
Appl. Math. Mech. -Engl. Ed., 44(7), 1039–1068 (2023)

APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)

https://doi.org/10.1007/s10483-023-2995-8

Effective data sampling strategies and boundary condition
constraints of physics-informed neural networks for
identifying material properties in solid mechanics∗

W. WU1,2, M. DANEKER3, M. A. JOLLEY1,2,

K. T. TURNER4, L. LU3,†

1. Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of

Philadelphia, Philadelphia, PA 19104, U. S. A.;

2. Division of Pediatric Cardiology, Children’s Hospital of Philadelphia,

Philadelphia, PA 19104, U. S. A.;

3. Department of Chemical and Biomolecular Engineering, University of Pennsylvania,

Philadelphia, PA 19104, U. S. A.;

4. Department of Mechanical Engineering and Applied Mechanics, University of

Pennsylvania, Philadelphia, PA 19104, U. S. A.

(Received Nov. 28, 2022 / Revised May 9, 2023)

Abstract Material identification is critical for understanding the relationship between
mechanical properties and the associated mechanical functions. However, material iden-
tification is a challenging task, especially when the characteristic of the material is highly
nonlinear in nature, as is common in biological tissue. In this work, we identify unknown
material properties in continuum solid mechanics via physics-informed neural networks
(PINNs). To improve the accuracy and efficiency of PINNs, we develop efficient strategies
to nonuniformly sample observational data. We also investigate different approaches to
enforce Dirichlet-type boundary conditions (BCs) as soft or hard constraints. Finally,
we apply the proposed methods to a diverse set of time-dependent and time-independent
solid mechanic examples that span linear elastic and hyperelastic material space. The es-
timated material parameters achieve relative errors of less than 1%. As such, this work is
relevant to diverse applications, including optimizing structural integrity and developing
novel materials.
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1 Introduction

The study of nonlinear dynamical systems is of interest in many science and engineering
disciplines due to the nonlinear nature of most physical phenomena. The nonlinear relation
between system inputs and outputs and interactions between system variables have made non-
linear systems a daunting task to solve with traditional analytical approaches. In engineering,
the solutions to nonlinear dynamical systems are approximated by classic numerical methods
(i.e., the finite difference method, the finite element method, or the finite volume method).
These numerical methods discretize a large system into finite spatial subcomponents, linearize
the governing equations in time, and solve the linearized equations iteratively until each sub-
component satisfies the governing conservation laws. However, this spatio-temporal discretiza-
tion procedure often introduces spurious oscillation and requires numerical damping in order
to obtain stable solutions, which may lead to less accurate approximations[1–4]. On the con-
trary, the universal approximation theorem of neural networks[5] states that a sufficiently large
feed-forward artificial neural network with proper nonlinear activation functions can approxi-
mate any continuous function. As such, machine learning-based approaches have arisen as a
new paradigm for addressing physical problems that are known to be challenging for classic
numerical methods[6]. These recent advances in deep learning techniques have demonstrated
considerable potential for unveiling the hidden physics of many complex nonlinear dynamical
systems where classic numerical methods fail[6–10].

The tremendous growth of deep learning has also attracted material scientists’ attention to
accelerating the understanding of complex material properties. A comprehensive understanding
of mechanical properties is essential for studying the behaviors of materials under loads. In the
traditional engineering approach, the material investigation (material parameter estimation)
procedure is generally carried out in the following three steps: (i) conduct a series of experi-
mental studies to quantify the mechanical behavior of the material; (ii) identify a representative
mathematical model by performing a series of inverse finite element analyses (FEAs); (iii) use
optimization techniques to identify the unknown parameters in the mathematical model that
produce the best agreement with experimental results. However, the inversion process can be
computationally expensive, or even impossible, for complex and nonlinear models owing to a
large number of forward simulations required[11]. As a result, data-driven deep learning has
been leveraged as a surrogate modeling technique to study the nonlinear deformation relation-
ship between material behavior and load conditions[12–17], as well as to design new materials
with unique mechanical characteristics[18–23].

Despite the efficacy of deep learning in interpreting complex systems, this promising method
is not without shortcomings. First, the accuracy of deep learning prediction is highly reliant
on the volume of data[24]. Second, conventional neural networks trained purely on data are
unrestricted to the system’s underlying governing equations and boundary conditions (BCs);
this limits the capability to extrapolate accurate physical relations from network outputs be-
yond their training data[13]. As a solution to this limitation, physics-informed neural networks
(PINNs)[25–26] have emerged to improve the training process by integrating mathematical mod-
els. PINNs use neural networks to approximate the solution and encode the governing equations
(e.g., the ordinary differential equations (ODEs) or partial differential equations (PDEs)) in the
loss function. For an inverse problem, this loss function encompasses the residual of the ini-
tial conditions (ICs), the BCs, the PDE at specific collocation points in the physical domain,
and observation data. Incorporating physical laws ensures that the networks satisfy both phe-
nomenological observations from data and the underlying physical laws and constraints within
the system, and therefore significantly improves the effectiveness of applying the trained models
to unexplored data sets and for sensitivity analysis[27]. For example, Lu et al.[14] demonstrated
that integrating physical laws and experimental data results in significantly improved solution
accuracy for extracting material properties from instrumented indentation tests.
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PINNs have succeeded in estimating the solutions to a wide range of forward and inverse
problems, including classic differential problems[9,26,28–33], fractional equations[34],
integral-differential equations[25,35], and stochastic PDEs[36]. In recent years, researchers have
used PINNs to address nonlinear solid mechanic problems by modifying the network architec-
ture, the loss function expression[37], and collocation point sampling methods. Samaniego et
al.[38], Nguyen-Thanh et al.[39–40], and Abueidda et al.[41] developed a deep energy method
(i.e., the loss term for the PDEs was expressed in terms of the potential energy rather than the
conservation of momentum) and demonstrated its applicability to steady-state elasticity, hyper-
elasticity, viscoelasticity, and piezoelectricity problems. Fuhg and Bouklas[42] discovered that
incorporating stresses as additional outputs in the network enhances the network’s capability of
resolving localized features in the solution for linear elastic steady-state problems. Haghighat
et al.[27] presented a parallel neural network architecture to identify material parameters for
linear elastic and nonlinear-elastoplastic test problems using a pre-trained network. Henkes et
al.[43] presented an adaptive collocation sampling point framework to capture the underlying
physics of microstructural elastostatics. Wu et al.[44] proposed residual-based adaptive sam-
pling methods and demonstrated significantly improved prediction accuracy for both forward
and inverse problems. Rao et al.[45] presented a PINN framework for solving forward elastic
and elastodynamic problems with strongly enforced ICs and BCs. Zhang et al.[46] presented a
PINN framework to identify unknown geometric and material parameters of steady-state linear
elastic, hyperelastic, and plastic materials with a pre-trained network.

In the present work, we aim to derive unknown material parameters in continuum solid
mechanics. We focus on the application of PINNs to identify the unknown material parameters
on higher-order initial-value and boundary-value problems. We identify the performance of
enforcing Dirichlet-type BCs as soft or hard constraints. We also show the efficacy of several
observation point sampling strategies on the two-dimensional (2D) examples for estimating
linear elastic and hyperelastic materials. For the static problems, we consider the following
three types: (i) concentrated data sampling in the location with high stress differential, (ii)
uniform data sampling across the spatial domain, (iii) data sampling along the boundary only.
For the dynamic example, we experiment with reducing the number of time frames in the
reference data. We summarize our major contributions as follows.

(I) While there are an increasing number of works demonstrating that PINNs with hard con-
straints yield superior solution accuracy for forward problems[43,47–48], the performance of hard
constraints in inverse problems has not been systematically studied. In fact, soft constraints
are more common in prior studies when solving inverse problems in solid mechanics[27,46]. We
have presented first-of-its-kind comparative studies to investigate the effects of soft and hard
constraints on a variety of inverse problems in solid mechanics. We have also demonstrated the
importance of hard constraint auxiliary functions on solution accuracy.

(II) The point sampling strategies in the literature focus on the sampling of PDE residual
points[43,49]. However, the ideal locations for selecting PDE residual points and collecting
experimental data may not be the same. As such, identifying an optimal strategy for sampling
observation data points is important in inverse problems. We examine the effect of observation
(e.g., experimental) data sampling strategies on solution accuracy.

(III) In order to achieve satisfactory solution accuracy in PINNs, the governing PDEs often
require non-dimensionalization such that the network outputs are in O(1). In this study, we
propose an alternative technique using output transformation functions to map the output
variables to their physical quantities. This method simplifies the PDE formulation and bypasses
the need for non-dimensionalizing the PDEs.

Applying PINNs to inverse problems allows the discovery of material constitutive properties
in a wide range of engineering domains when they are difficult or impossible to obtain otherwise.
This work demonstrates a proof of concept of applying PINNs to uncover unknown material
constants in test examples under various material types and loading conditions. We demonstrate
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the applicability of our PINN inversion framework to both steady-state and dynamic solid
mechanics examples by applying our methods to the wave equation, Euler-Bernoulli beam
equation, and solid mechanics momentum conservation equations. The estimated parameters
are within 1% of relative errors compared with the true values in 4 out of 5 test examples
and within 2.5% in all examples. The excellent prediction accuracy in our work indicates a
promising framework for improving engineering system performance and material designs.

This paper is organized as follows. In Section 2, we first introduce the geometry and gov-
erning equations for the classic solid mechanic examples in the present work; we then present
an overview of neural network architectures and loss function setup for both soft and hard
constraints; we describe the choice of auxiliary functions for hard constraints; at the end, we
delineate additional technical details germane to achieving high prediction accuracy in solid me-
chanics problems. In Section 3, we first demonstrate the effectiveness of various data point sam-
pling strategies; we then compare the performance of soft and hard constraints; subsequently,
we present parameter estimation results for both one-dimensional (1D) and 2D examples. Fi-
nally, in Sections 4 and 5, we summarize the novelty and benefits of the proposed methods and
conclude the paper.

2 Methods

In this work, we apply PINNs to estimate material parameters of solid mechanics prob-
lems. In addition, we provide details on the neural network architectures, loss functions, BC
constraints, and technical considerations specific to solving inverse problems in solid mechanics.
2.1 Test examples

We consider five classic examples to cover a spectrum of steady-state and dynamic analyses
in 1D and 2D space, representing PDEs of up to fourth order in space and second order in
time. The 1D examples were governed by the wave and the Euler-Bernoulli beam equation.
The 2D examples were governed by the conservation of momentum, the material constitutive
model, and the kinematic relation. The governing equations for each test example are detailed
in Appendix A.

In these inverse problems, we identify the material parameters by utilizing the underlying
governing equations and deformation/stress data obtained from either analytical solution or
FEA. We provide FEA verification results in Appendix B. To obtain reference data for training,
in the 1D examples, we consider a beam that is fixed on both ends. We compute the deformation
training data from the analytical solution by applying longitudinal/lateral initial deformation
to the beam. In the 2D examples, we consider a cantilever beam that is fixed on the left end.
We apply a body force to the structure and use FEA to compute the displacements and stresses
on the beam. The details of the model geometry, material model (incompressible linear elastic
or compressible hyperelastic material), stress configuration (plane stress or plane strain), and
loading condition (applied deformation or body force) are specified in Fig. 1.

In the following, we present the governing equations for a 2D elastodynamic analysis. The
momentum equation is expressed as

σij,j + fi = ρ∂ttui,

where ρ is the material density, f is the externally applied force, and the subscript comma
denotes partial derivatives. The isotropic linear elastic material constitutive model with plane-
strain is

σij =
Eν

(1 + ν)(1− 2ν)
δijεkk +

E

(1 + ν)
εij .

Herein, E and ν are Young’s modulus and Poisson’s ratio to be estimated using PINNs, respec-
tively, δij is the Kronecker delta, and εij is the infinitesimal strain tensor. Lastly, the kinematic
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(I) Longitudinal vibration

(a) 1D test examples with the unknown parameter α

(b) 2D test examples with the unknown parameters E and ν
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Fig. 1 Five classic solid mechanics examples. The geometry of the examples is presented in the
undeformed configuration. In addition, we provide the material model, stress configuration,
and loading condition for each problem. The aim is to identify the unknown parameter α
in the 1D test examples and the unknown parameters E and ν in the 2D test examples. A
detailed description of the governing equations is presented in Appendix A (color online)

relation is written as
εij =

1
2
(ui,j + uj,i).

2.2 PINNs for solid mechanics
Here, we provide an overview of the PINN formulation for solving inverse problems in solid

mechanics. The inverse PINN framework was set up using the DeepXDE library[25], and the
code is publicly available from the GitHub repository (see https://github.com/lu-group/pinn-
material-identification).
2.2.1 Neural network architectures

Let NL(x) : Rdim(x) → Rdim(y) be an L-layer neural network that maps input features x to
output variables y with N l neurons in the l-layer. The connectivity between the layers l and
l−1 is governed by N l(x) = φ(W lN l−1(x)+bl), where φ is a nonlinear activation function, W l

is a weight matrix, and bl is a bias vector. We use hyperbolic tangent, tanh, as the activation
function in the present work. Given that the activation function is applied element-wise to each
neuron, the recursive fully-connected neural network (FNN) is defined as

input layer : N 0(x) = x ∈ Rdim(x),

hidden layer l : N l(x) = tanh
(
W lN l−1(x) + bl

) ∈ RN l

for 1 6 l 6 L− 1,

output layer : NL(x) = W LNL−1(x) + bL ∈ Rdim(y).

The PINN architectures are presented in Fig. 2. In the 1D examples (see Figs. 2(a) and
2(b)), (x, t) are network input features corresponding to x-Cartesian coordinate and time, and
u is the predicted displacement. In the 2D examples (see Figs. 2(c) and 2(d)), (x, y, t) are
network input features corresponding to x- and y-Cartesian coordinates and time. Note that
the steady-state cases only have two input features, namely x- and y-Cartesian coordinates.
(Nux

, Nuy
, Nσxx

, Nσyy
, Nσxy

) are network outputs. (ux, uy, σxx, σyy, σxy) are the predicted
displacements and stresses. In all four architectures, θNN represents the network parameters
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Fig. 2 PINN architectures for nonlinear solid mechanics systems. We use one FNN for the 1D
examples ((a) and (b)) and five independent FNNs for the 2D examples ((c) and (d)). We
consider soft and hard constraints for both 1D and 2D examples (color online)

(W l and bl), and θmat represents the unknown material variables (α for 1D examples, and E
and ν for 2D examples).

For complex problems, the network needs to be sufficiently large in order to capture the
cross-dependence between variables in the governing equations. Aside from creating a single
large network, an alternative approach is establishing a separate, independent network for each
output variable. In the present work, we model the test examples using multiple independent
networks, given their effectiveness over the single network approach[27]. In cases with only one
output variable, the network architecture reduces to a standard single FNN. In other words,
one FNN is used in the time-dependent 1D vibration test cases, and five independent parallel
FNNs are used in the 2D cantilever beam test cases.

We briefly summarize the training procedure of both architectures (see Fig. 2). We first
initialize network parameters (θNN) to obtain an initial estimation of displacements and/or
stresses. Given the initial estimation, we subsequently formulate a loss function to minimize
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the PDE residuals, as well as the errors between the ground truth and the approximation in
the boundary, the initial domain, and reference data points (also known as observational data
points). The network variables (θNN and θmat) are then updated iteratively until the total loss
converges, and the estimated material constants reach a plateau.
2.2.2 Loss functions

In the training process, we optimize the network parameters θNN (i.e., W l and bl) and the
unknown material parameters θmat (i.e., E and ν), which are expressed as

θ∗NN, θ∗mat = arg min
θNN,θmat

L(θNN, θmat),

where L(θNN, θmat) is the loss function that measures the total error between network outputs
concerning the model’s ICs, BCs, PDE evaluations (conservation of momentum and constitutive
material laws) on the collocation points, and the reference data. The total loss function is
defined as

L(θNN, θmat) = wBCsLBCs + wICsLICs + wDataLData + wPDEsLPDEs,

where w is the weight associated with its corresponding loss term L. The loss terms LBCs, LICs,
and LData compute the mean squared errors of predicted results on the collocation points for
the BCs, ICs, and observation data, respectively. Further, LPDEs computes the mean squared
error of the PDE residuals over the spatial-temporal domain.

In the time-dependent longitudinal and lateral vibration examples, the PDE loss constitutes
the residuals in the wave equation and Euler-Bernoulli beam equation. In the 2D examples,
the PDE loss comprises the residuals in the constitutive relations and momentum conservation
laws. Detailed formulations of the material models and the governing PDEs are presented
in Appendix A. The loss function formulation varies slightly depending on the nature of the
example problems (i.e., steady state or dynamics). For a 2D linear elastic dynamic example,
LPDEs is formulated as

LPDEs =
∥∥∥∂σxx

∂x
+

∂σxy

∂y
+ fx − ρ

∂2ux

∂t2

∥∥∥
2

2

+ ‖∂σxy

∂y
+

∂σyy

∂y
+ fy − ρ

∂2uy

∂t2
‖22

+ ‖σxx − Epred

(1 + νpred)(1− 2νpred)
((1− νpred)εxx + νpredεyy)‖22

+ ‖σyy − Epred

(1 + νpred)(1− 2νpred)
((1− νpred)εyy + νpredεxx)‖22

+ ‖σxy − Epred

(1 + νpred)
εxy‖22.

In order to compute the PDE loss LPDEs, we require higher-order derivatives of the network
output (i.e., the displacements) both in time and space. The partial derivatives in the governing
equations are approximated using a technique called automatic differentiation. This method
evaluates the derivatives by applying the chain rule during back-propagation[25,50]. This ap-
proach has been shown to be more efficient than conventional numerical methods for estimating
derivatives (i.e., finite difference, symbolic differentiation, etc.)[51–52].

In some cases, we consider hard constraint ICs and BCs. Meaning, we impose the ICs and
BCs on the network outputs before evaluating the governing equations[47]. More information
on hard constraints will be discussed in Subsection 2.3. As such, the loss function is simplified
into two loss terms,

L(θNN, θmat) = wDataLData + wPDEsLPDEs.

The values of the weights for each example are listed in Appendix A.
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2.3 Hard constraint ICs and BCs
In PINNs, ICs and BCs are usually weakly imposed as soft constraints due to simplicity.

However, soft constraints do not guarantee the approximate solution to satisfy the ICs and
BCs, which can affect the accuracy of the parameter prediction. Hence, we also impose ICs and
Dirichlet-type BCs via hard constraints[47] to ensure the PDEs satisfy the ICs and Dirichlet-type
BCs exactly.

Let us consider N (x) to be the network output, and we aim to satisfy the ICs and Dirichlet-
type BCs such that

N ′(x) = g0(x), x ∈ ΓD ∪ Ω0,

where ΓD ⊂ ∂Ω is a subset of the boundary, and Ω0 is the initial domain. The hard constraint
is achieved by using two auxiliary functions g(x) and `(x) (see Figs. 2(b) and 2(d)) such that

N ′(x) = g(x) + `(x)N (x).

Here, g(x) is a function that satisfies the required ICs and BCs (which could be either zero or
non-zero). Further, `(x) is a function that satisfies the following conditions:

{
`(x) = 0, x ∈ ΓD ∪ Ω0,

`(x) > 0, x ∈ Ω \ (ΓD ∪ Ω0).

Interested readers can refer to Ref. [47] for more information on defining suitable auxiliary
functions.

In this study, we compare the performance of soft constraints and hard constraints. The
choice of `(x) is not unique, and based on our experience, it influences the prediction accuracy.
For instance, in the 2D examples, we consider two continuous functions and a discontinuous
function for `(x) and compare their performance. For the continuous functions, we choose
g(x) = 0 and `(x) = x, and g(x) = 0 and `(x) = 2ex

ex+1 − 1. For the discontinuous function,
we choose g(x) = 0 and `(x) = 1{x>0}. All the three hard constraint options outperform the
soft constraint. Among the hard constraints, the discontinuous and sigmoid auxiliary functions
yield the best results; further research is required to better understand the effect of the auxiliary
function characteristics on prediction accuracy.
2.4 Additional technical details

In many solid mechanics problems, the displacements and stresses are often several orders of
magnitude different from O(1). This wide spread of magnitude orders can present a challenge for
the network training process. In the 2D examples with g(x) = 0, to achieve an accurate solution,
we scale the network outputs (displacement and stresses) by their corresponding maximum
absolute values obtained from the observation data, via an output transformation function.
This step not only ensures that the magnitude of the network outputs is of O(1), but also
circumvents the need to non-dimensionalize the PDEs, as the output variables are mapped
to their physical quantities before computing the PDE loss. After transforming the network
outputs, we apply hard constraints to the variables,

ui = u∗i `(x)Nui ,

σij = σ∗ij`(x)Nσij .

Here, (u∗x, u∗y, σ∗xx, σ∗yy, σ∗xy) (see Figs. 2(c) and 2(d)) are the maximum absolute displacements
and stresses from observational data used for variable scaling.

When approximating unknown variables, the estimated values can converge to a local mini-
mum or trivial solution that satisfies the governing equations but are unrealistic in the physical
system. As such, we use a tanh function to constrain the approximation to a realistic range of
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values. This modification helps guide the network toward meaningful estimations. In particular,
in the 2D dynamic example, we set

Epred = 5× 106 × (tanh Êpred + 1), νpred =
1
4
(tanh ν̂pred + 1),

where (̂·)pred is an auxiliary variable, and (·)pred is a scaled variable for use in the PDE calcu-
lation. This conversion ensures that all network-predicted auxiliary variables are of a similar
scale, which helps improve solution convergence.

3 Results

Before we apply PINNs to the examples, we first examine suitable observation point sampling
and boundary constraint methods, detailed in Subsections 3.1 and 3.2. After we identify an
optimal observation point sampling strategy and boundary constraint method, we apply the
optimal composition to estimate the unknown parameters in each test case. The results are
reported in Subsections 3.3 and 3.4.
3.1 Observation point sampling
3.1.1 1D vibration examples

In the two 1D vibration examples, we test the accuracy of the estimated αpred by computing
the relative errors for four sets of sampling points with varying densities. These sampling points
are shown in Figs. 3(a)–3(d). We run the longitudinal and lateral vibration examples for each
sampling point test, using 500 thousand and 1 million iterations, respectively. At the final
iteration, we record the relative errors and plot them versus the number of observation points
in Figs. 3(e) and 3(f). To sample the PDE collocation points, we use random sampling in both
examples. Specifically, in the longitudinal vibration example, we use NPDEs

d = 20 (spatial-
temporal domain points), NPDEs

b = 10 (boundary points), and NPDEs
i = 10 (initial temporal

points). Meanwhile, in the lateral vibration example, we use NPDEs
d = 100 (spatial-temporal

points), NPDEs
b = 50 (boundary points), and NPDEs

i = 50 (initial temporal points).
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Fig. 3 Observation point sampling convergence study. We consider four sets of observation points
to investigate the effects of sampling point density on parameter prediction accuracy: (a) 660
observation points; (b) 330 observation points; (c) 66 observation points; (d) 9 observation
points. In both (e) and (f), the error reduces with increasing the number of observation points
(color online)
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In Figs. 3(e) and 3(f), we observe that the increase in the observation points leads to a
reduction in the relative error by almost an order of magnitude, with the most significant drop
occurring from 9 to 66 sample points in both examples; the relative errors are relatively steady
afterward. In the longitudinal vibration example, the relative error reduces from 1.8% to 0.2%
as we increase the sampling data from 9 to 660 observation points, while in the lateral vibration
example, it decreases from 8.68% to 0.85%. It is worth noting that the relative errors in the
lateral vibration example are consistently higher than those in the longitudinal example. This
difference in errors can be attributed to the Euler-Bernoulli beam equation having a higher-order
derivative (a PDE of fourth order in space and second order in time ).
3.1.2 2D steady-state examples

In our experimentation, we discover that the observation point distribution plays a signif-
icant role in estimating the unknown parameters in the 2D examples. As such, we perform
a comparative study on the observation point sampling strategies to evaluate their influence
on the unknown parameter prediction for the 2D steady-state problems to identify an efficient
sampling approach. We consider three methods (see Fig. 4). In Method 1, we sample 121 points
near the fixed boundary bounded by x ∈ [0, 1]m and y ∈ [0, 1]m, and 129 observation points
in the rest of the interior (x, y) region. In addition, we sample a total of 190 points on the top,
bottom, and right boundaries. In Method 2, we uniformly distribute 440 observation points
in the spatial domain. Finally, in Method 3, we sample a total of 440 boundary points on the
top, bottom, left, and right edges. Across all the three methods, we use PDE collocation point
sampling with spatial domain points NPDEs

d = 100 and boundary points NPDEs
b = 50.
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Fig. 4 Observation point sampling for the 2D steady-state examples. We investigate the effects
of three observation point sampling strategies on parameter prediction accuracy for the 2D
steady-state examples. A total of 440 observation points are sampled in each of the three
methods. (a) In Method 1, we concentrate sampling points near the fixed end of the beam.
(b) In Method 2, we place sampling points uniformly over the spatial domain. (c) In Method
3, we sample the boundary points only (color online)

The estimated unknown parameters, Epred and νpred, are shown in Fig. 5. Different ob-
servation point sampling methods do not significantly influence the convergence of Epred. We
observe that Epred quickly converges to an exact value in all the three sampling methods for
linear elastic and Neo-Hookean test examples. On the other hand, the distribution of obser-
vation points has a significant effect on νpred; νpred fails to converge in Method 2 (uniformly
distributed observation points) and Method 3 (observation points on the boundary only). This
inconsistency is due to the fact that, by Saint Venant’s principle, Poisson’s effect is insensitive
in the regions far from the boundaries. In the cantilever beam stress profiles, we observe con-
centrated stresses near the fixed end, and the stresses rapidly decay to close to zero in the free
end. As such, observation points away from the fixed end may not provide enough information
for the network to recover the true value of ν, especially in the cases where the magnitude order
of ν is substantially smaller than that of E.
3.1.3 2D dynamic example

In the 2D dynamic example, we perform a comparative study to examine the accuracy of
the predicted parameters with various amounts of temporal reference data. In Method 1, we
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Fig. 5 Three observation point sampling strategies for the 2D linear elastic and hyperelastic steady-
state examples. The convergence behavior and the relative errors of Epred and νpred are shown.
(a) In the linear elastic case, the relative errors of Epred and νpred are 0.047% and 0.539%
for Method 1, 0.047% and 1.745% for Method 2, and 0.546% and 90.264% for Method 3,
respectively. (b) In the hyperelastic case, the relative errors of Epred and νpred are 0.046% and
0.059% for Method 1, 0.497% and 2.392% for Method 2, and 8.402% and 49.43% for Method
3, respectively (color online)
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extract reference data from 11 time frames with t = [0, 0.1, 0.2, · · · , 0.8, 0.9, 1] s in the FEA
displacement and stress fields. In Method 2, we extract reference data from 6 time frames
with t = [0, 0.1, 0.2, 0.3, 0.4, 0.5] s. Finally, in Method 3, we extract reference data from 3 time
frames with t = [0, 0.1, 0.2] s. For each method, we run the inverse analysis with 5 independent
networks. Each network has 3 hidden layers, with 20 neurons per layer.

The estimated unknown parameters, Epred and νpred, are shown in Fig. 6. As demonstrated,
we achieve satisfactory Epred and νpred using reference data from as little as 3 time frames (the
first time frame is the ICs). Similar to Subsection 3.1.2, the estimation of Epred is not affected
by the time series sampling method; reducing the volume of reference data in the temporal
domain does not have an adverse effect on Epred. On the contrary, our results demonstrate
improved accuracy in νpred when fewer reference data are used. One reason could be that, as
the volume of reference data increases, one would need sufficiently large networks to capture

fy
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Fig. 6 Time series sampling. We consider three time series sampling strategies. The convergence
behavior and the relative errors of Epred and νpred are shown. In Method 1, we extract 11 time
frames from the FEA displacement and stress fields to use as the reference data. The relative
errors for Epred and νpred are 5.510% and 2.959%, respectively. In Method 2, we extract 6
time frames. The relative errors for Epred and νpred are 1.561% and 5.321%, respectively. In
Method 3, we extract 3 time frames. The relative errors for Epred and νpred are 2.031% and
1.378%, respectively. Our networks are able to achieve satisfactory Epred and νpred using the
reference data from as little as 3 time frames (color online)
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the interdependency between variables. However, given that the unknown parameters in our
application are time-independent, all time frames in the training process are unnecessary. As
such, it is found that Method 3 is an optimal choice, as it produces the most accurate predictions
and is the most computationally efficient among the three methods.
3.1.4 Summary of observation point sampling strategy

The observation point sampling technique used in the present work is summarized in Fig. 7.
For the 1D examples, we randomly distribute 160 points along the boundary bounded by
x ∈ [0, 1]m and t ∈ [0, 1] s and 500 points in the interior domain. We then compute the
analytical solutions given their (x, t) coordinates at the observation points. The analytical
solution for longitudinal vibration is u∗ = sin(πx) cos(πt). Meanwhile, the analytical solution
for lateral vibration is u∗ = sin(πx) cos(π2t). For the 2D steady-state examples, we sample 121
points near the fixed boundary bounded by x ∈ [0, 1]m and y ∈ [0, 1]m, and randomly distribute
129 observation points in the remaining (x, y) region. In addition, we sample an additional
190 points randomly distributed on the top, bottom, and right boundaries. Lastly, for the 2D
dynamic example, we follow a similar sampling strategy as the steady-state examples. Since
both E and ν are constant in time and given PINN’s ability to uncover material parameters
from incomplete data, it is unnecessary to use observation points from the entirety of t ∈ [0, 1] s.
In the present work, the observation points are extracted at time instances t = [0, 0.1, 0.2] s.
The displacements and stresses at the observation points are used as the reference data. The
number of sample points is chosen arbitrarily in this work.
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Fig. 7 Observation point distribution. (a) We use a total of 660 observation points for the vibration
examples. Among those, 160 points are randomly distributed along the boundaries, and 500
points are randomly distributed in the interior region. (b) We use a total of 440 observation
points for the 2D steady-state examples. Among those, 121 points are concentrated near the
fixed boundary bounded by x 6 1 m; 129 points are sampled in the region x > 1 m; and 190
points are sampled on the top, bottom, and right boundaries. (c) We follow a similar point
distribution strategy as (b) to extract the observation point coordinates at time instances
t = [0, 0.1, 0.2] s; a total of 1 099 observation points are sampled for the dynamic example
(color online)

3.2 Boundary constraint studies
Here, we examine the unknown parameter prediction accuracy using soft and hard con-

straints. In soft constraints, the BCs are enforced directly during the constrained optimization
process by introducing a loss term in the loss function; the governing PDEs are guaranteed to
satisfy the BCs. Meanwhile, in the hard constraints, the neural network architecture is modified
such that the BCs are explicitly enforced (via an auxiliary function) before computing the PDE
loss. This ensures that the BCs are satisfied precisely in the training process. The governing
equation for this example constitutes a fourth-order spatial partial derivative and a second-
order temporal partial derivative. The higher-order spatial and temporal derivatives in the
PDEs amplify noise in the training process, which makes identifying the unknown parameter
in this example a challenging task[53–54].



1052 W. WU, M. DANEKER, M. A. JOLLEY, K. T. TURNER, and L. LU

3.2.1 1D lateral vibration example
In Fig. 8, we compare the accuracy of the parameter αpred using soft constraints and hard

constraints. We test three different hard constraint auxiliary functions in this example; the
auxiliary functions are formulated such that they satisfy the BCs stated in Appendix A. Al-
though the literature has shown that hard constraints offer better predictive power for inverse
designs[47], our results indicate that hard constraints’ performance depends on the auxiliary
function. Interestingly, it is found that soft constraints outperform hard constraints in this
particular example. However, with appropriate auxiliary functions, hard constraints can con-
verge to an acceptable solution faster. The relative error for αpred achieves 0.55% using soft
constraints.

Time-dependent 1D lateral vibration

Soft constraints
Hard constraints with

u(x,t)=sin(πx)+xt2(1−x)Nu

Hard constraints with
u(x,t)=sin(πx)cos(1.5πt)+sin(πx)t2Nu
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Fig. 8 Boundary constraints for the 1D lateral vibration example. We compare the accuracy of
αpred using soft constraints and hard constraints. We consider two hard constraint auxiliary
functions. The convergence behavior and the relative errors of αpred are shown. The results
indicate that the choice of auxiliary function significantly influences the accuracy of αpred. It
is found that soft constraints produce the most accurate estimation of αpred (color online)

3.2.2 2D elastostatic example
We compare the effects of soft and hard constraints on the 2D cantilever beam problem.

For the hard constraint auxiliary functions, we select a smooth, discontinuous function, and a
sigmoid function to enforce the x- and y-displacement conditions. In Fig. 9, we observe that
the convergence characteristic for νpred with a sigmoid auxiliary function is similar to that with
a smooth function; both smooth functions require more iterations for νpred to converge within
a reasonable range compared with a discontinuous auxiliary function. Hard constraints with
discontinuous functions and sigmoid functions provide the best estimations of Epred and νpred.
The relative errors for Epred and νpred with a discontinuous function are 0.047% and 0.539%,
respectively; the errors drop slightly to 0.046% and 0.139% with a sigmoid auxiliary function,
respectively.

As demonstrated in Subsection 3.2.1, it is found that the soft constraint network architecture
is sufficient for accurately identifying the unknown parameter in the time-dependent 1D cases.
Meanwhile, PINNs with properly chosen hard constraints[47] cast significant improvement for
estimating unknown material constants in the 2D examples. This study again highlights the
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Fig. 9 Boundary constraints for the 2D elastostatic example. We examine the accuracy of Epred and
νpred using soft constraints, hard constraints with a smooth function, a discontinuous function,
and a sigmoid function. The convergence behavior and the relative errors of Epred and νpred are
shown. In this example, hard constraints with discontinuous and sigmoid functions produce
the best estimated Epred and νpred (color online)

importance of the auxiliary function selection on the accuracy of unknown parameters for inverse
designs.
3.3 Parameter estimation result: time-dependent 1D examples

The network architecture for the 1D examples contains 3 hidden layers, with 50 neurons
per layer. We set the learning rate to 10−3. In these cases, we aim to estimate the unknown
parameter α in the governing equations. In the longitudinal vibration example, we train the
network with 100 thousand epochs. We repeat the simulation six times, each time with a varied
random seed. The network estimated αpred converges to the exact value, αexact = 1, with
a relative error of (0.133 ± 0.082)%. The resulting displacement field recovers the analytical
solution. In the lateral vibration example, we train the network with 1 million epochs. Similarly,
the simulation is repeated six times with varied random seeds. We use a hyperbolic tangent
function to constrain α to ensure that the estimated value is physical. In particular, we constrain
αpred to [0, 4] by setting αpred = 2(tanh α̂pred + 1), where α̂pred is an auxiliary variable, and
αpred is a scaled variable for the PDE calculation. The network estimate αpred = 0.994, with
a (0.731 ± 0.126)% relative error compared with the exact value, αexact = 1. The L2 relative
error of the resulting displacement field is 2.782%. The best parameter estimation results are
shown in Fig. 10.
3.4 Parameter estimation result: 2D examples

We use five independent neural networks in the 2D examples. For the steady-state examples,
each network has 3 hidden layers, with 15 neurons per layer. For the dynamic example, we use
3 hidden layers per network, with 20 neurons per layer. The performances of various network
architectures are presented in Appendix C. We set the learning rate to 10−3. In these cases, we
aim to estimate the unknown Young’s modulus and Poisson’s ratio, E and ν, in the material
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Fig. 10 1D vibration parameter estimation results. The best estimated results of the unknown pa-
rameter, PINN predictions, and analytical solution of u are provided. (a) The analytical
solution for the longitudinal vibration example is uanalytical = sin(πx)cos(πt). PINNs suc-
cessfully recover αpred for the time-dependent 1D longitudinal example to the true value;
the relative error is 0.00%. (b) The analytical solution for the lateral vibration example is
uanalytical = sin(πx)cos(π2t). The relative error of αpred for the lateral vibration example is
0.55%. The L2 relative error of the displacement fields is 2.832% (color online)

constitutive laws. The steady-state models are trained with 1 million epochs. Meanwhile, the
dynamic model is trained with 1.5 million epochs. We use double-precision floating point in
the 2D examples. For all the three examples, we compute the reference displacements and
Cauchy stresses using an open-source finite element software, FEniCS[55], based on the pre-
defined Eexact and νexact values. The approximate Epred and νpred, as well as the displacement
and stress fields, are shown in Figs. 11 and 12. The relative errors of Epred and νpred, and the
resulting ux, uy, σxx, σyy, and σxy are summarized in Table 1.

The differences in the magnitude order between the displacement and stress fields can pose
a challenge in the training process and influence solution convergence. In the present work, the
displacements range from O(10−1)m to O(10−3)m, while the stresses range from O(1) Pa to
O(102) Pa. To improve convergence, we rescale the network output displacements and stresses
by their respective maximum absolute values in the reference solution. This helps ensure that
the network output variables are all in O(1). Further, the magnitude order disparity between
material parameters, E and ν, can also present difficulties in identifying an accurate solution.
Similar to the 1D examples (see Subsection 3.3), we use a tanh function to not only ensure that
the predicted material constants are in a realistic range but also keep the auxiliary variables
predicted by the network in similar magnitude orders.
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Fig. 11 2D cantilever beam parameter estimation and beam displacements. The estimated values of
E and ν along with the PINN and FEA approximations of ux and uy are provided. (a) In the
2D linear elastic steady-state example, the relative errors of the estimated Epred and νpred

are 0.047% and 0.539%, respectively. The L2 relative errors of the estimated displacement
fields ux and uy are 0.049% and 0.048%, respectively. (b) In the 2D hyperelastic steady-state
example, the relative errors of Epred and νpred are 0.046% and 0.059%, respectively. The
L2 relative errors of the estimated displacement fields ux and uy are both 0.034%. (c) In
the 2D linear elastic dynamic example, the relative errors of Epred and νpred are 2.031% and
1.377%, respectively. The L2 relative errors of the estimated displacement fields ux and uy

are 3.371% and 3.278%, respectively (color online)
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Fig. 12 2D cantilever beam stresses. We provide the PINN and FEA approximations of σxx, σyy,
and σxy. (a) In the 2D linear elastic steady-state example, the L2 relative errors of the
estimated stress fields σxx, σyy, and σxy are 0.018%, 0.553%, and 0.209%, respectively. (b)
In the 2D hyperelastic steady-state example, the L2 relative errors of the estimated stress
fields σxx, σyy, and σxy are 0.004%, 0.087%, and 0.038%, respectively. (c) In the 2D linear
elastic dynamic example, the L2 relative errors of the estimated stress fields σxx, σyy, and
σxy at t = 1 s are 3.084%, 3.388%, and 3.832%, respectively (color online)

In the 2D linear elastic steady-state example, we constrain Epred to [0, 700] kPa and ν to
[0, 0.5]. The network estimates Epred = 99.95 kPa and νpred = 0.298, compared with the
exact values Eexact = 100 kPa and νexact = 0.3. In the 2D hyperelastic steady-state example,
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Table 1 Relative errors of the unknown parameters, Epred and νpred, and the resulting displacements
and stress fields. The relative errors of both the estimated material constants and mechanical
quantities are well under 1% for the steady-state examples. For the dynamic example, the
relative errors of the material parameters and mechanical quantities are under 2.5% and 4%,
respectively
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Case

we constrain Epred to [0, 60] kPa and ν to [0, 0.5]. The exact values of Young’s modulus and
Poisson’s ratio are Eexact = 10 kPa and νexact = 0.3, respectively. The predicted values are
Epred = 10.0 kPa and νpred = 0.300. In the 2D dynamic example, we constrain Epred to
[0, 10]MPa and ν to [0, 0.5]. The exact values of Young’s modulus and Poisson’s ratio are
Eexact = 1 MPa and νexact = 0.3, respectively. The predicted values are Epred = 0.980MPa
and νpred = 0.304. The x- and y-displacements at the free end of the cantilever for t ∈ [0, 1] s
are presented in Fig. 13. The PINN approximate displacements show excellent alignment with
reference data generated from FEniCS. The L2 relative errors for the x- and y-tip displacements
are 3.462% and 3.306%, respectively.
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Fig. 13 2D cantilever beam tip deflection evolution. We compare the displacement at the cantilever
tip against FEniCs for the elastodynamic example. The displacements predicted by PINNs
agree with the FEA solution qualitatively, with the PINN predicted displacements exhibiting
slightly higher dissipation as time evolves. The L2 relative errors of the estimated x- and
y-displacements for time t ∈ [0, 1] s are 0.346% and 3.306%, respectively (color online)

3.5 Transfer learning for inverse problems
We have thus far demonstrated the high predictive power of our methods for learning one

set of material parameters. To demonstrate the applicability and generality of PINNs to diverse
problems, we evaluate the solution accuracy on two additional sets of material parameters for
the linear elastic steady-state example (see Fig. 14). Further, we perform each of the analyses
with transfer learning to determine its effects on solution accuracy. In transfer learning, we use
the network trained with Eexact = 100 kPa and νexact = 0.3 to initialize the network in the two
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Fig. 14 PINN performance on multiple sets of material parameters with and without transfer learn-
ing. We apply PINNs to learn the unknown parameters in the linear elastic steady-state
problem with exact material parameters of (a) Eexact = 50 kPa and νexact = 0.3 and (b)
Eexact = 150 kPa and νexact = 0.3 to compare the solution accuracy with and without trans-
fer learning. The convergence behavior and relative errors for Epred and νpred, as well as
the training loss of the models are provided. While both methods converge to similar Epred

and νpred in (a), it appears that starting training de novo yields better estimate of νpred,
compared with that with transfer learning in (b) (color online)

cases.
As shown in Fig. 14, our methods are able to successfully uncover a diverse range of material

parameters. In the example with Eexact = 50 kPa and νexact = 0.3, the relative errors of Epred

and νpred without transfer learning are 0.193% and 0.539%, while those with transfer learning
are 0.193% and 0.139%, respectively. In the example with Eexact = 150 kPa and νexact =
0.3, the relative errors of Epred and νpred without transfer learning are 0.104% and 0.139%,
while those with transfer learning are 0.0459% and 4.749%, respectively. These results indicate
that training the inverse problems de novo yields a more accurate estimation of the unknown
parameters.

4 Discussion

We present a generalized approach for PINNs to solve inverse problems in solid mechanics.
Traditionally, the inverse FEA is a popular choice for solving inverse problems. However, the
convergence of inverse FEA is highly dependent on the mesh quality and measured data. Al-
though the application of PINNs for solving the inverse problem in solid mechanics is still in
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its infancy, the neural network approach for inverse problems has been demonstrated to have
advantages, such as its insensitivity to noisy and incomplete data[56]. A rigorous comparison
of prediction accuracy against the literature is infeasible, because we could not find similar
application examples in the literature. As a rough comparison against the previous studies,
Haghighat et al.[27] reported relative material parameter approximation errors in the range of
5.86% in a von Mises elastoplasticity problem, and Zhang et al.[46] reported a relative error
in the range of 3% to 13.9% when estimating the shear modulus of a soft circular inclusion
embedded within a square domain. Our method is able to successfully identify the unknown
material parameters within 1% of relative errors in 4 out of 5 test examples, and within 2.5%
in all examples. This suggests that our novel approach can produce highly accurate estima-
tions of material parameters in the linear elastic and hyperelastic domains in both steady-state
and dynamic situations. As such, PINN has substantial potential for application in diverse
fields dependent upon solid mechanics and biomechanics. The excellent prediction accuracy in
our work indicates a promising framework for improving engineering system performance and
material designs.

Although publications on PINNs have grown exponentially since the publication by Raissi et
al.[26] in 2019, the previous work on applying PINNs for solving inverse problems in continuum
solid mechanics is sparse, especially for 2D or three-dimensional (3D) problems. Researchers
recently have applied the weak form of conservation equations to identify material properties[57].
However, the weak form requires a denser mesh than the strong form to obtain accurate integral
estimations and parameter predictions. This limitation will result in higher computational costs
as the complexity of the problem increases. At the time of writing, there are only a few research
articles that describe a framework for material identification in the linear elastic and hyperelastic
domains, utilizing the strong form of the conservation laws[27,46]. This is partially due to the
challenges of obtaining satisfactory parameter estimations for inverse problems in most practical
engineering applications. In many realistic solid mechanics problems, the mechanical quantities
(i.e., the displacement and stress fields) as well as the material constants (e.g., Young’s modulus
E and Poisson’s ratio ν) are often differed by multiple orders of magnitude. The displacement
fields are commonly tiny, in the present work ranging from O(10−1)m to O(10−3)m, compared
with the magnitude of the stress fields, in the present work ranging from O(1) Pa to O(102) Pa.
With such a small displacement magnitude, the loss term LData for the displacement fields
becomes insensitive to the deviations of network parameters, θNN. In addition, the magnitude
of the material parameter E is commonly many orders higher than the material parameter ν.
This huge disparity between E and ν presents difficulties in identifying an accurate solution for
ν as E dominates the mechanical response mathematically. Because of the preceding reasons,
a pre-trained network is used to estimate the unknown parameters of interest in Refs. [27]
and [46].

Using a pre-trained network may reduce training time for problems of similar variants. Oth-
erwise, it may be less helpful. The inversion examples in the present work are performed de
novo without reliance on a pre-trained network; this highlights the inherent generalizability of
our framework. We mitigate the challenges described above through the following steps. First,
we use an independent network for each output variable, as suggested in Ref. [27]. Second, we
determine appropriate observation point sampling strategies for the problems of interest to en-
sure that the influence of all material parameters is captured (as demonstrated in the cantilever
beam example, the Poisson’s effect is insensitive in the regions away from the fixed boundary,
which contributes to the difficulties of approximating the unknown parameter ν). Third, we
reduce the weight of PDE loss to increase the influence of data in the training process. Fourth,
we transform each network output variable by multiplying its corresponding maximum absolute
value in reference data and apply hard constraints if needed. In our experience, the previous four
steps are sufficient for identifying the material parameters in most cases. In situations where
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the network fails to converge due to considerable differences between E and ν, for example, in
our 2D linear elastic dynamic case, we reduce the magnitude order of E in the approximation
process to improve the influence of ν in the estimated stress fields. In linear elastic problems,
the material parameter E and the displacement fields are inversely proportional. That means,
reducing the magnitude order of E will increase the same magnitude order in the predicted
displacement fields. As such, appropriate transformation of the predicted displacement fields is
applied. All simulations are performed on an NVIDIA A100-SXM4-40GB GPU with an Intel
Xeon CPU E5-2680 v3 computing node. The training time for the time-dependent longitudinal
vibration (100 thousand iterations) and time-dependent lateral vibration (1 million iterations)
is around 1.3 min and 26 min, respectively. The training time of the linear elastic steady-state
(1 million iterations), hyperelastic steady-state (1 million iterations), and linear elastic dynamic
(1.5 million iterations) examples is around 2.2 h, 2.5 h, and 5.8 h, respectively. In our examples,
transfer learning does not offer substantial improvements in accuracy and computational time.

Further, PINNs hold several benefits over traditional engineering methods. Traditional nu-
merical methods, such as finite element and finite volume, typically rely on complex spatial and
temporal discretization schemes that could easily result in thousands of lines of code. In addi-
tion, the solution accuracy in classic numerical methods strongly depends on the mesh quality
and element formulation. Numerical solutions from mesh-based finite element and finite volume
methods are highly susceptible to numerical instability when handling complex geometry due
to element distortion. Unlike classic mesh-based methods, PINNs are mesh-free, which elim-
inates element-related challenges. In addition, PINNs work directly with the strong form of
conservation equations. The partial derivatives in the governing equation are computed using
automatic differentiation, bypassing the need for numerical discretization schemes. Further-
more, the development of high-level deep learning libraries such as DeepXDE[25] has allowed
PINN frameworks to be easily set up in less than one hundred lines of code. These simple-to-use
and user-friendly libraries drastically reduce the time needed to build and apply algorithms for
inverse analyses. Finally, unlike traditional numerical methods, in which the parameter search
process starts from scratch in every new inverse analysis, the PINN network parameters can be
stored and reused when solving similar problems to improve network training time and solution
accuracy.

Potential applications for determining material properties using PINNs are diverse. Com-
putational modeling of the physical behavior of biological tissues has significant potential to
inform patient-specific medicine[58–60]. For example, the in silico modeling of cardiac valves has
the potential to allow the optimization of valve repair techniques before actual application of the
repair in a patient[61–63]. However, accurate results will depend on knowledge of the material
properties of the valve leaflets, which may vary across age, valve type, and specific pathology.
The capability of PINNs to determine physical parameters even in the setting of missing or
noisy data makes it well suited to extract material properties from clinical medical imaging (3D
ultrasound, computed tomography, magnetic resonance imaging) of individual patients, which
in turn facilitates the application of precision medicine based on computational models. This
example generalizes to many applications common in biological systems. The combination of
sparse data and a physical framework can be leveraged to answer questions where traditional
approaches may not be feasible or even capable of generating a solution.

5 Conclusions

We describe the development and use of PINNs to identify the unknown material parameters
in five classic solid mechanic examples. We compare the solution accuracy of soft and hard
constraint formulation, as well as explore the optimal observation sampling point strategies.
Further, we study the effects of transfer learning on solving inverse problems. We achieve
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solution accuracy within 2.5% in all examples. This work provides proof of concept that our
PINN framework will work for material parameter estimation.

In the examples, it is found that the optimal choice of hard boundary auxiliary functions
is problem-dependent. In this study, we select the auxiliary functions by trial and error to
achieve better accuracy. In the future, we will develop an automatic approach for identifying the
optimum auxiliary function. With a robust PINN framework, we plan to extend the application
of PINNs in multiple domains, such as complex biological systems in medicine.
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Appendix A Additional details on the test examples

A1 1D longitudinal vibration

In the longitudinal vibration example, a beam with the length L = 1 m is subject to an initial
longitudinal vibration u, as shown in Fig. A1.

(0, 0) (1, 0)
u

Fig. A1 Longitudinal vibration. The beam is fixed on both ends. An initial longitudinal vibration,
u(x, 0) = sin(πx), is applied to the beam

The mathematical model of this example can be characterized by the wave equation,

∂2u

∂t2
= α2 ∂2u

∂x2

with the following BCs and ICs:

u(0, t) = u(1, t) = 0 for 0 6 t 6 1,

u(x, 0) = sin(πx),
∂u(x, 0)

∂t
= 0 for 0 6 x 6 1.

The unknown variable α is set to 1. The analytical solution of this example is

u∗ = sin(πx) cos(πt).

In this example, the weights in the loss function wi are set to 1, where i can be ICs, BCs, PDEs, and
data.

A2 1D lateral vibration

In the second example, an Euler-Bernoulli beam with the length L = 1 m is subject to an initial
lateral displacement u, as shown in Fig. A2.

(0, 0) (1, 0)u

Fig. A2 Lateral vibration. The beam of length L = 1 m is fixed on both ends. We apply an initial
lateral vibration, u(x, 0) = sin(πx), to inject lateral vibration to the system

The Euler-Bernoulli beam equation of the lateral vibration system shown above is expressed as

∂2u

∂t2
= −α2 ∂4u

∂x4
(A1)

with the following BCs and ICs:

u(0, t) = u(1, t) = 0 for 0 6 t 6 1,

u(x, 0) = sin(πx),
∂u(x, 0)

∂t
= 0 for 0 6 x 6 1,

∂2u(0, t)

∂x2
=

∂2u(0, t)

∂x2
= 0 for 0 6 t 6 1.
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Similar to the 1D lateral vibration example, we set α to 1. The analytical solution of Eq. (A1)
becomes

u∗ = sin(πx) cos(π2t).

In this example, the weights in the loss function wi are also set to 1, where i can be ICs, BCs, PDEs,
and data.

A3 2D linear elastic cantilever beam

In the third example, we consider a 10 m × 1 m cantilever beam fixed on the left end, as shown in
Fig. A3. The beam is made of linear elastic material and is subject to a downward body force fy = 1 N.

(0, 0) (10, 0)

(10, 1)
fy

Fig. A3 2D linear elastic cantilever beam, whose dimension is 10 m × 1 m and is subject to a down-
ward body force fy = 1N (color online)

In this steady-state example, we assume plane-stress formulation. The momentum balance equation
is expressed as

σij,j + fi = 0.

The isotropic linear elastic material constitutive model is defined as

σ = C · ε

with

σ =




σxx

σyy

σxy


 , C =

E

(1− ν2)




1 ν 0
ν 1 0
0 0 (1− ν)


 , ε =




εxx

εyy

εxy


 .

The kinematic relation is

εxx =
∂ux

∂x
, εyy =

∂uy

∂y
, εxy =

1

2

(∂ux

∂y
+

∂uy

∂x

)
.

Young’s modulus and Poisson’s ratio of this example are 105 Pa and 0.3, respectively. The weights in
the loss function wPDEs and wData are set to 10−10 and 1, respectively.

A4 2D hyperelastic cantilever beam

In the fourth example shown in Fig.A4, we consider the same geometry as the third example but
with Neo-Hookean material.

(0, 0) (10, 0)

(10, 1)
fy

Fig. A4 2D hyperelastic cantilever beam, whose dimension is 10 m× 1 m and is subject to a body
force fy = 0.1N (color online)

The constitutive model for compressible isotropic hyperelastic material is expressed as

σij =
1

J
PikFT

kj ,

where F is the deformation gradient tensor defined as Fij = δij + ui,j , J = det F , and P is the first
Piola-Kirchhoff stress tensor. The first Piola-Kirchhoff stress for compressible Neo-Hookean material
is as follows:

P =
∂Ψ

∂F
= µF + (λ ln J − µ)F−T,
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where λ and µ are Lamé’s elasticity parameters. Further, Ψ is the strain energy density function.
Assume that the plane-strain formulations are

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

The Neo-Hookean strain energy density function Ψ is expressed as

Ψ(I1, J) =
1

2
λ(ln J)2 − µ ln J +

1

2
µ(I1 − 2),

where I1 = tr(F T · F ). The weights in the loss function wPDEs and wData are set to 10−8 and 1,
respectively.

A5 2D dynamic cantilever beam

In the fifth example, we extend the 2D linear elastic cantilever beam example to dynamic analy-
sis. The beam has the density (kg · m−3). Young’s modulus and Poisson’s ratio are 106 Pa and 0.3,
respectively. The applied body force in this example is fy = 5 N. The momentum balance equation
becomes

σij,j + fi = ρ∂ttui.

Consider the plane-strain formulations. Then, the C matrix in the constitutive relation σ = C · ε is

C =
E

(1 + ν)(1− 2ν)




(1− ν) ν 0
ν (1− ν) 0
0 0 (1− 2ν)


 .

The weights in the loss function wPDEs and wData are set to 10−8 and 1, respectively.

Appendix B FEA

We use FEniCS to generate the displacement and stress reference data for the 2D examples. The
cantilever beam geometry is discretized into 1 000 second-order rectangular elements with ∆x = ∆y =
0.1 m. For the linear elastic static example, we validate the maximal deflection obtained from FEA

against the analytical solution from the Euler-Bernoulli beam theory: uy,max = ρgL4

EI
. The maximum

deflections from the analytical solution and FEA are −0.15 m and −0.151 m, respectively. The relative
error is approximately 0.67%. In the 2D dynamic example, a Newmark implicit time integration
scheme is used to facilitate the evolution of displacement and stress in time. We validate the frequency
of the y-tip displacement against the first natural frequency for the cantilever beam derived from the

Euler-Bernoulli beam theory, i.e., f = 1.8752

2πL2

√
EI
ρA

. The natural frequency from the analytical solution is

1.61 Hz, and the natural frequency from the FEA solution is 1.66 Hz. The relative error is approximately
3%.

Appendix C Variation of network architectures

In this section, we study the influence of network architectures on PINNs’ predictive capability.
In our work, we use 5 independent networks to estimate Epred and νpred in the 2D examples. Each
independent network has 3 layers of neurons; the same numbers of neurons are applied to each layer.
Here, we vary the width of the network by adjusting the numbers of neurons to 10, 15, and 20 neurons
per layer. We abbreviate the three network architectures to 5-3-10, 5-3-15, and 5-3-20, wherein the
first number refers to the number of independent networks, the second number refers to the number
of layers per network, and the last number refers to the number of neurons per layer. The resulting
Epred and νpred are presented in Fig. C1. As shown, the width of the neural network does not have
a significant effect on the convergence of Epred; Epred converges rapidly to the ground truth in less
than 1 × 105 epochs. As we increase the number of neurons from 10 to 15, the relative error reduces
from 7.04% to 0.18%. However, νpred starts to deviate from the ground truth as we keep increasing
the width of the network to 20 neurons per layer. This indicates that a network width of 15 is most
suitable for the examples at hand.
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Fig. C1 Parametric study of the network size on prediction accuracy. We compare the relative errors
of Epred and νpred for three different network sizes. In the first network architecture (5-3-
10), the relative errors of Epred and νpred are 0.047% and 7.04%, respectively. In the second
network architecture (5-3-15), the relative errors of Epred and νpred are 0.047% and 0.18%,
respectively. In the third network architecture (5-3-20), the relative errors of Epred and νpred

are 0.21% and 2.56%, respectively (color online)


