipe in
the supercritical region is more sensitive to the pulsating excitation. The nonlinearity
changes from hard to soft, and the non-trivial equilibrium configuration introduces more
frequency components to the vibration. Besides, the increasing Young’s modulus gradi-
ent improves the critical pulsating flow velocity of the parametric resonance, and further
enhances the stability of the system. In addition, when the temperature increases along
the axial direction, reducing the gradient parameter can enhance the response asymme-
try. This work further complements the theoretical analysis of pipes conveying pulsating
fluid.
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1 Introduction

Pipes are widely used in aircraft and other engineering machinery[1–6]. Throughout their
service life, vibration always causes fatigue, oil leaking, and even catastrophic incidents. Rele-
vant research has shown that the pulsating velocity has an important effect on the vibration and
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stability of the pipe. Therefore, the research on the parametric resonance of pipes conveying
fluid caused by the pulsating velocity is now an important topic.

The vibration problem of pipes conveying fluid has been widely studied. Päıdoussis and
Issid[7] and Plaut and Huseyin[8] are pioneers. Matsuzaki and Fung[9] introduced geometric
nonlinearity into the governing equation. Panda and Kar[10] studied the nonlinear dynamics
of a simply supported pipe conveying pulsating fluid. Burak-Özhan and Pakdemirli[11] studied
the principal parametric resonance of viscoelastic pipes conveying fluid with cubic nonlinearity.
Zhu et al.[12] found that the steady-state response became asymmetric when an inclined simply
supported pipe was subjected to nonlinear forced and parametric excitation. Shaik et al.[13]

studied the parametric instability of high-pressure pipes conveying pulsating fluid, emphasizing
the influence of the average velocity. Wei et al.[14] found that the nonlinear support stiffness
affected the parametric vibration amplitude. Guo et al.[15] proposed a modified transfer matrix
model to analyze the vibration of a pipe under base excitation and pulsating excitation. Wang
et al.[16] observed abundant dynamic behaviors for cantilevered pipes conveying pulsating fluid.
Guo et al.[17] and Zhu et al.[18] found that the dynamic behaviors of pipes in subcritical and
supercritical regions were different. The dynamic behaviors such as periodic, period-doubling,
and chaotic motions would appear in the supercritical region[19–25]. Therefore, it is necessary
to study the parametric resonance of pipes in subcritical and supercritical regions.

Compared with homogeneous materials, functionally graded materials (FGMs) are more re-
sistant to environmental gradients, such as temperature and humidity. Therefore, FGMs have
been increasingly utilized in engineering structures[26–28]. Extensive research has been con-
ducted on the nonlinear vibration characteristics of FGM pipes when the material parameters
change along the radial direction[29–31]. Jin et al.[32] studied the nonlinear response of FGM
nanotubes under combined forced and parametric excitation. Ding et al.[33] investigated the
nonlinear buckled and primary resonance of FGM pipes. However, the pipe conveying fluid near
an aero-engine or rocket engine is always subjected to temperature[34–36], which makes Young’s
modulus of the pipe change along the axial gradient. Such pipes are called axial functionally
graded (AFG) pipes, which are more complicated than homogeneous pipes. The study on AFG
pipe dynamics is a challenging topic.

The nonlinear vibration of AFG pipes has been widely studied. An and Su[37] established
a model for an AFG pipe, and analyzed the vibration and stability of the pipe. Lu et al.[38]

analyzed the internal resonance and fatigue properties of an AFG pipe under parametric exci-
tation so as to improve the fatigue life. Guo et al.[39] proposed an effective method to analyze
the random natural frequency of AFG pipes. Tuo et al.[40] found that the increase in Young’s
modulus ratio could reduce the natural frequency of AFG pipes. Fan et al.[41] investigated the
influence of fluid velocity, volume fraction, and fluid density on the resonance reliability of AFG
pipes. Aghazadeh[42–43] proposed a new stability and dynamic analysis model of AFG pipes,
and found that the dynamic response of AFG pipes could be adjusted by selecting appropriate
parameters. Fu et al.[44] studied the nonlinear dynamics of an AFG pipe conveying pulsating
fluid, and found that the material properties caused the pipe to undergo chaotic, periodic,
and quasi-periodic motion transitions. However, most of the afore-mentioned research focuses
on the subcritical region, and lacks quantitative analyses on the parametric vibration of AFG
pipes. Therefore, it is of academic value to supplement a parametric vibration analysis on AFG
pipes in the supercritical region.

In this paper, based on the AFG pipe model with simply supported boundaries, the influence
of pulsating fluid in the pipe is considered. Based on the generalized Hamilton’s principle,
the parametric vibration governing equation of the AFG pipe in the supercritical region is
established. The solvability condition for the parametric vibration of the AFG pipe is presented,
the stability is analyzed, and the amplitude-frequency responses are achieved. The correctness
of the approximate analytical results is verified by the differential quadrature element method
(DQEM). The effects of pulsating velocity and Young’s modulus gradient on the parametric
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vibration of the AFG pipe are discussed, and the response asymmetry is analyzed. Finally, the
response characteristics before and after buckling are compared, and the influence of Young’s
modulus gradient on the parametric resonance is obtained. The development of the pipe is
further complemented.

2 Mathematical model

The diagram in Fig. 1 illustrates a physical model of an AFG pipe conveying fluid, which is
supported at both ends. The axial and radial coordinates are denoted by x and y, respectively.
The lateral displacement of the pipe is represented by v(x, t), while the longitudinal displace-
ment is denoted as u(x, t). The length of the pipe is denoted as L. D and d refer to the outer
and inner diameters of the pipe, respectively. Ip represents the moment of inertia for its cross
section. P0 denotes the initial axial force acting on the pipe.

y
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x u(x, t)

E(x)

v(x, t)

Γ(t)

D

d

Fig. 1 Model of the AFG pipe conveying fluid (color online)

E(x) and ρp(x) represent Young’s modulus and the density of the pipe changing along the
axial direction, respectively[38,45], and

E(x) = E0

(
1 +

x

L
(αE − 1)

)
, ρp(x) = ρ0

(
1 +

x

L
(αρ − 1)

)
, (1)

where αE and αρ are the gradient parameters of Young’s modulus and the density, respectively.
Considering the effect of unsteady flow, the density of the fluid is ρf . Suppose that the velocity
of the fluid in the pipe pulsates periodically near the average velocity as

Γ = Γ0 + Γ1 sin(Ωpt), (2)

where Γ0 is the average velocity, Γ1 is the pulsating amplitude, and Ωp is the pulsating frequency,
E0 is Young’s modulus, and ρ0 is the pipe density. The change of flow velocity will cause
parametric vibration, but the longitudinal displacement is small enough to be ignored. Based
on the Euler-Bernoulli beam theory and the generalized Hamilton’s principle, the transverse
vibration model of the subcritical AFG pipe conveying pulsating fluid is established[46]. The
governing equation is

(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
v,tt + 2ρfAf(Γ0 + Γ1 sin(Ωpt))v,xt + (ρfAfΓ2

0 − P0)v,xx

+ ρfAf(Γ2
1 sin2(Ωpt) + 2Γ0Γ1 sin(Ωpt))v,xx + ρfAfΓ1Ωp cos(Ωpt)v,x +

2E0Ip(αE − 1)
L

v,xxx

+ E0Ip

(
1 +

x

L
(αE − 1)

)
v,xxxx − E0Ap(αE − 1)

2L ln(αE)
v,xx

∫ L

0

v2
,xdx +

2µIp(αE − 1)
L

v,xxxt

+ µIp

(
1 +

x

L
(αE − 1)

)
v,xxxxt − µAp(αE − 1)

2L ln(βµ)

(
v,xxt

∫ L

0

v2
,xdx + 2v,xx

∫ L

0

v,xv,xtdx
)

= 0, (3)

where the comma preceding x or t denotes partial differentiation with respect to x or t. The
simply supported boundary conditions are

v(0, t) = 0, v(L, t) = 0, v,xx(0, t) = 0, v,xx(L, t) = 0. (4)
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Based on the previous research, the non-trivial equilibrium configuration is considered as
the fundamental basis for investigating the vibration characteristics of a supercritical AFG pipe
conveying fluid. By neglecting the terms involving time in Eq. (3), the static governing equation
and the corresponding boundary conditions are obtained as follows:

(ρfAfΓ2
0 − P0)v̂,xx +

2E0Ip(αE − 1)
L

v̂,xxx + E0Ip

(
1 +

x

L
(αE − 1)

)
v̂,xxxx

− E0Ap(αE − 1)
2L ln(αE)

v̂,xx

∫ L

0

v̂2
,xdx = 0, (5)

v̂(0) = 0, v̂(L) = 0, v̂,xx(0) = 0, v̂,xx(L) = 0. (6)

According to Ref. [46], the approximate analytical solution to Eq. (5) can be obtained. There-
fore, the non-trivial static equilibrium configuration is

v̂(x) =
n∑

i=1

Bi sin
( iπx

L

)
, (7)

where B1, B2, · · · , Bn are the configuration coefficients. The AFG pipe vibrates around the
new equilibrium configuration in the supercritical region, and thus the transverse vibration is
divided into two parts. Make the following coordinate transformation:

v(x, t) → v(x, t) + v̂(x)+. (8)

Since the non-trivial equilibrium configuration is symmetrical across the x-axial, only the
positive non-trivial equilibrium configuration v̂(x)+ is considered. Substituting Eq. (8) into
Eq. (3) and combining Eq. (5) yield the governing equation of the supercritical AFG pipe con-
veying pulsating fluid as follows:

(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
v,tt + 2ρfAf(Γ0 + Γ1 sin(Ωpt))v,xt

+ (ρfAfΓ2
0 − P0)v,xx + ρfAf(Γ2

1 sin2(Ωpt) + 2Γ0Γ1 sin(Ωpt))(v,xx + v̂+
,xx)

+ ρfAfΓ1Ωp cos(Ωpt)(v,x + v̂+
,x) +

2E0Ip(αE − 1)
L

v,xxx + E0Ip

(
1 +

x

L
(αE − 1)

)
v,xxxx

− E0Ap(αE − 1)
2L ln(αE)

v,xx

∫ L

0

(v,x + v̂+
,x)2dx− E0Ap(αE − 1)

2L ln(αE)
v̂+

,xx

∫ L

0

(v2
,x + 2v,xv̂+

,x)dx

+
2µIp(βµ − 1)

L
v,xxxt + µIp

(
1 +

x

L
(βµ − 1)

)
v,xxxxt − µAp(βµ − 1)

2L ln(βµ)
v,xxt

∫ L

0

(v,x + v̂+
,x)2dx

− µAp(βµ − 1)
L ln(βµ)

(v,xx + v̂+
,xx)

∫ L

0

(v,x + v̂+
,x)v,xtdx = 0, (9)

where µ is the viscous damping coefficient.
Unless otherwise stated, the model parameters are selected as follows:




D = 0.02m, d = 0.018m, E0 = 176.36GPa, P0 = 20 N, µ = 2× 106 N · s ·m−2,

ρ0 = 7 209.09 kg ·m−3, ρf = 872 kg ·m−3, L = 1 m, αE = αρ = βµ = 1.2.

According to Ref. [46] and the above-mentioned parameters, under different Young’s modulus
gradients, the relationship between the natural frequency and the average flow velocity of the
pipe before and after buckling is shown in Table 1, in which Γ0-cr is the critical flow velocity,
and Γ0-sub and Γ0-sup are the subcritical and supercritical flow velocities, respectively.
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Table 1 Comparison of values before and after buckling (Γ0-sup = 1.1Γ0-cr)

αE Γ0-sub/(m·s−1) Γ0-cr/(m·s−1) Γ0-sup/(m·s−1) ω1/(rad·s−1)

0.4 93.69 120.12 132.13 131.00
0.6 100.76 129.82 142.80 142.38
0.8 107.20 138.27 152.10 151.79
1 113.07 145.87 160.46 160.20

1.2 118.47 152.85 168.14 167.95
1.4 123.50 159.35 175.29 175.20
1.6 128.27 165.46 182.01 181.97

3 Method introduction

3.1 Direct multi-scale method
The multi-scale method is a classical method for analyzing nonlinear vibration, which is

applicable to periodic or dissipative motions of discrete or continuous systems. Considering the
cubic nonlinearity in the equation, the following time scales are introduced:

T0 = t, T1 = εt, T2 = ε2t, (10)

where ε represents a negligible value. T0 represents the fast time scale of the linear system
excluding viscoelastic damping and external excitation, T1 denotes a slower time scale, and T2

denotes an even slower time scale. Assume the solution to Eq. (9) as follows:

v(x, t) = v0(x, T0, T1, T2) + εv1(x, T0, T1, T2) + ε2v2(x, T0, T1, T2). (11)

To make the damping and external excitation appear in the same equation with the highest
order nonlinear terms, the relevant parameters are rescaled as follows:

v(x, t) = εv(x, t), µ = ε2µ, Γ1 = ε2Γ1. (12)

Some time scale differential operators can be defined by




d
dt

= D0 + εD1 + ε2D2 + · · · ,

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + · · · ,

Dk =
∂(·)
∂Tk

.

(13)

Substituting Eqs. (10)–(13) into Eq. (9), neglecting higher order small quantities over the
third order, and then separating the homogeneous power terms yield the T0 scale equation

(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
D2

0v0 + 2ρfAfΓ0D0v0,x

+ (ρfAfΓ2
0 − P0)v0,xx +

2E0Ip(αE − 1)
L

v0,xxx + E0Ip

(
1 +

x

L
(αE − 1)

)
v0,xxxx

− E0Ap(αE − 1)
2L ln(αE)

v0,xx

∫ L

0

(v̂+
,x)2dx− E0Ap(αE − 1)

L ln(αE)
v̂+

,xx

∫ L

0

v0,xv̂+
,xdx = 0 (14)

with the boundary conditions

v0(0) = 0, v0(L) = 0, v0,xx(0) = 0, v0,xx(L) = 0, (15)
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the T1 scale equation
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
D2

0v1 + 2
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
D0D1v0

+ 2ρfAfΓ0(D0v1,x + D1v0,x) + (ρfAfΓ2
0 − P0)v1,xx +

2E0Ip(αE − 1)
L

v1,xxx

+ E0Ip

(
1 +

x

L
(αE − 1)

)
v1,xxxx + 2ρfAfΓ0Γ1 sin(ΩpT0)v̂+

,xx

+ ρfAfΓ1Ωp cos(ΩpT0)v̂+
,x −

E0Ap(αE − 1)
L ln(αE)

v0,xx

∫ L

0

v̂+
,xv0,xdx

− E0Ap(αE − 1)
2L ln(αE)

v1,xx

∫ L

0

(v̂+
,x)2dx− E0Ap(αE − 1)

2L ln(αE)
v̂+

,xx

∫ L

0

(v2
0,x + 2v̂+

,xv1,x)dx = 0 (16)

with the boundary conditions

v1(0) = v1(L) = 0, v1,xx(0) = v1,xx(L) = 0, (17)

and the T2 scale equation

2
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
(D0D1v1 + D0D2v0) + 2ρfAfΓ1 sin(ΩpT0)D0v0,x

+
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
(D2

0v2 + D2
1v0) + (ρfAfΓ2

0 − P0)v2,xx

+ 2ρfAfΓ0(D0v2,x + D1v1,x + D2v0,x) + 2ρfAfΓ0Γ1 sin(ΩpT0)v0,xx

+ ρfAfΓ1Ωp cos(ΩpT0)v0,x +
2E0Ip(αE − 1)

L
v2,xxx + E0Ip

(
1 +

x

L
(αE − 1)

)
v2,xxxx

+
2µIp(βµ − 1)

L
D0v0,xxx + µIp

(
1 +

x

L
(βµ − 1)

)
D0v0,xxxx − µAp(βµ − 1)

2L ln(αE)
D0v0,xx

∫ L

0

(v̂+
,x)2dx

− µAp(βµ − 1)
L ln(αE)

v̂+
,xx

∫ L

0

v̂+
,xD0v0,xdx− E0Ap(αE − 1)

2L ln(αE)
v2,xx

∫ L

0

(v̂+
,x)2dx

− E0Ap(αE − 1)
L ln(αE)

v1,xx

∫ L

0

v̂+
,xv0,xdx− E0Ap(αE − 1)

2L ln(αE)
v0,xx

∫ L

0

(v2
0,x + 2v̂+

,xv1,x)dx

− E0Ap(αE − 1)
L ln(αE)

v̂+
,xx

∫ L

0

(v̂+
,xv2,x + v0,xv1,x)dx = 0 (18)

with the boundary conditions

v2(0) = v2(L) = 0, v2,xx(0) = v2,xx(L) = 0. (19)

After rescaling, the original nonlinear system is transformed into a linear problem on different
time scales, which needs to be solved layer by layer. Assume that the solution to Eq. (14) is

v0(x, T0, T1, T2) = A1(T1, T2)Φ1(x)eiω1T0 + c.c., (20)

where A1 is the undetermined response function. Φ1(x) and ω1 are the first-order modal function
and the first-order natural frequency of the linear derived system, respectively. c.c. denotes
the complex conjugate of the previous exponential terms, which will not be repeated later.
To obtain a relatively accurate solution, the modal function contains the first two modes[47].
Therefore, the modal function and its conjugate can be expressed as

Φ1(x) =
2∑

k=1

p1,k sin
(kπx

L

)
, Φ1(x) =

2∑

k=1

p1,k sin
(kπx

L

)
, (21)
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where p1,k are undetermined coefficients, which can be obtained by the method of undetermined
coefficients (see Appendix A).

Substituting Eq. (20) into Eq. (16) yields
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
D2

0v1 + 2ρfAfΓ0D0v1,x + (ρfAfΓ2
0 − P0)v1,xx

+
2E0Ip(αE − 1)

L
v1,xxx + E0Ip

(
1 +

x

L
(αE − 1)

)
v1,xxxx − E0Ap(αE − 1)

2L ln(αE)
v1,xx

∫ L

0

(v̂+
,x)2dx

− E0Ap(αE − 1)
L ln(αE)

v̂+
,xx

∫ L

0

v̂+
,xv1,xdx + 2ρfAfΓ0Γ1 sin(ΩpT0)v̂+

,xx + ρfAfΓ1Ωp cos(ΩpT0)v̂+
,x

− E0Ap(αE − 1)
2L ln(αE)

v̂+
,xx

∫ L

0

A1(T1, T2)A1(T1, T2)
dΦ1(x)

dx

dΦ1(x)
dx

dx

− E0Ap(αE − 1)
2L ln(αE)

v̂+
,xx

∫ L

0

A1(T1, T2)2
(dΦ1(x)

dx

)2

e2iω1T0dx

− E0Ap(αE − 1)
L ln(αE)

A1(T1, T2)A1(T1, T2)
d2Φ1(x)

dx2

∫ L

0

v̂+
,x

dΦ1(x)
dx

dx

− E0Ap(αE − 1)
L ln(αE)

A1(T1, T2)2
d2Φ1(x)

dx2
e2iω1T0

∫ L

0

v̂+
,x

dΦ1(x)
dx

dx

+ 2
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
D0D1A1(T1, T2)Φ1(x)eiω1T0

+ 2ρfAfΓ0D1A1(T1, T2)
dΦ1(x)

dx
eiω1T0 + c.c. = 0. (22)

Obviously, the last two exponential terms in Eq. (22) are the secular terms. In actual
systems, secular terms do not exist. Therefore, A1 is independent of the time scale T1,

A1(T1, T2) = A1(T2), A1(T1, T2) = A1(T2), (23)

where A1(T2) is the complex conjugate. According to Eq. (22), the special solution to Eq. (16)
is assumed as

v1(x, T0, T2) = Z1(x, T2)e2iω1T0 + Z2(x, T2)eiΩpT0 + c.c. + Z3(x, T2), (24)

where the modal functions Zi are expanded as




Zn(x, T2) =
2∑

k=1

sn,k(T2) sin
(kπx

L

)
, n = 1, 2, 3,

Zn(x, T2) =
2∑

k=1

sn,k(T2) sin
(kπx

L

)
, n = 1, 2.

(25)

Similarly, the method of undetermined coefficients can be adopted to calculate the coef-
ficients sn,k and their complex conjugates. To find the secular term, only the homogeneous
solution to the T2 scale equation needs to be considered,

v2(x, T0, T2) = Q1(x, T2)eiω1T0 , (26)

where

Q1(x, T2) =
2∑

k=1

q1,k(T2) sin
(kπx

L

)
. (27)
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The pulsating frequency of the fluid is close to two times the natural frequency, and para-
metric resonance may occur in the system. A detuning parameter σ is introduced as follows:

Ωp = 2ω1 + ε2σ. (28)

The following Euler’s formulae are introduced:

sin(ΩpT0) =
1
2
i(e−iΩpT0 − eiΩpT0), cos(ΩpT0) =

1
2
(e−iΩpT0 + eiΩpT0). (29)

Substitute Eqs. (20), (24), (26), and (28) into Eq. (18), and extract the coefficients of eiω1T0 .
Then, we have

−
(
ρ0Ap

(
1 +

x

L
(αρ − 1)

)
+ ρfAf

)
ω2

1Q1(x, T2) + 2iω1ρfAfΓ0
∂Q1(x, T2)

∂x

+ (ρfAfΓ2
0 − P0)

∂2Q1(x, T2)
∂x2

+
2E0Ip(αE − 1)

L

∂3Q1(x, T2)
∂x3

+ E0Ip

(
1 +

x

L
(αE − 1)

)∂4Q1(x, T2)
∂x4

− E0Ap(αE − 1)
2L ln(αE)

·
(∂2Q1(x, T2)

∂x2

∫ L

0

(v̂+
,x)2dx + 2v̂+

,xx

∫ L

0

v̂+
,x

∂Q1(x, T2)
∂x

dx
)

=R1A1(T2)2A1(T2) + R2D2A1(T2) + R3A1(T2) + R4A1(T2) + R5A1(T2)eiσT2 . (30)

Two secular term equations can be obtained by the inner product of Eq. (30), which are written
in the matrix as follows: (

S1 S2 − iS3

S2 + iS3 S4

)(
q1,1(T2)
q1,2(T2)

)
=

(
H1

H2

)
, (31)

where Si and Hi are given in Appendix A. Replace any column in the coefficient matrix with a
column vector H, and take the determinant to be zero. Then, the solvability condition of the
gyroscopic system is obtained by[48]

H1S4 −H2(S2 − iS3) = 0. (32)

The polar coordinate form of the introduced response A1 is

A1(T2) =
1
2
a(T2)eiθ(T2), (33)

where a(T2) is the amplitude, and θ(T2) is the phase angle.
Introduce

β(T2) = T2σ − 2θ(T2). (34)

Then, with the steady-state response, we have

D2a(T2) = 0, D2β(T2) = 0. (35)

Substituting Eqs. (33)–(35) into the solvability condition (32) yields the amplitude-frequency
response equations with the phase angle as follows:





a(Ξ11(σ,Γ1) sin β + Ξ12(σ,Γ1) cos β + Ξ13(σ) + Ξ14a
2) = 0,

a(Ξ21(σ,Γ1) sin β + Ξ22(σ,Γ1) cos β + Ξ23(σ) + Ξ24a
2) = 0.

(36)

Eliminate the phase angle β. Then, we have ζ1a
4 + ζ2a

2 + ζ3 = 1. Finally, the solution of each
order scale is substituted back into Eq. (11), with which the total response of any position of
the AFG pipe can be obtained.
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3.2 DQEM
To verify the approximate analytical solution obtained by the direct multi-scale method,

the DQEM is adopted. On the basis of the differential element method (DQM), the DQEM
introduces rotation angles at both ends of the pipe as new generalized variables. Therefore, it
has N nodes and N + 2 variables. With N − 2 interior point equations and 4 boundary con-
ditions, the fourth-order boundary-value problem can be solved[49]. The detailed procedure is
shown in Appendix B[50]. The DQEM needs to select nodes with a reasonable distribution. Ac-
cording to Ref. [51], a non-uniform distribution of nodes can improved the calculation accuracy
and convergence. Therefore, this paper employs the Chebyshev-Gauss-Lobatto non-uniform
distribution as follows:

xi =
1
2

(
1− cos

(i− 1)π
N − 1

)
L, i = 1, 2, · · · , N. (37)

References [52] and [53] show that for simple modes, the DQEM with only five nodes has
good convergence. The simulation employs a total of 11 nodes (N = 11) to enhance the accuracy
of the obtained results. The initial conditions for the DQEM are given as follows:

vi = 0.000 1 sin(2πxi), vi,t = 0, i = 2, 3, · · · , N − 1. (38)

4 Case studies

According to the method introduced, the parametric resonance analysis of the case is carried
out, the stability boundary of the parametric resonance of the AFG pipe is solved by the direct
multi-scale method, and the amplitude-frequency response results are verified by the DQEM.
In addition, the influence of gradient on the parametric resonance is analyzed.
4.1 Parametric resonance in the subcritical region

In this section, the parametric resonance of the AFG pipe in the subcritical region is studied,
and the influence of gradient on the vibration of the subcritical pipe is analyzed.
4.1.1 Amplitude-frequency response

Based on Eq. (3), the Jacobi matrix of amplitude a and phase angle β is extracted. The
characteristic equation of the matrix is λ2 +c1λ+c2 = 0. When the real parts of the eigenvalues
are all negative, there will be no power exponent increasing infinitely with time. Therefore,
according to the Routh-Hurwitz criterion, all the coefficients in the equation are positive, which
means c1 > 0 and c2 > 0.

Figure 2 shows the stability boundary and response characteristics of the AFG pipe in
the subcritical region. Figure 2(a) shows the critical pulsating flow velocity boundary for the
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Fig. 2 Parametric resonance boundaries in the subcritical region: (a) pulsating flow velocity bound-
aries; (b) damping boundaries (color online)
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parametric resonance. When the pulsating flow velocity exceeds 0.38m·s−1, the response bifur-
cates into non-trivial and trivial solutions. The frequency range corresponding to any pulsating
flow velocity is the bandwidth of the unstable zero solution in the response. The frequency
range corresponding to any pulsating flow velocity is the bandwidth of the unstable zero solu-
tion in the response. Figure 2(b) shows the influence of damping on the response. When the
damping exceeds 1.04× 107 N · s ·m−2, the parametric resonance response disappears.

Under the stability boundary, the steady-state response of the parametric vibration of the
AFG pipe is analytically solved and numerically verified. Figure 3(a) shows the time history
obtained by the DQEM. Figure 3(b) shows the numerical and analytical solutions. The average
flow velocity is 118.47 m·s−1 (the data are selected from Γ0-sub when αE = 1.2 in Table 1),
and the pulsating flow velocity is 2m·s−1. Obviously, the approximate analytical solution is
verified.
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Fig. 3 Total responses of parametric resonance at the midpoint of the subcritical pipe: (a) time
history via the DQEM; (b) numerical and analytical solutions (color online)

Figure 4 shows the total responses of the pipe at different pulsating flow velocities (Γ1 =
1m·s−1, Γ1 = 2 m·s−1, and Γ1 = 3 m·s−1). The average flow velocity at all the three gradient
parameters is 118.47m·s−1. Figure 4(a) shows that for these three gradient parameters, the
three selected pulsating flow velocities are within the range that can cause parametric vibration.
When the gradient parameter is 1, it is a homogeneous pipe. Obviously, the existence of
Young’s modulus gradient affects the bandwidth of the unstable zero solution compared with
the homogeneous pipe. Moreover, increasing the gradient parameter improves the condition of
parametric vibration. As shown in Figs. 4(b), 4(c), and 4(d), the pulsating flow velocity will
affect the parametric resonance amplitude and resonance region. At the same average flow
velocity, the amplitude of the total response and the resonance region increase as the pulsating
flow velocity increases.
4.1.2 Influence of gradient on parametric resonance

To further clarify the influence of Young’s modulus gradient on the subcritical parametric
resonance, the parametric response at 0.25L and 0.75L of the pipe is discussed in Fig. 5. The
selected gradient parameters are 0.4, 0.8, 1.2, and 1.6. The average flow velocity is 118.47 m·s−1,
and the pulsating flow velocity is 2 m·s−1. It can be seen that the existence of Young’s modulus
gradient and fluid make the symmetrical position of the pipe produce asymmetric responses.
To describe the asymmetry more clearly, the relative deviation of the responses is defined for
the non-trivial solution as follows:

Re =
∣∣∣v0.25L − v0.75L

v0.75L

∣∣∣, (39)
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where v0.25L and v0.75L represent the amplitudes at 0.25L and 0.75L, respectively. Re-s and
Re-uns in Fig. 6 represent the relative deviations of the stable and unstable solutions, respectively.
It can be seen that when the gradient parameter is less than 1, the decrease in αE enhances
the asymmetry. This is contrary when the gradient parameter is greater than 1.
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4.2 Parametric resonance in the supercritical region
In this section, the parametric resonance of the AFG pipe in the supercritical region is

studied, the influence of gradient is analyzed, and the resonance responses of the pipe in the
subcritical and supercritical regions are compared.
4.2.1 Amplitude-frequency response

Figure 7 shows the stability boundary and response characteristics of the pipe in the su-
percritical region. Figure 7(a) shows that when the pulsating velocity exceeds 0.22 m·s−1, the
responses will bifurcate into trivial and non-trivial solutions. As shown in Fig. 7(b), the para-
metric responses disappear when the damping exceeds 1.82× 107 N · s/m2. From Figs. 2 and 7,
it can be observed that greater damping is required to suppress the parametric responses in the
supercritical AFG pipes. Therefore, the parametric responses caused by the velocity pulsation
are more intense and harder to be suppressed in the supercritical region.
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Fig. 7 Parametric resonance boundaries in the supercritical region: (a) pulsating flow velocity bound-
aries; (b) damping boundaries (color online)

Figure 8 shows the time history responses of the parametric vibration in the supercritical
region obtained by the DQEM. The average flow velocity is 168.14 m·s−1 (the data are selected
from Γ0-sup when αE = 1.2 in Table 1), and the pulsating flow velocity is 2 m·s−1. Similarly, the
initial conditions of the DQEM are the same as those in Eq. (39). Different from the subcritical
region, the introduction of non-trivial equilibrium configuration makes the supercritical pipe
have zero shift.
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In addition, the buckled configuration brings square nonlinearity, which makes the super-
critical AFG pipe have responses on the T1 scale. To study the responses of the supercritical
AFG pipe more comprehensively, Figs. 9(a)–9(d) show the components of the solutions at dif-
ferent scales. According to Eq. (11), the total response in Fig. 9(e) is obtained by summing
the responses at the T0 and T1 scales. To further analyze the broadband response, the broad-
band response at the midpoint of the pipe is verified numerically. The results are shown in
Fig. 9(e). Therefore, the analytical solution is verified by the DQEM. In addition, the non-
primary resonance response in the supercritical region is not equal to zero. Although the
zero-shift component is negative, the solution at the T0 scale, the natural frequency component
at the T1 scale, and the external excitation frequency component are all positive. Therefore,
the positive non-primary resonance responses are obtained by superposition.
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Figure 10 shows the total responses at the midpoint of the supercritical pipe. The selected
pulsating flow velocities are 1m·s−1, 2 m·s−1, and 3 m·s−1. The average flow velocity at all the
three gradient parameters is 168.14m·s−1. The existence of Young’s modulus gradient affects
the bandwidth of the unstable solution. At the same average flow velocity, the amplitude of
the total response and the resonance region increase as the pulsating flow velocity increases.
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Fig. 10 (a) Pulsating flow velocity boundaries at different αE . Total responses at (b) αE = 0.8, (c)
αE = 1.2, and (d) αE = 1.4 (color online)

4.2.2 Influence of gradient on the parametric resonance
Figure 11 shows the influence of Young’s modulus gradient on the supercritical parametric

resonance. The gradient parameters are 0.4, 0.8, 1.2, and 1.6. To further explore the influence
of the gradient parameter on the symmetric positional response of the supercritical pipe, the
relative deviation of the response is defined according to Eq. (42). As shown in Fig. 12, the
decrease in αE can enhance the asymmetry of the response when αE is less than 1. This is
contrary when αE is greater than 1.
4.2.3 Comparison of parametric resonance in the subcritical and supercritical regions

To compare the influence of Young’s modulus gradient on the parametric resonance of the
pipe in the subcritical and supercritical regions, the parameter values are selected as shown in
Table 2. It is worth noting that the supercritical average flow velocity selected for each gradient
parameter is determined according to Γ0-sup = 1.1Γ0-cr.

The stability boundaries of the pipe in the subcritical and supercritical regions with different
gradient parameters are shown in Figs. 13 and 14. Meanwhile, the relationship between the
gradient parameter and the critical pulsating flow velocity in the subcritical and supercritical
regions is clearly shown in Fig. 13(b). The maximum and minimum gradient parameters in
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Table 2 Comparison of parametric vibration in the subcritical and supercritical regions (Γ0-sup =
1.1Γ0-cr)

αE Γ1/(m·s−1) µ/(N · s·m−2) ω1/(rad·s−1) Γ0-sub/(m·s−1) Γ0-sup/(m·s−1)

0.4 2 2× 106 131.00 93.69 132.13
0.8 2 2× 106 151.79 107.20 152.10
1.2 2 2× 106 167.95 118.47 168.14
1.4 2 2× 106 175.20 123.50 175.29

Fig. 13(b) are selected for a detailed analysis, which are shown in Figs. 13(a) and 13(c). Figure
14 does the same work. The comparison shows that the pipe is more sensitive to external
excitation in the supercritical region. Under the same condition, a smaller critical pulsating flow
velocity in the supercritical region can cause parametric resonance, and increasing the damping
coefficient can effectively suppress the parametric resonance. Meanwhile, the bandwidth of the
unstable solution of the supercritical pipe will be narrower. In addition, the increase in Young’s
modulus gradient can improve the critical pulsating flow velocity causing parametric resonance
and reduce the sensitivity of the pipe to external excitation. However, at the same natural
frequency, the supercritical pipe remains more sensitive to the pulsating excitation.
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Figure 15 compares the parametric resonance of the pipe in the subcritical and supercritical
regions. The selected gradient parameters are 0.4, 0.8, 1.2, and 1.4. The solid lines and dashed
lines in the figure correspond to stable branches and unstable branches, respectively. It can be
seen that the cubic nonlinearity plays a dominant role in the subcritical region. It shows the
hard characteristic of bending to the right. In the supercritical region, the introduction of the
buckled configuration produces square nonlinearity. Therefore, it shows a soft characteristic of
bending to the left. On the contrary to the subcritical region, the increase in αE reduces the
response amplitude of the pipe in the supercritical region, but the resonance region increases.

5 Conclusions

In this paper, the nonlinear governing equation for the parametric vibration of a simply
supported AFG pipe is established. The stability boundaries and amplitude-frequency responses
are obtained by the direct multi-scale method. The approximate analytical results are verified
by the DQEM. The influence of Young’s modulus gradient on the parametric resonance is
investigated. Some conclusions are obtained as follows.

(i) The non-trivial equilibrium configuration makes the AFG pipe change from hard to soft,
and more frequency components are introduced into the solution. Different from the subcritical
pipe, the non-primary resonance response of the supercritical pipe is not zero.

(ii) The velocity pulsation-induced parametric response is more intense and harder to be
suppressed in the supercritical region. Based on the same fundamental frequency, to suppress
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Fig. 15 Parametric responses at (a) αE = 0.4, (b) αE = 0.8, (c) αE = 1.2, and (d) αE = 1.4 before
and after buckling (color online)

the parametric response, the supercritical AFG pipe needs greater damping. In addition, the
increase in Young’s modulus gradient can reduce the sensitivity of the pipe to the parametric
excitation and improve the stability of the pipe.

(iii) The existence of Young’s modulus gradient and fluid make the symmetrical position
of the pipe produce asymmetric responses. When the temperature increases along the axial
direction, reducing αE can enhance the asymmetry of the parametric responses.
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[11] BURAK-ÖZHAN, B. and PAKDEMIRLI, M. Principal parametric resonances of a general contin-
uous system with cubic nonlinearities. Applied Mathematics and Computation, 219(5), 2412–2423
(2012)

[12] ZHU, B., GUO, Y., ZHAO, T., and LI, X. Nonlinear dynamics of inclined viscoelastic pipes
subjected to pulsatile flow and multi-harmonic excitations. Nonlinear Dynamics, 111(13), 11823–
11849 (2023)

[13] SHAIK, N. H., SHARMA, A. K., and BHATTACHARYA, B. Effect of shape memory alloy actua-
tion on parametric instability in pipes conveying pulsating fluid. Journal of Vibration Engineering
& Technologies, 11, 3003–3016 (2023)

[14] WEI, S., YAN, X., LI, X., DING, H., and CHEN, L. Q. Parametric vibration of a nonlinearly
supported pipe conveying pulsating fluid. Nonlinear Dynamics, 111(18), 16643–16661 (2023)

[15] GUO, X. M., GAO, P. X., MA, H., LI, H., WANG, B., HAN, Q. K., and WEN, B. C. Vibration
characteristics analysis of fluid-conveying pipes concurrently subjected to base excitation and
pulsation excitation. Mechanical Systems and Signal Processing, 189, 110086 (2023)

[16] WANG, Y. K., TANG, M., YANG, M., and QIN, T. Three-dimensional dynamics of a cantilevered
pipe conveying pulsating fluid. Applied Mathematical Modelling, 114, 502–524 (2023)

[17] GUO, Y., ZHU, B., and LI, Y. H. Nonlinear dynamics of fluid-conveying composite pipes subjected
to time-varying axial tension in sub- and super-critical regimes. Applied Mathematical Modelling,
101, 632–653 (2022)

[18] ZHU, B., ZHANG, X., and ZHAO, T. Nonlinear planar and non-planar vibrations of viscoelastic
fluid-conveying pipes with external and internal resonances. Journal of Sound and Vibration, 548,
117558 (2023)



Parametric resonance of axially functionally graded pipes conveying pulsating fluid 257

[19] XIE, W. D., LIANG, Z. L., JIANG, Z. Y., and ZHU, L. X. Dynamic responses of a flexible pipe
conveying variable-density fluid and experiencing cross-flow and in-line coupled vortex-induced
vibrations. Ocean Engineering, 260, 111811 (2022)

[20] GHADIRIAN, H., MOHEBPOUR, S., MALEKZADEH, P., and DANESHMAND, F. Nonlinear
free vibrations and stability analysis of FG-CNTRC pipes conveying fluid based on Timoshenko
model. Composite Structures, 292, 115637 (2022)

[21] XU, W. H., JIA, K., MA, Y. X., WANG, Y. Y., and SONG, Z. Y. Multispan classification methods
and interaction mechanism of submarine pipelines undergoing vortex-induced vibration. Applied
Ocean Research, 120, 103027 (2022)

[22] LI, M. W., YAN, H., and WANG, L. Nonlinear model reduction for a cantilevered pipe conveying
fluid: a system with asymmetric damping and stiffness matrices. Mechanical Systems and Signal
Processing, 188, 109993 (2023)

[23] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes
using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675–688
(2019)

[24] WEI, S., YAN, X., FAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration of fluid-conveying
pipe with nonlinear supports at both ends. Applied Mathematics and Mechanics (English Edition),
43(6), 845–862 (2022) https://doi.org/10.1007/s10483-022-2857-6

[25] ZHOU, K., YI, H. R., DAI, H. L., YAN, H., GUO, Z. L., XIONG, F. R., NI, Q., HAGEDORN,
P., and WANG, L. Nonlinear analysis of L-shaped pipe conveying fluid with the aid of absolute
nodal coordinate formulation. Nonlinear Dynamics, 107(1), 391–412 (2021)

[26] CHEN, F. J., CHEN, J. Y., DUAN, R. Q., HABIBI, M., and KHADIMALLAH, M. A. Inves-
tigation on dynamic stability and aeroelastic characteristics of composite curved pipes with any
yawed angle. Composite Structures, 284, 115195 (2022)

[27] MAKNUN, I. J., NATARAJAN, S., and KATILI, I. Application of discrete shear quadrilateral
element for static bending, free vibration and buckling analysis of functionally graded material
plate. Composite Structures, 284, 115130 (2022)

[28] CHANDRASEKARAN, S., HARI, S., and AMIRTHALINGAM, M. Functionally graded materi-
als for marine risers by additive manufacturing for high-temperature applications: experimental
investigations. Structures, 35, 931–938 (2022)

[29] ZHEN, Y. X., GONG, Y. F., and TANG, Y. Nonlinear vibration analysis of a supercritical fluid-
conveying pipe made of functionally graded material with initial curvature. Composite Structures,
268, 113980 (2021)

[30] ZHU, B., GUO, Y., CHEN, B., and LI, Y. H. Nonlinear nonplanar dynamics of porous functionally
graded pipes conveying fluid. Communications in Nonlinear Science and Numerical Simulation,
117, 106907 (2023)

[31] SELMI, A. and HASSIS, H. Vibration analysis of post-buckled fluid-conveying functionally graded
pipe. Composites Part C: Open Access, 4, 100117 (2021)

[32] JIN, Q., REN, Y., and YUAN, F. G. Combined resonance of pulsatile flow-transporting FG
nanotubes under forced excitation with movable boundary. Nonlinear Dynamics, 111(7), 6157–
6178 (2022)

[33] DING, H. X., SHE, G. L., and ZHANG, Y. W. Nonlinear buckling and resonances of functionally
graded fluid-conveying pipes with initial geometric imperfection. The European Physical Journal
Plus, 137(12), 1329 (2022)

[34] GUO, X. M., XIAO, C. L., GE, H., MA, H., LI, H., SUN, W., and LIU, Z. H. Dynamic modeling
and experimental study of a complex fluid-conveying pipeline system with series and parallel
structures. Applied Mathematical Modelling, 109, 186–208 (2022)

[35] ZHAO, Y., FENG, J. M., ZHAO, B., ZHOU, S. M., TANG, Z., and PENG, X. Y. Vibration
analysis and control of a screw compressor outlet piping system. Proceedings of the Institution
of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(2), 403–411
(2018)

[36] DAI, J. Y., LIU, Y. S., LIU, H. C., MIAO, C. X., and TONG, G. J. A parametric study on thermo-
mechanical vibration of axially functionally graded material pipe conveying fluid. International
Journal of Mechanics and Materials in Design, 15(4), 715–726 (2019)



258 Jie JING, Xiaoye MAO, Hu DING, and Liqun CHEN

[37] AN, C. and SU, J. Dynamic behavior of axially functionally graded pipes conveying fluid. Math-
ematical Problems in Engineering, 2017, 6789634 (2017)

[38] LU, Z. Q., ZHANG, K. K., DING, H., and CHEN, L. Q. Nonlinear vibration effects on the
fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear
Dynamics, 100(2), 1091–1104 (2020)

[39] GUO, Q., LIU, Y. S., CHEN, B. Q., and ZHAO, Y. Z. An efficient stochastic natural frequency
analysis method for axially varying functionally graded material pipe conveying fluid. European
Journal of Mechanics-A/Solids, 86, 104155 (2021)

[40] TUO, Y. H., FU, G. M., SUN, B. J., LOU, M., and SU, J. Stability of axially functionally graded
pipe conveying fluid: generalized integral transform solution. Applied Ocean Research, 125, 103218
(2022)

[41] FAN, X., WU, N., LIU, Y., and GUO, Q. Resonance system reliability and sensitivity analysis
method for axially FGM pipes conveying fluid with adaptive Kriging model. Acta Mechanica
Solida Sinica, 35(6), 1021–1029 (2022)

[42] AGHAZADEH, R. Stability analysis of fluid conveying axially functionally graded micro-pipes
using a refined tube model. Arabian Journal for Science and Engineering, 47(7), 8739–8750 (2022)

[43] AGHAZADEH, R. The effects of gravity and material gradation on the stability of axially func-
tionally graded cantilevered pipes conveying fluid. Journal of the Chinese Society of Mechanical
Engineers, 43, 153–164 (2022)

[44] FU, G., TUO, Y., ZHANG, H., SU, J., SUN, B., WANG, K., and LOU, M. Effects of material
characteristics on nonlinear dynamics of viscoelastic axially functionally graded material pipe
conveying pulsating fluid. Journal of Marine Science and Application, 22(2), 247–259 (2023)

[45] BABILIO, E. Dynamics of functionally graded beams on viscoelastic foundation. International
Journal of Structural Stability and Dynamics, 14(8), 1440014 (2014)

[46] MAO, X. Y., JING, J., DING, H., and CHEN, L. Q. Dynamics of axially functionally graded
pipes conveying fluid. Nonlinear Dynamics, 111(12), 11023–11044 (2023)

[47] FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Resonance regulation on a hydraulic pipe via
boundary excitations. International Journal of Mechanical Sciences, 252, 108375 (2023)

[48] CHEN, L. Q. and ZU, J. W. Solvability condition in multi-scale analysis of gyroscopic continua.
Journal of Sound and Vibration, 309(1-2), 338–342 (2008)

[49] WANG, X. W. and GU, H. Z. Static analysis of frame structures by the differential quadrature
element method. International Journal for Numerical Methods in Engineering, 40(4), 759–772
(1997)

[50] SHU, C., CHEW, Y. T., and RICHARDS, B. E. Generalized differential and integral quadrature
and their application to solve boundary layer equations. International Journal for Numerical
Methods in Fluids, 21(9), 723–733 (1995)

[51] DING, H., YAN, Q. Y., and ZU, J. W. Chaotic dynamics of an axially accelerating viscoelastic
beam in the supercritical regime. International Journal of Bifurcation and Chaos, 24(5), 1450062
(2014)

[52] WANG, X. W. and WANG, Y. L. Free vibration analysis of multiple-stepped beams by the
differential quadrature element method. Applied Mathematics and Computation, 219(11), 5802–
5810 (2013)

[53] WANG, Y. L., WANG, X. W., and ZHOU, Y. Static and free vibration analyses of rectangular
plates by the new version of the differential quadrature element method. International Journal
for Numerical Methods in Engineering, 59(9), 1207–1226 (2004)

Appendix A

The coefficients pn,k in Eq. (21) are




p1,1 = 1, p1,2 =
1000(3.476 203 39× 108ω2

1 − 1.077 743 775× 1013)

7.751 069 827× 109ω2
1 − 2.874 374 389× 1015 − 9.948 972 650× 1013iω1

,

p1,1 = 1, p1,2 =
1 000(3.476 203 39× 108ω2

1 − 1.077 743 775× 1013)

7.751 069 827× 109ω2
1 − 2.874 374 389× 1015 + 9.948 972 650× 1013iω1

.

(A1)
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The specific forms of Si and Hi in Eq. (31) are

S1 =
π4E0Ip(αE + 1)− 2π2L2(ρfAfΓ

2
0 − P0)− ω2

1L4(ρ0Ap(αρ + 1) + 2ρfAf)

4L3

+
π4E0Ap(αE − 1)(4B2

2 + 3B2
1)

8L3 ln(αE)
, (A2)

S2 =
π4E0ApB1B2(αE − 1)

L3 ln(αE)
− 32π2E0Ip(αE − 1)

9L3
+

8ω2
1ρ0ApL(αρ − 1)

9π2
, (A3)

S3 =
8ω1ρfAfΓ0

3
, (A4)

S4 =
16π4E0Ip(αE + 1)− 8π2L2(ρfAfΓ

2
0 − P0)− ω2

1L4(ρ0Ap(αρ + 1) + 2ρfAf)

4L3

+
π4E0Ap(αE − 1)(24B2

2 + 2B2
1)

4L3 ln(αE)
, (A5)

H1 = − (
3π4E0Ap(αE − 1)((3B1p1,1 + 4B2p1,2)s2,1(T2) + 4(B1p1,2 + B2p1,1)s2,2(T2))

+ 2L2 ln(αE)ρfAfΓ1(3iπ2Γ0p1,1 − 4Lε2σp1,2)
)/

(12L3 ln(αE))A1(T2)e
iσT2

+
48π2ρfAfΓ0p1,2 − iω1L(9π2p1,1(ρ0Ap(αρ + 1) + 2ρfAf)− 32ρ0App1,2(αρ − 1))

18π2
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(
iω1µπ2〈256Ipp1,2(αE − 1) ln(αE)− 9π2(2Ipp1,1(αE + 1) ln(αE)
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)/

(4L3 ln(αE))A1(T2), (A6)
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Appendix B

The transverse displacement in the governing equation (9) is divided into nodes, and the spatial
derivative with respect to x can be expressed as follows:

v[k](xi) =

N∑
j=1

ϕ
[k]
j (xi)v(xj) + Ψ

[k]
1 (xi)v

[1](x1) + Ψ
[k]
N (xi)v

[1](xN ), i = 1, 2, · · · , N, (B1)
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where v[1](x1) and v[1](xN ) are new generalized variables, and

Ψ
[k]
j (xi) =

1

xj − xN−j+1
(l

[k]
j (xi)(xi − x1)(xi − xN ) + kl

[k−1]
j (xi)((xi − x1) + (xi − xN ))

+ k(k − 1)l
[k−2]
j (xi)), j = 1, N, i = 1, 2, · · · , N, (B2)

ϕ
[k]
j (xi) =

1

xj − xN−j+1
(l

[k]
j (xi)(xj − xN−j+1) + kl

[k−1]
j (xi))

−
(
l′j(xj) +

1

xj − xN−j+1

)
Ψ

[k]
j (xi), j = 1, N, i = 1, 2, · · · , N, (B3)

ϕ
[k]
j (xi) =

1

(xj − x1)(xj − xN )
(l

[k]
j (xi)(xi − x1)(xi − xN ) + kl

[k−1]
j (xi)((xi − x1) + (xi − xN ))

+ k(k − 1)l
[k−2]
j (xi)), j = 2, 3, · · · , N − 1, i = 1, 2, · · · , N, (B4)

in which N is the number of nodes, k is the order of the weight coefficient of each operator, and lj(x)
is the Lagrange interpolation formula satisfying

lj(x) =

N∏
k=1
k 6=j

x− xk

xj − xk
, (B5)

l
[1]
j (xi) =





1
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N∏
m=1

m6=i,j

xi − xm

xj − xm
, i 6= j,

N∑
m=1

m6=i,j

1

xi − xm
, i = j,

(B6)

l
[k]
j (xi) =





k
(
l
[1]
j (xi)l

[k−1]
i (xi)−

l
[k−1]
j (xi)

xi − xj

)
, i 6= j,

N∑
m=1

l
[1]
j (xm)l[k−1]

m (xj), i = j.

(B7)

Since the governing equation (9) contains integral terms, it is advisable to integrate the integral
quadrature method (IQM) with the DQEM for improved accuracy. Following the IQM principles, an
interpolation relationship exists between the node function value and the integral operator as follows:

∫ xj

xi

f(x, t)dx =

N∑

k=1

cij
k f(xk, t) (B8)

where cij
k = A−1

jk −A−1
ik .

The elements in the coefficient matrix A are calculated by

aij =





xi − r

xj − r
l
[1]
ij , i 6= j,

l
[1]
ii +

1

xi − r
, i = j,

(B9)

where r represents a constant. The existing reference [50] shows that when the constant satisfies
|r| 6 0.1, the influence of the constant term on the accuracy of numerical simulation can be ignored.
To ensure the calculation accuracy, the constant is set to 0.01.


