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Abstract This paper studies the vibration absorber for a fluid-conveying pipe, where

the lever-type nonlinear energy sink (LNES) and spring supports are coupled to the

asymmetric ends of the system. The pseudo-arc-length method integrated with the

harmonic balance method is used to investigate the steady-state responses analytically.

Meanwhile, the numerical solution of the fluid-conveying pipe is calculated with the

Runge-Kutta method. Moreover, a special response, called the collapsible closed detached

response (CCDR), is first observed when the vibration response of mechanical structures

is studied. Then, the relationship between the CCDR and the main structure primary

response (PR) is obtained. In addition, the closed detached response (CDR) is also

observed to research the resonance response of the fluid-conveying pipe. The appearance

of either the CCDR or the CDR does affect the resonance attenuation. Furthermore, the

mentioned two phenomena underline that the trend of vibration responses under external

excitation goes continuous and gradual. Besides, the main advantage of the LNES is

presented by contrasting the LNES with the nonlinear energy sink (NES) coupled to

the same pipe system. It is found that the LNES can reduce the resonance response

amplitude by 91.33%.
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1 Introduction

Flow-induced vibration extensively exists in various forms of fluid-structure interaction ma-
chinery, including the wind turbine blades[1], downhole oil pumping systems[2], large offshore
platforms[3–4], and others[5–7], and extremely harms the equipment operation. As a representa-
tive of fluid-structure interaction systems, the fluid-conveying pipe has drawn many researchers’

∗ Citation: CAO, R. Q., WANG, Z. J., ZANG, J., and ZHANG, Y. W. Resonance response of fluid-

conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink. Applied

Mathematics and Mechanics (English Edition), 43(12), 1873–1886 (2022) https://doi.org/10.1007/

s10483-022-2925-8

† Corresponding author, E-mail: zhangyewei1218@126.com

Project supported by the National Natural Science Foundation of China (Nos. 11902203 and 12022213)

and the General Scientific Research Foundation of Liaoning Educational Committee (No. JYT2020035)
c©The Author(s) 2022



1874 Runqing CAO, Zhijian WANG, Jian ZANG, and Yewei ZHANG

attention[8–11]. They have done considerable work on this classical model[12–14]. For exam-
ple, some researchers studied the fluid-conveying pipe in three dimensions[15–17]. Pipe models
are classified according to the curvature into straight pipes conveying fluid, slightly curved
ones[18–19], and curved ones[20].

Meanwhile, various computation approaches and techniques have been developed and used
to obtain geometrically exact governing equations[21–23], to investigate the nonlinear dynamics
and stability of the system[24–28], and to calculate the resonance response[29]. Other researchers
explore the material effects on resonance attenuation[30–31], especially soft materials[32]. Also,
some researchers used the energy harvesting method to suppress vibration[33]. Ding et al.[34]

focused on the varying boundary conditions of a pipe system in order to isolate resonance. In
addition, several researchers devoted themselves to coupling vibration absorbers to pipe models
in order to avoid negative vibration[35–37]. Among these mentioned studies, our attention has
been paid to two means, namely, diverse boundary conditions and adding vibration absorbers.
Because of some practically mechanical devices operated in complicated conditions, the study
of complex boundary conditions is helpful for enhancing machinery vibration isolation ability.

Considering convenience and effectiveness for the coupling of vibration absorbers to the
main structure, many researchers start their work in view of nonlinearity[38–40]. Among various
resonance absorbers, a novel oscillation named as the nonlinear energy sink (NES) has been
increasingly popular[41–42]. Owing to strict requirements of aerospace and marine engineering
system, several researchers subsequently made many improvements in reducing the attached
mass of resonance absorbers and enhancing their vibration control ability[43–44]. Among all
forms of NESs, a novel lever-type nonlinear energy sink (LNES)[45] attracts our attention by
coupling a dimensionless lever to the NES. The LNES attaches a lightweight mass and achieves
the target energy transfer from the main structure. However, in the previous studies, the LNES
is applied to the discrete system or the ordinary beam system. The performance of the LNES
in the oscillation suppression of the fluid-structure interaction system has not been mentioned
yet. Therefore, the LNES coupling to both sides of the fluid-conveying pipe is proposed in this
work to avoid undesirable vibration.

Furthermore, some extraordinary phenomena have been found when studying the resonance
response of the system under either external excitation or self-excitation. It is called the closed
detached response (CDR) or the isolated resonance curve (IRC)[45–46], which always emerges
when the bifurcation of the system occurs. However, the previous studies lack an investigation
of how the CDR works in the fluid-structure interaction system. It motivates us to explore this
mechanism deeply, whether the CDR could appear in the fluid-conveying pipe.

In this paper, a fluid-structure interaction model is established in Section 2. The analysis of
free vibration characteristics is reported in Section 3. Both numerical and analytical methods
are used to investigate the steady-state response in Section 4. Finally, the conclusions are drawn
in Section 5.

2 Dynamic model

The dynamic model of a fluid-conveying pipe with elastic boundary conditions is established
in Fig. 1. X, T , V , and U are the coordinates of axial motion distance, time, axial displacement,
and transverse displacement, respectively. L denotes the length of the entire pipe. F represents
the axial distributed external force. Moreover, K1, K3, C1, and m1 are referred to as the
vertical supported spring at the left end of the pipe, the cubic nonlinear stiffness, the linear
damper, and an attached mass at the left LNES. K2, K4, C2, and m2 are the corresponding
variables on the other side. Γ is the fluid velocity, and D and d denote the diameters of the
outer and inner pipe, respectively (see Fig. 1).

According to the Hamilton principle, the kinetic energy of the system TE is provided as
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Fig. 1 Mechanical structure of fluid-conveying pipe with LNES (color online)
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(1)

where TF and TP are the virtual kinetic energies of fluid and pipe, respectively. AF and AP

stand for the cross-sectional areas of fluid and pipe, respectively, and ρF and ρP denote the
densities of fluid and pipe, respectively. Meanwhile, the subscripts “,”, T , and X are the
partial derivative symbol, partial derivatives of time and axial motion coordinate, respectively.
V,X indicates the derivative of V , which represents the first-order derivative with respect to the
axial motion coordinate. V,T denotes the first-order derivative of V with respect to time.

According to the Kelvin viscoelastic constitution relation, the material characteristic can be
written as[34]

σ = Eε + ζε,T . (2)

Then, the potential energy of the pipe can be written as

UP =
∫∫∫

V

σεdV. (3)

The potential energy of fluid can be written as

UF =
∫ L

0

AFPF(
√

(dX + dU)2 + (dV )2 − dX)

=
∫ L

0

AFPF(
√

(dX + U,XdX)2 + (V,XdX)2 − dX)

=
∫ L

0

AFPF(
√

(1 + U,X)2 + V 2
,X − 1)dX, (4)

where PF is the pressure of a fluid-conveying element.
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Thus, the potential energy of the system is

U = UF + UP. (5)

Then, the virtual work is provided as

δW1 =K1V (0, T )δV (0, T ) + K2V (L, T )δV (L, T )
+ F1δV (0, T ) + F2δV (L, T ) + FδV (X, T ), (6)

where





F = F0 cos(ωT ),

F1 = (α− 1)
(
K3((α− 1)δV (0, T )x1 − x3)3 + C1

(
(α− 1)δV (0, T )

dx1

dT
− dx3

dT

))
,

F2 = (α− 1)
(
K4((α− 1)δV (L, T )x2 − x4)3 + C2

(
(α− 1)δV (L, T )

dx2

dT
− dx4

dT

))
,

(7)

where x1, x2, x3, and x4 denote the displacement responses of m1, m2, left, and right sides of the
pipe, respectively. α is the lever fulcrum location parameter. ω and F0 represent the frequency
and the amplitude, respectively. We substitute Eqs. (1)–(7) into the Hamilton principle to
obtain the dynamic governing equations and the boundary conditions,





(ρFAF + ρPAP)V,TT + (ρFAFΓ2 −AFPF)V,XX + 2ρFAFΓV,XT
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(
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,
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(8)





V,X(0, T ) = 0, V,XX(L, T ) = 0,

(ρFAFΓ2 −AFP )V,X(0, T ) + EIV,XXX(0, T ) + K1V (0, T ) = 0,

(ρFAFΓ2 −AFP )V,X(L, T ) + EIV,XXX(L, T )−K2V (L, T ) = 0.

(9)

The dimensionless equations and the corresponding boundary conditions can be derived by
introducing the dimensionless variables and parameters,





v,tt + (γ2 − κ)v,xx + 2γmfv,xt + f cos(ωbt) + f1δv(0) + f2δv(1) + v,xxxx + ηv,xxxxt = 0,

f1 = (α− 1)
(
k3((α− 1)δv(0)x1 − x3)3 + C1

(
(α− 1)δv(0)

dx1

dt
− dx3

dt

))
,

f2 = (α− 1)
(
k4((α− 1)δv(1)x2 − x4)3 + C2

(
(α− 1)δv(1)

dx2

dt
− dx4

dt

))
,

(10)





v,x(0, t) = 0, v,xx(1, t) = 0,

(γ2 − κ)v,x(0, t) + v,xxx(0, t) + k1v(0, t) = 0,

(γ2 − κ)v,x(1, t)v,xxx(1, t)− k2v(1, t) = 0,

(11)

where
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(12)

3 Free vibration analysis

By ignoring the terms of nonlinear stiffness, damper, and external excitation[34], the modal
functions of the pipe (see Eq. (10)) can be obtained and simplified as

v,tt + (γ2 − κ)v,xx + 2γmfv,xt + v,xxxx = 0. (13)

Then, the solutions of the transverse vibration are assumed as follows:
{

v(t, x) = p(t)φ(x),

p(t) = eiωt, φ(x) = C1eiβ1x + C2eiβ2x + C3eiβ3x + C4eiβ4x,
(14)

where p and φ stand for the dimensionless coordinate and the modal function of the fluid-
conveying pipe, respectively. Moreover, the coefficients of C1, C2, C3, and C4 (especially, C1

is a constant value, which is not equal to zero) can be solved by substituting Eq. (14) into
Eqs. (11) and (13),





C1β1 + C2β2 + C3β3 + C4β4 = 0,

C1eiβ1β2
1 + C2eiβ2β2

2 + C3eiβ3β2
3 + C4eiβ4β2

4 = 0,

k1(C1 + C2 + C3 + C4)− 3i(C1β
3
1 + C2β

3
2 + C3β

3
3 + C4β

3
4) = 0,

k2(C1eiβ1 + C2eiβ2 + C3eiβ3 + C4eiβ4) + 3i(C1eiβ1β3
1 + C2eiβ2β3

2 + C3eiβ3β3
3

+ C4eiβ4β3
4) + i(γ2 − κ)(C1eiβ1β1 + C2eiβ2β2 + C3eiβ3β3 + C4eiβ4β4) = 0,

(15)

− ω2 − (γ2 − κ)β2
j − 2γmfωβj + β4

j = 0, (16)

where j = 1, 2, 3, and 4.
To investigate the dynamical characteristics of the fluid-conveying pipe, the parameters used

in the computation are listed in Table 1.
The relationship of the frequency with vertical spring and the fluid speed is illustrated in

Fig. 2. It is obvious that the vertical spring stiffness has a limited effect on the frequency. After
a surge in the beginning (see Fig. 2(a)), the first four order frequencies vary slowly all the time.
Thereafter, the value of vertical spring is selected moderately to avoid harmful vibration. As
the fluid speed increases, the curves of first three order frequencies decline until the fluid speed
reaches 50 (see Fig. 2(b)). Then, the curve of the first-order frequency changes slightly, while
the curves of the third and fourth frequencies are unstable and increase obviously and gradually,
indicating that the fluid speed is essential to the characteristics of the system, especially for high
order natural frequencies. To deeply explore the effect of the fluid speed, the modal functions
of the fluid-conveying pipe are shown in Fig. 3.
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Table 1 Parameters of fluid-conveying pipe and LNES

Notation Value Notation Value

E 850 MPa ρP 920 kg/m3

D 0.02m K3, K4 394.144 2N/m

d 0.016m M1, M2 0.030 5 kg

AF 2.011× 10−4 m2 C1, C2 0.054 8N/(m · s)
AP 1.131× 10−4 m2 α 6

ρF 1 000 kg/m3 L 1 m
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Fig. 2 Frequencies of fluid-conveying pipe versus (a) vertical spring k1 and (b) fluid speed γ (color
online)
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4 Forced vibration analysis

To obtain the simplified modal function φ used in the Galerkin method, the nonlinear
stiffness, damper, external excitation[45], and fluid flow have been ignored. Equations (14) and
(15) can be simplified as follows:

v,tt + v,xxxx = 0, (17){
v,x(0, t) = 0, v,xx(1, t) = 0,

v,xxx(0, t) + k1v(0, t) = 0, v,xxx(1, t)− k2v(1, t) = 0.
(18)

The dimensionless displacement is assumed as
{

v(t, s) = p(t)φ(s),

φ(x) = B1cos(βx) + B2sin(βx) + B3cosh(βx) + B4sinh(βx), ω2 − β4 = 0,
(19)

where p means the dimensionless transverse coordinate of the pipe system.
In addition, the simplified modal functions φ can be expressed in Eq. (19), and the coefficients

of simplified modal functions can be obtained by substituting Eq. (19) into Eqs. (17) and (18).
Thus, the solution of the forced vibration governing function can be written as

v(t, x) =
n∑

i=1

pi(t)φi(x), (20)

where i = 1, 2, 3, · · · , n, and φi is equal to the modal function φ. Moreover, substitute this form
of solutions into Eq. (10), and thus obtain the Galerkin truncation as follows:





d2p(t)
dt2

+ W1
dp(t)
dt

+ W2p(t) + W3 cos(ωbt) + f1φg(0) + f2φg(1) = 0,

W1 =
2γmf

∫ 1

0

n∑
i=1

φ′(x)φg(x)dx + η
∫ 1

0

n∑
i=1

φ′′′′(x)φg(x)dx

∫ 1

0

n∑
i=1

φ(x)φg(x)dx
,

W2 =
(γ2 − κ)

∫ 1

0

n∑
i=1

φ′′(x)φg(x)dx +
∫ 1

0

n∑
i=1

φ′′′′(x)φg(x)dx

∫ 1

0

n∑
i=1

φ(x)φg(x)dx
,

W3 =

∫ 1

0
fφg(x)dx

∫ 1

0

n∑
i=1

φ(x)φg(x)dx
, g = 1, 2, 3, 4,

(21)

where the weight function of Galerkin truncation φg is set as the modal function of the simplified
system. The truncation order is selected as 4 to ensure the convergence of the analytical
results[34,45]. The vibration attenuation indicator is set as ur, which ensures the movement of
the system. It is expressed as follows:

ur(f) = RMS

( n∑

i=1

pi(t)φi(s)
)
, (22)

where RMS stands for the root mean square, and f means the given frequency.
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The harmonic balance method is always used to obtain the analytical solution[45]. Consider
the influence of the cubic stiffness in the LNES. Then, the three-order dimensionless harmonic
solution is assumed as follows[45]:

qj = Aj1 cos(ωt) + Aj2 sin(ωt) + Aj3 cos(3ωt) + Aj4 sin(3ωt), (23)

where j = 1, 2, 3, and 4. Combining the harmonic balance method and the pseudo-arc-length
method is useful for studying the analytical solution of the pipe conveying fluid, especially deal-
ing with the multivalued uncertain problem and the turning point problems during computing
directional iterative solutions.

It is noticed that the middle point of the pipe is weaker than any other part of the pipe for
the model supported at both ends. Thus, the middle point of the pipe is selected to be the
evaluation point, which proves whether the proposed scheme can control vibration[45].

To obtain the numerical solution, the fourth-order Runge-Kutta method is applied in this
work. Then, the analysis of forced vibration is conducted to study whether the analytical
solution matches the numerical solution and is shown as follows.

Figure 4 shows that the numerical and analytical solutions have excellent agreement. It
also demonstrates that the two applied approaches for studying the steady-state responses of
fluid-conveying pipe are valuable and the results are convergent.
4.1 Effects of fluid speed

The steady-state responses of the pipe conveying fluid with or without the LNES for different
fluid speeds are calculated and depicted in Fig. 5. The vibration response of the system coupled
with the LNES is always lower than that without the LNES (see red dotted lines) no matter
how the fluid speed varies. It proves that the LNES is a robust resonance absorber, which
is helpful for reducing the first-order vibration response peak. Therefore, we focus on the
resonance response near the first-order vibration peak and explore the effect of the LNES on
the resonance suppression as below.
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merical methods (color online)
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Fig. 5 Resonance responses of ur changing with
fluid speed γ, where dash line denotes
NES, solid lines denote LNES with m1 =
m2 = 0.1, k3 = 100, c1 = 0.019, and α = 6
(color online)

4.2 Effects of LNES parameters
In this section, we focus on the influence of the LNES on the resonance suppression. After

the fluid speed is given, the discussion of the LNES parameters is conducted.
The lever fulcrum α is the ratio of AB to AC, which indicates how the fulcrum location

affects the LNES resonance suppression. The LNES is composed of the lever fulcrum α, the
cubic nonlinear stiffness k3, the linear damper c1, and the linear attached mass m1 (see Fig. 6).
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Fig. 6 Structure of LNES (color online)

The effects of lever fulcrum α on resonance control are discussed in Fig. 7. Obviously, the
nonlinearity of the fluid-conveying pipe is weak in the initial stage. Then, the primary response
(PR) maximum decreases by 61.91%, with α increasing from 3.1 to 4.95 (see Figs. 7(a) and 7(b)).
Then, a collapsible closed detached response (CCDR) is observed on the left side of the PR and
is depicted with red solid lines. As α increases, the CCDR becomes smaller. Meanwhile, a CDR
appears (see Fig. 7(c)). Notably, the PR maximum is almost unchanged from the appearance
of the CCDR to the disappearance of the CDR, while the peak of the PR surges after the CDR
finally vanishes (see Fig. 7(d)). It can be concluded that the lever fulcrum plays a major role in
suppressing vibration. Meanwhile, finding an appropriate range of lever fulcrums is useful for
minimizing damaged vibration.

Different from the trend of vibration responses illustrated in Fig. 7, the effect of the attached
mass on the resonance suppression is shown in Fig. 8. The resonance peak is high at first (see
Fig. 8(a)), then the CDR appears suddenly (see Fig. 8(b)) and gradually becomes higher. After
that, the CCDR separates from the PR (see Fig. 8(c)). Finally, the nonlinearity of the system is
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weaker than that in the initial stage and is illustrated in Fig. 8(d). Consequently, the moderate
value of an attached mass is effective to the unavoidable vibration control.

The combined effects of the lever fulcrum and the attached mass on the resonance responses
are shown in Fig. 9(a). From the projection of the PR (see Fig. 9(c)), it should be noticed that
the maximum of ur drops suddenly, while the appearances of the CDR and the CCDR fill this
gap (see Figs. 9(a) and 9(b)). It testifies that the changing trend of the resonance response is
continuous. Moreover, it is significant to find an appropriate range of system parameters.
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4.3 Comparison of vibration responses for pipe coupled to LNES and NES
The advantage of the LNES is further discussed by comparing the vibration responses of the

same fluid-conveying pipe coupled to the NES. The value of the mass is set as an independent
variable when contrasting the vibration control capacity of the LNES with that of the NES.
There is no significant difference in the vibration response as shown in Fig. 10(a). Because
of the CCDR emergence, the vibration peak of the system with the LNES declines sharply by
91.33% (see Fig. 10(a)), while the response of the system coupled to NES fluctuates slightly (see
Figs. 10(b) and 10(c)). Thus, the vibration suppression ability of the LNES is much stronger
than that of the NES.
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5 Conclusions

A novel model of the fluid-conveying pipe is proposed in this work, where the vertical linear
spring and the LNES are set as the boundary supports to suppress vibration. The analyses
and discussion of the free vibration characteristics and steady-state responses are studied, and
important results are obtained as follows:

(i) The fluid speed plays an essential role in exploring the system characteristics, and the
high speed always causes negative vibration of the fluid-conveying pipe.

(ii) The appearance of the CCDR when studying forced vibration responses enriches the
research of complex vibration responses. Meanwhile, the CDR is also first found when studying
the fluid-structure interaction system.

(iii) Both the CDR and the CCDR have been investigated deeply when studying the effects
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of the LNES on resonance control. Their appearances or disappearances have dramatically
reduced the vibration response peak of the pipe. The appearances of the CCDR and the CDR
also demonstrate that the vibration response of the fluid-conveying pipe coupled to the vibration
absorber changes gradually but not sharply. Thus, finding an appropriate range of absorber
parameters is necessary.

(iv) The LNES is a robust vibration absorber used to suppress the negative resonance of the
fluid-conveying pipe than any other classical NESs.
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