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Abstract A three-dimensional incompressible annular jet is simulated by the large
eddy simulation (LES) method at a Reynolds number Re = 8500. The time-averaged
velocity field shows an asymmetric wake behind the central bluff-body although the flow
geometry is symmetric. The proper orthogonal decomposition (POD) analysis of the
velocity fluctuation vectors is conducted to study the flow dynamics of the wake flow.
The distribution of turbulent kinetic energy across the three-dimensional POD modes
shows that the first four eigenmodes each capture more than 1% of the turbulent kinetic
energy, and hence their impact on the wake dynamics is studied. The results demonstrate
that the asymmetric mean flow in the near-field of the annular jet is related to the first
two POD modes which correspond to a radial shift of the stagnation point. The modes 3
and 4 involve the stretching or squeezing effects of the recirculation region in the radial
direction. In addition, the spatial structure of these four POD eigenmodes also shows
the counter-rotating vortices in the streamwise direction downstream of the flow reversal
region.
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1 Introduction

An annular jet, which is regarded as the limiting case of a coaxial jet[1], is utilized widely in
combustion devices[2–3]. Early studies showed that annular jets share the similarity properties
(such as expansion, decay, and mean axial velocity profiles) of those found in turbulent round
jets in the far-field region[4–6]. Apart from the jet characteristics, the flow field of an annular
jet also features a wake flow near the nozzle. Due to the existence of a central obstacle, flow
separation occurs, and a recirculation region is developed behind it, which is served as a way
to enhancing a fuel-air mixing rate and reducing pollutant emission in combustion systems.
Also, the central bluff-body can have a function as an injector, from which fuel can be injected
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axially or radially[7]. In addition, two shear layers originating from the annular orifice exist in
the near-field. The outer shear layer is between an ambient medium and a jet, and the inner
shear layer is between a recirculation zone and a jet. These two shear layers meet and interact
with each other downstream of the reversal flow region[8].

Although the flow has both a symmetric geometry and symmetric boundary conditions, the
investigations on turbulent annular jets have shown that spontaneous break of symmetry of
the time-averaged flow field could appear[9–14]. This type of asymmetry is observed in laminar
annular jets as well, if the Reynolds number is above a certain threshold value, which is around
150 for the geometry used in this study[15]. In turbulent regimes, this asymmetry is illustrated
by a low-frequency oscillating vortex shedding from the buff-body that is convected to the end
of the recirculation zone, creating a shift of the stagnation point in the radial direction[8, 9, 11,16].
On the other hand, in the laminar regime, Del Taglia et al.[13] found that the occurrence of this
flow asymmetry is influenced by the jet blockage ratio and the Reynolds number, which can be
integrated as a state parameter. Similar kinds of asymmetric flow patterns were also observed
in other flow configurations, such as in turbulent wakes past blunt bodies[17–18].

Several investigations have been conducted to address the asymmetric mean wake in turbu-
lent annular jets. Patte-Rouland et al.[8] applied the proper orthogonal decomposition (POD)
to the particle image velocimetry (PIV) velocity fields and showed that the asymmetric flow is
related to the first two POD modes. It should also be noted that the POD analysis is not applied
on the fluctuating velocity part but on the instantaneous fields, which means that the first POD
mode denotes the mean flow. However, their PIV velocity fields are two-dimensional, and no
temporal dynamics is obtained owing to the relative low sampling frequency. Vanierschot and
Van den Bulck[11] investigated the precession of the central toroidal vortex behind the central
bluff-body using the phase averaging method, which treats the coherent fluctuations in the flow
field as a whole. The symmetry breaking and vortex precession in low-swirling annular jets
were studied by Vanierschot et al.[12] with PIV and POD techniques, showing that the motion
of the asymmetric wake is random in time. The drawback of their study is that the measured
PIV velocity vectors were two-dimensional as well. The first experimental study to reveal the
three-dimensional structure of the wake was done by Vanierschot et al.[16]. Using tomographic
PIV measurements, they found several asymmetric vortical structures which were shed from
the inner shear layer towards the stagnation point.

This study aims to reveal the connection between the asymmetric mean flow field and the
turbulent coherent motions in an annular jet. First, the flow is simulated by the large eddy
simulation (LES) method. Then, the snapshot POD technique is adopted to capture the most
energetic coherent structures in the fluctuating flow. The main concerns here are the spatial
structures of the low-frequency coherent motions and their relationship with the flow dynamics,
especially on the wake or recirculation region behind the central bluff-body. To the authors’
knowledge, a three-dimensional POD analysis of detailed LES data has not been conducted yet.
The remainder of this paper is organized as follows. The numerical method is briefly introduced
in Section 2. Section 3 presents the asymmetric time-averaged flow field. The POD analysis
of the velocity fields is given in Section 4. Finally, we summarize our findings and present the
conclusions in Section 5.

2 Numerical method

The governing equations for the concerned flow are the filtered three-dimensional incom-
pressible Navier-Stokes equations for the Newtonian fluids,

∂ui

∂t
+

∂(uiuj)
∂xj

= − ∂p

∂xi
+ ν

∂2ui

∂xj∂xj
− ∂τij

∂xj
, (1)
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∂ui

∂xi
= 0. (2)

Here, ui are the resolved velocities, p is the filtered kinematic pressure, t is time, xi are spatial
coordinates, and ν is the kinematic viscosity of the fluid. The subgrid-scale stress tensor
τij = uiuj − uiuj in the above formulation is modeled by the localized dynamic k model
introduced by Kim and Menon[19–20]. Recently, we have used the same numerical approach
to simulate the turbulent annular swirling jet flow in a similar configuration to identify the
helical vortex cores in the flow field[21]. It was found that the numerical results were in line
with experimental measurements, validating the approach. The only difference in this work
is that, for a zero swirl intensity annular jet, there is no tangential injection of fluid in the
swirl generator, as depicted in Fig. 1(a). The annular jet is generated by a fluid (water with a
viscosity ν = 1.005×10−6 m2/s) flowing through a swirl generator with twelve fixed and movable
blocks, and then guided into the passage between two coaxial cylinders. The configuration of
the annular tube near the jet orifice is shown in Fig. 1(b). The diameters of the inner and
outer cylinders are Di = 18 mm and Do = 27 mm, respectively. The Reynolds number Re =
u0Dh/ν is around 8 500, where u0 = 0.95m/s is the mean axial velocity at the jet nozzle, and
Dh = 9 mm is the hydraulic diameter of the annular flow passage.
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Fig. 1 (a) The schematic layout of the swirl generator and (b) the configuration of the annular pipe
close to the jet nozzle (color online)

The governing equations are solved by the open-source C++ library OpenFOAM based
on the finite volume method. The temporal discretization scheme is second-order implicit
backward. For the spatial derivative terms, the convective term is discretized by a second-order
upwind scheme, whereas the diffusive term is approximated by a second-order central difference
scheme. The computational grid is hexahedrally structured and nonuniform and has a total
number of around 10.5 million cells. There are 384 control volumes in the azimuthal direction
and 356 cells in the main flow direction from the inlet to the outlet. The finest grid spacing
is situated at the jet orifice with ∆x = Do/600 in the axial direction and ∆r = Do/1 200
in the radial direction. The time step is fixed at 8 × 10−6 s to meet the Courant-Friedrichs-
Lewy condition, and the maximum Courant number is less than 0.55 during the simulation.
The detailed information about the numerical method and its validation can be found in our
previous work[21].

3 Asymmetric mean flow field

Different views of the time-averaged reversal flow area obtained during 300 dimensionless
time units (calculated as tu0/Do) are presented in Figs. 2(a) and 2(b). From the figures, we
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Fig. 2 Different views of the backflow region shown by the iso-surface of the normalized mean axial
velocity 〈u〉/u0 = 0 behind the central bluff-body, (a) the zero axial velocity iso-surface, (b)
the position of the symmetric and asymmetric planes, where the slices in (b) indicate the
defined “asymmetric” and “symmetric” planes (color online)

can see that the recirculation zone behind the inner cylinder is asymmetric although the flow
configuration has an axisymmetric geometry. It is worth mentioning that the backflow region
is precessing gradually around the jet central axis as the averaging time interval increases,
which means that it contains very low frequency dynamics. Depending on the shape of the
recirculation zone, both an “asymmetric” plane and a “symmetric” plane can be defined, similar
to the study of Vanierschot et al.[16], and both planes are perpendicular to each other, as
indicated by the slices in Fig. 2(b). Here, the “asymmetric” plane can be obtained by the
cross-section cutting through the axis of symmetry and the stagnation point, whereas the
“symmetric” plane is orthogonal to it[10, 16]. Figures 3(a) and 3(b) show the corresponding
time-averaged axial velocity field 〈u〉/u0 and velocity vectors in these two planes, where the
radius r is calculated as r =

√
y2 + z2. The stagnation point that indicates the end of the

recirculation region is located at x/Do = 0.55. As shown in the figures, the reversal flow region
is not parallel to the jet central axis in the asymmetric plane, and it is almost parallel to the
jet center axis in the symmetric plane. These results agree well with the findings reported by
Ryzhenkov et al.[10] and Vanierschot et al.[16]. Furthermore, the normalized normal Reynolds
stress 〈u′u′〉/u2

0 in these two planes is expressed in Figs. 3(c) and 3(d). The figures show that
large velocity fluctuations exist in the inner and outer shear layer regions owing to turbulent
mixing. The largest normal Reynolds stress is located in the inner shear layer in the asymmetric
plane, which is caused by the highly dynamic properties of the reversal region or oscillations
of the stagnation point[8]. This phenomenon was also observed in a laminar annular jet at
Re = 180 by Ogus et al.[14].

4 POD modes

POD looks for spatial base functions that capture the most energetic components of a
dynamical system[22]. Suppose that N snapshots of the three-dimensional velocity field u(x, t)
are recorded during the numerical simulation, and POD decomposes the fluctuating velocity
u′(x, t) into a set of spatial modes ψi(x) with temporal coefficients ai(t),

u(x, t) = 〈u(x, t)〉+
N∑

i=1

ai(t)ψi(x), (3)
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Fig. 3 The normalized mean axial velocity 〈u〉/u0 in the (a) asymmetric and (b) symmetric planes,

and the normalized normal Reynolds stress 〈u′u′〉/u2
0 in the (c) asymmetric and (d) symmetric

planes (color online)

by separating the independent variables x and t. In this work, the snapshot POD approach of
Sirovich was adopted[23–24]. The mode amplitude ai(t) is obtained from the eigenvectors of the
auto-correlation matrix Ci,j = 1

N [u′(x, ti)]T[u′(x, tj)],

Cai = λiai with λ1 > λ2 > · · · > λN > 0. (4)

Here, the eigenvalues λi stand for the energy contained by each spatial mode. The eigenfunctions
ψi(x) are calculated by projection of the snapshots onto the temporal coefficients ai(t),

ψi(x) =
1

Nλi

N∑

j=1

ai(tj)u′(x, tj). (5)

The asymmetric recirculation zone discussed in Section 3 originates from random perturba-
tions which are shedding from the central cylinder and are convected downstream[8–9]. Although
the asymmetric time-averaged statistics of the velocity fields are observed, an appropriate choice
of the time averaging interval could provide an axisymmetric flow field. Figures 4(a) and 4(b)
give the averaged streamwise velocity in an axial plane and in a cross-section (at x/Do = 0.4),
which is calculated from 500 instantaneous flow fields (N = 500). The time interval between
two successive snapshots is 0.024 s, corresponding to a total sampling time of 12 s. It is seen
that the axial velocity field is almost symmetric about the jet central axis in Figs. 4(a) and
4(b), i.e., the averaged flow field contains an axisymmetric recirculation region. Therefore,
these 500 snapshots are used in the POD analysis. Figures 5(a) and 5(b) respectively provide
the distributions of turbulent kinetic energy across the three-dimensional POD modes and the
accumulated energy distributions. In Fig. 5(a), we can see that the first four POD modes all
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have a turbulent kinetic energy content larger than 1%. In detail, the modes 1 and 2 account
for 14.7% and 10.4%, respectively, while the modes 3 and 4 capture 2.1% and 1.3% of the
total turbulent kinetic energy. In contrast, the remaining POD modes are weaker as each of
them represents less than 1% of the total turbulent kinetic energy. If the Reynolds number
is increased, the first four modes would capture less kinetic energy. The reason is that more
small-scale turbulent structures appear in the flow field with increasing the Reynolds number,
and these fine scale structures also have a contribution to the energy content, which means
that the relative contribution of the large scale structures decreases. The dash-dotted line
in Fig. 5(b) indicates that the first 82 POD modes reach more than 50% of the total energy.
We will illustrate the first four eigenmodes in the following contents, as no noticeable spatial
structures can be found in the other ones.

The first POD modes in an axial plane and a cross-section (at x/Do = 0.6) are plotted in
Figs. 6(a) and 6(b), respectively. In the axial plane, two vortices can be identified between the
inner and outer mixing layers. In addition, a strong vortex is located immediately behind the
central bluff-body, which leads to a radial movement of the fluid in the recirculation region.
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This effect is responsible for the shift of the stagnation point as well. The results discussed
here are in line with the two-dimensional PIV measurements by Patte-Rouland et al.[8] and by
Vanierschot et al.[12, 25]. Moreover, the velocity vectors of the first spatial mode display a pair
of counter-rotating vortices in the streamwise direction, as shown in Fig. 6(b). The structure of
the second POD mode is very similar to the first one, with an angular difference of π/2 in the
azimuthal direction, as presented in Figs. 6(c) and 6(d). As a consequence, the two-dimensional
POD analyses conducted in previous studies[8, 12,25] cannot depict these two modes accurately.
The amplitudes of the first two spatial modes as a function of time are plotted in Fig. 7(a). It
can be seen that, although the temporal coefficients exhibit small scale fluctuations in time, the
curves show a general periodic trend. The normalized cross-correlation coefficient c12 of a1 and
a2 is given in Fig. 7(b), where cij(∆t) = 〈ai(t + ∆t)aj(t)〉. The main features of the correlation
coefficient are the maxima and minima of the curves, showing the periodicity of the motion
of the first two modes in the near-field of the annular jet. The positive and negative peaks
correspond to a period of around 12 s, demonstrating that the coherent motions are in the low-
frequency regime. From the results above, it can be concluded that the first two POD modes
have a similar spatial structure and amplitude and hence form a mode pair. The motion of this
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pair accounts for 25.1% of the total turbulent kinetic energy. It should be noted that the period
obtained from the cross-correlation coefficient may only describe the periodic motion roughly,
since the POD analysis only includes sampled data during about one period. More numerical
data however would need much more simulation time. To study the dynamical structures in
the flow of smaller frequencies, a wavelet analysis of the mode amplitudes a1 and a2 is done.
The results are plotted in Figs. 7(c) and 7(d), respectively. The figures show that the temporal
coefficients have low-frequency fluctuating components from 0.28 Hz to 8.81 Hz, corresponding
to a Strouhal number St = fDh/u0 between 2.7×10−3 and 0.083. This dimensionless frequency
range is much lower than the one associated with inner shear layer instabilities, which is in the
order of 0.15–0.3[6, 16].
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Figures 8(a) and 8(b) present the third POD mode in the axial and cross-sectional planes
(at x/Do = 0.6), respectively. As shown in the figure, the mode 3 is symmetric about the jet
central axis. The largest magnitude of the velocity is located in the area close to the end of
the reversal flow region. As discussed later, this mode represents the stretching and squeezing
effects in the radial direction of the reversal flow in its end region. In other words, it depicts
the opening and closing of the annular jet. Furthermore, two pairs of counter-rotating vortices
result from this mode in the streamwise direction. Similar to the first mode pair, the fourth
POD mode has a similar structure as the third one, with an angle difference of π/4 in the
azimuthal direction, as presented in Figs. 8(c) and 8(d). Figure 9(a) plots the time evolution
of the amplitudes of the modes 3 and 4, and their cross-correlation coefficient c34 is given in
Fig. 9(b). The positive and negative peaks in the curve show that this mode pair has a period
of about 6 s, i.e., its period is half the precession period of the first mode pair, which is in
line with the result obtained by Vanierschot et al.[25]. This mode pair represents 3.4% of the
total turbulent kinetic energy. Figures 9(c) and 9(d) give the wavelet analysis of the mode
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amplitudes a3 and a4, respectively. The wavelet coefficients again reveal that large time scale
fluctuation components exist in the flow field.

To reveal the relationship between the POD mode pairs and the asymmetric flow reversal,
the velocity field is reconstructed with selected spatial modes as

u(x, t) = 〈u(x, t)〉+
∑

k

ak(t)ψk(x). (6)

Figures 10(a)–10(d) display the positive and negative iso-surfaces of ψk(x) for the first four
POD modes, respectively. The axial component of those eigenmodes presents a pulsatile motion
along the streamwise direction. Also, it verifies the harmonic relation between the spatial modes
in the first and second mode pairs. The recirculation regions in the wake flow reconstructed by
the first mode pair with maximum and minimum temporal coefficients are given in Figs. 10(e)
and 10(f), respectively. The shape of the reversal flow zone in Figs. 10(e) and 10(f) is similar
to the one shown in Fig. 2. The velocity fields reconstructed by the first mode pair in the
asymmetric and symmetric planes, defined in Fig. 2(b), are illustrated in Figs. 11(a) and 11(b),
respectively. It shows two vortices that have different sizes in the asymmetric plane, and two
vortices that almost have the same size in the symmetric plane. The flow patterns shown in
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region reconstructed by the first mode pair with (e) maximum and (f) minimum temporal
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coefficients (color online)

Fig. 11 agree with those presented in Figs. 3(a) and 3(b). Therefore, the first two POD modes
are responsible for the asymmetric flow field in the wake and the associated motion of the
stagnation point. The recirculation regions in the wake flow reconstructed by the second mode
pair with maximum and minimum temporal coefficients are given in Figs. 10(g) and 10(h),
respectively. From the figures, we can see that the reversal flow is symmetric in the two slices
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Fig. 11 Velocity fields reconstructed by the first and second POD modes in the (a) asymmetric and

(b) symmetric planes (color online)

defined in Fig. 2(b), i.e., it has two symmetric planes. The velocity fields reconstructed by the
modes 3 and 4 in these two slices are respectively given in Figs. 12(a) and 12(b). The velocity
vectors in both slices show two vortices between the backflow region and the inner shear layer.
However, the vortices in Fig. 12(a) are smaller compared with those in Fig. 12(b). The reason is
that the recirculation zone is stretched in the radial direction in Fig. 12(a), whereas it is squeezed
in the radial direction in Fig. 12(b), as depicted in Figs. 10(g) and 10(h). Moreover, Figs. 10(e)–
10(h) show that the recirculation regions reconstructed with maximum and minimum mode
amplitudes have a phase difference of π in the azimuthal direction, although it is not exactly the
case for the first mode pair owing to the fluctuation of the temporal coefficient. This behavior
confirms that the reversal flow zone is precessing around the jet central axis, as mentioned in
Section 3. Figures 13(a) and 13(b) respectively describe the axial velocity field reconstructed
by the first and second mode pairs at x/Do = 0.4. The flow field reconstructed by the first two
POD modes shows a counter-rotating vortex pair in the streamwise direction. In contrast, the

1.2

0.8

0.4

0.0

−0.4

1.2

0.8

0.4

0.0

−0.4

0.5

0.3

0.1

−0.1

−0.3

−0.5

r
/D
o

0.5

0.3

0.1

−0.1

−0.3

−0.5

r
/D
o

x/Do

0.2 0.4 0.6 0.8 1.0

(a)

0.0
x/Do

0.2 0.4 0.6 0.8 1.0

(b)

0.0

Fig. 12 Velocity fields reconstructed by the (a) third and (b) fourth POD modes in the two symmetric

planes (color online)
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flow fields reconstructed by the modes 3 and 4 display two pairs of counter-rotating vortices in
the main flow direction, but they are weaker as the second mode pair captures lower turbulent
kinetic energy. The counter-rotating streamwise vortices were detected by the phase averaging
method applied to the wake in an annular jet[11], and they were also observed in a laminar
annular jet flow[14].

1.2

0.8

0.4

0.0

−0.4

1.2

0.8

0.4

0.0

−0.4

0.3

0.2

0.1

0.0

−0.1

−0.2

−0.3

r
/D
o

0.3

0.2

0.1

0.0

−0.1

−0.2

−0.3

r
/D
o

r/Do
(a)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
r/Do
(b)

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

Fig. 13 The streamwise vortices in the flow field reconstructed by (a) the first and second POD

modes, and by (b) the third and fourth POD modes (color online)

5 Conclusions

In summary, we present the flow dynamics of the wake in a turbulent annular jet at a
Reynolds number Re = 8 500. It is found that the time-averaged velocity field is asymmetric
although the flow has a symmetric geometry and boundary conditions. The POD analysis of
the fluctuating velocity field shows that the influence of the first four eigenmodes on the mean
flow cannot be neglected. The first two spatial modes account for 25.1% of the total turbulent
kinetic energy, while the modes 3 and 4 only represent 3.4% of the total energy. The first POD
mode pair leads to the radial movement of the fluid in the recirculation region. It corresponds to
the shift of stagnation point in the radial direction and is responsible for the asymmetric time-
averaged reversal flow region. In contrast, the second mode pair has stretching and squeezing
effects on the recirculation region in the radial direction. The flow fields reconstructed by these
four spatial modes demonstrate that the recirculation zone precesses around the jet central line
at a very low frequency, corresponding to a Strouhal number St less than 0.001. Moreover, the
flow fields reconstructed by those two POD mode pairs also present counter-rotating vortices
in the streamwise direction downstream of the reversal flow region.
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