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Abstract Based on the mechanical motion equation, Gauss’s law, and the
current continuity condition, we study a few typical transient effects in a piezoelectric
semiconductor (PS) fiber to realize the startup and turning-off functions of common
piezotronic devices. In this study, the transient extensional vibration induced by
a suddenly applied axial time-dependent force is examined in a cantilevered n-type
ZnO nanofiber. Neither the magnitude of the loadings nor the doping concentration
significantly affects the propagation caused by disturbance of the axial displacement.
However, both of the factors play an important role in the propagation caused by
disturbance of the electron concentrations. This indicates that the electromechanical
coupling effect can be expected to directly determine the electronic performance of the
devices. In addition, the assumption of previous simplified models which neglect the
charge carriers in Gauss’s law is discussed, showing that this assumption has a little
influence on the startup state when the doping concentration is smaller than 1021 m−3.
This suggests that the screening effect of the carriers on the polarized electric field is
much reduced in this situation, and that the state is gradually transforming into a pure
piezoelectric state. Nevertheless, the carriers can provide a damping effect, which means
that the previous simplified models do not sufficiently describe the turning-off state. The
numerical results show that the present study has referential value with respect to the
design of newly multifunctional PS devices.
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1 Introduction

Piezoelectric semiconductors (PSs) have recently attracted widespread interest for the design
of multifunctional devices owing to their additional piezoelectric properties[1] compared with
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general Si semiconductors. In these materials, the mechanical stimuli and electrical properties
can interact directly because these materials have both piezoelectric and semiconducting
properties. This gives rise to the appearance of a novel device application known as
“piezotronics”, including nanogenerators[2–4], acoustic charge transport devices[5], field effect
transistors[6–9], as well as chemical sensors[10]. Recently, the static behavior of ZnO PS
structures with high performance was reported[11–15]. However, in spite of significant
developments in these applications, the field of piezotronics still presents various challenges
as a result of coupling among the multiple physical properties and mathematical problems,
especially in time-dependent applications[16].

It is well known that the time-dependent behaviors of PS structures are more important
to the devices than the above-mentioned static ones, for example, in applications such as
frequency generation/operation, telecommunication, time keeping, and sensing[17]. However,
most of the existing analyses of PS structures only considered the I-V characteristics in
the steady-state[18–21], wave propagation[22–26], or time-harmonic vibration[27]. Although the
above analyses can extract the most basic behaviors of PS structures including their resonant
frequencies and mode shapes, important transient effects in device operations still cannot be
described. For example, for acoustic charge transport devices, startup and turning off are
unavoidable transient processes. Moreover, fluctuations in the driving force or voltage are
known to induce transient effects in a harmonic operation[17]. It is noted that such important
applications have been widely investigated in quartz resonators[28], which motivated the present
study with the aim of extending it to important PS devices. Apart from this, the transient
behaviors of PS devices are strongly related to the factors including the properties and geometric
configurations of a material. The transient vibration analysis with a time-independent stimulus
was recently reported. These studies showed that the use of external triggers as stimulus also
determines the transient behaviors of PS devices in addition to the above-mentioned intrinsic
factors[29–30]. However, the carriers in Gauss’s equation were neglected in Refs. [29] and [30]
followed by Refs. [12] and [31] to decouple the multi-field coupling equations that would have
enabled analytical results to be obtained. It is noted that this assumption resulted in the
system being opened, although it is convenient for the purpose of calculation. Furthermore, the
time-dependent stimulus is more general than those static ones in engineering applications.

Therefore, the transient process of a cantilevered n-type ZnO nanofiber is analyzed in this
study under time-dependent forces that are suddenly applied along the c-axis. Multi-field
coupling equations are numerically solved for the fully coupled state and compared with those
that are approximately decoupled to validate the application scope of the previous simplified
models. Then, the typical transient effects are further analyzed for different loadings and doping
concentrations. Finally, conclusions are drawn that are of significance for both the design and
practical application of PS devices.

2 One-dimensional (1D) equations for the extension of a PS fiber

In this section, 1D equations for the extension of a PS fiber are presented. It is well known
that a 1D model has sufficient accuracy to model rod-like structures with a high span ratio. As
shown in Fig. 1, a cantilevered n-type ZnO fiber is considered with an arbitrary cross section

x1

F0

Ax3
O c T= sin(ωt) or     e−αt

L

F0

A

Fig. 1 PS fiber of crystals of class 6 mm
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A, and its length L is much larger than the characteristic dimension of the cross section. At
t = 0 s, the free end is subject to a suddenly applied extensional force F or stress T = F/A. In
Fig. 1, the c-axis of the crystal coincides with the long axis of the fiber. The extensional forces
are taken as sinusoidal and exponential forms, in which ω, F0, and α are the angular frequency,
the initial magnitude of the force, and the attenuation coefficient, respectively. In addition, the
surface of the fiber is unelectroded. The electric field in the surrounding free space is neglected,
an approximation that is commonly made.

For a 1D n-type ZnO fiber, the mechanical motion equation, Gauss’s law, and the current
continuity condition can be expressed as

T3,3 = ρü3, (1a)
D3,3 = −q∆n, (1b)
Jn

3,3 = q∆ṅ. (1c)

In the above equation, T3, u3, D3, and Jn
3 are the axial stress, the displacement, the electric

displacement, and the current density of electrons, respectively. ρ is the mass density, q is the
electronic charge, ∆n denotes the disturbance of electrons, and “(·), 3” denotes the derivative
with respect to the coordinate x3. In addition, a superimposed dot represents a time derivative.

The relevant 1D constitutive relations are

T3 = c33S3 − e33E3, (2a)
D3 = e33S3 + ε33E3, (2b)
Jn

3 = qNDµn
33E3 + qDn

33∆n,3, (2c)

in which the drift current of electrons is linearized, as in Refs. [11], [14], [21], and [22], with a
small ∆n. Here, ND denotes the initial doping concentration, and µn

33 and Dn
33 are the carrier

mobility and diffusion constants of the electrons, respectively. The stress relaxation is used by
considering Poisson’s effect. Therefore, the parameters in Eq. (2) are modified. c33, e33, and
ε33 are the effective elastic, piezoelectric, and dielectric constants, respectively, which can be
obtained from Ref. [11].

Without loss of generality, the axial strain S3 and the electric field E3 are the gradients of
the mechanical displacement and the electric potential, which can be defined as

S3 = u3,3, E3 = −ϕ,3. (3)

The conditions for determining the solutions are given as follows:




u3 = 0, D3 = 0, J3 = 0 at x3 = 0,

T3 = T, D3 = 0, J3 = 0 at x3 = L,

u3 = 0, u̇3 = 0, ϕ = 0, ∆n = 0 at t = 0.

(4)

It is noted that the multi-coupled equation (1) can be numerically solved by using the finite
element method (FEM) with the boundary and initial conditions in Eq. (4). Because there are
no boundary conditions prescribed directly on the electric potential, the electric potential may
have an arbitrary constant which does not make any difference to the electric field it produces.
For uniqueness, we let ϕ = 0 at x3 = 0. However, it is noted that the approximate analytical
solutions can be obtained by neglecting part of weak interactions as reported in Refs. [29]–[31].
The advantage of these analytical solutions is that they are helpful to reveal the essence of
some physical phenomena, although the scope of applications of the introduced assumptions
needs to be further verified. Therefore, the approximately theoretical analysis is also presented
in Appendix A as a comparison.



1098 Wanli YANG and Yuxing LIANG

3 Numerical results and discussion

As usual, the cross section of the fiber is a circle, and the area of the section is taken
as A = 2.598 × 10−14 m2[11]. As an example, the material constants of the ZnO fiber were
obtained from Ref. [32]. L = 600 nm, ND = 1020 m−3, and F0 = 1.7 nN unless otherwise
stated. The development of 5G has resulted in the widespread use of medium-high frequency
devices in mobile communications, such as antennas, filters, radio frequency switches, and power
amplifiers. It is noted that their working frequencies usually range from several to tens of GHz.
In addition, the resonance frequencies of the ZnO fiber are in the range of GHz[27]. Therefore,
we take f = ω/(2π) = 30 GHz in this paper to move away from the first resonance frequency.
Moreover, the attenuation coefficient α is the same as ω in terms of its value.

First, we examine the accuracy of u3 and ∆n obtained by using the FEM. At one arbitrary
moment, we take t = 10.8 × 10−11 s as an example (a special time point will be discussed in
the next). We use the FEM to solve the fully coupled equation (1) without approximation, and
compare it with the results obtained from the approximate analytical solutions in Appendix
A by m = 20 and r = 7. As shown in Fig. 2, both the solutions are completely coincident,
which indicates that the approximation taken in the series solutions has a little influence on
the transient performance in this case. In addition, it is verified at the other time instants
that they are all in good correspondence. This is because ND = 1020 m−3 is a low doping
concentration, such that the coupling effect between the carriers and mechanical-electric fields
is weak. Therefore, the simplified analytical model is valid. However, the critical doping
concentration for a valid approximation will be further examined.

The distributions of u3 along the fiber disturbed by the suddenly sinusoidal and exponential
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Fig. 2 Comparisons of FEM results with series solutions at t = 10.8× 10−11 s (color online)
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axial ending forces are analyzed at different time instants in Fig. 3, in which Figs. 3(a) and 3(b)
show the initial disturbance for suddenly applied sinusoidal ending forces and Figs. 3(c) and
3(d) show the initial disturbance for an exponential ending force. Compared with Fig. 2, it is
observed that the response time of the disturbance in the fiber is approximately 10.8× 10−11 s
in both loading cases, i.e., the time at which the disturbance propagates through the entire
fiber. This process can be used to describe the startup state of the PS devices at t = 0 s
from rest, for instance, acoustic charge transport devices. Interestingly, the response time
10.8 × 10−11 s is close to L/

√
c∗33/ρ, which corresponds to the wave speed by considering the

piezo-effect with an additional electric stiffness. This is caused by the low doping concentration
and high vibration frequency, such that the disturbance propagates near the pure piezoelectric
wave speed. In addition, it has been proved in Ref. [33] that only weak dispersion happened
in the intermediate frequency range for this mechanical disturbance, which showed that the
propagation speed ranges from that in the pure elastic state, that is,

√
c33/ρ, to that in the

pure piezoelectric state. Because
√

c∗33/c33 ≈ 1.1, the propagation speed of this mechanical
disturbance is weakly dependent on the loading modes (see Fig. 3), the magnitude of the end
force (see Figs. 5(a) and 5(b)), and the doping concentration (see Fig. 9).
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Fig. 3 Distributions of u3 along the fiber at different time instants and for various loading modes
(color online)

Corresponding to the time instants in Fig. 3, the distributions of ∆n along the fiber are
shown in Fig. 4. The response time of ∆n in the fiber, which differs fundamentally from the
distribution of the displacement u3 along the fiber, is much less than that of u3. Thus, in this
case, the devices are able to detect the electrical signals faster than the mechanical signals. This
can be attributed to the newly associated wave induced by the interaction between the movable
carriers and polarized electric field[33]. The propagation speed of this associated wave is much
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larger than the generalized mechanical wave at high frequencies[33]. The reason is that the
disturbing electric field on the mechanical wave front will drive movement of the carrier, which
results in the disturbance of ∆n leading to u3. Moreover, the loading mode has weak effects on
the disturbance propagation speed of ∆n, which is different from the displacement. The reason
is that this associated wave is a strongly dispersive wave owing to the interaction between
the movable electrons and the polarized electric field. Therefore, the propagation property
may be highly dependent on the loading, which is obvious from Figs. 5(c) and 5(d). A similar
phenomenon is shown in Fig. 10 for different doping concentrations. It can be numerically
calculated that the integral of ∆n over [0, L] vanishes because the fiber is electrically isolated,
which also validates the correctness of the present solutions. Moreover, it is observed that
the variations of the displacements and electrons in the sinusoidal case are more obvious than
those in the exponential case as expected, which indicates that the startup state is smoother
in the latter case. In summary, the present results have referential value for the design of new
multifunctional acoustic charge transport devices.
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Fig. 4 Distributions of ∆n along the fiber at different time instants and for various loading modes
(color online)

In Fig. 5, we plot the distributions of u3 and ∆n along the fiber at a fixed t = 6 × 10−11 s
with different magnitudes of applied F0. Figure 5 shows that all u3 and ∆n become stronger,
as expected. This means that the transient behaviors can be effectively tuned by the external
forces, such that it can be used as a reference for designing and controlling the performance of
electronic devices. It is also observed that the propagation speed of u3 is independent of the
magnitude of the end force because of the weak dispersion, as discussed above. However, the
propagation speed of ∆n is obviously highly dependent on F0. This is because the disturbance
of the electrons is driven by the polarized electric field. The increase in F0 enhances the
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polarized electric field, which further interacts with the motion of the electrons. Therefore, the
electric-field/carrier interaction wave in Ref. [33] exhibited strong dispersion.

Figure 6 plots the operating state with the sinusoidal end force removed at t = 3.3×10−11 s.
As expected, only one crest propagates in the fiber because the force is removed exactly at
the first period. Therefore, the operating modes of these devices can be tuned by adjusting
the action time of the force in the initial steady state. In addition, the moving carriers may
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induce the damping effect, which indicates that the turning-off property can be described in
this state. However, this process is often time consuming[28] such that the disturbance proceeds
through many cycles. Thus, the turning-off properties are further analyzed and the results are
shown in Figs. 7 and 8 for different doping concentrations. It should be noted that a doping
concentration less than 1020 m−3 is very low, which in turn causes a weak damping effect and
extends the turning-off time. This is because the lower doping concentration transforms the PS
fiber into a purely piezoelectric fiber. The wave propagation is known to undergo no dissipation
in a purely piezoelectric fiber. Therefore, the doping concentration range from 1021 m−3 to
1023 m−3 is chosen to analyze the turning-off property. The results show that the present
model can effectively capture the shutdown property and that the turning-off time is related to
the doping concentration. In addition, it is interesting that a higher doping concentration does
not necessarily correspond to stronger dissipation. The reason is that the propagation speed
of the carriers is much reduced with the increasing doping concentration (see Fig. 10) such
that less energy is directed away from the mechanical wave front by the new associated wave.
Therefore, the damping effect is weakening. Furthermore, it should be noted that although the
approximate solutions can accurately describe the startup properties in low doping cases (shown
in Fig. 2), they are invalid for the turning-off properties because of the absence of dissipation
in Eq. (A1b).
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Fig. 7 Turning-off properties of u3 at different doping concentrations (color online)

Finally, we consider the above important issue of validating the scope of an application
regarding the approximation in different doping concentrations. Figures 9 and 10 show the
effects of the approximation on the distribution of u3 and ∆n along the fiber at a fixed t =
6× 10−11 s. The approximation adopted in Appendix A is observed to have a significant effect
on the carrier distribution whereas it has a little influence on the displacement, which is quite
different from the lower initial doping case, i.e., ND = 1020 m−3 shown in Fig. 2. This means
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Fig. 8 Turning-off properties of ∆n at different doping concentrations (color online)

Coupled
Decoupled

×10−14

×10−7

2.5

2.0

1.5

1.0

0.5

0.0

−0.5

u
3
/m

2.5

2.0

1.5

1.0

0.5

0.0

−0.5

u
3/

m

2.5

2.0

1.5

1.0

0.5

0.0

−0.5

u
3/

m

x
3
/m

0 1 2 3 4

(a) N
D
=1021 m−3

5 6

Coupled
Decoupled

×10−14

×10−7

x
3
/m

0 1 2 3 4

(b) N
D
=1022 m−3

5 6

Coupled
Decoupled

×10−14

×10−7

x
3
/m

0 1 2 3 4

(c) N
D
=1023 m−3

5 6

Fig. 9 Effects of the approximation on u3 at a fixed t = 6× 10−11 s (color online)
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Fig. 10 Effects of the approximation on ∆n at a fixed t = 6× 10−11 s (color online)

that the doping concentration is a key factor responsible for determining the validation of the
above approximation that was used in the theoretical analysis. Therefore, this approximation,
which is made in many studies, can only be used for the initial lower doping concentrations.
Moreover, it is noted that ND = 1021 m−3 is a critical doping concentration in this study.
Once the doping concentration is over ND = 1021 m−3, the coupling effect of the carriers on
the mechanical-electrical field is no longer negligible. Apart from this, it is observed that the
response time of the electrons is enlarged considerably by increasing the doping concentration.
This can be attributed to the screening effect of the carriers, such that the polarized electric
field can be counteracted. In summary, the response or the turning-off time of the electrons
can be tuned by adjusting the doping concentration.

4 Conclusions

Selected typical transient effects are accurately analyzed by applying time-dependent ending
forces to a ZnO fiber. The startup and turning-off properties can be well described by the
evolution of the displacement and carrier fluctuations. The results also show that the electrical
signals can be detected faster than the mechanical signals at lower doping concentrations, which
is useful in nondestructive testing. In addition, the transient performance can be effectively
tuned by adjusting the action time, the magnitude of the applied force, and the doping
concentration. Finally, the results presented here can be referenced to design nanosensors.
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[5] BÜYÜKKÖSE, S., HERNANDEZ-MINGUEZ, A., VRATZOV, B., SOMASCHINI, C.,
GEELHAAR, L., RIECHERT, H., WIE DER VAN, W. G., and SANTOS, P. V. High-frequency
acoustic charge transport in GaAs nanowires. Nanotechnology, 25, 135204 (2014)

[6] LIU, W., ZHANG, A. H., ZHANG, Y., and WANG, Z. L. First principle simulations of piezotronic
transistors. Nano Energy, 14, 355–363 (2015)

[7] WU, Y. R. and SINGH, J. Metal piezoelectric semiconductor field effect transistors for piezoelectric
strain sensors. Applied Physics Letters, 85, 1223–1225 (2004)

[8] WANG, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and
Engineering : R: Reports, 64, 33–71 (2009)

[9] ZHAO, Z. F., PU, X., HAN, C. B., DU, C. H., LI, L. X., JIANG, C. Y., HU, W. G., and WANG,
Z. L. Piezotronic effect in polarity-controlled GaN nanowires. ACS Nano, 9, 8578–8583 (2015)

[10] WANG, Z. L. Novel nanostructures of semiconducting oxides. Advanced Materials, 15, 432–436
(2003)

[11] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a
ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures,
26, 025030 (2017)

[12] GAO, Y. F. and WANG, Z. L. Electrostatic potential in a bent piezoelectric nanowire. The
fundamental theory of nanogenerator and nanopiezotrionics. Nano Letters, 7, 2499–2505 (2007)

[13] GAO, Y. F. and WANG, Z. L. Equilibrium potential of free charge carriers in a bent piezoelectric
semiconductive nanowire. Nano Letters, 9, 1103–1110 (2009)

[14] FAN, S. Q., LIANG, Y. X., XIE, J. M., and HU, Y. T. Exact solutions to the electromechanical
quantities inside a statically-bent circular ZnO nanowire by taking into account both the
piezoelectric property and the semiconducting performance: part I — linearized analysis. Nano
Energy, 40, 82–87 (2017)

[15] LIANG, Y. X., FAN, S. Q., CHEN, X. D., and HU, Y. T. Nonlinear effect of carrier drift on
the performance of an n-type ZnO nanowire nanogenerator by coupling piezoelectric effect and
semiconduction. Beilstein Journal of Nanotechnology, 9, 1917–1925 (2018)

[16] LEW, L. C., VOON, Y., and WILLATZEN, M. Electromechanical phenomena in semiconductor
nanostructures. Journal of Applied Physics, 109, 031101 (2011)

[17] ZHANG, R. Y. and HU, H. P. A few transient effects in AT-cut quartz thickness-shear resonators.
IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 58, 2758–2762 (2011)

[18] ZHANG, Y., LIU, Y., and WANG, Z. L. Fundamental theory of piezotronics. Advanced Materials,
23, 3004–3013 (2011)



1106 Wanli YANG and Yuxing LIANG

[19] LUO, Y. X., CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electromechanical
fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida
Sinica, 31, 127–140 (2018)

[20] YANG, W. L., FAN, S. Q., LIANG, Y. X., and HU, Y. T. Prestress-loading effect on the
current-voltage characteristics of a piezoelectric p-n junction together with the corresponding
mechanical tuning laws. Beilstein Journal of Nanotechnology, 10, 1833–1843 (2019)

[21] YANG, G. Y., YANG, L., DU, J. K., WANG, J., and YANG, J. S. PN junctions with coupling
to bending deformation in composite piezoelectric semiconductor fibers. International Journal of
Mechanical Sciences, 173, 105421 (2020)

[22] JIAO, F. Y., WEI, P. J., ZHOU, X. L., and ZHOU, Y. H. The dispersion and attenuation of the
multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics, 92, 68–78 (2019)

[23] JIAO, F. Y., WEI, P. J., ZHOU, Y. H., and ZHOU, X. L. Wave propagation through a
piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. European Journal
of Mechanics-A/Solids, 75, 70–81 (2019)

[24] ZHU, F., JI, S. H., QIAN, Z. H., and YANG, J. S. Study on the influence of semiconductive
property for the improvement of nanogenerator by wave mode approach. Nano Energy, 52, 474–484
(2018)

[25] CAO, X. S., HU, S. M., LIU, J. J., and SHI, J. P. Generalized Rayleigh surface waves in a
piezoelectric semiconductor half space. Meccanica, 54, 271–281 (2019)

[26] QU, Y. L., JIN, F., and YANG, J. S. Torsion of a flexoelectric semiconductor rod with a rectangular
cross section. Archive of Applied Mechanics, 91, 2027–2038 (2021)

[27] DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution
in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43,
22–28 (2018)

[28] ZHI, W., ZHAO, M. H., and YANG, J. S. Amplitude evolution equation and transient effects in
piezoelectric crystal resonators. Journal of Applied Physics, 114, 144510 (2013)

[29] LIANG, Y. X., YANG, W. L., and YANG, J. S. Transient bending vibration of a piezoelectric
semiconductor nanofiber under a suddenly applied shear force. Acta Mechanica Solida Sinica, 32,
688–697 (2019)

[30] YANG, W. L., HU, Y. T., and YANG, J. S. Transient extensional vibration in a ZnO piezoelectric
semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 6, 025902
(2018)

[31] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Propagation of extensional waves
in a piezoelectric semiconductor rod. AIP Advances, 6, 045301 (2016)

[32] AULD, B. A. Acoustic Fields and Waves in Solids, Vol. I, Wiley, New York (1973)

[33] LIANG, Y. X. and HU, Y. T. Effect of interaction among the three time scales on the propagation
characteristics of coupled waves in a piezoelectric semiconductor rod. Nano Energy, 68, 104345
(2020)

[34] ARFKEN, G. B. and WEBER, H. J. Mathematical Methods for Physicists, 4th ed., Academic
Press, San Diego (1995)

Appendix A

The simplified theoretical analysis is carried out in this appendix. As an approximation often used
in Refs. [12] and [29]–[31], the charge on the right-hand side of Eq. (1b) is neglected to decouple the
problem into two one-way coupled problems, i.e., the pure piezoelectric problem and the continuity
equation for ∆n.

The pure piezoelectric problem consists of the following equations:

T3,3 = ρü3, (A1a)

D3,3 = 0. (A1b)
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Using Eqs. (2a) and (2b), Eq. (A1) can be rewritten as

{
c33u3,33 + e33ϕ,33 = ρü3,

e33u3,33 − ε33ϕ,33 = 0.
(A2)

From Eq. (4) and Eq. (A1b), we can obtain D3 = 0 at the domain, which represents e33u3,3 = ε33ϕ,3.
Therefore, the axial stress can be simplified as

T3 = c33u3,3 + e33ϕ,3 = c∗33u3,3, (A3)

where

c∗33 = c33(1 + e2
33/(c33ε33)), (A4)

which is a piezoelectrically stiffened elastic constant. Then, Eqs. (A1a) and (4) can be rewritten as





c∗33u3,33 = ρü3,

u3 = 0, x3 = 0,

c∗33u3,3 = T, x3 = L,

u3 = 0, u̇3 = 0, t = 0.

(A5)

To homogenize the boundary conditions in Eq. (A5), let

u3 = u + Tx3/c∗33. (A6)

Then, the problem for u is

c∗33u,33 = ρ(ü + T̈ x3/c∗33), (A7)
{

u = 0, x3 = 0,

c∗33u,3 = 0, x3 = L,
(A8)

u = 0, u̇ + Ṫ (0)x/c∗33 = 0, t = 0. (A9)

Mathematically, the solutions of u can be obtained by the method of separation of variables[34],

u(x3, t) = v(x3, t) + w(x3, t), (A10)

where




v(x3, t) =

∞∑
m=0

Vm(t) sin((π + 2mπ)x3/(2L)),

Vm(t) =
2L

(π + 2mπ)c

∫ t

0

gm(τ) sin((π + 2mπ)c(t− τ)/(2L))dτ, m = 0, 1, 2, · · · ,

gm(t) =
2

L

∫ L

0

(−T̈ x3/c∗33) sin((π + 2mπ)x3/(2L))dx3, c =
√

c∗33/ρ,

(A11)





w(x3, t) =

∞∑
n=0

(An sin((π + 2mπ)ct/(2L))) sin((π + 2mπ)x3/(2L)),

Am =
4

(π + 2mπ)c

∫ L

0

(−Ṫ (0)x3/c∗33) sin((π + 2mπ)x3/(2L))dx3, m = 0, 1, 2, 3, · · · .

(A12)

Once u is obtained, u3 and ϕ are obtained from Eqs. (A6) and (A2), respectively. Due to e33u3,3 =
ε33ϕ,3 and ND = n0 because of uniform impurity, the equation for ∆n is obtained from Eq. (1c) and
Eq. (2c) as

∆ṅ = −n0µ
n
33e33u3,33/ε33 + Dn

33∆n,33 (A13)



1108 Wanli YANG and Yuxing LIANG

with the following boundary and initial conditions:

J3 = −qn0µ
n
33e33u3,3/ε33 + qDn

33∆n,3 = 0, x3 = 0, L, (A14)

∆n = 0, t = 0. (A15)

To make the boundary conditions in Eq. (A14) homogeneous, the solution of ∆n can be obtained
by separation of variables and the Laplace transform[34]. Therefore, let

∆n = n̂ + n0µ
n
33ϕ/Dn

33. (A16)

The initial-boundary value problem for n̂ is

˙̂n = Dn
33n̂,33 − n0µ

n
33ϕ̇/Dn

33, (A17)

n̂,3 = 0, x3 = 0, L, (A18)

n̂ = 0, t = 0. (A19)

Equations (A17)–(A19) are also a standard mathematical problem, whose solution by separation of
variables and the Laplace transform is

n̂(x3, t) =

∞∑
r=0

( ∫ t

0

ar(τ)e−(rπ
√

Dn
33/L)2(t−τ)dτ · cos(rπx3/L)

)
, (A20)

where




a0(t) =
1

L

∫ L

0

(−n0µ
n
33ϕ̇/Dn

33)dx3, r = 0,

ar(t) =
2

L

∫ L

0

(−n0µ
n
33ϕ̇/Dn

33) cos(rπx3/L)dx3, r = 1, 2, 3, · · · .

(A21)


