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Abstract A radial integral boundary element method (BEM) is used to simulate the
phase change problem with a mushy zone in this paper. Three phases, including the
solid phase, the liquid phase, and the mushy zone, are considered in the phase change
problem. First, according to the continuity conditions of temperature and its gradient on
the liquid-mushy interface, the mushy zone and the liquid phase in the simulation can be
considered as a whole part, namely, the non-solid phase, and the change of latent heat
is approximated by heat source which is dependent on temperature. Then, the precise
integration BEM is used to obtain the differential equations in the solid phase zone and
the non-solid phase zone, respectively. Moreover, an iterative predictor-corrector precise
integration method (PIM) is needed to solve the differential equations and obtain the
temperature field and the heat flux on the boundary. According to an energy balance
equation and the velocity of the interface between the solid phase and the mushy zone, the
front-tracking method is used to track the move of the interface. The interface between
the liquid phase and the mushy zone is obtained by interpolation of the temperature field.
Finally, four numerical examples are provided to assess the performance of the proposed
numerical method.
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1 Introduction

For pure media, the phase change takes place at the unique temperature, two phases
including the solid phase and the liquid phase and one interface between these two phases
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need to be considered. However, for mixed media such as alloys, phase change takes place in
a range of temperature. Therefore, there are three phases and two interfaces to be considered,
which are the solid phase, the liquid phase, and the mushy zone. In the mushy zone, some parts
of the media have changed their phases, while the other parts have not. That is to say, both
solid and liquid are mixed in the mushy zone[1].

For phase change problems, it is vital to handle the moving interface between phases and the
releasing or absorbing of latent heat[2], and the fixed-domain method and the front-tracking
method are commonly-used methods. For the fixed-domain method, all the phase change
domains, including the solid phase, the liquid phase, and the mushy zone, are considered as a
continuous medium as a whole part[3]. The changes of latent heat are described implicitly in the
uniform nonlinear heat conduction equations where enthalpy, effective heat capacity, and heat
source terms are involved[4–5]. For the fixed-domain method, it is easier to program, but the
nonlinear equations need to be solved, and the phase change interface needs to be obtained by
interpolation of temperatures. If the latent heat or the temperature variation is large, or there is
discontinuity or even a big step-jump of enthalpy, it would be difficult to reach the convergence.
The front-tracking method, which needs the moving mesh of the grid, solves heat conduction
problems separately in different phases, and tracks the moving interface based on the interface
energy condition[6]. Therefore, the front-tracking method is more suitable for phase change
problems with large discontinuity or a step-jump of enthalpy than the fixed-domain method.

The numerical methods, including the finite difference method, the finite element method
(FEM), the finite volume method, the meshless method, and the boundary element method
(BEM)[7–8], are the mainly used space-discretization methods. The extended FEM is one of
the favourite approaches to deal with problems with discontinuity and moving boundaries by
using nodal extended shape functions and additional nodal degrees of freedom[9], which has
been used in phase change problems[10–11] and incompressible two-phase flow problems[12].
The BEM has been reported to be one of the favourite tools for a wide variety of heat
conduction problems[13–15]. Because the moving or unknown boundary can be easily discretized
by boundary elements, compared with other numerical methods, it is very convenient to apply
the BEM for grid deforming problems, such as moving boundary problems and geometrical
inverse problems[16]. For example, the BEM and the front-tracking method are used to solve
the phase change problem during a continuous pure medium casting process[17]. The BEM and
the level set method are used to deal with the complicated topological change of an interface
during phase change[18]. The BEM is applied in a direct inversion scheme to identify the shape
of cavity[19]. Compared with other methods, the main advantage of the BEM is that only the
boundary needs to be discretized into elements, and internal nodes can be distributed freely
according to actual demand. Once the velocity and direction of the moving boundary are
determined, the new location of moving boundary nodes can be obtained very easily, and then
the new boundary elements are formed automatically. During the re-meshing process, boundary
nodes and internal nodes can be added or deleted if needed.

When the BEM is applied, to circumvent the domain discretization in the derived integral
equation, the domain integrals need to be transformed into boundary integrals. The radial
integral method (RIM) is one of the commonly-used transforming approaches. It is based on
pure mathematical treatments, and could transform any kind of domain integrals into boundary
integrals without using the Laplace operator and particular solutions of the problem[20–22]. To
solve the time-dependent differential equations generated by the BEM, the precise integration
method (PIM) is a good choice because of its high accuracy and unconditional stability[23–24].

This paper is intended to combine the radial integral BEM with the front-tracking method
to solve the phase change problem with a mushy zone. In the mushy zone, the changes of latent
heat are approximated into heat source terms, and then the mushy zone and the liquid domain
are treated as a whole part. The integral equation for nonlinear heat conduction with source
is derived based on the fundamental solution of Laplace equation. Then, the RIM[20] is used
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to transform the arising domain integrals into boundary integrals. In the time domain, the
PIM[23] is used to solve nonlinear differential equations, and then the heat fluxes on the moving
boundary are obtained. Based on the energy balance equation on the moving boundary, the
velocity can be obtained. The front-tracking method is used to track the move of the interface
between the solid phase and the mushy zone. However, the interface between the liquid phase
and the mushy zone is obtained by interpolation of the temperature field.

2 Governing equations of phase change problem with mushy zone

A two-dimensional domain Ωtotal is considered, where the phase change with the mushy
zone takes place. Contrary to the isothermal phase change problems, the interval of phase
change temperature is (Tms, Tml). Therefore, the domain Ωtotal is divided into three regions,
namely solid domain Ωs, mushy zone Ωm, and liquid domain Ωl, by two interfaces Γms and Γml,
as shown in Fig. 1. If volumetric changes are neglected and the density is constant, the heat
conduction governing differential equations can be written as

∇ · (ks∇Ts(x, t)) + Qs(x, t) = ρcs
∂Ts(x, t)

∂t
, x ∈ Ωs, (1)

∇ · (km∇Tm(x, t)) + Qm(x, t) + ρL
df

dt
= ρcm

∂Tm(x, t)
∂t

, x ∈ Ωm, (2)

∇ · (kl∇Tl(x, t)) + Ql(x, t) = ρcl
∂Tl(x, t)

∂t
, x ∈ Ωl, (3)

where x = (x1, x2), ∇ = ∂(·)
∂x1

i+ ∂(·)
∂x2

j, T denotes the temperature, t is the time, ρ is the density,
and Q denotes the heat source. c represents the heat capacity, and k is the thermal conductivity.
The subscripts ‘s’, ‘l’, and ‘m’, respectively, denote the solid domain, the liquid domain, and
the mushy zone. The heat capacities and thermal conductivities may be non-constant in these
three domains, but in Ωtotal, they are continuous functions with respect to the temperature.

Γ2

Γms

Γml

Ωs

Ωl

Ωm

Γ1

Fig. 1 Schematic diagram of phase change problem

The phase change latent heat is in Eq. (2) of the mushy zone L, and f is the solid phase
fraction. It is assumed that f equals 0 on Γml, f equals fsu on Γms, and f is a function with
respect to temperature or distance to the interfaces Γms and Γml

[25].
The boundary conditions of Ωtotal are given by

T (x, t) = T (x, t), x ∈ Γ̃1, (4)

q(x, t) ≡ −k
∂T (x, t)

∂n
= q(x, t), x ∈ Γ̃2, (5)

where n denotes the unit outside normal vector, and q is the heat flux.
The initial condition is given by

T (x, 0) = T0(x), t = 0. (6)
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Besides, there are interface conditions on the interfaces Γms and Γml. The temperature
conditions and the energy equation on the solid-mushy interface Γms are given by

T (x, t) = Tms, x ∈ Γms, (7)

ks
∂Ts(x, t)

∂ns
− km

∂Tm(x, t)
∂ns

= ρL(1− fsu)Vn, x ∈ Γms, (8)

where Vn is the velocity of the moving interface. The temperature conditions and the energy
equation on the liquid-mushy interface Γml are given by

T (x, t) = Tml, x ∈ Γml, (9)

kl
∂Tl(x, t)

∂nl
= km

∂Tm(x, t)
∂nl

, x ∈ Γml. (10)

It can be found that from Eqs. (7) and (9), the temperature is continuous. Since the thermal
conductivities are continuous in the whole domain, it can also be found from Eqs. (8) and (10)
that the temperature gradient is continuous on Γml but stepped on Γms. However, if the
latent heat change in the mushy zone is treated as the source terms, the mushy zone and the
liquid phase in the simulation are treated as a whole part, namely the non-solid phase, and let
Ωns = Ωm ∪ Ωl. Then, the differential equation in the non-solid domain is written as follows:

∇ · (k(T )∇T (x, t)) + Qns(x, t, T ) = ρc(T )
∂T (x, t)

∂t
, x ∈ Ωns, (11)

where

Qns(x, t, T ) =





Qm(x, t) + ρL
df

dt
, x ∈ Ωm,

Ql(x, t), x ∈ Ωl.
(12)

Therefore, the phase change problem can be dealt with by separating the whole domain
into two parts, namely the solid domain and the non-solid domain. Not only Eq. (1) of solid
domain, Eq. (11) of non-solid domain, and the solid-mushy interface conditions (see Eqs. (7)
and (8)), but also the whole domain’s boundary conditions (see Eqs. (4) and (5)) and the initial
condition (see Eq. (6)) need to be solved. First, the transient heat conduction problems are
solved by the precise integration BEM. Then, the moving velocity of the mushy-solid interface
Γms can be obtained by Eq. (8), and the moving position of Γms can be tracked by an iteration
procedure of the front-tracking method. Finally, the mushy-liquid interface Γml can be obtained
by interpolation of temperature field.

3 Implementation of precise integration BEM

The transient heat conduction problems in the solid domain and the non-solid domain are
solved by the precise integration BEM, respectively. The governing equation in the solid domain
or non-solid domain can be rewritten in a uniform equation as follows:

∇ · (k(T )∇T (x, t)) + Q(x, t, T ) = ρc(T )
∂T (x, t)

∂t
. (13)

According to the whole domain’s boundary conditions (see Eqs. (4) and (5)) and the
solid-mushy interface condition (see Eq. (7)), the boundary conditions for the solid domain
or the non-solid domain can be rewritten as follows:

T (x, t) = T (x, t), x ∈ Γ1, (14)

q(x, t) ≡ −k
∂T (x, t)

∂n
= q(x, t), x ∈ Γ2. (15)
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The Green function G(x, y) is adopted as the weight function to derive the boundary-domain
integral equation. For two-dimensional problems, it is expressed as

G(x, y) =
1
2π

ln
1

r(x,y)
, r(x,y) = ‖x− y‖2 . (16)

Both sides of Eq. (13) are multiplied by G. Then, the resulting equation is integrated over
the domain Ω. Applying the integration by parts and using Gauss’ divergence theorem, one
can get

c(y)k(T )T (y, t) =
∫

Γ

G(x, y)k(T )
∂T (x, t)

∂xi
nidΓ−

∫

Γ

k(T )T (x, t)
∂G(x,y)

∂xi
nidΓ

+
∫

Ω

T (x, t)
∂k(T )
∂xi

∂G(x,y)
∂xi

dΩ−
∫

Ω

G(x, y)Q(x, t, T )dΩ

− ρ

∫

Ω

G(x, y)c(T )
∂T (x, t)

∂t
dΩ, (17)

where c(y) = 1 when y ∈ Ω, and c(y) = ϕ(y)/(2π) when y ∈ Γ, in which ϕ denotes the interior
angle in radians.

Equation (17) can be rewritten as[26]

c(y)T̃ (y, t) =
∫

Γ

G(x, y)
∂T̃ (x, t)

∂xi
nidΓ−

∫

Γ

T̃ (x, t)
∂G(x,y)

∂xi
nidΓ

+
∫

Ω

T̃ (x, t)v(x,y, T )dΩ−
∫

Ω

G(x, y)Q(x, t, T )dΩ

− ρ

∫

Ω

G(x, y)
c(T )
k(T )

∂T̃ (x, t)
∂t

dΩ, (18)

where

T̃ (x, t) = k(T )T (x, t), (19a)

v(x,y, T ) =
∂k̃(T )
∂T

∂T

∂xi

∂G(x,y)
∂xi

, (19b)

k̃(T ) = ln k(T ). (19c)

In Eq. (18), the domain integral, where the source function Q(x, t, T ) is involved, can be
directly transformed by the RIM[20] as follows:

∫

Ω

G(x, y)f(x, t)dΩ(x) =
∫

Γ

F (z,y)
r(z,y)

∂r

∂n
dΓ, (20)

where

F (z,y) =
∫ r(z,y)

0

G(x, y)Q(x, t, T )ξdξ. (21)

In order to transform the third domain integral in Eq. (18), the following approximation
needs to be done:

c(T )
k(T )

∂T̃ (x, t)
∂t

=
N∑

i=1

αiφi(R) + α1x1 + α2x2 + α3, (22)

where R = ‖x− xi‖, φi(R) is the radial basis function (RBF), and αi and αi are coefficients.
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According to Ref. [27], the transformation is done as follows:

∫

Ω

G(x, y)
c(T )
k(T )

∂T̃ (x, t)
∂t

dΩ = Dy
˙̃
T , (23)

where the jth-component of the row vector Dy is

Dy,j =
N∑

i=1

Ψij

∫

Γ

T (i)(z,y)
r(z,y)

∂r

∂n
dΓ

+ Ψ(N+1)j

( ∫

Γ

r,1T
(A1)(z,y)
r(z,y)

∂r

∂n
dΓ + y1

∫

Γ

T (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)

+ Ψ(N+2)j

( ∫

Γ

r,2T
(A1)(z,y)
r(z,y)

∂r

∂n
dΓ + y2

∫

Γ

T (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)

+ Ψ(N+3)j

( ∫

Γ

T (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)
, (24)

where the meaning of Ψij can be found in Ref. [27], and

T (i)(z,y) =
∫ r(z,y)

0

c(T )
k(T )

G(x, y)φiξdξ, (25)

T (A1)(z,y) =
∫ r(z,y)

0

c(T )
k(T )

G(x, y)ξ2dξ, (26)

T (A2)(z,y) =
∫ r(z,y)

0

c(T )
k(T )

G(x, y)ξdξ. (27)

The same approximation procedure is done for the first domain integral in Eq. (18),

T̃ (x, t) =
N∑

i=1

βiφi(R) + β1x1 + β2x2 + β3. (28)

The domain integral can be transformed as follows:
∫

Ω

T̃ (x, t)v(x,y, T )dΩ = VyT̃ , (29)

where the jth-component of the row vector Vy is

Vy,j =
N∑

i=1

Ψij

∫

Γ

V (i)(z,y)
r(z,y)

∂r

∂n
dΓ

+ Ψ(N+1)j

( ∫

Γ

r,1V
(A1)(z,y)

r(z,y)
∂r

∂n
dΓ + y1

∫

Γ

V (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)

+ Ψ(N+2)j

( ∫

Γ

r,2V
(A1)(z,y)

r(z,y)
∂r

∂n
dΓ + y2

∫

Γ

V (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)

+ Ψ(N+3)j

( ∫

Γ

V (A2)(z,y)
r(z,y)

∂r

∂n
dΓ

)
, (30)
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where

V (i)(z,y) =
∫ r(z,y)

0

vφiξdξ, (31)

V (A1)(z,y) =
∫ r(z,y)

0

vξ2dξ, (32)

V (A2)(z,y) =
∫ r(z,y)

0

vξdξ. (33)

Substituting Eqs. (23) and (29) into Eq. (18), one can get the integral equation with only
boundary integrals as follows:

c(y)T̃ (y) =
∫

Γ

G(x, y)
∂T̃ (x, t)

∂xi
nidΓ−

∫

Γ

T̃ (x, t)
∂G(x,y)

∂xi
nidΓ

+ ρVy(T )T̃ −
∫

Γ

F (z,y)
r(z,y)

∂r

∂n
dΓ− ρDy(T ) ˙̃

T . (34)

The boundary Γ is discretized into Ne boundary elements with Nb1 boundary nodes on Γ1

and Nb2 boundary nodes on Γ2, which ensures that the total number of boundary nodes is
Nb = Nb1 + Nb2, and Ni internal nodes are distributed into the domain Ω. The total number
of nodes is N = Nb + Ni. Then, the temperature vector can be written as

T̃ =

(
T̃b

T̃i

)
=




T̃b1

T̃b2

T̃i


 =

(
T̃b1

X

)
. (35)

After applying Eq. (34) on both boundary and internal nodes, the following differential
equations are obtained:

CyT̃b = Gbqb − ĤbT̃b + VbT̃b − fb −Cb
˙̃
T , (36)

T̃i = Giqb − ĤiT̃b + ViT̃b − fi −Ci
˙̃
T , (37)

where Cy = diag(c(y1), c(y2), · · · , c(yNb)), G, Ĥ,V ,f , and C are respectively generated by
discretization of the five boundary integrals on the right-hand side of Eq. (34), and the subscripts
‘b’ and ‘i’ denote boundary nodes and internal nodes, respectively.

According to the boundary conditions, for Nb1 boundary nodes whose T̃b1 and ˙̃
T b1 are

known, qb1 is to be solved, and for Nb2 boundary nodes whose qb2 is known, T̃b2 and ˙̃
T b2 are

to be solved. According to the Nb1 equations of Eq. (36), qb1 can be eliminated[27]. Then, the
differential equations, where the unknown vector X is involved, can be obtained,

A(T )Ẋ = K(T )X + yb(T ). (38)

4 Procedures of predictor-corrector PIM

In order to use the PIM to solve Eq. (38), in the time interval [tk, tk+1], Eq. (38) can be
rewritten as

A0Ẋ = K0X + (K(T )−K0)X − (A(T )−A0)Ẋ + yb(T ), (39)

where A0 = A(T (tk)), and K0 = K(T (tk)).
Then, one can obtain

Ẋ = BX + ri, (40)



1162 Hongxiao YAO, Weian YAO, Chong ZUO, and Xiaofei HU

where B = A−1
0 K0, and ri = A−1

0 (K −K0)X −A−1
0 AẊ + Ẋ + A−1

0 yb.
The general solution to Eq. (40) is

X(tk+1) = exp(B∆t)X(tk) +
∫ ∆t

0

exp(B(∆t− τ))ri(tk + τ, T )dτ, (41)

where ∆t = tk+1 − tk.
The calculation of Eq. (41) is carried out by the predictor-corrector iteration technique[28]

as follows.
Step 1 Let niter = 0, and do the following calculation:

Xk+1,0 = Xe + EK−1ri0 −K−1ri0, (42)

where Xe = EX(tk), E = exp(B∆t), K = K(T (Xe)), and ri0 = ri(tk,Tk).
Step 2 Let niter := niter + 1, and assume that ri is linear with respect to t, which is

expressed as
ri = ri(tk, Tk) + θ(τ/∆t)(ri(tk+1, Tk+1,niter−1)− ri(tk, Tk)), (43)

where 0 < τ 6 ∆t, θ is the relaxing factor, and 0 < θ 6 1, which is taken as 0.5 in the
calculation processes of the numerical examples of this paper.

Do the following calculation:

Xk+1,niter = EX(tk) + EK−1(ri0 + K−1ri1)−K−1(ri0 + K−1ri1 + ∆tri1), (44)

where ri0 = ri(tk, Tk), and ri1 = θ(ri(tk+1, Tk+1,niter−1)− ri0)/∆t.
Step 3 Check the convergence. If ‖Xk+1,niter −Xk+1,niter−1‖2 < ε (where ‖·‖2 denotes a

vector’s 2-norm, and ε is a prespecified acceptable error), the convergence is achieved, Xk+1,niter

is the solution at tk+1, and then go to the next time step. Otherwise, go to Step 2.
After X(tk+1) is obtained, the temperature field and temperature gradient at tk+1 are all

known. Then, the moving interface needs to be tracked.

5 Numerical steps of front-tracking method

To determine the position of the interface, the moving velocity and the direction are needed.
The moving velocity can be calculated by Eq. (8) once the heat flux on the solid-mushy interface
is obtained. The moving direction can be determined by a length weighted unite normal vector
as the following equation[6,29]:

nj = (li−1ni−1 + lini)/(li−1 + li), nj = nj/ ‖nj‖2 , (45)

where the subscript j indicates the jth-node on the moving interface, the subscripts i− 1 and i
indicate the two adjacent boundary elements of the jth-node on the moving interface, li−1 and
li denote the lengths of these adjacent boundary elements, and ‖·‖2 denotes a vector’s 2-norm.

The position of the moving interface can be obtained by an iterative algorithm. The
front-tracking procedures in one time step [tk, tk+1] are described in detail by the following
steps.

Step 1 Specify a tiny distance ∆s beforehand for the purpose of controlling the maximum
moving distance of Γms.

Step 2 At the initial time tk, the heat flux q(tk) at all the boundaries is obtained from
the results of the last time step, boundary conditions, or initial conditions. Then, the normal
velocity Vj(tk) of the jth-node on the moving interface Γms at tk can be calculated by Eq. (8),
and V (tk) = {Vj(tk)}.
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Step 3 The time step ∆tk+1 is determined by the following equation:

∆tk+1 = ∆sρL/‖V (tk)‖∞, (46)

where ‖·‖∞ denotes a vector’s infinity norm, and tk+1 = tk + ∆tk+1.
Step 4 Estimate V p(tk+1) = 0.7V (tk), where V p(tk+1) denotes the predicted velocity of

the moving interface Γms at tk+1.
Step 5 Calculate the predicted position of the jth-node on Γms at tk+1 by

xj(tk+1) = xj(tk) + ∆tk+1(Vj(tk) + V p
j (tk+1))nj/2, (47)

and update the geometry at tk+1.
Step 6 Apply the radial integration BEM in the solid domain and non-solid domain, and

then use the procedures described in the last section to calculate the temperature at tk+1 by
the PIM.

Step 7 Calculate the unknown heat flux at tk+1 in the solid domain and the non-solid
domain, respectively, and then calculate the normal velocity Vj(tk+1) of the jth-node on the
moving interface Γms at tk+1 by Eq. (10), and V (tk+1) = {Vj(tk+1)}.

Step 8 Check the convergence. If ‖V (tk+1)−V p(tk+1)‖2/‖V (tk+1) + V (tk)‖2 6 ε, where
ε is a prespecified acceptable error, the convergence is achieved. Otherwise, let V p(tk+1) =
V (tk+1), and then go to Step 5.

Step 9 The position of Γms obtained in Step 5 and the temperatures calculated in Step 6
are assumed to be the results at tk+1. Obtain the mushy-liquid interface by interpolation of
temperature field. Do the re-meshing. Add or delete the boundary elements, boundary nodes,
and internal nodes in both solid and non-solid domains if needed. Let tk := tk+1, and go to
Step 1. Execute the iterative algorithm for the next time step until the ending time is reached.

6 Numerical examples

In the numerical processes, the heat capacities and thermal conductivities are assumed to
be constant in the solid domain and the liquid domain, but linear with respect to temperature
in the mushy zone[30], which are given by

km = fks + (1− f)kl, cm = fcs + (1− f)cl, (48)

where f is assumed to be linear with respect to temperature as follows:

f = fsu

(
1− T (x, t)− Tms

Tml − Tms

)
. (49)

Four numerical examples for the phase change problems with the mushy zone are presented
to assess the performance of the proposed numerical algorithm. Analytical solutions are used
as reference for Example 1, while the solutions by a combination of fixed-domain method and
FEM are used as reference for Example 2, Example 3, and Example 4.

Example 1 The freezing problem in a cylindrical symmetry region with an extended freezing
temperature range is studied. The considered region is liquid initially with the constant
temperature T0 (T0 > Tml). When t > 0 s, a heat sink of strength Q is located at r = 0.
According to Ref. [25], the analytical solutions of the solid-mushy interface and liquid-mushy
interface are given by

sms(t) = 2λ
√

αst, sml(t) = 2η
√

α∗s t. (50)

The analytical solutions of the temperature field are given by

Ts(r, t) = Tms +
Q

4πks
(Ei(−r2/(4αst))− Ei(−λ2)), (51)
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Tm(r, t) =
(Tms − Tml)Ei(−r2/(4αst)) + TmsEi(−η2)− TmlEi(−λ2αs/α∗ms)

Ei(−η2)− Ei(−λ2αs/α∗ms)
, (52)

Tl(r, t) = T0 − (T0 − Tml)Ei(−r2/(4αst))/Ei(−η2αs/α∗ms), (53)

where Ei(x) is the first-order exponential integral function, αs = ks/(ρcs), αm = km/(ρcm), and
α∗ms = (αmkm(Tml − Tms))/(ρLfsuαm + km(Tml − Tms)).

This problem can be approximated by an annulus region 0.1 < r < 1 as shown in Fig. 2.
Consider the phase change material-1 (PCM-1) as shown in Table 1. The initial condition is
specified by

T (r, 0) = T0 = 10. (54)

The boundary conditions are specified by

T (0.1, t) = Ts(0.1, t), T (1, t) = Ts(1, t). (55)
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Fig. 2 Element and node schematic diagram of Example 1 (color online)

Table 1 Thermo-physical properties of the phase change materials

Property PCM-1 PCM-2 PCM-3 PCM-4

Tms/◦C −1 1 1 20
Tml/

◦C 1 2 2 24
ρ/(kg ·m−3) 1 1 1 880

fsu 0.5 0.5 0.5 0.5
L/(J · kg−1) 10 1 1 200 000

cs/(J · kg−1 ·K−1) 1 1 1 2 000
cm/(J · kg−1 ·K−1) 1 1 1 2 000
cl/(J · kg−1 ·K−1) 1 1 1 2 000
ks/(W ·m−1 ·K−1) 1 1 1 0.2
km/(W ·m−1 ·K−1) 1 1 1 0.2
kl/(W ·m−1 ·K−1) 1 1 1 0.2

The thermal-physical properties, the initial condition, and the boundary conditions
determine λ = 0.343 331, and η = 0.758 593.

The relative errors of the interface positions of the present method and the analytical
solutions are shown in Figs. 3 and 4 when ∆s is different, and the total number of nodes is
320. The maximum relative error of the solid-mushy interface position is 4.29%, while the
maximum relative error of the liquid-mushy interface position is 2.79%. The relative errors
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of the solid-mushy interface positions of the present method and the analytical solutions are
shown in Fig. 5, when the total number of nodes is different, and ∆s = 4×10−3. The maximum
relative error of the solid-mushy interface position is 3.45%. If the total number of nodes is
320, the maximum relative error of the solid-mushy interface position is 0.99%. It can be found
that the results of the present method agree well with the analytical solutions, and both the
decrease in the step ∆s and the increase in the total number of BEM nodes would increase
the accuracy. The present method is coded by MATLAB and computed by Intel Core i5-4460
CPU, and the CPU time is listed in Table 2.

Table 2 CPU time of Example 1

Total number of nodes 96 176 320

CPU time/s 155.0 462.9 1 280.7

Example 2 A solidification problem of a 1 × 1 domain is studied as shown in Fig. 6. The
considered domain is full of PCM with the constant initial temperature T0 = 3 ◦C. When
t > 0 s, a temperature boundary condition Tw = 0 ◦C is applied at x1 = 0 m and x2 = 0 m.
Consider the properties of the PCM-2 in Table 1.
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Fig. 6 Element and node schematic diagram
of Example 2 (color online)

The locations of the interface at various time are shown in Fig. 7, where ‘S-BEM’ and
‘L-BEM’ represent the BEM for solid-mushy interfaces and liquid-mushy interfaces, respectively.
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It can be found that there is good agreement between the interface position results of the present
method and the FEM solutions.
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Fig. 7 Interface positions of Example 2 (color online)

Example 3 The solidification problem of a phase change heat storage system as shown in
Fig. 8 is studied. The considered region is full of PCM with the constant initial temperature
T0 = 3 ◦C. When t > 0 s, a temperature boundary condition Tw = 0 ◦C is applied at both the
interior and exterior walls. Consider the properties of the PCM-3 in Table 1.

The locations of the interface at various time are shown in Figs. 9–12. It can be found
that there is good agreement between the interface position results of the present method and
the FEM solutions. The topology change of the solid domain can be seen from Fig. 10. From
Figs. 11 and 12, the topology changes of the liquid domain can also be found. The proposed
method can solve phase change problems with topology changes for both the solid domain and
the liquid domain accurately.

Example 4 The solidification problem of a phase change heat storage system as shown
in Fig. 13 is studied. The area between the interior and exterior copper walls with fins is
occupied by the PCM, where the phase change takes place. The initial temperature of the
considered domain is T0 = 40 ◦C. When t > 0 s, a temperature boundary condition Tw = 15 ◦C
is applied at both the interior and exterior walls. Consider the properties of the PCM-4 in
Table 1. In the copper domain, the thermal conductivity is 400 W/(m ·K), the specific heat is
380 J/(kg ·K), and the density is 8 920 kg/m3.
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of Example 3 (color online)
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There is not any phase change in the copper domain, but the heat conduction in this domain
needs to be considered and numerically analyzed. The BEM is applied in the copper domain
and the adjoining PCM domain, respectively, to get two sets of differential equations. At the
interface between the copper domain and the PCM domain, the temperature is continuous, and
the heat flux is equilibrated. Therefore, according to this interface condition, these two sets of
equations can be assembled into one. Then, the PIM results of temperature and heat flux can
be obtained for both the copper domain and PCM domain.

Because of the symmetry, only 1/8 part of the storage device is considered in the numerical
calculation. The locations of the interface at various time are shown in Fig. 14. It can be found
that there is good agreement between the interface position results of the present method and
the FEM solutions. The topology change of the solid domain can be seen from Figs. 14(b)
and 14(c). The topology change of the liquid domain can be seen from Fig. 14(b). The
proposed method can solve phase change problems with topology changes and multi-medium
heat conduction accurately.
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Fig. 14 Interface positions of Example 4 (color online)

7 Conclusions

This article proposes a precise integration BEM to solve the phase change problem with
the mushy zone. The changes of latent heat are approximated by heat source, and the liquid
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phase and the mushy zone are considered as a whole part. The front-tracking method is used to
track the move of the interface between the solid phase and the mushy zone, and the interface
between the liquid phase and the mushy zone is obtained by interpolation of the temperature
field.

Compared with the reference solutions, the results of the numerical examples show that the
proposed method can determine the phase change interface positions correctly. It can be found
that both the step ∆s and the number of BEM nodes would influence the computing accuracy
dramatically. The proposed scheme is very convenient to be applied in the moving-mesh of the
grid, and can properly deal with topology changes including separation merging and vanishment.
It can also deal with multi-medium problems by carrying out the BEM in different domains.
It is reliable and accurate to apply the proposed numerical method for solving phase change
problems with mushy zones.
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