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Abstract Boundary constraint induced inhomogeneous effects are important for me-
chanical responses of nano/micro-devices. For microcantilever sensors, the clamped-end
constraint induced inhomogeneous effect of static deformation, so called the clamped-end
effect, has great influence on the detection signals. This paper is devoted to develop-
ing an alternative mechanical model to characterize the clamped-end effect on the static
detection signals of the DNA-microcantilever. Different from the previous concentrated
load models, the DNA adsorption is taken as an equivalent uniformly distributed tangen-
tial load on the substrate upper surface, which exactly satisfies the zero force boundary
condition at the free-end. Thereout, a variable coefficient differential governing equa-
tion describing the non-uniform deformation of the DNA-microcantilever induced by the
clamped-end constraint is established by using the principle of minimum potential energy.
By reducing the order of the governing equation, the analytical solutions of the curvature
distribution and static bending deflection are obtained. By comparing with the previous
approximate surface stress models, the clamped-end effect on the static deflection signals
is discussed, and the importance of the neutral axis shift effect is also illustrated for the
asymmetric laminated microcantilever.
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1 Introduction

During the past decades, nano/micro-beam based detection sensors have received signifi-
cant attention due to their benefits of extreme sensitivity, fast response, low cost, and high
integratability[1]. Driven by those remarkable physical properties, nano/micro-beam sensors
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have been widely used in the detection of metal atoms, gas molecules, and biomolecules based
on the atomic force microscope or time-resolved spectroscopy technology[2–4]. Numerous stud-
ies have revealed that the prominent surface effect on the mechanical behaviors of nano/micro-
devices increases with the decrease in the microstructure characteristic scale[5–6]. Various nu-
merical approaches have also been developed to characterize the influence of surface effects
on the mechanical properties of nano/micro-materials, such as classical molecular dynamics
(MD)[7–8] and finite element method (FEM)[9–12]. Nevertheless, the remain misunderstanding
of the underlying physical mechanism in surface effect seriously impedes the further develop-
ment of microcantilever-based detection technology.

From the theoretical perspective, as one of the most important cornerstone of microcantilever-
based static detection technology, the curvature analysis based Stoney’s formula has been widely
used to describe the quantitative relationship between the surface stress and bending deforma-
tion of microcantilever under the essential assumption of uniform curvature deformation[13–14].
Nevertheless, many experiments reveal that the uniform deformation assumption-based Stoney’s
formula might lose efficiency in several cases, such as relatively large deflection and relatively
thick coating on substrate[15–16]. Meanwhile, by coupling the extended finite element/level set
method (XFEM), Farsad et al.[12] demonstrated that the surface-stress-driven strain relaxation
of a fix/free nanoplate would inevitably induce the non-uniform displacement distribution and
its effective bending stiffness. As a matter of fact, Stoney’s formula originates from the per-
spective of pure bending which approximates surface stress as a corresponding concentrated
moment at the free-end of microcantilever[17]. However, under certain experimental conditions,
this approximation might be unreasonable.

In order to further clarify the surface stress effect on detection signals, some scholars have
made a lot of progresses in the sense of surface stress induced non-uniform deformation. By
using the nonlocal elasticity theory, Li et al.[18] showed that the bending of a beam subjected
to general transverse distributed loads was significantly influenced by the nonlocal scale effect,
which would further change the static deformation. As a matter of fact, Eringen[19] has demon-
strated that the nonlocal effect was related to the surface stress effect. By using the classical
elasticity theory, Sader et al.[20] focused on the aspect ratio effect on the curvature distribu-
tion of microcantilever, and showed that the traditional assumption of uniform curvature was
quite extreme, and the clamped-end effect on the static deflection of microcantilever should
be considered when the aspect ratio was relatively small. Considering the effect of boundary
conditions and surface-induced fields, Yi and Duan[21] discussed the contribution of tangential
Coulomb force and van der Waals force on the surface stress, and explored the influence of the
intrinsic strain and surface stress on the microcantilever deflection. Yue et al.[22] developed
a continuum Euler-Bernoulli model for the piezoelectric nanobeam with surface effects, and
compared it with the traditional Young-Laplace model. They concluded that the surface model
without induced fields would overestimate the surface stress effects. Singh and Yadava[23] in-
vestigated the influence of geometric nonlinear high-order terms caused by neutral axis shift on
microcantilever response, and revealed that the influence of higher order deformation terms on
the system response should be considered in the case of relative large deformation. Based on
the classical Donnell’s shell theory and von Karman’s hypothesis, Ansari et al.[24] discussed the
surface stress effect on the static nonlinear buckling and postbuckling behaviors of nanoshells,
and illustrated the influence of the surface residual tension and radius-to-thickness ratio. Zhang
et al.[17] thoroughly compared the differences of static deflection predicted by three different
equivalent surface stress models. However, in the above models, the surface stress is mostly
regarded as a concentrated load, but for microcantilever-based biosensors for static detection,
those approximately concentrated load models obviously disobey the zero force boundary con-
dition at the free-end of microcantilever.

This paper aims to develop an effective mechanical model for static detection signals of
DNA-microcantilever, considering the clamped-end effect which implies the inhomogeneous ef-
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fect of the static deformation induced by the clamped-end constraint. First, complying with
the zero force boundary condition at free-end, DNA adsorption is taken as an equivalent uni-
formly distributed tangential load on the upper surface of substrate. Thereout, by using the
principle of minimum potential energy, the static governing equation is established to describe
the non-uniform deformation of DNA-microcantilever induced by the clamped-end effect. The
degradation of the present mechanical model is verified under three different approximate condi-
tions. Second, by reducing the order of the variable coefficient differential governing equation,
the analytical solutions of curvature distribution and static bending deflection are obtained,
which are verified by numerical method and finite element simulation.

2 Mathematical model

The structure and the relevant coordinate system of a DNA-microcantilever are shown in
Fig. 1, where DNA adsorption is taken as an equivalent external uniformly distributed tangen-
tial load (τs, N/m) on the upper surface of substrate as in the previous relevant studies[17].
According to the previous static deformation analysis of DNA-microcantilever[25], the influence
of adsorbate stiffness on the deflection of microcantilever can be ignored when the thickness
of the adsorption film is relatively thin. According to the microbeam experiments in Ref. [26],
the substrate is considered as an asymmetric three-layer laminated beam with the length of l
and the width of b. The materials of three layers are taken as SiN4, Cr, and Au with Esi and
hsi (i = 1, 2, 3) representing the elastic modulus and thickness of each layer, respectively. The
x-axis is established at the geometric mid-plane of the SiN4 layer, and the positive direction of
the z-axis points to the bottom surface.
2.1 Model for static deformation of DNA-microcantilever

In this subsection, the static governing equation of DNA-microcantilever under eccentric
loading of uniformly distributed tangential surface load will be established by using the principle
of minimum potential energy, i.e., δΠ − δW = 0, where Π is the deformation potential energy
of microcantilever, and W is the external work done by the surface stress.

Au

x

z

O
Si3N4

τs τs τs τs τs τs

Cr

Fig. 1 Schematic diagram of the microcantilever model for static DNA detection, where the equiv-
alent uniformly distributed tangential surface stress τs is loaded on the upper surface of the
substrate

First, the external work of the surface stress is considered. As shown in Fig. 1, the external
force at the upper surface of substrate which equals the axial force of the DNA film can be
written as F (x) = τs(l − x) based on the undeformed position. This indicates that F (0) =
τsl, F (1) = 0[17]. Obviously, the zero external force at the free-end coincides with the zero
force boundary condition at the free-end, which compensates the deficiency of the previous
concentrated load models[17,20,27]. In addition, according to the experiments for the DNA film
under uniaxial compression shown in Refs. [25] and [28], the adsorption-induced axial stress of
the DNA film can be easily obtained as

σu = 3η
∂Wu

∂εu

∣∣∣
εu=0

,

where η is the DNA packing density, and η = 2/(
√

3d2) is for the hexagonal packing pattern,
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where d is the interaxial distance between two parallel DNA cylinders. bu and hu are the width
and thickness of the DNA film, respectively. The thickness of the DNA film is hu ≈ Nnan,
where Nn is the nucleotide number of DNA, and an is the nucleotide length directly obtained
from STM experiment[29]. εu is the axial strain of the DNA film, Wu is the mesoscopic free
energy per unit length of the DNA film, and its specific expression is shown in Appendix A[34–35].
Therefore, the effective surface stress induced by DNA adsorption is predicted as τs = buhuσu/l.

Under the assumption of small deformation, by Zhang’s two variable method for deformation
field of laminated beam[30], the external force work of the whole microcantilever done by the
axial external force F (x) at the position of the upper surface can be approximately written as

W =
∫ l

0

F (x)dU =
∫ l

0

τs(l − x)
(∂u

∂x
+

(1
2
hs1 + hs2 + hs3

)∂2w

∂x2
− 1

2

(∂w

∂x

)2)
dx, (1)

where dU is the axial displacement of microelement dx at the position of the upper surface.
The derivation processes are shown in Appendix B. u is the x-direction displacement. w is the
z-direction displacement.

Second, according to the previous studies[28], the deformation potential energy of the whole
microcantilever can be written as

Π =
∫

V

1
2
σεdV =

∫ l

0

(1
2
D(0)

s

(∂u

∂x

)2

− D(1)
s

∂u

∂x

∂2w

∂x2
+

1
2
D(2)

s

(∂2w

∂x2

)2)
dx, (2)

in which

D(0)
s =

3∑
i=1

b

∫ hi+1

hi

Esidz, D(1)
s =

3∑
i=1

b

∫ hi+1

hi

Esizdz, D(2)
s =

3∑
i=1

b

∫ hi+1

hi

Esiz
2dz, (3)

where σ and ε represent the stress and strain of the substrate, and ε = ∂u
∂x − z ∂2w

∂x2

[28,30]
, V is

the substrate volume, hi and hi+1 represent the coordinates of the upper and lower surfaces of
each layer, D

(0)
s is the sum of tension stiffness of each layer, D

(1)
s is the sum of tension-bending

coupling stiffness of each layer, and D
(2)
s is the sum of bending stiffness of each layer. Note that

the above deformation energy covers three parts, i.e., tension energy, bending-tension coupling
energy, and bending energy.

Combining the stationary condition of energy functional, δΠ − δW = 0, with Eqs. (1) and
(2), we can easily obtain the following equation:∫ l

0

(
− τs(l − x)

∂2w

∂x2
+ τs

∂w

∂x

)
δwdx + D(0)

s

∂u

∂x
δu

∣∣∣l
0
− D(0)

s

∫ l

0

∂2u

∂x2
δudx

− D(1)
s

(∂2w

∂x2
δu

∣∣∣l
0

+
∂u

∂x

∂δw

∂x

∣∣∣l
0
− ∂2u

∂x2
δw

∣∣∣l
0
−

∫ l

0

∂3w

∂x3
δudx +

∫ l

0

∂3u

∂x3
δwdx

)

+ D(2)
s

(∂2w

∂x2

∂δw

∂x

∣∣∣l
0
− ∂3w

∂x3
δw

∣∣∣l
0
+

∫ l

0

∂4w

∂x4
δwdx

)
− τs(l − x)δu

∣∣∣l
0

−
∫ l

0

τsδudx + τs(l − x)
(1

2
hs1 + hs2 + hs3

)∂δw

∂x

∣∣∣l
0

− τs

(1
2
hs1 + hs2 + hs3

)
δw

∣∣∣l
0
+ τs(l − x)

∂w

∂x
δu

∣∣∣l
0

= 0. (4)

Next, by using Eq. (4) and the principle of arbitrariness of virtual displacement, the static
governing equation of DNA-microcantilever under eccentric loading of uniformly distributed
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tangential surface stress is obtained as

− D(1)
s

∂3u

∂x3
+ D(2)

s

∂4w

∂x4
− τs(l − x)

∂2w

∂x2
+ τs

∂w

∂x
= 0, (5a)

− D(0)
s

∂2u

∂x2
+ D(1)

s

∂3w

∂x3
− τs = 0. (5b)

Finding the first derivative of Eq. (5b) with respect to x and substituting the expression of
∂3u
∂x3 into Eq. (5a), the governing equation in terms of w can be written as

D∗ ∂4w

∂x4
− τs(l − x)

∂2w

∂x2
+ τs

∂w

∂x
= 0, (6)

where D∗ represents the effective bending stiffness of the DNA-microcantilever system, and
D∗ = D

(2)
s − (D(1)

s )2/D
(0)
s , in which −(D(1)

s )2/D
(0)
s is induced by the neutral axis shift effect

in asymmetric laminated structure. In addition, the third term in Eq. (6) τs
∂w
∂x is contributed

by the clamped-end effect with the same expression in Ref. [17].
Meanwhile, according to Eq. (4), the boundary conditions in terms of axial force, bending

moment, and shear force at the free-end are given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(0)
s

∂u

∂x

∣∣∣
x=l

− D(1)
s

∂2w

∂x2

∣∣∣
x=l

= 0,

− D(1)
s

∂u

∂x

∣∣∣
x=l

+ D(2)
s

∂2w

∂x2

∣∣∣
x=l

= 0,

D(1)
s

∂2u

∂x2

∣∣∣
x=l

− D(2)
s

∂3w

∂x3

∣∣∣
x=l

− τs

(1
2
hs1 + hs2 + hs3

)
= 0.

(7)

It can be easily seen from Eq. (7) that the uniformly distributed surface stress model exactly
satisfies the natural boundary conditions. That is to say, the axial force and bending moment
at the free-end should be zero.

By using Eq. (5b), the boundary conditions can be decoupled as

u|x=0 = 0, w|x=0 = 0,
∂w

∂x

∣∣∣
x=0

= 0, (8a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂x

∣∣∣
x=l

= 0,
∂2w

∂x2

∣∣∣
x=l

= 0,

D∗ ∂3w

∂x3

∣∣∣
x=l

= −τs

(1
2
hs1 + hs2 + hs3

)
− τs

D
(1)
s

D
(0)
s

.

(8b)

Note that the last term of Eq. (8b), i.e., (D(1)
s /D

(0)
s )τs, is induced by the neutral axis shift

effect in asymmetric laminated structure.
Introducing the dimensionless variables and parameters

x = xl, w = w

√
D∗

D
(0)
s

, t = t

√
ml4

D∗ (9)

yields the following dimensionless governing equation:

∂4w

∂x4
− p(1 − x)

∂2w

∂x2
+ p

∂w

∂x
= 0, (10)
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where p = τsl
3/D∗, and the dimensionless boundary conditions can be written as

u|x=0 = 0, w|x=0 = 0,
∂w

∂x

∣∣∣
x=0

= 0, (11a)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u

∂x

∣∣∣
x=l

= 0,
∂2w

∂x2

∣∣∣
x=l

= 0,

∂3w

∂x3

∣∣∣
x=l

= −p
(1

2
hs1 + hs2 + hs3

)√
D

(0)
s

D∗ − D
(1)
s

D
(0)
s

p

√
D

(0)
s

D∗ .

(11b)

Thereout, we have established the governing equation (10) and boundary conditions (11)
which exactly satisfy the displacement and force constraints.
2.2 Comparison of surface stress models

In this subsection, some degeneration cases of the present mechanical model under the
following three different approximate conditions will be discussed.

(i) When the thicknesses of the Cr and Au layers are relatively thin, the effect of neutral
axis shift on the static response of the DNA-microcantilever system can be ignored. In this
case, the governing equation (6) and boundary conditions (8) are in consistent with those of
Zhang’s distributed force-moment model[17].

(ii) When the distributed surface stress on the upper surface of the substrate is approximated
as a couple of concentrated force and bending moment at the free-end, the dimensionless axial
force N = p, which means that the axial force is a constant and the added term in the clamped-
end boundary condition will disappear. In this case, the governing equation and boundary
conditions are consistent with those of Zhang’s concentrated force-moment model[17], and can
be written as ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂4w

∂x4
− N

∂2w

∂x2
= 0, w|x=0 = 0,

∂w

∂x

∣∣∣
x=0

= 0,

∂2w

∂x2

∣∣∣
x=l

= N
(1

2
hs1 + hs2 + hs3

)√
D

(0)
s

D∗ ,
∂3w

∂x3

∣∣∣
x=l

= N
∂w

∂x
.

(12)

(iii) When the axial force effect induced by DNA adsorption is ignored, the microcantilever
deformation is approximately taken as constant curvature bending. In this case, Eq. (12) can
be further reduced to the following simplified model related to the classic Stoney’s formula[17]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂4w

∂x4
= 0, w|x=0 = 0,

∂w

∂x

∣∣∣
x=0

= 0,

∂2w

∂x2

∣∣∣
x=l

= N
(1

2
hs1 + hs2 + hs3

)√
D

(0)
s

D∗ ,
∂3w

∂x3

∣∣∣
x=l

= 0.

(13)

2.3 Analytical prediction for static signals of DNA-microcantilever
As for the variable coefficient differential equation (10), it is usually difficult to obtain the

analytical form of its general solution. Referring to the previous analysis of microcantilever large
deformation[23], we manage to reduce the order of Eq. (10) by introducing the cross-sectional
rotation angle θ = ∂ws

∂x . Then, we obtain the governing equation in terms of the rotation angle

∂3θ

∂x3
− p(1 − x)

∂θ

∂x
+ pθ = 0 (14)



Clamped-end effect on static detection signals of DNA-microcantilever 1429

and the relevant boundary conditions

θ|x=0 = 0, (15a)

∂θ

∂x

∣∣∣
x=l

= 0,
∂2θ

∂x2

∣∣∣
x=l

= −p
(1

2
hs1 + hs2 + hs3

)√
D

(0)
s

D∗ − D
(1)
s

D
(0)
s

p

√
D

(0)
s

D∗ = Q. (15b)

With the MATHEMATICA software, the general solution to Eq. (14) can be obtained as

θ =3−2/3(c1 +
√

3c2)ξ2

(2
3
,−1

9
(x − 1)3

)

+ c3(x − 1)2ξ1

(4
3
,−1

9
p(x − 1)3

)
ξ3

(1
3
,
(2

3
,
4
3

)
,−1

9
p(x − 1)3

)

− 1
2
c3(x − 1)2ξ1

(2
3
,−1

9
p(x − 1)3

)
ξ3

(2
3
,
(4

3
,
5
3

)
,−1

9
p(x − 1)3

)
, (16)

where ξ1, ξ2, and ξ3 are the confluent hypergeometric function, the regularized confluent hy-
pergeometric function, and the generalized confluent hypergeometric function, receptively. c1,
c2, and c3 are determined by the boundary conditions, whose specific expressions are shown in
Appendix C.

Eventually, the microcantilever curvature under uniformly distributed tangential surface
stress is obtained as

κ =
∂2w

∂x2
=

∂θ

∂x
. (17)

3 Results and discussion

3.1 Static response of DNA-microcantilever
First, the axial distribution of microcantilever curvature induced by DNA adsorption is

studied. Figure 2 shows the accurate analytical predictions from Eq. (17), the approximate
numerical solutions from Eq. (10) and solved by the built-in algorithm NDSolve in Mathematica
software, and the 3D finite element simulation results obtained by the ANSYS software.
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X

Fig. 2 Comparison of the microcantilever curvature axial distribution induced by the DNA adsorp-
tion predicted by different models, where the inset shows the axial distribution of microcan-
tilever strain predicted by the finite element simulation (color online)

In the computation, the DNA parameters are taken as[26]

Nn = 25 nt, an = 0.34, η = 0.12 chain/nm2,
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where Nn is the nucleotide number, an is the nucleotide length, and η is the packing density;
the substrate parameters are taken as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l = 200 µm, b = 10 µm,

hs1 = 2 µm, hs2 = 0.005 µm, hs2 = 0.1 µm,

Es1 = 180 GPa, Es2 = 279 GPa, Es3 = 78 GPa,

νs1 = 0.28, νs2 = 0.12, νs3 = 0.42,

where l, b, and hs1 are the geometrical sizes, Es1, Es2, and Es3 are the elastic moduli, and νs1,
νs2, and νs3 are Poisson’s ratios.

In the finite element simulation, in order to simulate the externally loaded uniformly dis-
tributed tangential load, the surface stress induced by the DNA adsorption is taken as the nodal
force along the x-direction, applying on the nodes of each mesh element on the upper surface of
the substrate. In addition, the element Solid 185 is selected for calculation. In order to ensure
the element independence of the simulation results, the grid element size is carefully controlled
to 1 nm.

As shown in Fig. 2, the predictions of the DNA adsorption-induced curvature by different
models are basically on the same order, and the predictions of our analytical model are in
good agreement with the numerical solution of Eq. (10) solved by Mathematica software. It
should be mentioned that, neglecting the contribution of the thinner Cr and Au layers, the
two-dimensional plate correction model of Tamayo et al. only considers Poisson’s effect of the
SiN4 layer[31]. Under the given parameters, the curvature distributions predicted by Tamayo’s
model[31] and Stoney’s model[27] are basically coincident with the uniformly distributed rule
along the axial direction. Whereas the curvature, by Zhang’s concentrated force-moment
model[17], increases monotonously along the axial direction, with its free-end curvature ba-
sically consistent with those by Tamayo model[31] and Stoney’s model[27]. However, different
from the predictions by the above approximate models under concentrated load assumption,
the curvature distribution predicted by the present uniformly distributed surface stress model
is more closer to the physical reality. That is to say, the microcantilever curvature has the
largest value at the clamped-end, decreases almost with a linear trend, and approximates zero
at the free-end. The insert of Fig. 2 also shows that the axial strain has the largest value at the
clamped-end, and is close to zero at the free-end. The demonstration of these inhomogeneous
deformations further confirms the necessity of our model.

Figures 3 and 4 shows the comparison of microcantilever deflections predicted by different
models with finite element simulation. Except for the beam length, the calculation conditions
are taken as the same as those in Fig. 2. The relative error of different model predictions is
defined as

((ws − wF)/wF) × 100%,

where wF is the finite element simulation result. As discussed in Fig. 2, the curvature decreases
linearly along the axis. Therefore, the approximate analytical solution of microcantilever de-
flection can be given as

w = ρ0x
2/2 − ρ0x

3/(6l),

where ρ0, obtained by Eq. (17), is the microcantilever curvature at the clamped-end. Figure 3(a)
shows the variation of microcantilever deflection with the aspect ratio predicted by different
models using the uniaxial modulus Esi. In this case, the microcantilever width is taken as
b = 10 µm. The inset of Fig. 3(a) shows the element independence of the finite element simula-
tion. As shown in Fig. 3(a), the analytical predictions by our model agree well with the finite
element simulation results. It can be easily seen from Fig. 3(b) that except for our distributed
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Fig. 3 Comparison of microcantilever deflection prediction varying with the aspect ratio l/b by differ-
ent models with finite element simulation: (a) deflection prediction by different models using
the uniaxial modulus Esi; (b) relative error in the case of (a). The results of our model in this
figure are consistent with those in Fig. 2

surface stress model, the predictions by other models have larger errors. In fact, based on the
assumption of equal strain in the x- and y-directions, the biaxial modulus Esi/(1−νi) is usually
used to correct the error of the analytical prediction in the traditional deformation analysis of
microcantilever[32–33].

Figure 4(a) shows the deflection predictions by different models using the biaxial modulus
Esi/(1−νi), whereas the uniaxial modulus Esi is still used in our distributed surface stress model.
Note that in Fig. 4(a), the prediction by each concentrated load model with biaxial modulus
correction is much closer to the finite element results, which shows the rationality of biaxial
modulus correction in the previous expedient analysis. However, it can be seen from the relative
error analysis in Fig. 4(b), although the biaxial modulus correction may improve the prediction
accuracy of each approximate concentrated load model to a certain extent, the relative error of
each prediction result is still more than 5% under some parameter conditions. In addition, when
the aspect ratio l/b is smaller than 5, the relative prediction error of our distributed surface
stress models is still larger than 5%. Under this condition, Zhang’s distributed stress-moment
model is more accurate[17]. Furthermore, when the aspect ratio l/b is larger than 5, the relative
prediction error of our distributed surface stress model is less than 1%. In this range, the
present distributed surface stress model is more accurate than the approximate concentrated
load models, which reflects the superiority of our model. As the discussion of Fig. 4, based on
the assumption of equal strain in x and y directions, the biaxial modulus correction efficiently
improves the prediction accuracy of each approximate concentrated load model to a certain
extent. In the following section, we will further discuss the rationality of the equivalent strain
assumption based on finite element simulation.

Figures 5(a) and 5(b) show the strain distribution of the microcantilever in the x- and y-
directions, respectively. By comparison, we can easily observe that the strains in the x- and
y-directions differ by about an order of magnitude at the clamped-end (left side). Due to the
clamped-end effect, even at the free-end (right side), the strains in the two directions have
a difference of four time orders of magnitude. These results indicate that the equal strain
assumption is invalid in the local strain field. However, from the point of simplicity, the biaxial
modulus based on equal strain assumption reasonably modifies the deflection prediction error
from the perspective of the overall average of the strain field.
3.2 Application range of existing concentrated load models

In this section, under the circumstance of relatively larger aspect ratio (l/b > 5), the
application scope of the previous concentrated load models based on the biaxial modulus
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Fig. 5 Finite element simulation of microcantilever deformation: (a) x-direction strain field; (b)
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correction will be checked by the benchmark of our analytical deflection predictions, i.e.,
w = ρ0x

2/2 − ρ0x
3/(6l).

Figure 6 shows the projection of the ±10% relative error of deflection prediction by each
concentrated load model in the parameter plane, which is spanned by the aspect ratio l/b and
the DNA packing density η. The relative error is defined as ((ws −wD)/wD)× 100%, where wD

is the deflection predicted by our distributed surface stress model. Except for the beam length
l and DNA packing density η, other parameters are taken the same as those in Fig. 3.

As shown in Fig. 6, within the range of selected parameter space, the deflection predictions by
Stoney’s concentrated moment model[27] and Tamayo’s two-dimensional plate model[31] are al-
ways overestimated. However, the deflection prediction by Zhang’s concentrated stress-moment
model[17] is always underestimated. In addition, for Stoney’s concentrated moment model[27]

and Zhang’s concentrated stress-moment model[17], the lower left part of the curve represents
the parameter interval with the absolute value of relative prediction error less than 10%, which
means that the prediction are reliable when the DNA packing density and aspect ratio are
relatively small. For Tamayo’s two-dimensional plate model[31], the upper left part of the curve
represents the parameter interval with the relative prediction error less than 10%, which means
that the prediction are reliable only when the DNA packing density η < 0.131 chain/nm2.
3.3 Influence of neutral axis shift effect on the deflection of microcantilever

In this section, we will discuss the influence of the neutral axis shift effect induced by the
characteristics of asymmetric laminated structure on the static deflection of microcantilever.
From the governing equations (6) and boundary conditions (8), it is not difficult to identify
that the contribution of the neutral axis shift effect in microcantilever static responses can be
divided into two parts, i.e., the change in equivalent bending stiffness and change in boundary
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conditions.
Figure 7 shows the projection of the 10% relative error in the parameter plane, the rela-

tive error is defined as ((wN − wD)/wD) × 100%, where wN is the deflection predicted by our
distributed surface stress model when the neutral axis drift effect is neglected. The parameter
plane is spanned by the elastic modulus Es1 of the SiN4 layer and the thickness thickness ratio
hs1/(hs2 + hs3) of the Cr and Au layers. The microcantilever length is taken as l = 10 μm, the
width is taken as b = 1 μm, except for the elastic modulus Es1 and thickness hs1 of substrate
layer, other parameters are taken the same as those in Fig. 2.

As shown in Fig. 7, the deflection prediction is always overestimated when the effect of
neutral axis drift is ignored. In addition, the shadow area in Fig. 7 represents the parameter
space with the relative error greater than 10%, which means that the influence of the neutral
axis shift effect on the deflection prediction of the laminated beam should be considered when
the substrate elastic modulus is relatively smaller or the substrate thickness is relatively thinner.
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Fig. 6 Application scope of existing concen-
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Fig. 7 Projection of 10% relative error of
deflection prediction by our dis-
tributed surface stress model when
the neutral axis shift effect is ne-
glected in the parameter plane

4 Conclusions

In this paper, an eccentric and uniform loading model of surface stress is established to
characterize the influence of inhomogeneous deformation field induced by DNA adsorption and
clamped-end constraint on the static deflection of microcantilever biosensor. Strictly complying
with displacement and force boundary conditions at the free-end, an exact solution for axial
distribution of microcantilever curvature is presented to clarify the clamped-end effect and
the neutral axis shift effect. The related predictions agree well with the numerical solutions
of MATHEMATICA and 3D finite element simulations of ANAYS. The comparative analyses
reveal that the clamped-end effect makes microcantilever curvature no longer be a constant,
whereas it decreases linearly along the axis with the largest value at the clamped-end, and is
close to zero at the free-end. In addition, we give out the application range of the existing
concentrated load models based on the prevail biaxial modulus correction. The related results
provide an important reference for biodetection signal recognition and careful parameter control
of microcantilever biosensors.
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Appendix A

Based on a liquid crystal model and osmotic pressure experiments[34], the free energy per unit
length between two parallel DNA cylinders is given as

Wu = We + Wh + Wc, (A1)
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in which We, Wh, and Wc are, respectively, the electrostatic energy, the hydration energy, and the
configurational entropy, and

We(z, d) = a0 exp(−d/λD)/
p

d/λD,

Wh = b0 exp(−d/λH)/
p

d/λH,

Wc = c0kBTk−1/4
c

4

r
∂2(We + Wh)

∂d2
− 1

d

∂(We + Wh)

∂d
, (A2)

where d is the interaxial distance between two parallel DNA cylinders, λD is the Debye screening
length, λH is the correlation length of water, and a0, b0, and c0 are the fitting parameters for DNA
interactions[34]. kB is the Boltzmann constant, T is the temperature, kc = kBT lds

p is the bending
stiffness of a single-molecule dsDNA chain, lds

p (= (50 + 0.032 4/I) nm) is the persistence length of

dsDNA, and I is the buffer salt concentration[35].

Appendix B

As shown in Fig. B1, by applying the traditional practice of elastic mechanics and Zhang’s two
variable method[30], the length of the deformed microelement can be written as

dx′ = (ds2 − (θdx)2)1/2

=
“
((1 + ε)dx)2 −

““∂w

∂x

”
dx

”2”1/2

≈
“
1 + 2ε −

“∂w

∂x

”2”1/2

dx

≈
“
1 +

1

2

“
2ε −

“∂w

∂x

”2””
dx

=
“
1 + ε − 1

2

“∂w

∂x

”2”
dx, (B1)

Undeformed dx

Deformed dx'

ds
θdx

θ

Fig. B1 Deformation state of the microelement dx, where θ is the rotation angle, ds is the arc length
of the deformed microelement, and θdx represents the displacement in the vertical direction

where ε is the axial strain of laminated beam, and

ε =
∂u

∂x
− z

∂2w

∂x2
.

Then, from Eq. (B1), we can easily obtain the axial displacement of the microelement dx at the position
of the substrate upper surface as

dU = dx′ − dx =
“∂u

∂x
+

“1

2
hs1 + hs2 + hs3

”∂2w

∂x2
− 1

2

“∂w

∂x

”2”
dx. (B2)

Thereout, the external work done by the surface stress is obtained as

W =

Z l

0

F (x)dU =

Z l

0

τs(l − x)
“∂u

∂x
+

“1

2
hs1 + hs2 + hs3

”∂2w

∂x2
− 1

2

“∂w

∂x

”2”
dx, (B3)
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which can be further separated into

W =

Z l

0

M1(x)
∂2w

∂x2
dx − 1

2

Z l

0

F1(x)
“∂w

∂x

”2

dx +

Z l

0

F1(x)
∂u

∂x
dx, (B4)

where M1(x) and F1(x) represent, respectively, the external moment and the external force, and

8><
>:

M1(x) = τs(l − x)
“1

2
hs1 + hs2 + hs3

”
,

F1(x) = F (x) = τs(l − x),

if one simplifies the surface stress as to the substrate mid-plane[17]. The last term of Eq. (B4) represents
the contribution of the neutral axis shift effect to the external work of the eccentrically loaded laminated
beam. Note that if the x-axis is relocated at the neutral axis of the substrate, the last term of Eq. (B4)
turns to be zero with the axial strain at the neutral axis, i.e., ε0 = ∂u

∂x
= 0, and the present form of the

external work in Eq. (B4) degenerates into the previous form of Zhang’s model[17].

Appendix C

The mathematical forms of various confluence hypergeometric functions in Eq. (16) are as follows.

(i) Confluent hypergeometric function ξ1(a, f(x))

ξ1(a, f(x)) = 1 +
f(x)

a
+

f2(x)

2a(1 + a)
+

f3(x)

6a(1 + a)(2 + a)

+
f4(x)

24a(1 + a)(2 + a)(3 + a)
+ o(f(x))5. (C1)

(ii) Regularized confluent hypergeometric function ξ2(a, f(x))

ξ2(a, f(x)) =
1

ζ(a)
+

f(x)

ζ(1 + a)
+

f2(x)

2ζ(2 + a)

+
f3(x)

6ζ(3 + a)
+

f4(x)

24ζ(3 + a)
+ o(f(x))5, (C2)

where

ζ(a) =

Z +∞

0

ta−1e−tdt.

(iii) Generalized confluent hypergeometric function ξ2(a, (b1, b2), f(x))

ξ3(a, (b1, b2), f(x)) =1 +
af(x)

b1b2
+

a(1 + a)f(x)

2b1b2(1 + b1)(1 + b2)

+
a(1 + a)(2 + a)f3(x)

6b1b2(1 + b1)(2 + b1)(1 + b2)(2 + b2)

+
a(1 + a)(2 + a)(3 + a)f4(x)

24b1b2(1 + b1)(2 + b1)(1 + b2)(2 + b2)(3 + b2)
+ o(f(x))5. (C3)
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The mathematical forms of the undetermined coefficients in Eq. (16) are as follows:
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