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Abstract Quasi-zero-stiffness (QZS) vibration isolators have been widely studied,
because they show excellent high static and low dynamic stiffnesses and can effectively
solve low-frequency and ultralow-frequency vibration. However, traditional QZS (T-QZS)
vibration isolators usually adopt linear damping, owing to which achieving good isola-
tion performance at both low and high frequencies is difficult. T-QZS isolators exhibit
hardening stiffness characteristics, and their vibration isolation performance is even worse
than that of linear vibration isolators under a large excitation amplitude. Therefore, this
study proposes a QZS isolator with a shear-thinning viscous damper (SVD) to improve
the vibration isolation performance of the T-QZS isolators. The force-velocity relation of
the SVD is obtained, and a dynamic model is established for the isolator. The dynamic
responses of the system are solved using the harmonic balance method (HBM) and the
Runge-Kutta method. The vibration isolation performance of the system is evaluated
using force transmissibility, and the isolator parameters are analyzed. The results show
that compared with the T-QZS isolators, the proposed QZS-SVD isolator achieves the
lower initial vibration isolation frequency and peak value, and exhibits better vibration
isolation performance at medium and high frequencies. Moreover, the proposed isolator
can withstand a large excitation amplitude in the effective vibration isolation range.
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1 Introduction

Vibration control has always been a key challenge in many engineering fields. The vibration
isolation performance will considerably influence the performance of products, such as the res-
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olution of observation equipment for orbiting satellites, processing precision of machines, and
riding comfort of running vehicles[1–5]. Vibration control is usually realized via active control,
semi-active control, and passive control. Among these, passive control is the most considered
and applied because of its simple structure and zero requirement for external energy. A tra-
ditional isolator is a linear system comprising mass, spring, and damper, and shows vibration
isolation performance when the excitation frequency exceeds

√
2 times the natural frequency

of the system. Generally, low-frequency vibration isolation performance can be enhanced by
reducing the system stiffness. However, a system under low stiffness exhibits limited bearing
capacity and stability[6]. Thus, it is difficult to achieve a balance between vibration isolation
and bearing capacity.

To overcome the lack of low-frequency isolation performance in linear vibration isolators,
quasi-zero-stiffness (QZS) isolators have been proposed as nonlinear systems[7]. Because of
their high static and dynamic stiffnesses, QZS isolators can effectively compensate for the low-
frequency passive vibration isolation. Carrrella et al.[8–9] established a classical three-spring
QZS model, in which oblique and vertical springs were considered as the negative and positive
stiffness elements, respectively. Kovacic et al.[10–11] studied the nonlinear dynamic behavior of
this type of QZS isolator. Xu et al.[12] established models of four inclined and vertical springs,
experimentally confirming the enhanced vibration isolation performance of the QZS isolator. In
addition to inclined springs, many other types of structures have been designed to achieve the
QZS. Lan et al.[13] used plane springs instead of inclined springs. Liu et al.[14] proposed a QZS
isolator using an Euler buckled beam as the negative stiffness element. Niu et al.[15] reported a
theoretical design and performed a characteristic analysis on the QZS isolator based on a disk
spring as the negative stiffness element. Zhou et al.[16–18] designed a cam-roller mechanism to
achieve the QZS characteristics of the vibration isolator. They designed a compact QZS rod,
and extended the transmission of torsional isolations. Inspired by the shape of animal limbs,
Zeng et al.[19] proposed a QZS isolator with a folded torsional spring structure. Moreover,
magnetic springs have been studied by many researchers[20–23] and have been used to achieve
the QZS.

Recently, research on QZS isolators has tended to be diverse. The performance of QZS vi-
bration isolation systems has been further improved. Liu and Yu[24] added an auxiliary system
to a three-spring QZS isolator to reduce its peak transmissivity and eliminate the jump phe-
nomenon. Inspired by the bionic structure of the human body, Feng et al.[25] added a rotating
unit with nonlinear inertia to an X-shaped structure to simulate the arm swing to reduce the
resonance frequency of the system and achieve improved antiresonance characteristics. Yang et
al.[26] proposed a QZS isolator with a nonlinear inertial mechanism, achieving improved low-
frequency vibration isolation performance of the QZS isolator based on this mechanism. Lu et
al.[27] analyzed a two-layer QZS vibration isolation system under harmonic excitation, experi-
mentally verifying the improved performance of the high-frequency vibration isolation system.
Wang et al.[28] established a two-layer QZS model with a cam-roller-spring mechanism. Zhao
et al.[29] proposed that the nonlinear stiffness superposition of two pairs of inclined springs can
be used to enhance the QZS region. Wang et al.[30] developed a double-layer QZS system with
an ultrawide vibration isolation range. Deng et al.[31] fabricated a thirteen-level QZS isolator
based on the stability characteristics of a bird’s neck.

Alternatively, QZS isolators have been employed in various engineering practices. Kim et
al.[32] designed a QZS isolator for an ultraprecision sensing system using a buckling plate as
the negative stiffness element. Wang et al.[33] developed a type of baby carriage for neonatal
transport using a pair of repulsive magnets in combination with linear springs as the positive
stiffness element to obtain the QZS, which considerably reduced the vibration of infants during
transport. Ding et al.[34] applied a three-spring QZS isolator to the vibration attenuation of a
fluid-transmission pipeline.

The QZS isolators show better vibration isolation performance than linear systems owing
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to their high static and low dynamic stiffnesses. However, some problems persist. If damping
is increased to suppress the transmissibility near the resonance frequency, the high frequency
transmissibility also increases, making it difficult to achieve good isolation performance at both
low and high frequencies. Furthermore, the hardening stiffness of the QZS isolators will dete-
riorate the vibration isolation performance of the system under a large excitation amplitude.
To solve these problems and further improve the vibration isolation performance of QZS sys-
tems, this study proposes a QZS isolator with a shear-thinning viscous damper (SVD). Previous
studies have widely explored vibration isolation systems with a viscous damper. Lang et al.[35]

and Lv and Yao[36] studied the influence of nonlinear viscous damping on a single-degree-of-
freedom vibration isolation system, showing certain advantages of nonlinear vibration isolators
over linear vibration isolators. Mofidian and Bardaweel[37] studied the influence of cubic non-
linear damping on the QZS system comprising magnetic inclined springs. They showed that
nonlinear damping could eliminate frequency hopping, but the vibration isolation performance
of this system was similar to that of a linear system at a low frequency. Liu et al.[38] proposed
a QZS isolator with a viscoelastic damper, which further improved the high-frequency vibra-
tion isolation performance. However, the improvement in the low-frequency vibration isolation
performance was not obvious. Zhang et al.[39] studied linear, nonlinear, and Bouc-Wen (BW)
hysteretic dampings in a nonlinear vibration isolation system and explored the development of
a broadband vibration isolation system. Unlike these studies, the present study applies an SVD
to a QZS vibration isolator for the first time.

The remainder of this paper is organized as follows. In Section 2, the damping force char-
acteristics of the SVD are analyzed, and a dynamic model is established for the QZS-SVD
isolator. In Section 3, an analytical solution for the system is obtained using the harmonic
balance method (HBM), and the solution is verified using numerical simulation. In Section 4,
the superiority of the vibration isolation performance of the system is evaluated by comparing
the force transmissibility of this system with that of the traditional QZS (T-QZS) vibration
isolator, and the system parameters are analyzed. Finally, the conclusions of this study are
summarized in Section 5.

2 Modeling of the QZS-SVD isolator

2.1 Damping force analysis of SVDs
Viscous fluids can be divided into Newtonian and non-Newtonian fluids based on whether

the relation between the shear stress and the shear strain rate of the fluids conforms to Newton’s
inner friction law. Non-Newtonian fluids with rheological properties conforming to the power-
law relation are called power-law fluids, which can be expressed as[40]

S = ηDn, (1)

where η represents the viscosity coefficient, n denotes the flow index, and D denotes the shear
velocity. η and n are constant. n determines the type of fluid. When n = 1, the fluid is
deemed a Newtonian fluid, and η is the viscosity of the Newtonian fluid. When n > 1, the
power-law fluid is called a shear-thickening fluid, and its viscosity increases with an increase
in the shear rate. When n < 1, the power-law fluid is called a shear-thinning fluid, and its
viscosity decreases with an increase in the shear rate. The damping of the QZS-SVD isolator
is based on the shear-thinning fluid.

Based on the ideal mechanical model for a viscous damper with a shear-thinning fluid as the
medium, the damping force is related only to the velocity and shows no stiffness storage effect.
Based on the rheological characteristics of the fluid medium, the relation between the damping
force and the velocity of the damper satisfies the power law[41], and thus, the force-velocity
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relation can be expressed as

Fd = cvα, (2)

where Fd denotes the damping force produced by shear-thinning viscous damping, c represents
the damping force coefficient, v denotes the response velocity, and α denotes the damping force
index. Figure 1 shows the force-velocity curves under different values of α. When α < 1,
the force-velocity curve corresponds to shear-thinning viscous damping. In a small velocity
range, an SVD can provide a larger damping force than a linear viscous damper, and a small
value of α can yield a high damping force. In a large velocity range, the damping force of an
SVD will be smaller than that of a linear viscous damper owing to the shear-thinning effect.
The characteristics of shear-thinning damping determine the critical change point of damping
(v = 1).
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Fig. 1 Damping force-velocity curves under different values of α with c = 0.5 (color online)

When a vibration isolation system is subject to harmonic excitation, the periodic response
of the system is

y(t) = A cos(Ωt + θ). (3)

The damping force-velocity relation of an SVD can be expressed as

Fd = c · sign(ẏ(t)) |ẏ(t)|α . (4)

Figure 2 shows the variations in the damping force with time under harmonic excitation
of different frequencies. The response velocity of the system is small in the low-frequency
region. Therefore, the force induced by the SVD is greater than that induced by the linear
viscous damper, while it is smaller than that induced by the linear viscous damper in the high-
frequency region. The SVD shows the characteristics of large damping in the low-frequency
region and those of small damping in the high-frequency region. This feature is also expected
in the developed vibration isolation system.
2.2 Dynamic modeling of the QZS-SVD isolator

Figure 3 shows a schematic of the QZS-SVD isolator. The typical three-spring structure
comprises two oblique springs, a vertical spring, and a vertical SVD. When the QZS isolator
bears an isolated vibration object, the two oblique springs are compressed along the horizontal
direction to provide negative stiffness along the vertical direction. Moreover, the vertical spring
is compressed to provide bearing capacity and positive stiffness along the vertical direction.
The positive and negative stiffnesses are superimposed, affording QZS and static equilibrium.
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Fig. 2 Variations in the SVD damping force with time under harmonic excitation of different fre-
quencies, where c = 0.5, A = 0.5, and α = 0.5 (color online)
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Fig. 3 Schematic of the QZS-SVD isolator

Under an external force F , the isolated object deviates from the equilibrium position and
yields a displacement y. The force-displacement relation of the QZS-SVD isolator is expressed
as

FQZS = kvy − 2k1y
( L0√

a2 + y2
− 1

)
, (5)

where kv denotes the vertical spring stiffness, k1 denotes the oblique spring stiffness, L0 repre-
sents the original length of the oblique spring, and a represents the length of the oblique spring
when it is compressed along the horizontal direction.

To facilitate the subsequent calculations, Eq. (5) is usually expressed approximately using
the following third-order Taylor expansion[12]:

FQZS =
L0k1

a3
y3. (6)

Under the action of harmonic excitation Fe = F cos(wt), the equation of motion can be
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expressed as

mÿ + Fd + FQZS = F cos(wt). (7)

Substituting Eqs. (4) and (6) into Eq. (7), the equation of motion can be expanded as

mÿ + csign(ẏ) |ẏ|α +
L0k1

a3
y3 = F cos(wt). (8)

Transforming Eq. (8) into a dimensionless form, we achieve

ÿ + 2ζsign(ẏ)
∣∣ẏ∣∣α + γy3 = F cos(Ωτ), (9)

where

w0 =

√
kv

m
, τ = w0t, ζ =

cw0

2kv
, Ω =

w

w0
, F =

F

kvL0
,

β =
k1

kv
, y =

y

L0
, a =

a

L0
, γ =

β

a3 .

3 Dynamic analysis

3.1 Amplitude-frequency responses
Equation (9) is a nonlinear ordinary differential equation, in which the stiffness and damping

correspond to the third-order nonlinearity and fractional power, respectively. In this study, the
HBM is used to approximate the solution to Eq. (9). Let the steady-state periodic response of
the system be as follows:

y(τ) = A cos(Ωτ + θ), (10)

where A represents the steady-state response amplitude, and θ denotes the response phase.
Substituting Eq. (10) into Eq. (9), we can obtain

−Ω2A cos(Ωτ + θ)− 2ζΩαAαsign(ẏ)| sin(Ωτ + θ)|α + γA3 cos3(Ωτ + θ) = F cos(Ωτ). (11)

Only the influence of the main resonance under harmonic excitation is considered, and the
higher-order harmonic term is ignored. The last two terms on the left-hand side of Eq. (11) are
subject to Fourier expansion, and the first-order main harmonic term is achieved as

sign(ẏ)| sin(Ωτ + θ)|α =
2
π

(
2−

(
2− π

2

)
α
)

sin(Ωτ + θ), (12)

cos3(Ωτ + θ) =
1
4
(3 cos(Ωτ + θ) + cos 3(Ωτ + θ)). (13)

Using Eqs. (12) and (13), the equation of motion can be simplified as

− Ω2A cos(Ωτ + θ)−
( 8

π
−

( 8
π
− 2

)
α
)
ζΩαAα sin(Ωτ + θ)

+
3
4
γA3 cos(Ωτ + θ) = F cos(Ωτ). (14)

Let the coefficients of both cos(Ωτ + θ) and sin(Ωτ + θ) be 0. Then, we can obtain




(3
4
γA3 −AΩ2

)
cos θ −

( 8
π
−

( 8
π
− 2

)
α
)
ζΩαAα sin θ = F,

−
( 8

π
−

( 8
π
− 2

)
α
)
ζΩαAα cos θ −

(3
4
γA3 −AΩ2

)
sin θ = 0.

(15)

Eliminating the phase θ in Eq. (15), the amplitude-frequency characteristic equation is ob-
tained as follows:

(3
4
γA3 −AΩ2

)2

+
(( 8

π
−

( 8
π
− 2

)
α
)
ζΩαAα

)2

= F
2
. (16)
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3.2 Numerical analysis
In the previous section, the amplitude-frequency response of the system was obtained using

the HBM. This response will also be used to evaluate the vibration isolation performance of
the QZS-SVD isolator. It is necessary to verify the correctness of the analytical solution using
numerical simulation. The parameters of the QZS-SVD isolator are set as follows: the damping
ratio coefficient ζ = 0.05, the damping force index α = 0.5, the equivalent stiffness γ = 10,
and the excitation force amplitude F = 0.05. Moreover, the fourth-order Runge-Kutta method
is used to solve the numerical solution to Eq. (9). Figure 4 shows that the analytical solution
agrees well with the numerical solution. However, a certain deviation is observed in an ultralow-
frequency region.

Ω
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0.1
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Analytical

Numerical

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Fig. 4 Comparison between analytical and numerical solutions of the amplitude-frequency response
(color online)

The analytical solution obtained using the HBM contains only the first-order harmonic.
However, in the ultralow-frequency region, the exact solution of the QZS system may contain
complex responses such as superharmonic and subharmonic. To analyze the reason for this error
between the analytical and numerical solutions, Fig. 5 shows the simulation results under certain
specific frequency ratios (Ω = 0.1, 0.3, 0.5, and 0.7) in the low-frequency range, including the
steady-state response and phase diagram. Figures 5(a), 5(c), 5(e), and 5(g) show that when the
system is excited using an ultralow frequency, the response is not just a single main harmonic.
With the increase in the excitation frequencies, the higher harmonic gradually disappears and
exhibits a single harmonic response. Figures 5(b), 5(d), 5(f), and 5(h) show that with the
increase in the frequency, the complex shape in the phase diagram gradually changes to an
ellipse, and the analytical solution agrees well with the numerical solution. This result explains
the deviation between the analytical and numerical solutions in the ultralow-frequency range
in Fig. 4.
3.3 Force transmissibility under harmonic excitation

Force transmissibility is generally an important index to evaluate the performance of a
vibration isolation system and is used to evaluate the performance of the QZS-VSD isolator
under harmonic excitation. The force transmissibility Tf is defined as the ratio of the force
transmitted to the foundation to the amplitude of the exciting force. The force transmitted to
the foundation through the QZS-SVD isolator is

Ft = 2ζsign(ẏ)|ẏ|α + γy3. (17)

Based on the aforementioned definition, the force transmissibility of the QZS-VSD isolator
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Fig. 5 Time domain diagram and phase trajectories of numerical simulation under different frequen-
cies (color online)

is expressed as[10]

Tf = 20 lg
(Ft

Fe

)
= 20lg

(
√((

8
π −

(
8
π − 2

)
α
)
ζΩαAα

)2 +
(

3
4γA3

)2

F 2
e

)
. (18)

3.4 Comparison with T-QZS and linear isolators
In this section, the vibration isolation performance of the QZS-SVD isolator is compared

with those of T-QZS and linear isolators. In T-QZS isolators, damping is generally considered
to be linear, which induces a problem that considering both low-frequency and high-frequency
vibration isolations is difficult. Small damping easily causes the amplitude-frequency curve to
bend to the right, and then produces a jumping phenomenon, worsening the low-frequency
vibration isolation effect. Increasing the damping can improve the low-frequency vibration
isolation, but the effect worsens in the middle- and high-frequency regions. Alternatively,
the shear-thinning viscous damping varies nonlinearly with the velocity. Figure 6 shows a
comparison of the force transmissibility-frequency curves of the three isolators. Under the same
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parameters, the QZS-SVD isolator achieves a very low initial isolation frequency, compared
with the T-QZS isolator, thus eliminating the resonance peak and jumping phenomenon in the
low-frequency range. As the frequency increases, the transmissibility curve of the QZS-SVD
isolator in the high-frequency range is below that of the T-QZS isolator, thus showing better
vibration isolation performance. At high frequencies, the force transmissibility curves of the two
isolators gradually coincide, and the two isolators show good vibration isolation performance,
thereby achieving satisfactory results. The QZS-SVD isolator shows excellent vibration isolation
performance and can well isolate vibration in the full-frequency range.
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Fig. 6 Comparison of force transmissibility curves of the three vibration isolators, where γ = 10,

ζ = 0.05, α = 0.5, and F = 0.02 (color online)

4 Parameter analysis

The vibration isolation performance of the QZS isolator is affected by the damping ratio
coefficient, the stiffness, and the amplitude of excitation force, as well as changes in the variation
of the damping force index. This is because the response amplitude determined using Eq. (17) is
a function of these parameters. In this section, the effects of the parameters (the damping force
index α, the damping ratio coefficient ζ, the excitation force amplitude F , and the equivalent
stiffness γ) on the vibration isolation performance of the QZS-SVD isolator are analyzed.
4.1 Damping force index

Figure 7 shows the force transmissibility curves of the QZS-SVD isolator with different
values of the damping force index α. When α = 1, the force transmissibility curve represents
a T-QZS isolator with linear damping. When α = 0.8, compared with the T-QZS isolator,
the QZS-SVD isolator mainly suppresses part of the resonance peak, and the improvement in
the vibration isolation performance is unnoticeable. With the decrease in the damping force
index, the rightward bending phenomenon of the force transmissibility curve weakens in the
low-frequency range. When α = 0.6, the jumping phenomenon disappears and the resonance
peak of the system drops to a very low level. When α = 0.5, the resonant peak disappears
completely, and the QZS-SVD isolator exhibits a very low initial isolation frequency. When
α = 0.4, the force transmissibility of the QZS-SVD isolator can be reduced to −20 dB at the
frequency ratio of 0.3, isolating more than 90% of the vibration and exhibiting excellent passive
vibration isolation performance in the low-frequency region. Generally, when α is small, the
vibration isolation performance of the QZS-SVD isolator is enhanced, especially in the low-
frequency region. Despite this face, the value of α often depends on the characteristics of the
shear-thinning viscous fluid.
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4.2 Damping ratio coefficient
Figure 8 shows the force transmissibility curves of the QZS-SVD isolator with different

damping ratios. It can be seen that when the damping ratio is small, the curve bending to
the right affords a poor low-frequency vibration isolation performance of the system. With
the increase in the damping ratio coefficient, the damping force of the SVD increases. The
large damping can suppress the formant in the low-frequency region, but increase the force
transmissibility in the high-frequency region, consistent with the law of the damping ratio
parameter analysis of the T-QZS isolator.
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Fig. 7 Force transmissibility curves of the
QZS-SVD isolator under different
damping force indexes, where γ = 10,
ζ = 0.05, and F = 0.02 (color online)
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QZS-SVD isolator under different
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Figure 9 shows the amplitude-frequency curves of the QZS-SVD and T-QZS isolators with
different damping ratio coefficients. As shown in Fig. 9(a), when ζ = 0.01, the amplitude-
frequency curves are considerably bent to the right, and the low-frequency vibration isolation
performance is poor. As shown in Fig. 9(b), when ζ = 0.03, the bending degree of the am-
plitude frequency curve of the T-QZS isolator is weakened, and that of the QZS-SVD isolator
improves considerably. Furthermore, the jumping phenomenon is almost completely elimi-
nated. As shown in Fig. 9(c), when ζ = 0.05, the QZS-SVD isolator completely eliminates the
formant and shows good low-frequency vibration isolation performance. As shown in Fig. 9(d),
when ζ = 0.12, the T-QZS isolator eliminates the jump phenomenon and reduces the initial
isolation frequency ratio to about 0.5, while the QZS-SVD isolator shows a better vibration
isolation performance in the low-frequency region. However, the high-frequency vibration iso-
lation performance of the two types of vibration isolators deteriorates because of an increase
in the damping ratio. In Fig. 10, the force transmissivity curves of the two isolators are com-
pared. The value of the critical damping ratio ζ at the time of the elimination of the jump
phenomenon is considered. The QZS-SVD isolator not only shows slightly better vibration iso-
lation performance than the T-QZS isolator in the low-frequency region, but also shows better
performance in the middle- and high-frequency regions, where the force transmissivity of the
QZS-SVD isolator can be lower than that of the T-QZS isolator by 10 dB or more. In the
QZS-SVD isolator, an appropriate value of the damping ratio can be selected to simultaneously
obtain good isolation performance in low- and high-frequency regions.
4.3 Excitation amplitude

Figure 11 shows the force transmissibility curve of the QZS-VSD isolator under different
excitation amplitudes. With the increase in the excitation amplitude, the resonance peak and
initial vibration isolation frequency increase gradually, deteriorating the low-frequency isolation
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ratio coefficients, where γ = 10, α = 0.5, and F = 0.02 (color online)
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performance. However, the high-frequency is not affected, similar to the variation law of linear
damping QZS. When the peak frequency Ωd of the QZS isolator is not greater than the resonant
frequency of the corresponding linear system (Ω = 1), the performance of the QZS isolator is
better than that of the linear system. When Ωd = 1, the excitation force amplitude is called
the critical excitation force amplitude Fcr. When F < Fcr, the vibration isolation performance
of the QZS system is better than that of the linear system.
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Figure 12 shows a comparison between the QZS-SVD and T-QZS isolators under different
excitation amplitudes. As shown in Fig. 12(a), when F = 0.02, the amplitudes of both isolators
are smaller than the critical excitation force amplitude, and the performance of the QZS-SVD
isolator is considerably better than that of the T-QZS isolator. With the increase in the ex-
citation amplitude, as shown in Fig. 12(b) when F = 0.036, the T-QZS isolator reaches the
critical excitation amplitude, and the vibration isolation performance is poor compared with
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the corresponding linear system. This also reflects the problem that the vibration isolation
performance of the QZS isolator deteriorates in the case of large excitation. In the QZS-SVD
isolator, the right bending and peak value in the amplitude-frequency curve can be better con-
trolled. As shown in Fig. 12(c), when F = 0.069, the QZS-SVD isolator reaches the critical
excitation amplitude, and the vibration isolation performance of the QZS-SVD isolator starts
to deteriorate compared with the linear systems. In Fig. 12(d), when F = 0.2, the right bending
of the amplitude-frequency curve of the SVD is substantial and exceeds the bending degree of
the linear damping QZS isolator. The excessive excitation amplitude is assumed to promote
the enhancement of the damping shear-thinning effect. However, the vibration isolation perfor-
mance of the QZS system is far inferior to that of the linear vibration isolator in this interval,
and hence it is not discussed. Compared with the T-QZS isolator, the critical excitation am-
plitude of the QZS-SVD isolator increases by 92%, which (to some extent) solves the problem
of the deterioration of the vibration isolation performance caused by the hardening stiffness
characteristics of the T-QZS isolator when the amplitude is very large.
4.4 Equivalent stiffness

Generally, with the decrease in the equivalent stiffness, the bending degree of the force
transmissibility curve decreases, while the resonance peak value and initial isolation frequency
gradually decrease, increasing the effective isolation frequency domain and improving the isola-
tion performance of the system. Figure 13 shows the force transmissivity curves of the QZS-SVD
and T-QZS isolators with different values of the equivalent stiffness when α = 0.5. Both isola-
tors follow the aforementioned laws. When γ = 20, the force transmissivity curve of the T-QZS
vibration isolator bends considerably to the right, the initial vibration isolation frequency ratio
reaches 0.88, and the low-frequency vibration isolation performance is poor. However, no right
bending and resonance peak are observed in the case of the QZS-SVD isolator. Further, the
force transmissibility of the vibration isolation can be reduced rapidly when the frequency ratio
is 0.4. When γ = 10, the bending degree of the T-QZS curve decreases, the initial isolation fre-
quency ratio decreases to about 0.74, and the curve of the QZS-SVD isolator shifts to the left by
less than 0.1. When γ = 1, the initial isolation frequency ratio of the T-QZS isolator reduces to
about 0.4, while that of the QZS-SVD isolator reduces to about 0.2 and can rapidly attenuate.
Thus, when γ is large, the QZS-SVD isolator shows better vibration isolation performance than
the T-QZS isolator. A small γ implies that the QZS curve of the QZS isolators is smoother at
the static equilibrium position and shows a wider effective QZS range compared with a large γ.
Scholars have conducted considerable research to obtain QZS isolators with a wide QZS range.
However, the structure of these isolators is usually more complex than those of the T-QZS
isolators[28–29]. The SVD can significantly improve the vibration isolation performance of the
QZS vibration isolators using a simple structure and a large equivalent stiffness.
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5 Conclusions

In this study, a QZS vibration isolator with a SVD is studied. The mathematical model
for the QZS-SVD isolator is established, which is a dynamic system with nonlinear stiffness
and damping. The HBM is employed to obtain the amplitude-frequency characteristics of the
QZS-SVD isolator, and the correctness of the analytical solution is verified using numerical
simulation. The force transmissibility is used to evaluate the vibration isolation performance of
the system, which is compared with those of the T-QZS and linear stiffness systems. Finally,
the effects of the damping force index, the damping ratio, the excitation amplitude, and the
nonlinear stiffness on the vibration isolation performance of the system are discussed. The
following conclusions can be drawn.

(i) Under harmonic excitation, the SVD shows large damping in the low-frequency region and
small damping in the high-frequency region. Compared with the T-QZS vibration isolator, the
QZS-SVD vibration isolator shows the lower initial vibration isolation frequency and resonance
peak, exhibiting excellent ultralow-frequency vibration isolation performance. Ideally, it can
completely eliminate the jump phenomenon or even the resonance peak.

(ii) In the QZS-SVD isolator, an appropriate value of the damping ratio can be selected to
obtain enhanced vibration isolation performance in the low-frequency region as well as medium-
to high-frequency regions. At medium and high frequencies, the force transmissibility of the
QZS-SVD isolator is more than 10 dB lower than that of the T-QZS isolator.

(iii) The QZS-SVD isolator shows a larger critical excitation amplitude than the T-QZS
isolator, thus improving the problem of the deterioration of the vibration isolation performance
owing to the hardening stiffness characteristics of the T-QZS isolator when the amplitude is
very large.
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