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Abstract We present a Gaussian process (GP) approach, called Gaussian process hy-
drodynamics (GPH) for approximating the solution to the Euler and Navier-Stokes (NS)
equations. Similar to smoothed particle hydrodynamics (SPH), GPH is a Lagrangian
particle-based approach that involves the tracking of a finite number of particles trans-
ported by a flow. However, these particles do not represent mollified particles of matter
but carry discrete/partial information about the continuous flow. Closure is achieved by
placing a divergence-free GP prior ξ on the velocity field and conditioning it on the vor-
ticity at the particle locations. Known physics (e.g., the Richardson cascade and velocity-
increment power laws) is incorporated into the GP prior by using physics-informed addi-
tive kernels. This is equivalent to expressing ξ as a sum of independent GPs ξl, which we
call modes, acting at different scales (each mode ξl self-activates to represent the forma-
tion of eddies at the corresponding scales). This approach enables a quantitative analysis
of the Richardson cascade through the analysis of the activation of these modes, and
enables us to analyze coarse-grain turbulence statistically rather than deterministically.
Because GPH is formulated by using the vorticity equations, it does not require solving
a pressure equation. By enforcing incompressibility and fluid-structure boundary condi-
tions through the selection of a kernel, GPH requires significantly fewer particles than
SPH. Because GPH has a natural probabilistic interpretation, the numerical results come
with uncertainty estimates, enabling their incorporation into an uncertainty quantifica-
tion (UQ) pipeline and adding/removing particles (quanta of information) in an adapted
manner. The proposed approach is suitable for analysis because it inherits the complex-
ity of state-of-the-art solvers for dense kernel matrices and results in a natural definition
of turbulence as information loss. Numerical experiments support the importance of se-
lecting physics-informed kernels and illustrate the major impact of such kernels on the
accuracy and stability. Because the proposed approach uses a Bayesian interpretation, it
naturally enables data assimilation and predictions and estimations by mixing simulation
data and experimental data.
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1 Introduction

The Navier-Stokes (NS) equations are difficult to both analyze[1] and approximate numeri-
cally because of the emergence of multiple nonlinearly coupled scales. Even from a physicist’s
perspective, they remain poorly understood, and we still do not have a clear definition of tur-
bulence beyond “the complex, chaotic motion of a fluid”[2]. The NS equations are also difficult
to solve because they contain a dual description of the underlying physics that is Lagrangian
in its representation of Newton’s second law and Eulerian in its description of the pressure
equation. Thus, classical methods for solving the NS equations are divided into Eulerian (grid-
based) and Lagrangian (meshfree particle-based) methods. While Eulerian methods are more
efficient in solving pressure equations, they require a high resolution to solve the Lagrangian
effects of the equations. While Lagrangian methods are efficient at replicating conservation
laws (e.g., entropy, momentum, and energy), they require a large number of particles to solve
the Eulerian aspects of the equations (e.g., solve for the pressure given the position/velocities
of the particles).
1.1 Smoothed particle hydrodynamics (SPH)

SPH is a prototypical Lagrangian meshfree particle method (in which the continuum is as-
sumed to be a collection of imaginary particles) introduced in the late 1970s for astrophysics
problems[3–4] (see Ref. [5] for a review). Although SPH has been widely applied to various areas
of engineering and science (see Ref. [6] for an overview), including computational fluid dynam-
ics (CFD), it suffers from the difficulties associated with the Lagrangian methods and “still
requires development to address important elements which prevent more widespread use”[7].
These elements (identified as major challenges in Ref. [7]) include (i) convergence, consistency,
and stability, (ii) boundary conditions, (iii) adaptivity, (iv) coupling to other models, and (v)
applicability to the industry.
1.2 Gaussian process hydrodynamics (GPH)

This paper introduces GPH as an information/inference-based approach into approximat-
ing the NS equations. Although numerical approximations and statistical inferences may be
considered as separate subjects, they are intimately connected through the common objective
of forming estimations with partial information[8], and kernel/GP methods provide a natural
(and minimax optimal[9]) approach to computing with missing information. In the proposed
GPH approach, flow-advected particles carry partial information regarding the underlying vor-
ticity/velocity fields, and (information gap) closure is achieved by randomizing the underlying
velocity field via a Gaussian process (GP) prior with a physics-informed kernel, ensuring that
incompressibility and boundary conditions are exactly satisfied and power/scaling and energy
transfer laws are satisfied statistically. From this perspective, turbulence can be defined and
quantified as information loss between the true dynamics of the NS equations and those re-
sulting from carrying only partial information about the underlying fields. Although GPH has
similarities with SPH, it also has several significant differences. (i) In SPH, particles represent
mollified particles of matter, whereas in GPH, particles represent discrete/partial information
about the continuous flow. (ii) SPH is typically formulated on the velocity and requires solv-
ing a pressure equation, whereas GPH is formulated on the vorticity equations and Eulerian
aspects (e.g., recovering the velocity field) are solved by using GP regression. (iii) By enforcing
incompressibility and fluid-structure boundary conditions through the selection of the kernel,
GPH requires significantly fewer particles. (iv) By carrying variance information, GPH en-
ables the adding and removing of quanta of information from the flow in an adapted manner.
While SPH recovers fields through smooth approximations of delta Dirac functions with com-
pactly supported kernels, GPH focuses on the optimal recovery[9–10] of the missing information
with adapted/programmed kernels[11]. Its representation of the multiscale structure of the flow
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through regression additive kernels enables a corresponding statistical decomposition of the
flow at different scales (modes), and a quantitative analysis of the Richardson cascade through
the analysis of the activation of these modes[11]. Its focus on informing the kernel about the
underlying physics and boundary conditions creates a different strategy for solving some of the
major challenges of SPH listed above. Its probabilistic/Bayesian interpretation enables it to be
incorporated into uncertainty quantification (UQ) pipelines.
1.3 Vortex methods

Because GPH resembles vortex methods[12–13] (owing to its formulation on the vorticity
equations), it can also be interpreted as a generalization of such methods to arbitrary kernel
approximations of the underlying vorticity and velocity fields based on discrete vorticity infor-
mation carried by the Lagrangian particles. However, the velocity field is not recovered from the
continuous vorticity field using the Biot-Savart law but from the available partial information
about the continuous vorticity field using kernel (GP regression) representer formulae.
1.4 Solving partial differential equations (PDEs) as learning problems

Two main approaches are available for solving PDEs as learning problems: (i) artificial
neural network (ANN)-based approaches, with physics-informed neural networks[14–15] as a
prototypical example and (ii) GP-based approaches, with Gamblets[16–18] as a prototypical
example. Although GP-based approaches are more theoretically well-founded[9] and have a
long history of interplay with numerical approximation[8,19–21], they were essentially limited to
linear/quasi-linear/time-dependent PDEs and have only recently been generalized to arbitrary
nonlinear PDEs[22] (and computational graphs[23]).
1.5 Physics-informed kernels

While both the ANN and GP methods replace the solution to the PDE with an ANN/GP
and are physics-informed by constraining/conditioning the ANN/GP to satisfy the PDE over a
finite number of degrees of freedom (e.g., collocation points), GP methods can also be physics-
informed through their kernels[16]. The importance of employing physics/PDE-informed kernels
is well understood in numerical approximation/homogenization by using Darcy’s elliptic PDE
−div(a∇) (with a rough conductivity a) as a prototypical example. While employing a smooth
kernel may result in arbitrary poor convergence[24], employing a physics-informed kernel en-
sures an optimal convergence rate[16]. Although Owhadi[16] proposed identifying such kernels
by filtering white noise using the solution operator of the PDE (i.e., replacing the right-hand
side/source term with white noise and conditioning the resulting randomized solution on a finite
number of linear measurements), this approach is impractical for nonlinear PDEs because the
resulting solution is not a GP.

The approach proposed in this paper involves selecting a physics-informed kernel by pro-
gramming the kernel[11] to satisfy (i) the divergence-free condition of the velocity field, (ii)
the boundary conditions, (iii) the statistical power laws, and (iv) the Richardson cascade of
turbulence.
1.6 Outline of the article

The remainder of the article is organized as follows. Sections 2 and 3 introduce GPH
in the setting of the vorticity formulation of the forced NS equations. Section 4 describes
representer formulae for the underlying GP formulation with divergence-free kernels. Section 5
describes the design of physics-informed kernels for GPH. Section 6 quantifies the accuracy of the
proposed approach as the L2 norm of its residual, interprets that residual as an instantaneous
measure of information loss (resulting from the discretization of continuous dynamics), and
presents an information loss interpretation and quantification of turbulence. Section 7 presents
numerical experiments. In all these sections, we use figures and simulations from Section 7 to
illustrate the proposed method. Please refer to Section 7 for their detailed descriptions and
to https://www.youtube.com/user/HoumanOwhadi for corresponding animations. Section 8
presents further discussion.
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2 Set up

Let Td be a torus of side length 2π and dimension d = 2 or 3. Consider the forced NS
equations on Td as

{
∂tu + u∇u = ν∆u−∇p + f on Td,

div u = 0 on Td
(1)

with a smooth zero-mean flow initial condition u(x, 0) = u0(x) and an external volumetric force
f(x, t), where u0 ∈ C∞(Td),

∫
Td u0(x) dx = 0, f ∈ C∞(Td × [0,∞)), and

∫
Td f(x, t) dx = 0 for

all values of t.
By introducing the vorticity

ω(x, t) := curlu(x, t) (2)

and g(x, t) = curl f(x, t), (1) is equivalent to the following equations:

∂tω + u∇ω = ν∆ω + g(x, t), d = 2, (3)
∂tω + u∇ω = ν∆ω + ω∇u + g(x, t), d = 3 (4)

with the initial condition ω(x, 0) = ω0(x) := curlu0(x).

3 GPH

Let X1, X2, · · · , XN be N distinct (and possibly homogeneously distributed) collocation
points in Td. For i ∈ {1, 2, · · · , N}, let t → qi(t) be the trajectory formed by a particle
advected by the flow velocity u(x, t), which is defined as the solution to

q̇i(t) = u(qi(t), t) (5)

with the initial condition q0
i = Xi ∈ Td. For i ∈ {1, 2, · · · , N}, let

Wi(t) := ω(qi(t), t) (6)

be the value of the vorticity at (qi(t), t). (5), (3), and (4) imply that t → Wi(t) solves the
ordinary differential equations (ODEs)

Ẇi(t) = ν∆ω(qi(t), t) + g(qi(t), t), d = 2, (7)

Ẇi(t) = ν∆ω(qi(t), t) + Wi(t)∇u(qi(t), t) + g(qi(t), t), d = 3 (8)

with the initial condition Wi(0) = ω0(qi(0)). Write q(t) := (q1(t), q2(t), · · · , qN (t)) and W (t) :=
(W1(t),W2(t), · · · ,WN (t)). Because (q, W ) provides only partial information on u and its par-
tial derivatives, (7) and (8) are not autonomous systems, and closing them requires closing the
information gap between (q, W ) and u, i.e., approximating u(x, t) and its partial derivatives
as a function of (q, W ). Our approach to this closure problem involves replacing the unknown
velocity field u by a centered GP ξ ∼ N (0,K) (with a physics-informed matrix-valued kernel
K that may be non-stationary to incorporate non-periodic boundary conditions) and approx-
imating u with the conditional expectation of ξ given the information (6). To describe this,
let

Y := (T2)N × RN , d = 2, (9)

Y := (T3)N × (R3)N , d = 3 (10)
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be the phase space containing the trajectory t → (q, W )(t). Define

u?(x, q, W ) := E(ξ(x)
∣∣ curl ξ(q) = W ) for (x, q, W ) ∈ Td × Y. (11)

With vectorized notations, we can write curl ξ(q) for the N -vector with entries curl ξ(qi). We
then approximate (q, W )(t) with (q?,W ?)(t), u(x, t) with

u(x, t) := u?(x, q?(t),W ?(t)), (12)

and ω(x, t) with

ω(x, t) := curlu?(x, q?(t),W ?(t)), (13)

where (q?,W ?) is the solution to the autonomous system of ODEs (the differential operators
∆ curl and ∇ in (14) act on the first argument x of u? in (11)),





q̇?
i = u?(q?

i , q?,W ?),

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?) + g(q?
i (t), t), d = 2,

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?) + W ?
i ∇u?(q?

i , q?,W ?) + g(q?
i (t), t), d = 3

(14)

with the initial condition (q?,W ?)(0) = (q, W )(0) = (q0, ω0(q0)). Figures 1 and 2 are the
snapshots of u (shown as a vector field), ω (shown as a heatmap), and q (shown as dark points)
of a point x = (x1, x2) on the two-dimensional (2D) torus. Figure 3 shows the snapshots of
u (shown as blue arrows), W (shown as red arrows), and q (shown as dark points) of a point
x = (x1, x2, x3) on the three-dimensional (3D) torus for d = 3.

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

(a) t=0 (b) t=0.3 (c) t=0.6

(d) t=0.9 (e) t=1.2 (f) t=1.5

x1 x1 x1

x1

x
2

x
2

x
2

x
2

x
2

x
2

x1 x1

Fig. 1 Velocity snapshots



1180 H. OWHADI

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

6

5

4

3

2

1

0 1 2 3 4 5 6

(a) t=0 (b) t=0.3 (c) t=0.6

(d) t=0.9 (e) t=1.2 (f) t=1.5

x1 x1 x1

x
2

x
2

x
2

x
2

x
2

x
2

x1 x1 x1

Fig. 2 Vorticity snapshots (color online)

6

4

2

0
64

2
06420

6

4

2

0
64

2
06420

6

4

2

0
64

2
06420

6

4

2

0
64

2
06420

6

4

2

0
64

2
06420

6

4

2

0
64

2
06420

(a) t=0 (b) t=0.3 (c) t=0.6

(d) t=0.9 (e) t=1.2 (f) t=1.5

x 1 x 1 x 1
x2 x2 x2

x
3

x 1
x2

x
3

x
3

x 1
x2

x
3

x 1
x2

x
3

x
3

Fig. 3 Velocity and vorticity snapshots for d = 3, where the blue and red arrows show the velocity
and the vorticity W at particle locations q, respectively (color online)

The proposed approach contains UQ estimates and is compatible with a UQ pipeline. In
particular, given curl ξ(q) = W , ξ is a GP with conditional mean u? and conditional covariance
function,

Cu(x, y) := E((ξ(x)− u?(x, q, W ))(ξ(y)− u?(x, q, W ))T| curl ξ(q) = W ), (15)

and curl ξ is a GP with conditional mean curl u? and conditional covariance function

Cω(x, y) := E((curl ξ(x)− curlu?(x, q, W ))(curl ξ(y)− curlu?(x, q, W ))T| curl ξ(q) = W ). (16)
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Figures 4 and 5 present the snapshots of x→Tr(Cu(x, x)) and the heatmaps of x → Tr(Cω(x, x)),
respectively.
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Fig. 4 Variance velocity, where the color scale ranges from 4.8 (blue) to 8.4 (red) (color online)
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4 Divergence free GPs/kernels and representer formulae

We now describe the vector-valued GP ξ ∼ N (0,K) to close the NS equations and introduce
the representer formulae for identifying u? and its partial derivatives as a function of (q?,W ?).
Recall (see Chapters 7 and 17 in Ref. [9] and Subsection 8.1 in Ref. [25]) that x → ξ(x) is a map
from Td to a linear (Hilbert) space of d-dimensional centered Gaussian vectors such that

Cov(ξ(x), ξ(y)) = K(x, y) for x, y ∈ Td, (17)

where the covariance function K is a Rd×d matrix-valued kernel (also known as a vector-valued
kernel[26]). Write HK for the reproducing kernel Hilbert space (RKHS) of Rd valued functions
defined by K. To ensure that our approximation u? remains zero-mean and incompressible,
and that (11) and (14) are properly defined, we select K such that HK is contained in the set

S3(Td) :=
(
v ∈ C3(Td) |

∫

Td

v(x) dx = 0 and div v = 0
)

(18)

of Td-periodic zero-mean divergence-free Rd-valued functions with continuous third-order deriva-
tives (we write Ck for the space of continuously kth-order differentiable functions). Matrix-
valued kernels inducing an RKHS containing divergence-free vector-valued functions can be
constructed by starting with a stationary scalar-valued kernel G(x, x′) = g(x−x′) and selecting
K(x, y) = (Hess g − Tr(Hess g)Id)(x − y), where Hess is the Hessian operator, and Id is the
d × d identity matrix (see Subsection 5.1 in Ref. [26]). Here, we present a more general ap-
proach enabling using non-stationary kernels and the incorporation of nontrivial fluid-structure
boundary conditions into the kernel (see Fig. 6). We will distinguish between d = 2 and d = 3
cases in our description of this approach.
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4.1 2D case
4.1.1 Divergence-free kernels

Given an R2-valued function v(x) = (v1(x), v2(x))T, curl v = (−∂x2v1(x) + ∂x1v2(x)) can
be written as the inner product between the row vector curlx = (−∂x2 , ∂x1) and the column
vector v(x) = (v1(x), v2(x))T. Let G be a non-degenerate C3-differentiable scalar-valued kernel
on T2 such that HG (the RKHS defined by G) is compactly embedded in Hs(T2) for s > 5.
Extending matrix-vector operations to differential operators, we define

K(x, y) := curlTx curly G(x, y) =
(−∂x2

∂x1

) (−∂y2 ∂y1

)
G(x, y), (19)

which can also be written as

K(x, y) :=
(

∂x2∂y2 −∂x2∂y1

−∂x1∂y2 ∂x1∂y1

)
G(x, y) :=

(
∂x2∂y2G(x, y) −∂x2∂y1G(x, y)
−∂x1∂y2G(x, y) ∂x1∂y1G(x, y)

)
. (20)

The following proposition shows that K is a valid non-degenerate kernel satisfying our
requirements.

Proposition 1 It holds true that (i) K =(20) is a non-degenerate kernel, (ii) its RKHS
HK is compactly embedded in Hs−1(T2), and (iii) HK ⊂ S3(T2).

Proof To show that K is a valid kernel, we will employ the one-to-one map among kernels,
symmetric positive definite linear operators, and quadratic norms presented in Chapters 11 and
17 in Ref. [9] (see also Subsection 2.1 in Ref. [22]). Define HG and ‖ · ‖G as the RKHS space
and the RKHS norm induced by G and H∗G, and ‖ · ‖∗G as their duals with respect to the L2

inner product which we express as [·, ·] ([ϕ, f ] :=
∫
T2 ϕ(x)f(x) dx for ϕ ∈ H∗G and f ∈ HG).

The operation ϕ → ∫
T2 G(x, y)ϕ(y) dy defines a linear bijection G mapping H∗G to HG that is

symmetric ([ϕ,Gϕ′] = [ϕ′,Gϕ]), positive ([ϕ,Gϕ] > 0), and definite ([ϕ,Gϕ] = 0 if and only
if ϕ = 0). With δx as a delta Dirac function supported at the point x, G defines the kernel
G via G(x, y) = [δx,Gδy]. Furthermore, ‖ϕ‖∗,2G =

∫
(T2)2

G(x, y)ϕ(x)ϕ(y) dxdy = [ϕ,Gϕ] for
ϕ ∈ HG, and ‖f‖G = supϕ∈H∗G [ϕ, f ]/‖ϕ‖∗G for f ∈ HG. These identities indicate that there
is a one-to-one correspondence among the (non-degenerate) kernel G, the symmetric positive
definite linear bijection G, and the quadratic norms ‖ · ‖∗G and ‖ · ‖G (any of these objects can
be used to define a valid kernel, as shown in Chapters 11 and 17 in Ref. [9]). For φ ∈ S3(T2),
write

‖φ‖∗K := ‖ curlφ‖∗G. (21)

Because ‖φ‖∗K is a quadratic norm on S3(T2), it defines a non-degenerate kernel K (see Chapters
11 and 17 in Ref. [9]) with the RKHS space HK and norm ‖ · ‖K such that ‖ · ‖∗K is the dual of
‖·‖K with respect to the L2 inner product and H∗K is the closure of S3(T2) with respect to ‖·‖∗K
(note that the construction (19) and the identity div curl = 0 imply that the elements of HK are
divergence-free functions). For the sake of clarity, we will also present the following alternative
proof of the non-degeneracy of K. For q ∈ (T2)N , K(q, q) is the N × N block matrix with

2 × 2 block entries K(qi, qj). For α ∈ (R2)N , write αTK(q, q)α :=
N∑

i,j=1

αT
i K(qi, qj)αj . Thus,

the identity αTK(q, q)α =
∥∥ N∑

i=1

δqi ◦ (−α1∂x2 +α2∂x1)
∥∥∗,2

G
implies that K(q, q) is invertible if qi

are pairwise distinct and α 6= 0, i.e., K is non-degenerate. (ii) in Proposition 1 follows from the
identity (21) and ‖v‖K = supφ∈H∗K [φ, v]/‖φ‖∗K . (iii) in Proposition 1 follows from the compact
embedding of HG into Hs(T2) for s > 5, and the compact embedding of Hs−1(T2) into C3(T2)
for s > 5.
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Remark 1 The results of this section can naturally be generalized to the scenario in
which G is a kernel on A/B, where B is an inclusion in the domain A. In this case, the required
boundary conditions on the elements of HK (e.g., stick or no-slip) transfer onto the required
boundary conditions on G. Possible designs of G include (i) identifying G as Green’s function
of a higher-order elliptic PDE on A/B with the required boundary conditions and (ii) designing
G with the transformations of an initial defined on Rd. For Fig. 6, G(x, y) = g(x, y)f(x)f(y)
where g is a kernel on T2, and f is a smooth function equal to 0 when B is included and 1 when
T2/Bε is included, where Bε is an ε enlargement of B obtained by adding a boundary layer of
size ε (the resulting elements of HK satisfy a stick boundary condition).
4.1.2 Representer formulae

We now introduce the representer formulae for the conditional mean and covariance of the
GP ξ ∼ N (0,K) given curl ξ(q) = W . ∆x∆yG represents the T2 valued kernel ∆x∆yG(x, y).
For q ∈ (T2)N , ∆x∆yG(q, q) represents the N ×N matrix with entries ∆x∆yG(qi, qj). For x ∈
T2 and q ∈ TN , curlTx ∆yG(x, q) represents the N -vector with R2-valued entries curlTx ∆yG(x, qi).

Proposition 2 The GP ξ ∼ N (0,K) conditioned on curl ξ(q) = W is also Gaussian with
the conditional mean

u?(x, q, W ) = (11) = curlTx ∆yG(x, q)(∆x∆yG(q, q))−1W (22)

and the conditional covariance kernel Cu(x, y) =(15) given by

curlTx curly G(x, y)− curlTx ∆yG(x, q)(∆x∆yG(q, q))−1∆x curly G(q, y). (23)

Furthermore, the GP curl ξ conditioned on curl ξ(q) = W is also Gaussian with the conditional
mean

curlu?(x, q, W ) = ∆x∆yG(x, q)(∆x∆yG(q, q))−1W (24)

and the conditional covariance kernel Cω(x, y) =(16) given by

∆x∆yG(x, y)−∆x∆yG(x, q)(∆x∆yG(q, q))−1∆x∆yG(q, y). (25)

Proof (22) and (23) follow from the generalized representer theorem (see Corollary 17.12
in Ref. [9] and Proposition 2.1 in Ref. [22]) and the identity curl curlT = ∆. For α ∈ RN ,

αT∆x∆yG(q, q)α = ‖
N∑

i=1

αiδqi
◦∆‖∗,2G implies that ∆x∆yG(q, q) is invertible if qi are pairwise

distinct. (24) and the identities curl curlT = ∆ and Cω(x, y) = curlx curlTy Cu(x, y) imply (24)
and (25).

Using Proposition 2, (14) reduces to

{
q̇?
i = curlTx ∆yG(q?

i , q?)(∆x∆yG(q?, q?))−1W ?,

Ẇ ?
i = ν∆2

x∆yG(q?
i , q?)(∆x∆yG(q?, q?))−1W ? + g(q?

i (t), t).
(26)

4.2 3D case
4.2.1 Divergence-free kernels

Given an R3-valued function v(x), curl v can be written as the inner product between the
matrix

curlx =




0 −∂x3 ∂x2

∂x3 0 −∂x1

−∂x2 ∂x1 0


 (27)
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and the column vector v(x) = (v1(x), v2(x), v3(x))T. Let G be a non-degenerate C3-differentiable
scalar-valued kernel on T3 such that HG (the RKHS defined by G) is compactly embedded in
Hs(T3) for s > 5.5. Define

K(x, y) := curlTx curly G(x, y) =




0 ∂x3 −∂x2

−∂x3 0 ∂x1

∂x2 −∂x1 0







0 −∂y3 ∂y2

∂y3 0 −∂y1

−∂y2 ∂y1 0


 G(x, y),

which can also be written as

K(x, y) :=




∂x3∂y3 + ∂x2∂y2 −∂x2∂y1 −∂x3∂y1

−∂x1∂y2 ∂x3∂y3 + ∂x1∂y1 −∂x3∂y2

−∂x1∂y3 −∂x2∂y3 ∂x1∂y2 + ∂x2∂y2


 G(x, y). (28)

Proposition 3 It holds true that (i) K = (28) is a non-degenerate kernel, (ii) its RKHS
HK is compactly embedded in Hs−1(T3), and (iii) HK ⊂ S3(T3).

Proof With Hess as the Hessian operator and I3 as the 3× 3 identity matrix, integrating
by parts, we observe that for φ ∈ S3(T3),

‖φ‖∗,2K = ‖ − ∂x3φ2 + ∂x2φ1‖∗,2G + ‖∂x3φ1 − ∂x1φ3‖∗,2G + ‖ − ∂x2φ1 + ∂x1φ2‖∗,2G . (29)

The remainder of the proof is identical to that of Proposition 1.
4.2.2 Representer formulae

We now present representer formulae for the conditional mean and covariance of the GP
ξ ∼ N (0,K) given curl ξ(q) = W . Define Lx := I3∆x − Hessx and LxLyG as the 3× 3 matrix
valued kernel obtained by letting Lx act on the x variable and Ly act on the y variable of G(x, y).
Similarly, we define curlTx LyG as the 3×3 matrix valued function of x and y, which is obtained
by letting curlTx act on the x variable and Ly on the y variable of G(x, y). Using the shorthand
notations of Subsection 4.1.2, for q ∈ (T3)N , we define LxLyG(q, q) as the N ×N block matrix
whose entries are the 3× 3 matrices LxLyG(qi, qj). Similarly, we define curlTx LyG(x, q) as the
N -block vector whose entries are the 3× 3 matrices curlTx LyG(x, qi).

Proposition 4 The GP ξ ∼ N (0,K) conditioned on curl ξ(q) = W is also Gaussian with
the conditional mean

u?(x, q, W ) = (11) = curlTx LyG(x, q)(LxLyG(q, q))−1W (30)

and the conditional covariance kernel Cu(x, y) = (15) given by

curlTx curly G(x, y)− curlTx LyG(x, q)(LxLyG(q, q))−1Lx curly G(q, y). (31)

Furthermore, the GP curl ξ conditioned on curl ξ(q) = W is also Gaussian with the conditional
mean

curlu?(x, q, W ) = LxLyG(x, q)(LxLyG(q, q))−1W (32)

and the conditional covariance kernel Cω(x, y) =(16) given by

LxLyG(x, y)− LxLyG(x, q)(LxLyG(q, q))−1LxLyG(q, y). (33)

Proof (30) and (31) follow from the generalized representer theorem (see Corollary 17.12
in Ref. [9] and Proposition 2.11 in Ref. [22]) and the identity curl curlT = I3∆ − Hess. δk,m
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represents the Kronecker delta (δk,m = 1 for k = m, and δk,m = 0 otherwise). For α ∈ (R3)N ,
the identity

αTLxLyG(q, q)α =
3∑

m=1

∥∥∥
N∑

i=1

3∑

k=1

δqi
◦ (αi,k(δk,m∆x − ∂xk

∂xm
))

∥∥∥
∗,2

G

implies that LxLyG(q, q) is invertible if qi are pairwise distinct. (30) and the identities
curl curlT = L and Cω(x, y) = curlx curlTy Cu(x, y) imply (32) and (33).

Using Proposition 4, (14) reduces to




q̇?
i = curlTx LyG(q?

i , q?)(LxLyG(q?, q?))−1W ?,

Ẇ ?
i = ν∆xLxLyG(q?

i , q?)(LxLyG(q?, q?))−1W ?

+ W ?
i ∇x curlTx LyG(q?

i , q?)(LxLyG(q?, q?))−1W ? + g(q?
i (t), t).

(34)

4.3 Periodic kernels
We now describe the construction of the kernel G, which must be a non-generate C3-

differentiable scalar-valued kernel on Td such that HG is compactly embedded in Hs(Td) for
s > 4 + d/2. One approach to designing G is to compose a (sufficiently regular and non-
degenerate) kernel g on R2d × R2d with the function h : Td → R2d defined by

h(x) = (cos x1, sinx1, · · · , cos xd, sinxd), (35)

and we obtain

G(x, y) = g(h(x), h(y)). (36)

Taking g as the Gaussian kernel, g(X, Y ) = exp
(− |X−Y |2

2σ2

)
results in

G(x, y) = exp
(−d +

d∑
i=1

cos(xi − yi)

σ2

)
, (37)

which satisfies the requirements of G.
Remark 2 Assume g to be analytic. It follows that the elements of its RKHS Hg are

analytic functions[27]. Therefore, for every function of the form f ◦ h with f ∈ Hg and g being
analytic, f is uniquely determined by its values on the range of h.

〈·, ·〉
g

(‖ · ‖g) represents
the RKHS inner product (norm) defined by g. Therefore, for f ∈ Hg, we define the norm
‖f ◦ h‖ := ‖f‖2g and use

〈·, ·〉 as its associated inner product. The reproducing property
〈
f ◦ h, g(h(·), h(x))

〉
=

〈
f, g(·, h(x))

〉
g

= f ◦ h(x) (38)

for f ∈ Hg implies that HG = {f ◦h | f ∈ Hg} and the RKHS norm ‖ · ‖G defined by G is ‖ · ‖,
i.e.,

‖f ◦ h‖2G = ‖f‖2g for f ∈ Hg. (39)

If g is not analytic, these results are generalized to HG = {f ◦ h | f ∈ Hg} with

‖v‖2G = inf
f∈Hg : f◦h=v

‖f‖2g. (40)

To demonstrate this, we observe that because {f ∈ Hg : f ◦h = v} is a closed affine subspace of
Hg, the infimum in (40) is achieved and can be expressed as Pv, where P is a linear operator.
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Therefore, ‖v‖2 = ‖Pv‖2g and
〈
v, v′

〉
=

〈
Pv, Pv′

〉
g

define a quadratic norm and an inner
product of {f ◦ h | f ∈ Hg}, respectively, satisfying the reproducing identity

〈
v, g(h(·), h(x))

〉
=

〈
Pv, Pg(h(·), h(x))

〉
g

=
〈
Pv, g(·, h(x))

〉
g

= (Pv) ◦ h(x) = v(x), (41)

which establishes (40). The identity Pg(h(·), h(x)) = g(·, h(x)) employed in (41) follows from
observing that the identity ‖g(·, h(x))+ f‖2g = g(h(x), h(x))+ ‖f‖2g +2f ◦h(x) implies that the
minimizer of ‖g(·, h(x)) + f‖2g over f ∈ Hg such that f ◦ h = 0 is f = 0.

5 Power-laws informed kernels

We now investigate the incorporation of known scaling and power laws into the selection of
the kernel G introduced in Section 4 to derive the divergence-free kernel K. We focus on the
two-thirds law derived by Kolmogorov[28] from symmetry and universality assumptions of fully
developed (homogeneous and isotropic) turbulence.

When the dimension d = 3, the two-thirds law of fully developed (homogeneous and
isotropic) turbulence states that the mean of the velocity increment |u(x + y, t) − u(x, t)|2
behaves approximately as |y| 23 , which is the two-thirds power of the distance |y| between the
points x + y and x (see Chapter 5 in Ref. [29]), which “is equivalent to the statement that the
energy spectrum follows a k−

5
3 law over a suitable range” (see Page 61 in Ref. [29]).

When the dimension d = 2, the statistics of the velocity increments follow a different power-
law[30–31]: the mean of the squared velocity increment |u(x + y, t) − u(x, t)|2 behaves approx-
imately as |y|2, which is equivalent to the statement that the energy spectrum follows a k−3

law (see Page 56 in Ref. [29]).
To incorporate these power laws, we observe that, in the proposed GP approach, the velocity

u is randomized according to the distribution of ξ ∼ N (0,K). Therefore, we use the identity

E(|ξ(x)− ξ(y)|2) = Tr(K(x, x) + K(y, y)− 2K(x, y)) (42)

to incorporate the aforementioned velocity-increment power laws. Considering the scenario in
which G(x, y) is stationary (as in (37)), i.e., G(x, y) = ψ(x− y) for a function ψ, (20) and (28)
reduce to the particular construction of Subsection 5.1 in Ref. [26], i.e.,

K(x, y) = (Hess ψ − Tr(Hess ψ)Id)(x− y). (43)

Thus, (42) reduces to

E
(|ξ(x)− ξ(y)|2) = 2(d− 1)(∆ψ(x− y)−∆ψ(0)). (44)

5.1 Richardson cascade
The basic phenomenology of turbulence, known as the Richardson cascade (see Chapter 7

in Ref. [29]), is that the velocity field is composed of space-filling eddies of various sizes `0r
n for

0 < r < 1 and n = 0, 1, · · · ,m. This phenomenology is associated with the concept of an energy
cascade, which indicates that energy is transferred from large (inertial) scales of motion to small
(dissipative) scales. 2D turbulence is also associated with the possible presence of an inverse
energy cascade[32] representing the transfer of energy from small to large scales. The dissipation
scale `c ∼ `0r

m is identified by matching the convective transport time scale (`/δv(`)) to the
diffusive transport time scale (`2/ν). For d = 3 (using δv(`) ∼ U0(`/`0)

1
3 ), this translates to

`c/`0 ∼ Re−
3
4 , where Re = U0`0/ν is the Reynolds number. For d = 2 (using δv(`) ∼ U0(`/`0)),

this translates to `c/`0 ∼ Re−
1
2 . We incorporate these concepts from a statistical perspective

by representing the GP ξ ∼ N (0,K) as an additive GP

ξ =
m∑

n=0

ξ(n), (45)
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where ξ(n) ∼ N (0,K(n)) are independent and represent eddies on a scale indexed by n. Repre-
senting ξ as an additive GP is equivalent to representing K as an additive kernel

K =
m∑

n=0

K(n). (46)

To ensure that K and K(n) are divergence-free matrix valued kernels, we select, as in Section 4,
K(n)(x, y) := curlTx curly G(n)(x, y), where G(n) is a periodic scalar-valued kernel on Td. This
is equivalent to selecting K(x, y) := curlTx curly G(x, y) with

G =
m∑

n=0

G(n). (47)

5.2 Power laws
We now incorporate the velocity-increment power laws into the selection of kernels G(n). To

incorporate periodicity, stationarity, power laws, and self-similarity, we select (as in (37))

G(n)(x, y) = αn exp

(−d +
d∑

i=1

cos(xi − yi)

σ2
n

)
(48)

with

σn =
σ0

2n
, αn = σγ

n (49)

for γ ∈ R to be determined using the power-law discussed in Section 5. For

ψ(n)(x) := αn exp

(−d +
d∑

i=1

cos xi

σ2
n

)
, (50)

we obtain

∆ψ(n)(x) :=
d∑

j=1

αn

( sin2 xj

σ4
n

− cos xj

σ2
n

)
exp

(−d +
d∑

i=1

cos xi

σ2
n

)
, (51)

which, by using (44), leads to

E(|ξ(x)− ξ(0)|2)= 2(d− 1)
m∑

n=0

αn

d∑

j=1

(
1
σ2

n

+
( sin2 xj

σ4
n

− cos xj

σ2
n

)
exp

(−d +
d∑

i=1

cos xi

σ2
n

))
. (52)

We deduce that for x ∼ 2−q with 1 < q < m,

E(|ξ(x)− ξ(0)|2) ∼ 2(d− 1)
m∑

n=q

αn
d

σ2
n

. (53)

Observing that σn ∼ 2−n and αn ∼ 2−nγ , it follows that for |x| ∼ 2−q and γ > 2,

E(|ξ(x)− ξ(0)|2) ∼ 2q(2−γ). (54)

Therefore, the velocity-increment power laws in Section 5 are incorporated by obtaining




γ = 4 for d = 2,

γ =
2
3

+ 2 for d = 3.
(55)
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5.3 Mode decomposition
Although the Richardson cascade is based on a qualitative analysis of turbulence supported

by the qualitative notion of eddies at different scales, this analysis can be performed quantita-
tively by using kernel mode decomposition[11]. To describe this, we observe that the decompo-
sition (45) leads to a corresponding decomposition of the velocity field (11), i.e.,

u?(x, q, W ) =
m∑

n=0

u(n)(x, q, W ) (56)

with

u(n)(x, q, W ) = E(ξ(n)(x)
∣∣ curl ξ(q) = W ), (57)

where u(n) are the following representer formulae (using the notations of (22) and (30)):

u(n)(x, q, W ) =

{
curlTx ∆yG(n)(x, q)(∆x∆yG(q, q))−1W, d = 2,

curlTx LyG(n)(x, q)(LxLyG(q, q))−1W, d = 3.
(58)

Furthermore, the RKHS norm of u? admits the decomposition[11]

‖u?‖2K =
m∑

n=0

‖u(n)‖2K(n) , (59)

where

‖u(n)‖2K(n) =
〈
u(n), u∗

〉
K

= Var
[〈

ξ(n), u∗
〉

K

]
(60)

can be interpreted as a measure of the activation of the GP (mode) ξ(n) after conditioning on
ξ(q) = W . Using K(n)(x, y) := curlTx curly G(n)(x, y), we obtain

∥∥u(n)(·, q, W )
∥∥2

K(n) =

{
WT(∆x∆yG(q, q))−1W, d = 2,

WT(LxLyG(q, q))−1W, d = 3.
(61)

6 Accuracy of the proposed approach and information loss

6.1 Residual (source term error) as a measure of accuracy
The accuracy of the proposed approach can be characterized by two terms. The first one is

the error ω(x, 0)− ω(x, 0) in approximating the initial value of the vorticity. The second term
is the spurious source term s introduced by the numerical method, defined as (see Fig. 7 for
snapshots, where we use periodic boundary conditions such that the errors in these snapshots
are solely a reflection of the particle locations and the initial condition) |s(·, t)|)

s(x, t) := ∂tω + u∇ω − ν∆ω − g(x, t), d = 2, (62)
s(x, t) := ∂tω + u∇ω − ν∆ω − ω∇u− g(x, t), d = 3. (63)

The first term ω(x, 0)−ω(x, 0) is well-understood as a kernel interpolation error, and a-priori
error estimates can be obtained from Poincaré inequalities[9,33]: the norm of this term can be
shown to decay towards zero as a power of the fill distance between the collocation points qi(0)
(the power depends on the strength of the norm, the regularity of ω0, and the regularity of the
RKHS defined by the GP curl ξ(x); see Refs. [9] and [33] for details and further references).

The second term s(x, t) is not well-understood and we seek to analyze it. Note that this
term is zero at the particle locations qi(t) (s(qi(t), t) = 0) and is a function of the choice of the
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Fig. 7 Source terms error s(·, t) (color online)

kernel for ξ and the number of particles N . Although the stability estimates (they are available
for d = 2[34] but remain a challenge for d = 3[35]) for NS equations enable us to determine the
norm of the errors on velocity u − u and vorticity ω − ω, we do not expect these bounds to
be useful because the chaotic nature of the NS equations would imply their rapid blow-up as a
function of time (caused by a blow-up of the stability constants) in turbulent regimes. However,
s(x, t) is a more useful measure of error since it acts as an instantaneous error made on the
source term of the NS equations by the proposed numerical method: modulo the initial value
error ω(x, 0) − ω(x, 0), simulating ω is equivalent to simulating the continuous NS equations
with the added source term s(x, t).
6.2 s as a measure of information loss

s can also be interpreted as a measure of the information loss. To describe this, let t0 > 0
and qa(t) be the trajectory of the particle driven by the flow u(x, t) (q̇a(t) = u(qa(t), t)) and
starting at time t0 at an arbitrary point x ∈ Td. Let Wa(t) = ω(qa(t), t) be the predicted
vorticity at qa(t). Let qe := (q?, qa) (respectively, We := (W ?,Wa)) be the vector of particle
locations obtained by concatenating q? with qa (respectively, W ? with Wa). Thus, the identity

u?(x, q?,W ?) = u?(x, qe,We) (64)

implies that (qa,Wa) does not carry (additional) information on the approximation of the flow,
given the information contained in (q?,W ?). Now, let Wb be the solution to

Ẇb(t) = ν∆curl u?(qa(t), q?,W ?) + g(qa(t), t), d = 2, (65)

Ẇb(t) = ν∆curl u?(qe(t), q?,W ?) + Wb(t)∇u?(qe(t), q?,W ?) + g(qe(t), t), d = 3 (66)

with the initial condition Wb(t0) = Wa(t0). Thus, the identity

Wb(t)−Wa(t) = s(x, t)(t− t0) + o(t− t0) (67)
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implies that |s(x, t)| can be interpreted as the instantaneous rate of information gain at time
t0 resulting from adding a particle at x and letting Wb be driven by the GPH equations.
Equivalently, |s(x, t)| can be interpreted as the rate of information loss resulting from the
absence of an additional particle at location x. Therefore, to minimize information loss, the
number of particles in GPH can be dynamically increased by adding new particles at the location
x, where |s(x, t)| is maximized (a similar concept of information loss can be derived for particle
removal).
6.3 Turbulence as information loss

How do we define and quantify turbulence? The current popular definition, “the complex,
chaotic motion of a fluid”[2], is not only empirical but also relative to the scale at which the flow
is observed (the flow may appear laminar at fine scales and chaotic at coarse scales). From the
GPH perspective, turbulence can be defined as the information loss incurred by approximating
the dynamics of a continuous flow with the discrete information contained in (q?,W ?). In this
sense, it is a local quantity measured as |s(x, t)| and its definition is relative to the information
already contained (q?,W ?).

7 Numerical experiments

In the following experiments, for the dimension d = 2, we use the additive kernel of Subsec-
tions 5.1 and 5.2 with m + 1 = 3 modes, γ = 4, and (σ0, σ1, σ2) = (2, 1, 0.5). We use N = 25
particles, zero-forcing (f = 0), and zero viscosity (ν = 0), and we initialize the vorticity field
at random by sampling the initial value of W from the distribution of the Gaussian vector
with the identity covariance matrix. Figures 1 and 2 show the snapshots of the velocity field
(x → u(x, t)) and the vorticity field (x → ω(x, t)) with the entries of q(t) shown as particles.
Figures 4 and 5 show the snapshots of the variance of the velocity field (x → Tr[Cu(x, x)])
and the variance of the vorticity field (x → Tr[Cω(x, x)]). Figure 7 shows the snapshots of
the source term error (x → s(x, t)). Figure 8(a) shows the mode activation of each of the
three modes as defined in (61). Figure 8(b) shows the power spectrum of the field generated
by our simulation and its comparison with the k−3 power spectrum associated with 2D tur-
bulence, where k is the frequency. Figure 8(c) shows the source term error t → ‖s(·, t)‖L2 ,
where ‖s(·, t)‖2L2 := |Td|−1

∫
Td s2(x, t) dx. The plots shown in Fig. 8 are for zero viscosity ν = 0.

Figures 9 and 10 present similar plots for ν = 0.001 and ν = 0.01, respectively. Figure 11 shows
similar plots for ν = 0, m + 1 = 5 modes, γ = 4, and (σ0, σ1, σ2, σ3, σ4) = (2, 1, 1/2, 1/4, 1/8).
Note that compared with Fig. 8(c), the source term error t → ‖s(·, t)‖L2 is decreased by one
order of magnitude, which supports the point that our structured multiscale kernel leads to
increased accuracy as the number of modes is increased.
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(color online)
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Fig. 9 (a) Mode activation, (b) power spectrum, and (c) source term error t → ‖s(·, t)‖L2 when
ν = 0.001 (color online)
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Fig. 10 (a) Mode activation, (b) power spectrum, and (c) source term error t → ‖s(·, t)‖L2 when
ν = 0.01 (color online)
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Fig. 11 (a) Mode activation with 5 modes, (b) power spectrum, and (c) source term error t →
‖s(·, t)‖L2 when ν = 0 (color online)

Table 1 provides the space/time-averaged source term error (T = 40)

‖s‖L2 :=

√
T−1

∫

Td×[0,T ]

s2(x, t) dxdt (68)

as a function of the number of modes (m + 1 in the additive kernel of Subsections 5.1 and 5.2)

Table 1 Space/time average source term error ‖s‖L2 as a function of the number of modes m + 1
and the power-law parameter γ

m + 1
γ

−2 0 2 4 6

2 27.6 39.4 93.4 31.1 34.5

3 0.118 0.158 0.214 0.389 1.144

4 1.14 4.22 0.076 0.070 0.266
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and the value of the parameter γ in the power law (49). For Table 1, we use N = 100 particles,
zero-forcing (f = 0), and ν = 0.001, and initialize the vorticity field at random by sampling
the initial value of W from the distribution of the Gaussian vector with the identity covariance
matrix. Selecting the parameter γ close to the one (γ = 4) matching the Kolmogorov scaling
law and increasing the number of modes m + 1 significantly diminishes the source term error
‖s‖L2 . With only one mode (m + 1 = 1, not shown in Table 1), the kernel K is too stiff to
handle the transfer of energy towards fine scales, and the accuracy significantly deteriorates
(‖s‖L2 ∼ 17 000, and without regularization with a nugget, the velocity bursts are observed as
particles come close to each other).

Remark 3 The values of ‖s‖L2 are absolute in Table 1 and Figs. 7–11. Our main purpose
is to show the dependence of ‖s‖L2 as a function of the number of modes and the value of the
parameter γ. In particular, those values can be made relative by dividing them by 17 000 (the
value of ‖s‖L2 with only one mode).

Figure 12 illustrates the convergence of the method (as measured by ‖s‖L2) with respect
to the number of particles N . In the figure, when W (0) = ω0(q(0)), the initial vorticity ω0 is
selected to be smooth and deterministic. The interpolation error in the approximation of the
initial vorticity is not plotted (the analysis of this kernel interpolation error is classical[9]).
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Fig. 12 Error ‖s‖L2 vs. number of particles N in the log-log scale (color online)

Remark 4 The complexity of the method is proportional to the product of the number of
time steps and the cost of inverting dense N×N kernel matrices. Although the sparse Cholesky
factorization algorithms introduced in Refs. [19] and [20] can be adapted to potentially reduce
the inversion cost to O(N ln2dN), we have not employed this strategy here.

For the 3D setting (d = 3), we also use the additive kernel of Subsections 5.1 and 5.2
with m + 1 = 1 and m + 1 = 2 modes, γ = 2/3 + 2, and (σ0, σ1) = (2, 1). We use N = 9
particles, zero-forcing (f = 0), and non-zero viscosity (ν = 0.001), and initialize the vorticity
field at random by sampling the initial value of W from the distribution of the Gaussian vector
with the identity covariance matrix. Figures 3 and 13 show the snapshots of the velocity
field (x → u(x, t)) and the vorticity W at locations q(t). Figures 3 and 13 employ one and
two modes, respectively. The added mode increases the effective viscosity of the dynamics by
acting as an energy sink. Compared with the 2D setting, the 3D ODE formulation of GPH has
a quadratic term in W ? in (34) that can lead to a blowup in finite time. We numerically observe
this blowup and dampen the vortex stretching component of this quadratic term (using wi =
wi,‖+wi,⊥ for the orthogonal decomposition of W ?

i ∇x curlTx LyG(q?
i , q?) (LxLyG(q?, q?))−1W ?

into its projection along the direction of W ?
i and its orthogonal complement, we replace wi by

wi = (1−α)wi,‖+wi,⊥) by a factor 1−α (with α ∈ [0, 1)) to avoid blowup. Other strategies for
avoiding blowup in the numerical calculation of the NS and Euler equations include numerical
dissipation and Lagrangian averaging[36]. Although the 3D Euler equations with boundary and
smooth initial data can blow up, the blowup of the 3D NS equations remains an open problem.
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Therefore, addressing the possible blowup of (34) in a manner that has better consistency with
the underlying physics of turbulence remains an open problem that may require a modeling
step (i.e., correcting the NS equations). We also note that if the continuous 3D NS equations do
indeed blow up, the solution obtained with GPH will exit the RKHS defined by a smooth kernel.
Finally, GPH may also serve as a potential candidate for identifying a singularity formation in
the solution to the 3D NS equations: if a trajectory (q?,W ?) and a (possibly time-dependent)
kernel G exist, such that W ? blows up in finite time, whereas s in (63) (with g = 0) remains
smooth. Then, the NS equations blow up in finite time[1].
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Fig. 13 Velocity and vorticity snapshots for d = 3, where the blue arrows indicate the velocity, the
red arrows indicate the vorticity W at particle locations q, and the kernel has 2 modes (color
online)

8 Further discussion

8.1 Selecting the kernel when the physics is unknown
The approach proposed in this paper involves designing the kernel to satisfy known physics.

When the underlying physics is unknown, the kernel can be learned from data via cross-
validation/maximum likelihood estimation in a given (possibly non-parametric) family of
kernels[25,37–38]. The kernel flow (a variant of cross-validation) approach[37] has been shown to
be efficient for learning (possibly stochastic) dynamical systems[39–43] and designing surrogate
models[44–46]. In particular, this approach has been shown to compare favorably to ANN-based
methods (in terms of both complexity and accuracy) for weather/climate prediction using actual
satellite data[40].
8.2 GPH and ANN-based simulations

The aim of this manuscript is not to compare GPH against ANN-based methods for solving
the NS equations (refer to Ref. [22] for such comparisons for general PDEs) but to highlight
that GP-based methods enable the incorporation of physics, and not solely by enforcing the
PDE for a finite number of collocation points/particles but also through the choice and design
of the kernel. Thus, our analysis and results can be extended to derive an ANN variant of
GPH. This variant can be obtained by simply defining the scalar-valued kernel G introduced
in Section 4 as

G(x, x′) = ψT
θ (x)ψθ(x′), (69)
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where ψθ(x) is the output of an ANN, i.e., a function mapping x to a finite-dimensional vector
space parameterized by the parameters θ in the inner layers of a neural network. (69) then
defines a parameterized kernel whose parameters can be learned from data, as described in
Subsection 8.1.
8.3 UQ and data assimilation

Because the proposed approach uses a Bayesian interpretation, it naturally enables data
assimilation and predictions and estimations by mixing simulation and experimental data. To
describe this, we assume that, in addition to the information (q, W ) obtained from the simula-
tion, we have access (as functions of time) to velocity measurements v1, v2, · · · , vM at locations
z1, z2, · · · , zM (that may be time-dependent). Thus, GPH can be modified to incorporate this
information. To describe this, we write

u?(x, q, W, z, v) := E(ξ(x)
∣∣ curl ξ(q) = W and ξ(z) = v). (70)

This modification can then be summarized as approximating u(x, t) with

u(x, t) := u?(x, q?(t),W ?(t), z, v), (71)

and ω(x, t) with

ω(x, t) := curlu?(x, q?(t),W ?(t), z, v), (72)

where (q?,W ?) is the solution to the autonomous system of ODEs




q̇?
i = u?(q?

i , q?,W ?, z, v),

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?, z, v) + g(q?
i (t), t), d = 2,

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?, z, v) + W ?
i ∇u?(q?

i , q?,W ?, z, v) + g(q?
i (t), t), d = 3

(73)

with the initial condition (q?,W ?)(0) = (q, W )(0) = (q0, ω0(q0)). Note that this modification
is equivalent to replacing the distribution of the GP ξ in Section 3 by that of a non-centered
time dependent GP with the mean E(ξ(x)

∣∣ξ(z) = v) and the covariance function defined as
the conditional covariance of ξ conditioned on ξ(z) = v. Representer formulae can be obtained
naturally as described in Section 4. Other experimental measurements may also be incorporated
(e.g., vorticities at specific locations). Furthermore, using the proposed approach, the velocity
and pressure fields can be learned from flow visualizations as in Ref. [47], with the advantage
of recovering uncertainties (whole posterior distributions) in addition to those fields.

To describe this, we assume that we have access (as functions of time) to the values
y1, y2, · · · , yM at locations z1, z2, · · · , zM of the concentration c of a passive tracer satisfying
the transport PDE,

∂tc + u · ∇c = D∆c. (74)

Let Γ be a smoothing scalar valued kernel and ζ ∼ N (0,Γ). Write

c(x, t) := E(ζ(x)|ζ(z) = y(t)), (75)

and

u?(x, q, W, t) := E(ξ(x)
∣∣ curl ξ(q) = W, ∂tc(z, t) + ξ(z) · ∇c(z, t) = D∆c(z, t)). (76)

u(x, t) can then be approximated with

u(x, t) := u?(x, q?(t),W ?(t), t), (77)
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and ω(x, t) can be approximated with

ω(x, t) := curlu?(x, q?(t),W ?(t), t), (78)

where (q?,W ?) is the solution to the autonomous system of ODEs





q̇?
i = u?(q?

i , q?,W ?, t),

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?, t) + g(q?
i (t), t), d = 2,

Ẇ ?
i (t) = ν∆curl u?(q?

i , q?,W ?, t) + W ?
i ∇u?(q?

i , q?,W ?, t) + g(q?
i (t), t), d = 3

(79)

with the initial condition q?(0) = q0 and

W ?(0) = E(curl ξ(q0)
∣∣∂tc(z, 0) + ξ(z) · ∇c(z, 0) = D∆c(z, 0)). (80)
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