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Abstract The size-dependent band structure of an Si phononic crystal (PnC) slab with
an air hole is studied by utilizing the non-classic wave equations of the nonlocal strain
gradient theory (NSGT). The three-dimensional (3D) non-classic wave equations for the
anisotropic material are derived according to the differential form of the NSGT. Based
on the the general form of partial differential equation modules in COMSOL, a method
is proposed to solve the non-classic wave equations. The bands of the in-plane modes
and mixed modes are identified. The in-plane size effect and thickness effect on the band
structure of the PnC slab are compared. It is found that the thickness effect only acts on
the mixed modes. The relative width of the band gap is widened by the thickness effect.
The effects of the geometric parameters on the thickness effect of the mixed modes are
further studied, and a defect is introduced to the PnC supercell to reveal the influence of
the size effects with stiffness-softening and stiffness-hardening on the defect modes. This
study paves the way for studying and designing PnC slabs at nano-scale.
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1 Introduction

Phononic crystal (PnC) holds tremendous promise for novel devices and applications due
to the characteristics of controlling the propagation of acoustic waves, especially the band
gap property. It has been reported that PnC can be made as wave detectors[1], waveguides[2],
filters[3–4], transducers[5], acoustic lenses[6], acoustic focusing and imaging[7–8], vibration
isolators[9–10], acoustic tweezers[11], Klein tunneling[12], and negative refraction[13–14]. With
the development of modern communication techniques, acoustic waves at gigahertz (GHz) and
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even terahertz (THz) frequencies have become an essential aspect of research, e.g., acousto-
optic coupling[15–16], heat phonon propagation in thermoelectric devices[17], acoustic radiation
shield[18–19], and phonon laser[20–22]. Consequently, the dimensions of these acoustic struc-
tures have to approach nano-scale. Moreover, the present nanotechnology makes it possible
to fabricate and measure micro- or nano-scale PnC[23–25]. Due to the high surface-to-volume
ratio of these nano-structures, the in-plane size effect or surface/interface effect becomes non-
negligible[26–27]. As we all know, the size effect cannot be evaluated by the classical elastic (CE)
continuum theory. In order to overcome the weakness of the CE continuum theory, several
non-classical continuum theories related to size-dependence were developed, e.g., the nonlocal
elastic theory[28], the strain gradient theory[29], the surface elastic theory[30], and the couple
stress theory[31]. So far, both the in-plane size effect and the surface/interface effect have been
studied extensively. Chen and Wang[32], Chen et al.[33], and Yan et al.[34] studied the band
structures of nano-scale one-dimensional (1D) multilayer PnC with the transfer matrix method.
The results showed that the nonlocal elastic continuum solution deviated from the CE contin-
uum one finally approached the first-principles result as the thickness of each individual layer
decreased[32], and a cut-off frequency was found, beyond which the elastic wave could not prop-
agate when the size effect was considered[33–34]. The recently developed meshless methods[35–38]

provide high computational efficiency for calculating the band structure of PnC. Based on the
nonlocal elasticity (NLE) theory, Zheng et al.[39] studied the size effect of nano-scale PnC with
the meshless collocation method, and verified the results of Chen and Wang[32]. Hereafter,
the surface elastic theory was used to calculate the band structure for two-dimensional (2D)
PnC with air holes[40–44]. Zhang et al.[45] studied the surface effect of magneto-elastic PnC
according to the Kirchhoff plate theory and surface elastic theory. Zhang et al.[46] and Zhang
and Gao[47] studied the band gaps of 2D and three-dimensional (3D) PnC with the plane wave
expansion method. In Ref. [48], the in-plane size effect on 2D PnC was investigated based on
the nonlocal strain gradient theory (NSGT) with the finite element method (FEM), and both
stiffness enhancement and soften behaviors were witnessed.

For PnC devices with slab structures, the thickness is a critical size parameter, especially
for hole slabs. The corresponding band gap is opened when the thickness is less than the lattice
constant. However, this phenomenon cannot be predicted by classical theories. Moreover, up
to now, no research has been reported to study the thickness effect of the PnC slab. Therefore,
in order to comprehensively understand the mechanism of size effects on the properties of
the PnC slab, it is urgently necessary to study its thickness effect. Nano-scale PnC defect
modes play an important role in cavity optomechanics[49], and have received much attention for
tremendous promising phenomena such as laser cooling nano-resonator to its ground state[50]

and electromagnetically induced transparency[51]. However, there is no attention paid to the
size effects on the defect modes. Thus, the research of the size effects on the defect modes is
essential for promoting the development in cavity optomechanics.

In this study, the band structure of a nano-scale PnC slab is investigated based on the NSGT
with the FEM. Combined with the constitutive equation for anisotropic material, the 3D non-
classic wave equations of the PnC slab are obtained. The non-classic wave equations are solved
by using the general form partial differential equation module in COMSOL. The band structures
of a circle hole PnC slab are obtained. First, the size-dependent behavior of the band structure
is investigated, and the dependence of the first band gap upon the nonlocal parameters is
focused. Then, the geometric parameters affecting the thickness effect are determined. Finally,
the size effects on the defect modes are studied.

2 NSGT
Eringen’s strain-driven NLE theory is known as a successful non-classical theory to analyze

the size-dependent problem[52]. Nevertheless, only the stiffness enhancement effect has been
predicted. Another stress-driven NLE theory was established to witness the stiffness-softening
effect[53–54]. Accordingly, a theory is needed to describe these two effects in the wave problem
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at nano-scale. As a higher-order theory, the NSGT meets this requirement[55]. Moreover, the
NSGT can be reduced to the former two theories and even the CE theory by fixing one or
two nonlocal parameters as zero. Recently, the equation of motion was derived based on the
NSGT, which successfully described the acoustic propagation behavior in 2D nano-PnC[48].
The equation of motion has the form as follows:

Tij,j + fi = ρüi, (1)

where i, j = 1, 2, 3. fi and ui represent the body force and the displacement vector, respectively.
ρ denotes the mass density. The total stress Tij is defined by

Tij = tij − tijm, (2)

where tij and tijm denote the nonlocal stress tensor and the nonlocal higher-order strain gradient
stress tensor, respectively. The boundary conditions are

{
njTij = t

(0)
i on ΩT or ui = ui on Ωu,

nmnjtijm = t
(1)
i on ΩT or Dui = u

(1)
i on Ωu,

(3)

where the traction t
(0)
i or coupled vector t

(1)
i is prescribed on the boundary ΩT . The dis-

placement ui or displacement gradient projection u
(1)
i in the outward normal direction of the

surface is prescribed on the boundary Ωu. For the acoustic wave propagation in the anisotropic
material, without external work, the harmonic wave equation can be expressed as follows:

(Cijkl(1− l2∇2)εkl),j + ρω2(1− ξ2∇2)ui = 0, (4)

where Cijkl denotes the stiffness tensor, εkl denotes the strain tensor, and ω denotes the angular
frequency. l and ξ represent the nonlocal parameters, i.e., the length scale parameters. ∇
denotes the Hamiltonian operator. The detailed expansion of the wave equation is given in
Appendix A.

Due to the introduction of the strain gradient, the wave equation becomes a system of
4th-order partial differential equations. However, the partial derivatives, which can be directly
expressed in COMSOL, are at most second order. For order reduction, 27 intermediate variables
are defined to represent the 2nd-order partial derivatives as follows:

{
u4 = u1,11, u5 = u1,12, u6 = u1,13, u7 = u1,21, u8 = u1,22,

u9 = u1,23, u10 = u1,31, u11 = u1,32, u12 = u1,33,
(5)

{
v1 = u2,11, v2 = u2,12, v3 = u2,13, v4 = u2,21, v5 = u2,22,

v6 = u2,23, v7 = u2,31, v8 = u2,32, v9 = u2,33,
(6)

{
w1 = u3,11, w2 = u3,12, w3 = u3,13, w4 = u3,21, w5 = u3,22,

w6 = u3,23, w7 = u3,31, w8 = u3,32, w9 = u3,33.
(7)

All 4th-order partial derivatives of displacements can be represented by the 2nd-order partial
derivatives of these intermediate variables. In Ref. [48], the method of solving the non-classic
wave equation based on COMSOL was verified, the 2D PnC was further calculated without con-
sidering the size effect, and the band structure agreed well with that obtained by the Dirichlet-
to-Neumann map[34].

3 Numerical results and discussion

Si is chosen as the material for the PnC slab. It is also a common optical material. Hence, the
structures have the potential for fabricating phoxonic crystal (PxC) exhibiting both phononic
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and photonic band gaps simultaneously[16,22,56]. The relevant material parameters for Si are
ρ = 2 331 kg ·m−3, C11 = 165.7GPa, C12 = 63.9GPa, C44 = 79.62GPa, $ = ωa/(2πct), and
ct = 5 844 m · s, where ρ is the mass density, C11, C12, and C44 are the elastic coefficients, $
is the normalized frequency, and ct is the transverse wave velocity. It is difficult to obtain the
analytical solution for nonlocal strain gradient wave problems. However, with the general form
of partial differential equation modules, the established non-classic wave equation of the NSGT
in COMSOL can be easily solved[48]. First, the thickness effect on the PnC slab is studied
without considering the strain gradient. Then, investigation is focused on the thickness effect
on the band structure, as well as the band gap of the PnC slab with variable geometric and
nonlocal parameters. In addition, for the PnC supercell slab with a point defect, the size effects
on the defect modes are revealed.
3.1 Modal classification according to the energy ratio and symmetry

Consider an Si PnC slab of the square lattice with a circular hole. The lattice constant
a = 10 nm, the radius of the circular hole r = 4.8 nm, corresponding to the filling ratio f =
πr2/a2 = 72%. The slab thickness is fixed as t = 3 nm. For this structure, the band gaps are
shown in Fig. 1. Calculated by the CE theory, the normalized frequency ωa/(2πct) of the band
gap ranges from 0.396 5 to 0.465 0. The in-plane mode and mixed mode can be classified by
their bands with respect to the polarization[57]. The kinetic energy ratio in the x3-direction is

e =

∫
V

u2
3dV∫

V
(u2

1 + u2
2 + u2

3)dV
. (8)
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Fig. 1 (a) Band structure of the PnC slab with the color representing the kinetic energy ratio e in
the x3-direction. (b) Mode shape for the edges of the band complete gap. (c) Band structure
with the bands classified by the mode shape symmetry (color online)

If e = 0, the band is an in-plane mode; otherwise, it is a mixed mode containing both in-
plane and out-of-plane movements. In Fig. 1(a), the kinetic energy ratio e in the x3-direction
is represented by the color of the band. The blue curves denote the in-plane modes, while the
red curves represent the mixed modes. Next, attention is paid on the band gap and its edges.
Figure 1(b) shows the mode shape of the edges (M1 and M2) and the possible edge (M3) of the
band gap. The modes M1, M2, and M3 are located on the points Γ, X, and M of the irreducible
Brillouin zone, respectively. The deformation of M1 mainly concentrates on the x3-direction as
the shearing motion. M2 corresponds to the torsional motion in three directions. For M3, the
deformation is mainly in-plane as the breathing motion. Notably, the band gap is determined
by the mixed bands with vibration, mainly along the x3-direction. As shown in Fig. 1(c), the
modes of the bands can be classified to odd modes and even modes according to the symmetry
with respect to the middle plane, i.e., the plane of x3 = 0 . The even and odd symmetry modes
are calculated by applying symmetric and antisymmetric boundary conditions to the middle
plane of the PnC slab, respectively. The even and odd band gaps are denoted by blue and red
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shadow zones, respectively. Since the red shadow zone is completely contained in the blue one,
the odd band gap is just the complete band gap. Moreover, in the normalized frequency range
of [0, 0.8], the in-plane modes in Fig. 1(a) correspond to the even modes in Fig. 1(c), while the
mixed modes in Fig. 1(a) correspond to the odd modes in Fig. 1(c). The root cause is that the
symmetric boundary condition leads the displacement u3 to zero at the boundary, while the
antisymmetric boundary condition causes the in-plane displacements u1 and u2 both to be zero
at the boundary.
3.2 Comparison of the thickness effect and in-plane size effect

In the previous research on the size effect of the PnC, little attention has been paid to the
thickness effect. Here, the size effect on the PnC slab is investigated by the proposed non-classic
model. Note that 30 variables are required to solve the NSGT wave equation in COMSOL. For
convenience, only the strain-driven nonlocal effect is considered. Let l = 0 in Eq. (4). Then,
the NSGT is reduced to the NLE theory. It should be pointed out that just with one nonlocal
parameter, Eringen’s nonlocal theory fails to simultaneously fit the longitudinal and transverse
acoustic dispersion curves of some materials, e.g., Si, Au, and Pt[58]. Therefore, the nonlocal
parameters can be different for longitudinal and transverse acoustic waves. To distinguish the
thickness effect from the in-plane size effect, the nonlocal parameter ξ is defined as ξ1 and ξ2,
which are perpendicular or parallel to the x3-direction. Thus, the governing equations are





C11
∂2u1

∂x2
1

+ (C12 + C44)
( ∂2u2

∂x1∂x2
+

∂2u3

∂x1∂x3

)
+ C44

(∂2u1

∂x2
2

+
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3

)

+
(
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1
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∂x2
1

+
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2

+
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3

))
ρω2 = 0,

C11
∂2u2

∂x2
2

+ (C12 + C44)
( ∂2u1

∂x1∂x2
+

∂2u3

∂x2∂x3
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+
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C11
∂2u3

∂x2
3

+ (C12 + C44)
( ∂2u1

∂x1∂x3
+

∂2u2

∂x2∂x3

)
+ C44

(∂2u3

∂x2
1

+
∂2u3

∂x2
2

)

+
(
u3 − ξ2

2

(∂2u3

∂x2
1

+
∂2u3

∂x2
2

+
∂2u3

∂x2
3

))
ρω2 = 0,

(9)

where ξ1 and ξ2 correspond to the in-plane size effect and the thickness effect, respectively. The
wave equation can be reduced to the CE wave equation when ξ1 = ξ2 = 0. Besides, the deter-
mination of the nonlocal parameters is beyond the scope of the present study. For convenience,
these parameters are chosen within the reasonable range[59].

Based on the NLE theory, the band structure is obtained by considering the size effect (see
the dotted curves in Fig. 2). For comparison, the band structure obtained by the CE theory is
plotted by the solid curves. In Fig. 2, the upper row is the bands for the even symmetry, and
the lower row is the bands for the odd symmetry. The complete band gap is the intersection
of two kinds of band gaps with even symmetry and odd symmetry. The normalized frequency
ωa/(2πct) of the complete band gap ranges [0.392 5, 0.420 0], [0.360 9, 0.425 0], and [0.358 3,
0.419 7] by overlapping Figs. 2(a), 2(d); 2(b), 2(e); and 2(c), 2(f), respectively. The thickness
effect and the in-plane size effect are discussed separately, and the combined effect based on
the two effects is then discussed.

(I) As a total, both effects are considered with ξ1 = 1 nm and ξ2 = 1 nm, as shown in
Figs. 2(a) and 2(d). The frequency of all bands drops, and the band gap narrows.

(II) Only the thickness effect is considered with ξ1 = 0 nm and ξ2 = 1 nm, as shown in
Figs. 2(b) and 2(e). All bands of even symmetry nearly stay still (see Fig. 2(b)), while the
bands of odd symmetry drop (see Fig. 2(e)).
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Fig. 2 Band structure comparison for specified nonlocal parameters. (a) and (d) Both in-plane effect
and thickness effect, where ξ1 = 1nm and ξ2 = 1nm. (b) and (e) Thickness effect, where
ξ1 = 0 nm and ξ2 = 1 nm. (c) and (f) In-plane size effect, where ξ1 = 1 nm and ξ2 = 0 nm
(color online)

(III) Only the in-plane size effect is considered with ξ1 = 1nm and ξ2 = 0nm, as shown
in Figs. 2(c) and 2(f). In Fig. 2(c), the in-plane mode is an even symmetric mode, and the
frequency of its bands above the band gap decreases greatly and becomes the cutoff frequency
marked by a red dot finally. As a result, the band gaps become much narrower.

In brief, as even modes, the in-plane modes are mainly affected by the in-plane size effect.
Similarly, as odd modes, the mixed modes are dominated by the thickness size effect.
3.3 Size effect on the complete band gap

The complete band gaps are of our great interest, since in the complete band gap, the
acoustic wave with any polarization and any direction cannot propagate through the PnC. In
order to reveal the impact of the thickness effect on the complete band gap, the first complete
band gaps are calculated for varying nonlocal parameters. As shown in Fig. 3(a), the starting
frequency fs and cutoff frequency fc of the band gap both reduce as the nonlocal parameters
ξ1 and ξ2 both increase. This is because both the in-plane size effect and the thickness effect
cause stiffness-softening.

The gap-to-midgap ratio is defined as RBG = 200%(fc−fs)/(fc +fs) to measure the relative
width of the band gap. It is noteworthy that fc and RBG both decrease drastically when (ξ1, ξ2)
approaches (1, 0). This is because even with an equal nonlocal parameter, the thickness effect
and in-plane effect have different impacts on the modes, corresponding to fs and fc, respectively.
By fixing ξ2 = 0 nm, when ξ1 increases from 0 to 1, the frequency of the in-plane mode M3

decreases drastically, and becomes the cutoff frequency of the band gap. Therefore, the complete
band gap is affected more by the in-plane effect than the thickness effect.
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Fig. 3 (a) fs and fc of the complete band gap. (b) RBG of the first band gap (color online)

3.4 Size-dependent behavior
It has been demonstrated that the thickness effect on the band structure of the PnC slab

cannot be ignored. The thickness effect is further focused in terms of the geometric parameters.
Only the modes with odd symmetry are considered since the thickness effect only acts on
the mixed modes. In these parameters, the lattice constant a and filling ratio f are in-plane
parameters, and f increases with the decease in the radius r of the hole. Figure 4 depicts the
band structure comparison between the CE theory and NLE theory with the thickness effect,
where the holes of the PnC slabs are with different r. No matter whether the thickness effect is
considered or not, the band gap only appears when r = 0.48a, while the band gap disappears
with the decrease in f . These bands of the mixed modes all shift down when only the thickness
effect is considered. However, as r increases, the frequency shift due to the thickness effect does
not change significantly. Thus, f has little influence on the thickness effect. Nevertheless, f
has a great size effect on the in-plane modes of the circular hole PnC[48].
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Fig. 4 Band structures of the mixed modes obtained by the CE theory and NLE theory under various
r, where ξ1 = 0nm, and ξ2 = 1nm (color online)

Figure 5 displays the band structure comparison between the CE theory and NLE the-
ory for the lattice constants a = 10nm, 20 nm, 50 nm, where f = 72% and t = 3nm. The
band structures obtained by the CE theory of these three PnCs are totally different. When
a increases from 10 nm to 50 nm, the first band gap between the 3rd and 4th bands is gradu-
ally closed. However, as shown in Fig. 5(c), two new band gaps arise between the 8th and
9th bands and the 10th and 11th bands, respectively. Furthermore, comparing the band
structure calculated by the CE theory and NLE theory, almost all band frequencies of the
NLE theory drop from those of the CE theory for different a. Accordingly, the frequencies
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Fig. 5 Band structures of the mixed modes for different a, where the red shadow zones denote the
band gaps obtained by the CE theory, the green shadow zones denote the band gaps obtained
by the NLE theory, ξ1 = 0nm, and ξ2 = 1nm (color online)

of the first band gaps decrease, i.e., the red area descends to the green area. This is also a
softening phenomenon due to the thickness effect. Moreover, for the PnC slab, the smaller the
lattice constant is, the larger its frequency drops, and thus the stronger the thickness effect is.

Finally, the effect of the thickness t on the band structure is further studied. To ensure that
the air hole PnC slab has a band gap, t is designed to be smaller than a. t is chosen as 0.3a,
0.6a, and 0.9a, respectively, as shown in Fig. 6. The first band gaps obtained by the CE theory
appear for the PnC slabs with all t, while the second band gaps obtained by the CE theory only
arise for the PnC slabs with two larger t. The thickness effect is then taken into consideration,
for t = 0.6a in Fig. 6(b), and the first band gap is widened since the starting frequency shifts
down while the cutoff frequency remains unchanged. Besides, the second band gap is closed.
For t = 0.9a in Fig. 6(c), the thickness effect can be ignored when only the first two band gaps
are concerned. Therefore, for PnC slabs, the thinner the thickness is, the stronger the thickness
effect is.
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Fig. 6 Band structures of the mixed modes for different t, where the red shadow zones denote the
band gaps obtained by the CE theory, the green shadow zones denote the band gaps obtained
by the NLE theory, ξ1 = 0nm, and ξ2 = 1nm (color online)

3.5 Size effect on the defect modes
PxC can own phononic and photonic band gaps simultaneously. The defect PxC confines

sound and light waves to defects, in which the acousto-optic coupling or optomechanical inter-
action is enhanced[56,60–62]. However, so far, the research on the size effect of defect PnC has
not been reported. Consequently, a point defect is introduced into a 7 × 7 PnC supercell to
study the size effect on the defect modes (see Fig. 7(b)). As shown in Fig. 7(a), the bands of
even and odd symmetries are plotted by blue circles and red dotted curves, respectively. Six
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flat bands of the defect modes, i.e., α, β, γ, σ, ε, and ζ, are found in the band gaps. They all
belong to in-plane modes due to the even symmetry. These modes have an obvious feature, i.e.,
the displacement field is highly concentrated in the defect cavity (see Fig. 7(b)). Among them,
the modes ε and ζ are a pair of degenerate modes sharing the same frequency, and their mode
shapes can be obtained by rotating each other 90 degrees clockwise or counterclockwise.
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β γα

ε ζδ
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ΓΓ

Fig. 7 (a) Band structure of the 7× 7 PnC supercell with defect cavity. (b) Mode shapes of the six
defect modes (color online)

Based on the NSGT, the frequency shifts of these six defect modes vary with different
nonlocal parameters (see Fig. 8). It should be pointed out that each nonlocal parameter is
considered by fixing the others to zero. The frequency shifts of these modes are all proportional
to the square of each nonlocal parameter. It can be noted that the frequency shift caused by ξ1

is two orders of magnitude larger than that caused by ξ2. This is because the displacements of
the defect modes are all concentrated in the x1x2-plane. Moreover, the degenerate modes ε and
ζ have the same frequency shift caused by all three nonlocal parameters. In Fig. 8(a), although
the frequency is the lowest among the six modes, α has the third highest frequency shift value.
In Fig. 8(b), the frequency and its shift of these defect modes have different orders of magnitude.
The order of the frequency shift is δ, β, α, γ, and ε (ζ) from small to large, while the order of
the frequency is α, β, γ, δ, and ε (ζ) from small to large. The similar phenomenon can also be
witnessed in Fig. 8(c). As expected, Figs. 8(a) and 8(b) show the softening effect with negative
frequency shifts, while Fig. 8(c) illustrates the hardening effect with positive frequency shifts.
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Fig. 8 Frequency shifts of the defect modes with different ξ1, ξ2, and l (color online)
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Figure 9 is further plotted to discuss the softening and hardening effects on the defect
modes. The normalized frequency shifts ∆ωa/(2πct) of the six defect modes versus ξ and l are
displayed, respectively. The normalized frequency shifts of the defect modes are represented by
the color and contours. These contours are all parallel, indicating that the frequency shifts are
all proportional to the square of ξ, as well as l. Besides, a contour with zero frequency shift is
named as the neutral line. Above the neutral line, the modes all exert the stiffness-hardening
effect. On the contrary, below the line, the modes all exert the stiffness-softening effect. At the
neutral line, no size effect produces on the modes. Each frequency shift contour indicates that
the frequency shifts are equal, which is the result of the joint action of stiffness hardening and
softening. As shown in Fig. 9, for the six defect modes, the slopes of frequency shift contours
are 0.01 times of 0.514, 0.235, 0.242, 0.386, 0.496, and 0.496, respectively. Consequently, even
with the same nonlocal parameters, these modes exert different frequency shifts due to the
size effect. It is totally different from the 1D beam NSGT wave problem, whose slopes of the
frequency shift contours are 1 for all modes[63–64].
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Fig. 9 Normalized frequency shifts ∆ωa/(2πct) with contours versus l and ξ for the six defect modes,
where ξ1 = ξ2 = ξ (color online)

4 Conclusions

A theoretical model for predicting the band structure of elastic wave propagation in a PnC
slab is proposed based on the NSGT. The 3D wave equations are established to evaluate the
size effect on the band gap. The modes are divided into in-plane modes and mixed modes
according to the ratio of the kinetic energy contents in the x3-direction. Some conclusions can
be drawn.

(i) The in-plane modes and mixed modes are obtained by applying symmetric and antisym-
metric boundary conditions, respectively.
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(ii) The frequency shifts of the in-plane modes and mixed modes are mainly dominated by
the in-plane effect and the thickness size effect, respectively.

(iii) The strength of the thickness effect is stronger for smaller lattice constant or thickness.
(iv) For the complete band gap, the in-plane size effect is greater than the thickness size

effect.
(v) The frequency shift of the defect modes caused by the in-plane nonlocal parameter is

two orders of magnitude larger than that caused by the thickness nonlocal parameter since the
defect modes are in-plane modes.

(vi) The frequency shifts of the defect modes are all proportional to the square of each
stiffness-softening nonlocal parameter and stiffness-hardening nonlocal parameter. The con-
tours of the normalized frequency shift versus two kinds of nonlocal parameters are all parallel.
But different defect modes have different slopes of frequency shift contours.
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[22] MERCADÉ, L., PELKA, K., BURGWAL, R., XUEREB, A., MARTÍNEZ, A., and VERHAGEN,
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S., ASPELMEYER, M., and PAINTER, O. Laser cooling of a nanomechanical oscillator into its
quantum ground state. nature, 478, 89–92 (2011)

[51] SAFAVI-NAEINI, A. H., ALEGRE, T., CHAN, J., EICHENFIELD, M., WINGER, M., LIN, Q.,
HILL, J. T., CHANG, D. E., and PAINTER, O. Electromagnetically induced transparency and
slow light with optomechanics. nature, 472, 69–73 (2011)

[52] ERINGEN, A. C. Theory of nonlocal electromagnetic elastic solids. Journal of Mathematical
Physics, 14, 733–740 (1973)

[53] BARRETTA, R., CANADIJA, M., LUCIANO, R., and DE SCIARRA, F. M. Stress-driven model-
ing of nonlocal thermoelastic behavior of nanobeams. International Journal of Engineering Science,
126, 53–67 (2018)

[54] ROMANO, G. and BARRETTA, R. Stress-driven versus strain-driven nonlocal integral model for
elastic nano-beams. Composites Part B: Engineering, 114, 184–188 (2017)



34 Jun JIN, Ningdong HU, and Hongping HU

[55] LIM, C. W., ZHANG, G., and REDDY, J. N. A higher-order nonlocal elasticity and strain gradient
theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids,
78, 298–313 (2015)

[56] EL-JALLAL, S., OUDICH, M., PENNEC, Y., DJAFARI-ROUHANI, B., LAUDE, V., BEUG-
NOT, J. C., MARTINEZ, A., ESCALANTE, J. M., and MAKHOUTE, A. Analysis of optome-
chanical coupling in two-dimensional square lattice phoxonic crystal slab cavities. Physical Review
B, 88, 205410 (2013)

[57] JIANG, S., HU, H. P., and LAUDE, V. Ultra-wide band gap in two-dimensional phononic crys-
tal with combined convex and concave holes. Physica Status Solidi-Rapid Research Letters, 12,
1700317 (2018)

[58] SHAAT, M. and ABDELKEFI, A. New insights on the applicability of Eringen’s nonlocal theory.
International Journal of Mechanical Sciences, 121, 67–75 (2017)

[59] ESEN, I. Response of a micro-capillary system exposed to a moving mass in magnetic field using
nonlocal strain gradient theory. International Journal of Mechanical Sciences, 188, 105937 (2020)

[60] DJAFARI-ROUHANI, B., EL-JALLAL, S., OUDICH, M., and PENNEC, Y. Optomechanic in-
teractions in phoxonic cavities. AIP Advances, 4, 124602 (2014)

[61] EL-JALLAL, S., OUDICH, M., PENNEC, Y., DJAFARI-ROUHANI, B., MAKHOUTE, A., ROL-
LAND, Q., DUPONT, S., and GAZALET, J. Optomechanical interactions in two-dimensional Si
and GaAs phoxonic cavities. Journal of Physics: Condensed Matter, 26, 015005 (2014)

[62] ROLLAND, Q., OUDICH, M., EL-JALLAL, S., DUPONT, S., PENNEC, Y., GAZALET, J.,
KASTELIK, J. C., LEVEQUE, G., and DJAFARI-ROUHANI, B. Acousto-optic couplings in
two-dimensional phoxonic crystal cavities. Applied Physics Letters, 101, 061109 (2012)

[63] TANG, H. S., LI, L., HU, Y. J., MENG, W. S., and DUAN, K. Vibration of nonlocal strain
gradient beams incorporating Poisson’s ratio and thickness effects. Thin-Walled Structures, 137,
377–391 (2019)

[64] LU, L., GUO, X., and ZHAO, J. Size-dependent vibration analysis of nanobeams based on the
nonlocal strain gradient theory. International Journal of Engineering Science, 116, 12–24 (2017)

Appendix A

According to Eq. (4), the wave equation based on the NSGT can be expanded as

C11u1,1 + C12(u2,21 + u3,31) + C44(u1,22 + u2,12 + u1,33 + u3,13)− l2C11(u1,1 111 + u1,1 221 + u1,1 331)

− l2C44(u1,2 112 + u1,2 222 + u1,2 332 + u2,1 112 + u2,1 222 + u2,1 332 + u1,3 113

+ u1,3 223 + u1,3 333 + u3,1 113 + u3,1 223 + u3,1 333)

− l2C12(u2,2 111 + u2,2 221 + u2,2 331 + u3,3 111 + u3,3 221 + u3,3 331) + (1− ξ2∇2)ρω2u1 = 0,

C11u2,2 + C12(u1,1 + u3,1) + C44(u2,1 + u1,1 + u2,3 + u3,3)− l2C11(u2,112 + u2,222 + u2,332)

− l2C44(u2,111 + u2,221 + u2,331 + u1,111 + u1,221 + u1,331 + u2,113

+ u2,223 + u2,333 + u3,113 + u3,2 223 + u3,333)

− l2C12(u1,112 + u1,222 + u1,1 332 + u3,112 + u3,222 + u3,332) + (1− ξ2∇2)ρω2u2 = 0,

C11u3,3 + C12(u1,3 + u2,23) + C44(u3,1 + u1,1 + u3,2 + u2,2)− l2C11(u3,113 + u3,223 + u3,3 333)

− l2C44(u3,112 + u3,222 + u3,332 + u2,112 + u2,222 + u2,332 + u3,111

+ u3,221 + u3,331 + u1,111 + u1,221 + u1,331)

− l2C12(u1,113 + u1,1 223 + u1,1 333 + u2,2 113 + u2,2 223 + u2,2 333) + (1− ξ2∇2)ρω2u3 = 0.


