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Abstract In this work, the three-dimensional (3D) propagation behaviors in the nonlin-
ear phononic crystal and elastic wave metamaterial with initial stresses are investigated.
The analytical solutions of the fundamental wave and second harmonic with the quasi-
longitudinal (qP) and quasi-shear (qS: and qS2) modes are derived. Based on the transfer
and stiffness matrices, band gaps with initial stresses are obtained by the Bloch theorem.
The transmission coefficients are calculated to support the band gap property, and the
tunability of the nonreciprocal transmission by the initial stress is discussed. This work
is expected to provide a way to tune the nonreciprocal transmission with vector charac-
teristics.
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1 Introduction

Phononic crystals consist of two or more materials periodically, and can generate band gap of
elastic waves['®!. Band gaps are certain frequency regions in which the elastic wave propagation
is prohibited!®7]. Elastic wave metamaterial is a new concept proposed in recent years, which
brings extraordinary phenomenal® 1%, These periodic structures have the ability to control the
wave propagation and vibration, which results in some advanced devices in practice.

The material nonlinearity can illustrate interesting wave phenomena and transmission be-
haviors, which has attracted considerable attention['6-2%]. The distinguishing property of the
material nonlinearity is the generation of higher-order harmonic. Liang et al.2'22 studied an
acoustic diode consisting of a linear phononic crystal and a nonlinear layer to show the nonre-
ciprocal transmission of the acoustic wave. The nonreciprocal transmission means that waves
can propagate in one direction but are prohibited in the reverse. Recently, increasing attention
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has been paid to the phenomenon in which the reciprocity theorem of the classic wave system
is broken!2330,

However, the above-mentioned studies mainly focused on scalar waves with only one dis-
placement component. In recent years, the propagation of three-dimensional (3D) harmonic
waves in layered structures have been reported31 34, In our previous work, the nonreciprocal
transmission in 3D cases in a layered nonlinear elastic wave metamaterial was discussed®®.
Moreover, some studies have indicated that the effects of the external initial stresses on the
band gap are significant!36 38!, As a result, the initial stress can offer a new opportunity to tune
the 3D nonreciprocal transmission.

In this investigation, the nonreciprocal transmission of 3D waves in a layered nonlinear
elastic wave metamaterial with initial stresses is studied. Combining the band gap in the linear
phononic crystal and material nonlinearity breaks the reciprocity theorem of elastic waves.
According to the transfer and stiffness matrices, the band gaps and transmission coefficients of
the fundamental wave and the second harmonic are obtained. The effects of the initial stresses
on propagation behaviors are discussed.

2 Governing equation with initial stresses

Figure 1(a) shows a one-dimensional (1D) nonlinear phononic crystal with initial stresses
and the local coordinate of each sub-cell. This structure is formed by two different nonlinear
materials A and B, which consists of m unit cells. d; and dy denote the widths of the layers
A and B, respectively, and the thickness of a unit cell is d = dy + d2. The characters 2n — 1,
2n, and 2n + 1 indicate the interfaces of the nth unit cell. The normal initial stresses 0¥, 095,
and 095 are taken into account. For an incident elastic wave in the 3D space, the propagation
direction is denoted by the polar and azimuthal angles 6; and 6.

As shown in Fig. 1(b), a nonlinear elastic wave metamaterial is composed of a 1D phononic
crystal with layers of linear materials C and D and a nonlinear medium A. We assume that the
elastic wave from the right to the left is the positive direction, and the reverse case represents
the negative one. The nonreciprocal transmission can be obtained by the combination of the
linearly periodic structure and nonlinear material. Then, the elastic wave can propagate in
the positive direction but stop in the negative one, which shows the diode characteristic of the
elastic wave.

For the 3D elastic wave propagation, the displacement components with time ¢ can be

=
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Fig. 1 Layered nonlinear phononic crystal and elastic wave metamaterial with initial stresses (color
online)
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written as
U; ZUi($7y727t)~ (1)

The governing equation of the anisotropic monoclinic medium with initial stresses can be
expressed as[?1:39]

0ij5,5 + (O—kjwzk + U f’:ll ?kskj) = PU; tt, ivj, kvl =T,Y, %, (2)

where p is the mass density, the commas in the subscripts refer to the derivative with respect
to the time or space coordinates, and

Uk — Uk, Ug,j + Uj k
Wig = ———F——, €& =1uUy, Ekj= —fm (3)
2 2
The constitutive equation with material nonlinearity can be written as/%!
Oij = CijkiUk,l + =MijklmnUk,1Um,n, (4)

2

where Mijkimn = Cijklmn + Cijln6k7rz + cjnkléim + cjlmn(sika in which Cijklmn is the third-order
elastic constant, ¢;jki, Cijin, Cjnki, and cjimn denote the second-order constants, dxm, dim, and
d; represent the Kronecker delta, and ux and u,, are the mechanical displacements.

The displacement components can be expressed as

U; = ugl) + “52)» (5)

where ugl) and ul(?) denote the displacement components of the fundamental wave and the
second harmonic, respectively.

Based on the perturbation approximation method, the governing equations with initial
stresses of the fundamental wave and the second harmonic can be derived as

Ppl ;1a:) tt Cplluz()%v) Tzxr 2C, 15upw) Tz (CP66 + (032/2) - (091/2)) é%v),yy (CP55 + (Ug3/2)
(011/2))u1(71m zz (CP12 + CP66 + (0—?1 /2) (022/2)) py Ty (CP46 + CP25) py)yz

P15u;z),ww_(cpl3 + Cpss + (011 /2)— (‘733/2)) pz xz T p46u§;2yy - p35U1(,12),ZZ =0, (6a)

Ppuz(;?,tt — (Cpes + Cpr2 + (0(2)2/2) (011/2)) pz zy — (Cpas + CP46)U‘§)1z),yz — (Cpos + (0?1/2)
- (032/2))u1(7%/),zz - 2CP46upy xz P22’u’1()%/)yy (CP44 + (Ug3/2) - (032/2))11‘;571;)722
- (CP46 + Cp25)u§)£)my - (Cp23 + CP44 + (022/2) (033/2)) pz yz =0, (Gb)

Pl — Cprsult) 1o — (Cpss + Cpis + (095/2) — (091/2))u ;()?zz — Cpagubl = Cpasubly ..

— (Cpas + Cpas)u wmy — (Cpaa + Cpaz + (095/2) — (095/2))ul py vz~ (Cpss + (o11/2)
— (093/2))uf2 e — 2Cy5u) . — (Cpas + (055/2) — (095/2))ull,, — Cpszufl . =0, (6c)
ppu;i{tt — anﬁ),m — 2C’p15Up2x),xz — (Cpos + (052/2) — (‘711/2)) pac,yy — (Cpss + (033/2)
—(0%1/2)uZ).. — (Cprz + oo + (031 /2) — (035/D)u2).,, — (Cpas + Cras)ulZ).
5t s = (Cpis + Cpss + (091/2) = (033/2)) U2 — Cpastll yy, — Coasul...
= Fi(u (1)) (6d)

ppu)y, — <0pae+cpu+<agz/2> (091/2))u®) . — (Cpas + Cpas)ul2) . — (Cpes + (02,/2)

(022/2)) y zz 20P46u py,xz CPQQU‘;()?,yy - (CP44 + (033/2) - (0—22/2))u;§72y),zz
- (OP46 + CP25)U§)22),my - (CP23 + CP44 + (0—32/2) (033/2)) pz yz =F (U’}(ol))v (66)
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2
ppuz()z)tt - Cp15u1()2L) Txr (CP55 + Op13 + (0g3/2) (011/2)) p‘l/ Tz P46u1()?c),yy - P35u1()?c),zz

— (Cpas + Cp46) ul?) 1y — (Cpas + Cpas + (095/2) — (09,/2))u 1()2y)yz — (Cpss + (011/2)

(033/2)) pz T 2Cp35upz Tz (Op44 + (032/2) (033/2)) pz yy P33u1()?z),zz

= Fy(uy!), (61)
where the subscript p (p = 1,2) refers to the material of each sub-cell, ul(;) and uﬁ) are the
displacement components of the fundamental wave and the second harmonic, respectively, Cpmn

(m,n=1,2,---,6) represent the second-order elastic constants, and Fi(uz(,l)) is the bulk driving
force of the second harmonic generated by the interaction between the fundamental wave and
material nonlinearity'64!. The explicit expressions of Fi(ug(,l)) can be found in Ref.[35] and
are not presented here for simplicity.

From Egs. (6a)—(6¢), we can see that the displacements of the fundamental wave along three
directions are coupled. Accordingly, the analytical solutions depending on x,, y,, and z, can

be given as
iw
(ufd) uly) ul) = (U UG, U exp (5 (any + gty + oz —cV8)). (1)

pa: ’ py ) py
where Um)7 U,% , and U( ) are the displacement amplitudes, g,1 = sinf;cosfy, g2 = sinf;sind,,
M = = w/k (1) is the phase velocity of the incident fundamental wave, w and k(!) denote the
frequency and the wave number, respectively, and i = /—1.
Substituting Eq. (7) into Egs. (6a)—(6¢) yields

1
Tpin Tpie Tpis Uzgw) 0
Tpor Tpao Tpos Ué 'l =1o], (8)
Tpa1 Tps2 Tpas U;Ei) 0

where
50 _ 40
Tp11 = Cp11@o1 + 2Cp150p10p2 + Cpes s + Cpssdng + %0‘2
$ T ) (9
0
Tp12 = Cp12gp10p + CpaeGp20y + Cpesdp1 oy + Cpasdpaoy + %qplap, (9b)
0o _ 0
Tp13 = Cp13Gp1qp2 + Cp15q12;1 + Cp46a12; + Cp35q;2)2 + Cps5p1qp2 + %Qplqp% (9¢)
UO — UO
Tp21 = Cp12Gp10p + Cpasp2oy + Cpesprap + Cpasgpacy, + %%ﬂam (9d)
00 — UO
Tp22 = 2Cpasp1dp2 + Cpocdpy + Cp2ovy + Cpasdry + %%31
+ U?0>3 5 032 2 pp( (1))2’ (96)
09, — o9
Tpa3 = Cpasqprap + Cpasgpacy + Cpasqpiay + Cpaagpacy, + %%2%, (9f)
0 0
Tp31 = Cp13Gp10p2 + Cp15@51 + Cpasy + Cpasdng + Cpssdprdpe + 753 ; L p1p2, (9g)
50, _ 50
Tp32 = Cpasqprap + Cpazqpacty + Cpasqpiay + Cpaagpacy, + %%20@; (9h)
50 _ 50 50 _ 50
Tp33 = 2Cp35ap1qp2 + Cpssqay + Cpaacs + — %53 G+ T2z T3 a — pp(c)?. (91)

2 2
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The existence of non-trivial solutions in Eq. (8) requires the coefficient determinant being
zero. Then, the characteristic equation can be derived as

A@Oég + A4OZ; + AQQ?) + AO = 0, (10)

where the expressions of Ag, A4, Ao, and Ay are presented in Appendix A.

Then, three pairs of conjugative roots can be obtained by the sixth-order polynomial, which
denote the coupled quasi-shear (qSs and ¢S;) and quasi-longitudinal (qP) waves. We assume
that a1, aps, and aps represent the transmitted qSs, S, and qP waves, while oy, apa, and
o6 mean the reflected S, Si1, and gP ones.

We define the amplitude ratios for the coupled waves as

L _ Uzg.vl;) _ Tp13Tpa1 — TpinTpas

a - - 9 113

v Uzgzln) Tp12Tp23 - Tp13Tp22 ( )
UY T Tes — ToaT,

I(];) _ Ups _ Lp1iip22 p124p21 (11b)

U;Si)  Tp12Tpo3 — TpisThoo

The term exp(—iwt) is ignored in the following derivation for simplicity. Then, the displace-
ment and stress components of the coupled waves can be expressed as

1 1 iw
(u z%c)q’ uz(le)q7 uz()lz)q) (1, a1(72)q’ ;3)q)U1§alc)q (@(qzlep + QpglYp + qPQZP))7 (12a)

(0, o) W)y

1 1) (1
p12¢> O p22¢> Tp23q G() G( G .

(1) ( plg> Tp2q p3q)Uz§x21 exp ( ) (gp12p + pqyp + QPQZP)) (12b)

where ¢ = 1,2,--- ,6, and

0 0
1 1 1 011 + 099 1
Gj(olq Cp46q102a;()2)q + Cp46apqa;(>3)q + Cpecipg + Cp66‘1p1a1(a2)q - B) qplaz(;z)q’ (13a)
1 1 1
Gz(ﬂ)q Cp12gp1 + Cp220‘pqa1(;2)q + Cp23qp2a1(73)q + Cpasqpa + Cp25qp1a](03)q
1
+ 0% (g + ap2055,), (13b)
0 0
1 1 1 099 t+ 033 1
GéBq = P44q102a§72)q + Op440‘pqa1(33)q + Cpagapg + Cp46q171az(>2)q - B qp2a1(92)q- (13c)

The fundamental wave in each nonlinear layer can generate the bulk driving force for the
second harmonic as

n=3,4,5,6
S 2iw
Fi(uz()l)) — Z U;Di{“cmfcn) exp ( &) (Qpm + pn)yp + m(qpla:p + quzp)>
m=1,2
e iw 2w
+ Z p'L cm cn) EXP (@(apm + Qpn)Yp + @(QPlxp + qP2Zp))
m=1,2
h=56 iw 2iw
DL
+ Z Upie—cy) €XP (C(T)(O‘pl + apn)yp + @(%lxp + qPQZp))
1=3,4
h=5,6 . .
iw 2iw
1234 z(cl cn) €XP <C(T)(O‘pl + aph)yp + @(Qplmp + Qp22p))

2iw
Z pz(cq—cq) eXp ( ) (gp1p + pqp + qp2zp))

2iw
(Upz(cl c2) Upz(C3 ca) + U pi(cs— 06)) exp (ﬁ(qplirp + qPQZP)>7 (14)
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where UP"(CHL_Cn)’ Ul?ir(rcm_cn)’ Ul?i%cl_ch)’ U;)i(Tcl_Ch)’ U}B’?cq—cq)’ UIB%CI_CZ)’ UIE%‘B_C‘O’
UZE%C _eq) AT amplitudes of the bulk driving force. The superscripts DL and DT mean the
components of the driving force with longitudinal and transverse waves, respectively.

The displacement components of the second harmonic can be derived by Eqgs. (6d)—(6f) and

(14) as

and

2iw
(uz(gﬁ)q’ u1(>2y)q’ u1(722)q) (UZSHQCZJ’ Uzgigz’ Uﬁq) exp ( @ (gp1Tp + Bpqyp + qP2Zp)) (15)

where U,g%, U,§§Z,, and Uézé are amplitudes for the double frequency, 3,, is the ratio of wave
numbers for the second harmonic, and ¢(?) = w/k(?) is the phase velocity of the second harmonic
with k() denoting the wave number.

3 Band gap and transmission coefficient

We consider a 3D elastic wave in both the nonlinear phononic crystal and the elastic wave
metamaterial. For the fundamental wave, we define the displacement and stress vectors as

u= (u*(_l) w D u*(l))T’ o — (o.*(l) O.*(l) U*(l))T, (16)

pxq >’ pyq ’ 'pzq p12q> ¥ p22q> ¥ p23q

where
PI‘I Z Ulgﬂlﬁzl exp ( ) (qplxp + QpglYp + qPQZp)> (17a)
ZU(” 1D (2 (a1 + iptlp + y2p) (17b)
puq Py p2q o) \dp1Tp T XpalYp T Ap2%p) )
: iw
X 1
uly) = Z Ujzya ;3)11 exp ( @ (@p1%p + pgyp + q;DQZP)) (17¢)
qg=1
6 iw
*(1 1
Upgzz; = (1 p(alcz]Gél)q exp (ﬁ(%lxp + QpglYp + qPQZp)>7 (17d)
g=1
1) _ N iw ) iw
*(1) _ (1 1
Op22q = z; D) ngszQq €xXp (@(qzilajp + Qplp + quzp)>, (17e)
p
. iw
*(1 1
Oy = > 0 UpﬂchIGz(HB)q exp ( @ (@p1Tp + Qpgp + qPQZ;D)> (17f)
q=1

The state vectors at the left and right interfaces of each sub-cell for the nth unit cell can be
written as

1 (1 1 1 iw
Von—1/2nt = TPL(Upmlv Uzgz)Q’ Upz?n przu UZSJU?’)’ U;Ewgs)T exXp (ﬁ(qup + %2217))7 (18a)

1 1 1 1 1 1 iw
Von—/2n+1 = (Uggac)l’ Uzgx)Q) U;zggc)Bv U]szl’ U[Ex)5? U;:Sgc)G)T exXp (T)(qzﬂxp + qPQZp))’ (18b)

where va,,_1/2n+ j2n— /2041 = (W, U)2Tn L/2nt j2n- /2410 and the detailed expressions of the co-
efficient matrices T}, and Tr are given in Appendix B.
According to the interfacial condition, we have the following relations:

Vop- = T1V2p—1, Vont1 = ToU2,+, (19)
where T, (p =1, 2) is the transfer matrix of each sub-cell with the following form:

T, = T,rT,;". (20)
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Based on the constitutive equation, the stiffness matrices can be expressed asl4243]

O2n—1)\ _ U2p—1
( - ) _K, ( 20 ) , (21a)
Oon U2n
=K , 21b
<02n+1> ? <U2n+1> ( )

where K, (p =1, 2) denotes the sub-cell stiffness matrix.
Then, the stiffness matrix can be derived from Egs. (19)-(21) as
~1 ~1
_pr TP pr )

L o (22)
Ty — TpaTy' Tpa  TpaTl,

K,(6 x6)= (

where Ty,¢ (( = a,b,d) is the 3 x 3 sub-matrix of T},.

Eliminating the mechanical quantities at the 2nth interface, the cell stiffness matrix can be

derived as
(0'2n—1> - K <u2n—1> 7 (23)
O2n+1 U2n+1
where
Ki, + Kip(K2y — K1a) ' K. —K1p,(Kaq — K14) ' Ko
K(6x6)= _ _ , 24
( ) < Ky (K — K1) 'K, Kyi — Ky (K3, — K1g) ' Ko, (24)
and Kp¢ (( = a,b,c,d) is the 3 x 3 sub-matrix of K.
Then, the wave propagation in periodic structures satisfies the Bloch theorem as
V2n+1 = eikdv2n717 (25)
where k refers to the wave number.
Based on Egs. (23)—(25), the eigenvalue equation is expressed as
|T — e™1| =0, (26)
where
~-K, 'K K;!
T - b a b 2
(6 X 6) (KC . KdKlrlKa Kde1> ) ( 7)

and K¢ (( = a,b,c,d) is the 3 x 3 sub-stiffness matrix of K.

As a result, the band gap of the fundamental wave can be obtained by Eq. (26). As a result,
the transmission coefficients of the fundamental wave can be calculated to support the band
gap property. For the incident S, wave, the displacements at the incident boundary consist of
one incident wave and three reflected waves as

Ug(1) = Urrnt + Urari2 + Uraria + UreTie, (28a)
Uy(1) = Ula,(glg)lrn + UR2a:E;12)2r12 + UR4CL](912)47"I4 + URGGSQ)GT’I()" (28Db)
Ug(1) = Ula;?ﬁn + URQGZ%)QTH + UR4(II()?4TI4 + UR6a1(,13)67“16, (28¢)

where the subscript (1) refers to the incident boundary, Uy is the amplitude of the incident
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wave, Ura, Ur4, and Ugg are the amplitudes of the reflected waves, and

711 = exp (%(qplffp +aanyy + quzp)), (29a)
T12 = exp ( (ul)) (@p17p + a(1)2Yp + Gp22p ) (29b)
T4 = €Xp ( (ulj) (@p17p + a(1yaYp + Gp22p ) (29¢)
T16 = eXp ( o (gp12p + (1)6Yp + Tp22p ) (29d)
The corresponding stresses can be expressed as
o12(1) = (UIG(nT’Il + URszlgﬁz + UR4G,,14T14 + URGGprIG) (30a)
O22(1) = l(w) (UIGég)lrll + UR2Gp227“12 + UR4Gp247“I4 + URGGPQGTIG) (30Db)
T23(1) = (1) (UIGpgﬂ’n + URQGP327’12 + UpaG! 347’14 + URGGpggrla) (30¢)

At the transmitted boundary, the displacements are composed of three coupled waves along
the forward direction as

Ug(2) = Ur1rT1 + Ursrrs + Ursrrs, (31a)
Uy(2) = UT1(I1(712)17‘T1 + UT3a1(712)3rT3 + UT5a1()12)5rT57 (31b)
Ug(2) = UT1CL;$3)1’/‘T1 + UTgaz()é)gTTg, + UT5a](3?5rT5, (31(3)

where the subscript (2) denotes the transmitted boundary, Ury, Urs, and Urs represent the
amplitudes of transmitted waves, and

iw

TT1 = €Xp (C(T)(qplfl?p + a2)1Yp + QpQZp))a (32a)
iw

TT3 = exp ((:(T)(Qplxp + a2)3yp + qp2zp))a (32b)
iw

TT5 = exp (C(—l)(qplxp + a)syp + quzp)). (32¢)

The stresses at the transmitted boundary can be given by

iw

O12(2) = @(UTlG&)lTTl + UT3G§)11)37"T3 + UTsG,(,ll)gTTs)7 (33a)
iw

O22(2) = @(UTle(;lz)ﬂ’Tl + UT3G2(712)37"T3 + UT5G](912)57'T5)7 (33b)
iw

T23(2) = E(UTIG;E)erl + UTSGZ%)?,TTS + UT5G§)?5TT5). (33(3)

The global stiffness matrix represents the relation of stress and displacement components
at the incident and transmitted boundaries. The periodic structures contain m unit cells, and
therefore we can derive the following relation!*2-43!:

K™(6 x 6)
(KT R KY KU KUY KPR Y
U mp ey k) ORPKY S KYRY - KP) RS

where K™ is the global stiffness matrix with m unit cells, Kg”fl denotes the sub-stiffness
matrix with m — 1 unit cells, and K éw refers to the sub-stiffness matrix of the mth unit cell.
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Then, combination of Egs. (28)—(34) yields

J12(1) Uz (1)
922(1) Uy(1)
023(1) | _ K™ Uz(1) ) (35)
012(2) Ug(2)
022(2) Uy(2)
023(2) Uz(2)

The reflection (FRTQTQ = Ué‘f, Frror1 = U[j’i“, Frror, = UURIﬁ) and transmission (FDT2T2 =

UUTll, Fpror1 = UTTf, Fpror, = UJ{’) coefficients can be derived as

n=(K"M,— M) " "(N; — K™N3), (36)

where n = (Frrore, FrRroT1, FRT2L, FDToT2, FDT2T1, FDToL), and the elements of matrices
My, M5, Ny, and N, are presented in Appendix C. The results of the second harmonic can also
be obtained by the previous derivation. The transmission coefficients of the second harmonic
are denoted as HDTQTQ, HDTQTl, and HDTQL for the incident qSQ wave and HDT1T27 HDT1T17
and Hpryr, for the incident qS; wave.

4 Numerical simulation and discussion

In this section, the numerical results of band gaps and transmission coefficients with initial
stresses are presented. In Fig.1(a), each unit cell is composed of nonlinear materials A and
B whose material parameters were presented in Refs. [31] and [44]. The phononic crystal in
the nonlinear elastic wave metamaterial consists of two different linear materials C and D%,
These materials as the monoclinic media have 13 independent elastic constants!3®.

Figures 2 and 3 show band gaps and transmission coefficients of the fundamental wave and
the second harmonic in the nonlinear phononic crystal. The polar and azimuthal angles 67 = 26°
and = 25°, the thickness ratio d; : do = 2 : 1, and the phase velocities ¢() = ¢(2) = 1510m/s
are considered. Figures 2(a)-2(c) show the effects of the normal initial stresses 0}, 09,, and 09,
on the band gaps of the fundamental wave. We can see that the central frequency of band gaps
increases with 0¥, and 09y, but o9, gives the opposite influence. The transmission coefficients
with 09, = 09, = 093 = 1.5 GPa are calculated to support the band gap property in Figs. 2(d)—
2(f). Tt is clear that the frequency regions with zero transmission coefficients correspond to the
band gaps.

Figures 3(a)-3(c) illustrate the effects of the normal initial stresses in the 3D space on the
band gaps of the second harmonic. It can be seen that the band gaps have a similar change by
the initial stresses to the case of the fundamental wave. We can find that the initial stresses
make the band gaps change evidently. Thus, the initial stress can be used as a tunable way for
the band gaps of both the fundamental wave and the second harmonic. In Figs. 3(d)-3(i), the
transmission coefficients with o9, = 09, = 093 = 1.5 GPa for the incident qS; and qSz waves
are presented, which agree well with the band gaps.

Figures 4 and 5 show the effects of the azimuthal angle 5 on the band gaps of the fun-
damental wave and the second harmonic for ¢, = 1.5 GPa. In Fig.4(a), the surface for the
transmission coefficient Fprore varying with the frequency and azimuthal angle is illustrated.
As shown in Fig. 4(b), its contour clearly illustrates the relation of the azimuthal angle and the
wave frequency. Figures 5(a) and 5(b) present the whole part and the contour of the transmis-
sion coefficient Hpror; for different azimuthal angles and wave frequencies. We can see that
the locations of the band gaps shift towards the high frequency regions as the azimuthal angle
increases for both the fundamental wave and the second harmonic. We can also see that the
width of the second band gap changes slightly with the azimuthal angle. As a result, the central
frequency of the band gap can be tuned by the initial stresses and the azimuthal angle.
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Fig. 2 Effects of the initial stresses on the band gaps of the fundamental wave, (a) o?; = 0GPa,
1.5 GPa, 3GPa, (b) 09, = 0GPa, 1.5GPa, 3CPa, and (c) 035 = 0GPa, 1.5 GPa, 3 GPa, and
the transmission coefficients of the fundamental wave in the nonlinear phononic crystal with
(d) 691 = 1.5CGPa, (e) 69, = 1.5GPa, and (f) o935 = 1.5 GPa (color online)

Then, our attention is focused on achieving the 3D nonreciprocal transmission in the layered
nonlinear elastic wave metamaterial. We consider the polar and azimuthal angles 6; = 26° and
02 = 20°, the thickness ratio dy : d = 1: 1, and ¢ = ¢(?) = 1350 m/s. Figures 6(a) and 6(b)
present the effects of the initial stress ¢f; on the band gaps of the fundamental wave and the
second harmonic in the nonlinear elastic wave metamaterial. It can be seen that the central
frequencies of band gaps for both elastic waves decrease with ¢?;. It can also be seen from
Fig. 6(b) that the influence of 0¥, on the band gaps in high frequency regions is more obvious.

Figures 7(a) and 7(b) show the band gaps of the fundamental wave and the second harmonic
with o, = 3GPa. It can be seen that the frequency regions of band gaps are 0.38 MHz—
0.58 MHz for the fundamental wave, as well as 0.19 MHz-0.29 MHz and 0.46 MHz-0.52 MHz for
the second harmonic. As a result, the frequency region of the nonreciprocal transmission is
0.38 MHz—0.46 MHz, i.e., the fundamental wave is located at the stop band, while the second
harmonic falls in the pass band.

Figure 8 illustrates the nonreciprocal transmission of the 3D waves for the incident qSo wave
in the positive direction. Figure 8(a) shows the transmission coefficients of the fundamental
wave, while Figs. 8(b) and 8(c) illustrate the transmission coefficients of the second harmonic.
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Fig. 3 Effects of the initial stresses on the band gaps of the second harmonic, (a) o}, = 0GPa,
1.5GPa, 3GPa, (b) 69, = 0GPa, 1.5GPa, 3CGPa, and (c) oJ3 = 0GPa, 1.5 GPa, 3 GPa, the
transmission coefficients of the second harmonic for the incident Sz wave with (d) o9 =
1.5GPa, (e) 095 = 1.5GPa, and (f) o33 = 1.5CGPa, and the transmission coefficients of
the second harmonic in the nonlinear phononic crystal for the incident qS; wave with (g)

091 = 1.5GPa, (h) 03, = 1.5CGPa, and (i) 035 = 1.5 GPa (color online)
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Fig. 4 Transmission coefficient of the fundamental wave Fpror2 in the nonlinear phononic crystal
with 0?1 = 1.5 GPa for different azimuthal angles 62: (a) the transmission coefficient FpraT2
varying with both the azimuthal angle and the frequency and (b) its contour in the azimuthal
angle versus the frequency plane (color online)
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Fig. 5 Transmission coefficient of the second harmonic Hprori in the nonlinear phononic crystal
with 0(1]1 = 1.5 GPa for different azimuthal angles 62: (a) the transmission coefficient Hprar1
varying with both the azimuthal angle and the frequency and (b) its contour in the azimuthal
angle versus the frequency plane (color online)
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Fig. 6 Transmission coefficients of (a) the fundamental wave (Fprar2) and (b) the second harmonic

(Hpre2r2) changing with both 0?1 and the frequency in the nonlinear elastic wave metamaterial
(color online)

We can see that the transmission coefficients of the fundamental wave remain zero but the
results of the second harmonic are not zero in the region 0.38 MHz—0.46 MHz. The frequency
region of the nonreciprocal transmission without initial stresses is 0.41 MHz-0.47 MHz. We find
that the initial stress o, makes the central frequency of the nonreciprocal transmission change
and the gap width increase about 0.2 MHz.

For the incident qSs wave in the negative direction, the transmission coefficient of the second
harmonic is zero in the nonreciprocal frequency region. It is mainly because the second harmonic
cannot be generated in the linear materials and the fundamental wave is located at the stop
band. Thus, the transmission coefficients with initial stresses for both the fundamental wave
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and the second harmonic are zero in the frequency region 0.38 MHz—0.46 MHz. As a result, the
nonreciprocal phenomenon in the 3D space can be achieved, which permits the wave propagation
only along the positive direction. Then, we can tune the location and width of the frequency
region for the 3D nonreciprocal transmission by initial stresses.

5 Conclusions

In this work, the effects of the initial stresses on the wave propagation of 3D waves in both
nonlinear phononic crystal and elastic wave metamaterial are studied. The analytical solutions
for the coupled qP, qS;, and S, waves with the initial stresses are derived. The band gaps
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and transmission coefficients of the fundamental wave and second harmonic are obtained by the
transfer and stiffness matrices. The nonreciprocal transmission for an incident 3D wave can be
achieved in the nonlinear elastic wave metamaterial with initial stresses. We can find that the
initial stresses can tune the frequency regions of the band gap and nonreciprocal transmission
in layered periodic structures. This work is expected to be helpful for designing devices of the
nonreciprocal transmission with vector and tunable properties.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.
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Appendix A

The expressions of Ag, A4, A2, and Ag in Eq. (10) are
Ae = Cp22CpaaSa1 — Cp22Cpe6S32 + Cpa2CpasCres — Cp22C§46 — Cp22521 532, (A1)

Ag = ppSa1 932(c™M)? = CpaappSar () = S21Cpaapp(cM)? + S21Cp22Cp33G00 — S21531Cp22qm

+ 2551 C22Cp35Gp1ap2 + S21Cp22Cp55G51 — S21Ch03G50 — 2521 Cp23Cp25Gp1dp2 — S21Ciasdin

— 23210p230p44q;272 — 2521Cp23Cpa6qp1qp2 — 2521 CpasCpaaqpiqp2 — 25210p250p46q§1

— 2821 Cp25Cpasdpy — S31532Cp220m0 + S31Cp22Cpaadns — S31Cp22Cpe6dp1 + S32Cp220p (M)

+ S3QCp66pp(C(l))2 — SSQCPIICPQqul + 53201312%2;1 4 2532Cp12Cp25Gp1Gp2 + 53203251152

+ 25320p120p66q§1 — 2532Cp15Cp22ap1qp2 — 5320p220p55q§2 + 25320;0250;046(]12)2

+ 2832Cp25 Cpo6dp1dp2 — Cpoopp () (Cpaa + Cpaz) + Cpagpp () — Cp12Cpaagin

+ Cp11Cp22Cpaagiy + 2Cp12Gp1Gp2 (Cp23Cpas — CpasCpaa) — 2Cp13Cp22Cpacdp1 dpe

+ 2Cp12q§1(0p250p46 — CpaaChes) + 2Cp15Cp22Cpaaqpigp2 — 20p15cp220p46q;2;1

+ 20p120546q;271 + Cp22Cp330p66q;2;2 + 2Cp22Cp35(Cre6qp1qp2 — Cp46q;2;2) - Cp66C§23q;272

+ Cp22Chs5 (Cp44q22 — 2Cpa6Gp19p2 + Cp66q§1) + 20p23q]2)2 (Cp25Cpas — CpaaChpess)

4 2C23C 46002 — 2Cp23Cy25Cp66Gp1dp2 — Cros(Cpaadis 4+ 2Cpa6dp1qp2 — Cpocdon)

— 4C525Cp44Cpe6qp1Gp2 + 4Cp250246qP1q;72 + 2532Cp12Cp4a6Gp1Gp2, (A2)
Az = 821851 (ppapi (¢)? — 2(Cpas — 2Cpaa) g e — 2(Cp2s + 2Cpa6)do1dp2) + S21552(Cp11

— pp (™) (@p1 + ai2) + 205152 (Cois + 2Cps5) + 4Cp15G01ap2 + Cpaadps + 4Cp35q50p1)
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+ 821((pp) (M) (1 — g2 (Cpas + Cpas) — 2¢p1ap2(Chas + Cpas) + Cpaadin — Cpssdin)
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'p12Cp35(Cp23 + Cpas) + (Cp12Cp33 — Cp13Cp23) (Cpas + Cpas) + Cp15Cp23(Cpas + 2Cpa4)

+ Cp13(Cp22Cp35 — Cpa5Cpaa) — Cp3sCrss(Cp2s + Cpaa) + Cp33z(CpasCpss — Cp15Cp22))

+ q22(20p35(0p23(0p25 + Cpas) + Cp25Cpaa) — Cpa3Chss(Cpas + 2Cpasa) — Cp22012;35

+ Cp33(Cp22Cp55 + CpaaCrss — Cpas(Cpas + 2Cha6) — 0346))7 (A3)

Ao = S21((c™)? pp(ap1dp (S31 + Cpas + Cpss) + qr (Cp11 — S31 + Chss) + 24512 (Cpis + Cpas))
+ a1 (31— Cpss) Cp11 + Cpis) = 2ap1d52((S31 + Cp13) Cpas + Cp1sCyas) + qp1qp2(0p13
+ 2Cp13Ch55 — Cp11Ch33z — 2Cp15Chp35) + 2‘121%2((01013 + S31)Cpi5 — Cp11Chss) + qp1qp2 (0535
— (S31 4 Cpss5)Chp3z) — (c (1))4P;29q12)1) + 531((6(1))2,011((];2)1(122(532 + Cpas — Cpes) + 2%21‘]172 (Cp1s
+ Cpas) — 24p10p2(Css + Cpas) — Gp2(Ss2 + Cpss + Cpaa) + Gp1(Cp11 + Cree) + qpo(S32Chss
+ Cp33Cpas)) — () p2 (a5 — dpa) — dp1dpz((Ss2 + Cpaa) Cp11 + 2Cp15Chas) + 2a51d52(CpasCres
p15(S32 + Cpaa)) + 2qp1qp2((532 + Cpaa)Chpss + Cp3zChas) — 2!121(1;)2 (Cp11Cpas + Cp15Che6)
+ @102 (Cp33C66 + 4Cp35Cpas) — 4o Cp11Cyss) + S32(q52(Cp33Chss — Cass) + p1 oz (Cpi1 Cypss
— C215) + Go1dp2(Cp11Cypss — Ciiz — 2C113Chs5 + 2Cp15Chss) + 205142 (Cp11Cp3s — Cp13(Cpas
+ Cp35) + 2qP1QE2Cp15Cp33 - ( { ))QIOi(qplQPQ(CPll + Cp55) - 2qp1q22(0p15 + Cp35) - Q32(Cp33
+Css)) + (€M) ppanz) + ()i (a51(Cor1 + Cpss + Cpas + Ciss + Cies) + 2ap1p2(Crs
+ Cp3s)) + (c (1)) Pp(Qplepz(cpls + Cps55(2Cp13 — Cpaa) — Cp11(Chpss + Cpaa) — 2Cp15(Chpss
+2Cpa6) — 4Cp35Cpas — Cpos(Cpss + Cp3s)) + 2qp1qp2(Cp15(Cpis — Cpos) — Cpss (Cp11 + Chee)
'pa6(Cpss + Cp11)) + qu1q22(0p35(0p13 — Cpaa) — Cpa6(Cpss + Cp33) — Cp15(Chpsz + Cpaa))

o ~— ~— ~—
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+ Gp1 (Cp15 — Cp11(Chpss + Cpes) — CpssCse) + apr (Cozs — Cpaz(Cpas + Cpss) — CpaaCyss))
+ q12;1q22(0p44(cp110p33 — 0513 — 2Cp13Cps5 + 2Cp15Cp35) + 4Cpas(Cp15Cp33 — Cp13Ch3s)

+ Cp66(Cp33Cp55 - 0535)) + 2q§1q§2 (Cp46(0p110p33 - 0513) + Cp15(cp33cp66 - Cpl3Cp44)
+ Cp35(Cp11Cpas — Cp13Cpe6) + 2Cpa6(Cp15Cpas — Cp13Css)) + o1 Cro6(Cp11Chss — Cays)
+ p2Cpaa(Cp33Chss — Cias) + dp1@oz (4Cpa6(Cp11Chss — Cp13Cp15) + Cpes(Cp11Chpss — Corz)
+ Cpaa(Cp11Cpss — Crys) + 2Cpe6 (Cp15Chpss — Cp13Cs5)) + 2401 qp2(Cpas(Cp11Cpss — Cays)
+ Cpo6(Cp11Cpas — Cp13Cp15)) + 2p1qp2 (Cpas(Cp15Cp33 — Cp13Cyp35) + Cpas(CpazCyss

- 535)) - (6(1))%27

where So1 = 0.5(09 — 1), S31 = 0.5(c35 — 1), and Szz = 0.5(c%5 — 03,).
Appendix B

The elements of the coeflicient matrices Tpr, and Tpr in Eq. (18) are

TPL(17 q) = 15 TPL(2a q) = a’;frJlQ)qv TPL(37 q) = a;13>qv

el et ety
iwG,; iwG 5 iwG g
TPL(47q) = CTz;q7 TPL(5aq) = CTI;Q’ TPL(6a q) = c(ll; qa

iwapqd iwaged
Tin(1,q) = exp (Z952), Tyn(2,q) = afy, exp (2522,

(D)

_ (1) lwapqdp _ WGy lwapedp
TPR(37 q) = Qp3q exp (T)7 TPR(47 Q) - (D) exp ( (D) )7
iway) iwapqedp iwad

2 3 iwaed
Tor(5.9) = 6(1;; : exp( c) )’ Tor(6,9) = c(lp) : e)(p( c(zi(; p)'

Appendix C

The elements of the coefficient matrices M1, M2, N1, and N2 in Eq. (36) are

Gy, GY Gl 0 0 0
G, GE Gl 0 00
A — % Gl G, Gl 0 0 0 |
o0 0 G Gl Gk
0 0 0 G Gl Gl
0o 0 0 G 6L Gl
1 1 1 0 0 0
W ol ol 0 0 0
M, = algy, alyy, alyy 0 0 0 |

0 0 0 1 1 1

1 1 1
0 0 0 a;Q)l a;2)3 a1(,2)5

0 0 0 o b LW

Ap31 Qp3z Qp3s

. . . T
N = (liG(l) liG(l) 1w G1(713)1 0 0 O) ,

@) TP (1) TPl (1)

No=(1 oy o 0 0 0



