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Abstract In this article, the nonlinear dynamic responses of sandwich functionally
graded (FG) porous cylindrical shell embedded in elastic media are investigated. The
shell studied here consists of three layers, of which the outer and inner skins are made
of solid metal, while the core is FG porous metal foam. Partial differential equations
are derived by utilizing the improved Donnell’s nonlinear shell theory and Hamilton’s
principle. Afterwards, the Galerkin method is used to transform the governing equations
into nonlinear ordinary differential equations, and an approximate analytical solution is
obtained by using the multiple scales method. The effects of various system parameters,
specifically, the radial load, core thickness, foam type, foam coefficient, structure damping,
and Winkler-Pasternak foundation parameters on nonlinear internal resonance of the
sandwich FG porous thin shells are evaluated.
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1 Introduction

Compared with ordinary metal materials, the metal foam has many voids within the mate-
rial, which results in notable physical and mechanical features involving low weight and high
specific surface area, good impact energy absorption, excellent noise attenuation, high thermal
conductivity combined with high gas permeability, machinability, and weld ability. Based on
these excellent properties, the porous metal foam structure has been widely employed in various
engineering applications, such as tissue engineering[1], shock absorbers[2], energy absorbers[3],
porous electrodes[4], and produce filters[5], which is becoming a kind of multifunctional engi-
neering structure[6].
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In practical engineering applications, those metal foam structures are commonly subjected
to severe dynamic loads, and prone to unexpected nonlinear vibrations and complex inter-
nal resonances, which may affect their normal operation or even damage the structures. The
occurrence of nonlinear internal resonances could lead to large amplitude vibrations, irrecov-
erable deformations, noises, cracks, and even the failure of structures. Therefore, knowledge
and prediction of resonant characteristics of porous metal foam structures are essential for their
reliability and security.

Thin shell configurations are commonly employed under various dynamic loading condi-
tions; for instance, they can serve as key components for aircraft, rocket propulsion systems,
and large deployable space loop antennas. Thus, understanding the nonlinear internal resonant
behaviors of thin cylindrical shells, to ensure their reliability, is critical. Therefore, some theo-
retical studies have been carried out to clarify the internal resonance of thin shells. Breslavsky
and Amabili[7] studied the multiple internal resonances of thin cylindrical shells under multi-
harmonic excitation. Under the non-normal boundary condition, the 1: 2 internal resonance
of thin shells was investigated by Yang et al.[8]. Zhang et al.[9] carried out a study on the
nonlinear resonant response of rotary thin shells. Considering the influence of initial geometric
imperfections, Rodrigues et al.[10] examined the 1 : 1 : 1 : 1 internal resonant behavior of thin
cylindrical shells.

Despite the necessity of comprehensive understanding of nonlinear resonant response, up to
now, only the linear responses of functionally graded (FG) porous structures have been reported
in a few references. Liu et al.[11] gave an analytical solution to the impact response of sandwich
FG porous shells. Dong et al.[12] studied the linear vibration of graphene platelet reinforced
FG porous metal foam shells with spinning motion. The dynamic stability of graphene platelet
reinforced sandwich porous plates via the classical plate theory was studied by Li et al.[13]. Chen
et al.[14] considered two different porosity distributions to study the free and forced vibrations
of porous metal foam beams. The wave propagation in graphene platelet reinforced FG porous
metal foam plates was studied by Gao et al.[15]. Liu and Wang[16] investigated the thermo-
electro-mechanical vibrations of porous piezoelectric nanoshells.

Literature review shows that no study has been reported on nonlinear internal resonance
analysis of sandwich FG porous thin cylindrical shells. Therefore, the present work attempts
to provide a solution approach for this issue and investigate 1 : 1 internal resonant response
of sandwich FG porous thin shells. The dynamic model is established by using the improved
Donnell’s nonlinear shell theory. Hamilton’s principle is used to derive the governing equations.
Afterwards, the nonlinear solutions are discretized by the Galerkin method. The multiple
scales method is used to obtain an approximate analytical solution to the multi-degree-of-
freedom systems. Finally, discussion is presented to carry out the nonlinear dynamic analysis
and parametric study for the sandwich FG porous shells’ nonlinear internal resonance.

2 Theoretical formulation

As shown in Fig. 1, considering an embedded sandwich FG porous thin shell with thickness
h, length L, and radius R, the outer and inner layers are pure metal, and the core is FG porous
metal foam. It is assumed that the porous core and surface layers are perfectly bonded. The
elastic media are characterized by the Winkler-Pasternak foundation model, where the Winkler
and Pasternak foundation parameters are kw and kp, respectively. The shell is subjected to a
harmonic point excitation in the radial direction. The displacement components of points at
the shell mid-plane are denoted by u, v, and w in the x-, θ-, and z-directions, respectively.

As seen in Fig. 2, three types of porous metal foam distributions are considered for the FG
porous core as porous metal foam-I, porous metal foam-II, and porous metal foam-III. Varying
material properties of three metal foam distribution types are given as follows[17–19]:
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Fig. 1 Schematic of embedded sandwich FG porous thin shell
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Fig. 2 Distribution types of porosity: (a) porous metal foam-I, (b) porous metal foam-II, and (c)
porous metal foam-III (color online)
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Porous metal foam-III,

ρ(z) = ρ1ϑ
′, (7)

E(z) = E1ϑ, (8)
G(z) = G1ϑ. (9)

Here, ρ1, E1, and G1 denote the mass density, Young’s modules, and shear modules of pure
steel, respectively, ζm, ζ∗m, and ϑ′ represent coefficients of mass density for porous metal foam-
I, porous metal foam-II, and porous metal foam-III, respectively, and ζ0, ζ∗0 , and ϑ are foam
coefficients of the corresponding porous metal foam distributions, respectively.

The relation between E and ρ, for open-cell metal foams, is given by[14,17,20]

E(z)
E1

=
(ρ(z)

ρ1

)2

. (10)

The relations between foam and mass density coefficients are expressed as




1− ζm cos
(πz

h

)
=

√
1− ζ0 cos

(πz

h

)
for porous metal foam-I,

1− ζ∗m
(
1− cos

(πz

h

))
=

√
1− ζ∗0

(
1− cos

(πz

h

))
for porous metal foam-II,

ϑ′ =
√

ϑ for porous metal foam-III.

(11)

Assume that the masses of all types of porous core are equivalent, namely,




∫ hc/2

0

√
1− ζ∗0

(
1− cos

(πz

h

))
dz =

∫ hc/2

0

√
1− ζ0 cos

(πz

h

)
dz,

∫ hc/2

0

√
ϑdz =

∫ hc/2

0

√
1− ζ0 cos

(πz

h

)
dz.

(12)

By using Eq. (12), ζ∗0 and ϑ can be determined with a given ζ0.
The strain components at an arbitrary point of the embedded sandwich FG porous thin

shell could be written as[21]



εxx

εθθ

γxθ


 =




ε0
x

ε0
θ

γ0
xθ


 + z




kx

kθ

2kxθ


 , (13)

in which ε0
x, ε0

θ, and γ0
xθ define the strains of the middle surface; kx, kθ, and kxθ are the

middle-surface curvature and torsion, respectively.
To overcome the inaccuracy of Donnell’s nonlinear shell theory at small circumferential wave

number, the nonlinear strain-displacement relations, based on the improved Donnell’s nonlinear
shell theory, are developed as

(ε0
x, ε0

θ, γ
0
xθ) =

(∂u

∂x
+

1
2

(∂w

∂x

)2

,
1
R

(∂v

∂θ
+ w

)
+

1
2

( ∂w

R∂θ

)2

,
∂v

∂x
+

1
R

∂u

∂θ
+

1
R

∂w

∂θ

∂w

∂x

)
, (14)

(kx, kθ, kxθ) =
(
− ∂2w

∂x2
,− 1

R2

(∂2w

∂θ2
− ∂v

∂θ

)
,− 1

R

( ∂2w

∂x∂θ
− ∂v

∂x

))
. (15)

The stress-strain relations are



σxx

σθθ

σxθ


 =




C11 C12 0
C21 C22 0
0 0 C66







εxx

εθθ

γxθ


 , (16)
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where C11 = C22 = E(z)/(1− ν2), C12 = C21 = E(z)ν/(1− ν2), and C66 = G(z).
The strain energy Us1 of the embedded sandwich FG porous thin shell is

Us1 =
1
2

∫

s

∫ h/2

−h/2

(σxxεxx + σθθεθθ + σxθγxθ)dzdS

=
1
2

∫

s

(Nxε0
x + Nθε

0
θ + Nxθγ

0
xθ + Mxkx + Mθkθ + Mxθkxθ)dS. (17)

The forces and moments are given by



Nxx

Nxθ

Nθθ


 =

∫ −hc/2

−h/2




σxx

σxθ

σθθ


 dz +

∫ hc/2

−hc/2




σxx

σxθ

σθθ


 dz +

∫ h/2

hc/2




σxx

σxθ

σθθ


 dz, (18)




Mxx

Mxθ

Mθθ


 =

∫ −hc/2

−h/2




σxx

σxθ

σθθ


 zdz +

∫ hc/2

−hc/2




σxx

σxθ

σθθ


 zdz +

∫ h/2

hc/2




σxx

σxθ

σθθ


 zdz. (19)

The strain energy Us2 induced by elastic media can be defined as

Us2 =
1
2

∫

s

kww2 + kp

((∂w

∂x

)2

+
( ∂w

R∂θ

)2)
dS. (20)

The kinetic energy of embedded sandwich FG porous shell is

T =
1
2

∫

s

I0

((∂u

∂t

)2

+
(∂v

∂t

)2

+
(∂w

∂t

)2)
dS, (21)

where I0 =
∫ h/2

−h/2
ρ(z)dz.

The transverse external excitation is

F (x, θ, t) = f cos(Ωt)δ(x− x0)δ(θ − θ0), (22)

in which f denotes the excitation amplitude; Ω is the circular excitation frequency; δ is the
Dirac delta function; and (x0, θ0) denotes the location of the excitation.

The work performed by external excitation F can be given by

WF =
∫

s

FwdS. (23)

By using Hamilton’s principle

δ

∫ t

0

(Us1 + Us2 − T −WF )dt = 0, (24)

and applying Eqs. (17), (20), (21) and (23) in Eq. (24), the equations of motion for the embedded
sandwich FG porous shell can be obtained as follows:

∂Nx

∂x
+

∂Nxθ

R∂θ
= I0

∂2u

∂t2
, (25)

∂Nxθ

∂x
+

1
R

∂Nθ

∂θ
+

2
R

∂Mxθ

∂x
+

1
R2

∂Mθ

∂θ
= I0

∂2v

∂t2
, (26)

− Nθ

R
+

1
R2

∂Nθ

∂θ

∂w

∂θ
+

1
R2

∂2Mθ

∂θ2
+

Nθ

R2

∂2w

∂θ2
+

∂Nxθ

∂x

∂w

R∂θ

+
∂Nxθ

R∂θ

∂w

∂x
+

∂Nx

∂x

∂w

∂x
+ 2

∂2Mxθ

R∂x∂θ
+ 2Nxθ

∂2w

R∂x∂θ
+

∂2Mx

∂x2

+ Nx
∂2w

∂x2
− kww + kp

(∂2w

∂x2
+

∂2w

R2∂θ2

)
− ch

∂w

∂t
= I0

∂2w

∂t2
− F (t), (27)
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where c is the structure damping coefficient.
The simply supported boundary conditions are

v = w = Nx = Mx = 0. (28)

3 Solution method

By defining resonant mode with half-wave m and circumference wave n as mode (m,n) for
simplicity, an excitation in the neighborhood of resonant mode (1,n) is considered here. The
following three displacements are expanded by trigonometric series, which satisfy the boundary
conditions[21],

u(x, θ, t) = (UA1,n(t) cos(nθ) + UB1,n(t) sin(nθ)) cos(λ1x), (29)
v(x, θ, t) = (V A1,n(t) sin(nθ) + V B1,n(t) cos(nθ)) sin(λ1x)

+ (V A1,2n(t) sin(nθ) + V B1,2n(t) cos(nθ)) sin(λ1x)
+ (V A3,2n(t) sin(nθ) + V B3,2n(t) cos(nθ)) sin(λ1x), (30)

w(x, θ, t) = (WA1,n(t) cos(nθ) + WB1,n(t) sin(nθ)) sin(λ1x), (31)

where λ1 = mπ/L; UA1,n, UB1,n, V A1,in, V B1,in, V A3,2n, V B3,2n, WA1,n, and WB1,n (i =
1, 2) are displacement amplitude components. The expansion has ten degrees of freedom, which
can ensure good accuracy in the calculation performed here. The accuracy of the solution is
verified by numerical calculation.

Substituting Eqs. (29)–(31) into Eqs. (25)–(27) and ignoring the effect of inertia in the in-
plane direction, and subsequently applying the Galerkin’s method[22–25], the ordinary differen-
tial equations for the variables WA1,n and WB1,n can be obtained,





ẄA1,n(t) + 2κ1ω1ẆA1,n(t) + ω2
1WA1,n(t) + a1WA3

1,n(t) + a2WA1,n(t)WB2
1,n(t)

=
f

I10
cos(Ωt),

ẄB1,n(t) + 2κ2ω2ẆB1,n(t) + ω2
2WB1,n(t) + a3WB3

1,n(t)

+ a4WA2
1,n(t)WB1,n(t) = 0,

(32)

where κ1, κ2, a1, a2, a3, and a4 denote constant coefficients.
Then, the multiple scales method[26–27] is employed to solve Eq. (32). First, the scaled time

is assumed in the form

Tn = εnt, n = 0, 1, 2, · · · , (33)

in which ε denotes a small dimensionless parameter.
The time derivatives in terms of Tn become





∂

∂t
=

∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · ,

∂2

∂t2
=

∂

∂t

( ∂

∂T0
+ ε

∂

∂T1
+ ε2 ∂

∂T2
+ · · ·

)
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2) + · · · ,

(34)

in which Dn is defined as

Dn =
∂

∂Tn
, n = 0, 1, 2, · · · . (35)
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The response, which is the function of different scaled times, can be written as follows:
{

WA1,n = εWA11(T0, T2) + ε3WA13(T0, T2),

WB1,n = εWB11(T0, T2) + ε3WB13(T0, T2).
(36)

By inserting Eq. (36) into Eq. (32), and defining κi = ε2κi0 and f/I10 = ε3f1,n, we get
{

ε(D2
0WA11(T0, T2) + ω2

1WA11(T0, T2)) = 0,

ε(D2
0WB11(T0, T2) + ω2

2WB11(T0, T2)) = 0,
(37)

and




ε3
(− f1,n cos(T0Ω) + a1WA3

11(T0, T2) + ω2
1WA13(T0, T2)

+ a2WA11(T0, T2)WB2
11(T0, T2) + 2ξ10ω1D0WA11(T0, T2)

+ 2D0D2WA11(T0, T2) + D2
0WA13(T0, T2)

)
= 0,

ε3
(
a4WA2

11(T0, T2)WB11(T0, T2) + a3WB3
11(T0, T2) + ω2

2WB13(T0, T2)

+ 2ξ20ω2D0WB11(T0, T2) + 2D0D2WB11(T0, T2) + D2
0WB13(T0, T2)

)
= 0.

(38)

The solution to Eq. (39) could be assumed in the form
{

WA11(T0, T2) = Λ1(T2)eiω1T0 + Λ1(T2)e−iω1T0 ,

WB11(T0, T2) = Λ2(T2)eiω2T0 + Λ2(T2)e−iω2T0 ,
(39)

where Λ1 and Λ2 denote the conjugate functions of Λ1 and Λ2, respectively. Due to the resonance
of the system occurs at Ω ≈ ω1 and ω1 ≈ ω2, two detuning parameters σ1 and σ2 are used to
measure the frequency distance, which can be written as follows:

Ω = ω1 + ε2σ1, ω1 = ω2 + ε2σ2. (40)

Substituting Eqs. (39)–(40) into Eq. (38) and letting the coefficients of the secular terms
equal to zero yield





(
− 1

2
eiT2σ1f1,n + 2iξ10ω

2
1Λ1(T2) + 3a1Λ2

1(T2)Λ1(T2) + a2e−2iT2σ2Λ2
2(T2)Λ1(T2)

+ 2a2Λ1(T2)Λ2(T2)Λ2(T2) + 2iω1D2Λ1(T2)
)

= 0,

(
2iξ20ω

2
2Λ2(T2) + 2a4Λ1(T2)Λ2(T2)Λ1(T2) + a4e2iT2σ2Λ2

1(T2)Λ2(T2)

+ 3a3Λ2
2(T2)Λ2(T2) + 2iω2D2Λ2(T2)

)
= 0.

(41)

To write the modulation equations in polar coordinates, the amplitude functions are set as

Λ1(T2) =
1
2
b1eiθ1 , Λ2(T2) =

1
2
b2eiθ2 , (42)

in which bj and θj denote the real numbers of T2. Substituting Eq. (42) into Eq. (41) and
separating the real and imaginary parts yield





3a1b
3
1 + 2a2b1b

2
2 − 4f1,n cos γ1 + a2b1b

2
2 cos γ2 − 8ω1b1θ

′
1 = 0,

8iξ10ω
2
1b1 − 4if1,n sin γ1 − ia2b1b

2
2 sin γ2 + 8iω1b

′
1 = 0,

2a4b
2
1b2 + 3a3b

3
2 + a4b

2
1b2 cos γ2 − 8ω2b2θ

′
2 = 0,

8iξ20ω
2
2b2 + ia4b

2
1b2 sin γ2 + 8iω2b

′
2 = 0,

(43)
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where

γ1 = T2σ1 − θ1, γ2 = 2T2σ2 + 2θ1 − 2θ2. (44)

The frequency response equations, by utilizing b′j = γ′j = 0 (j = 1, 2), can be obtained as





3a1b
3
1 + 2a2b1b

2
2 − 4f1,n cos γ1 + a2b1b

2
2 cos γ2 − 8ω1b1σ1 = 0,

8iξ10ω
2
1b1 − 4if1,n sin γ1 − ia2b1b

2
2 sin γ2 = 0,

2a4b
2
1b2 + 3a3b

3
2 + a4b

2
1b2 cos γ2 − 8ω2b2(σ1 + σ2) = 0,

8iξ20ω
2
2b2 + ia4b

2
1b2 sin γ2 = 0.

(45)

The stability of the system could be determined by the eigenvalues of the Jacobian matrix
of Eq. (45).

4 Results and discussion

4.1 Validation
To verify the correctness of derivation, the natural frequencies of an isotropic thin shell

available in literature and those obtained in the present study are compared initially as listed
in Table 1. The results show good agreement, where the small difference might be mainly
caused by the different shell theories.

Table 1 Comparison of natural frequencies ωmn of isotropic thin shell with simply supported bound-
ary conditions (E = 71.02 × 109 N/m2, ν = 0.31, ρ = 2 796 kg/m3, h = 0.247 × 10−3 m,
R = 0.1 m, and L = 0.2 m)

(m, n) Qin et al.[28] Present

(1, 5) 722.1 737.83
(1, 6) 553.3 561.57
(1, 7) 484.6 489.78
(1, 8) 489.6 493.56
(1, 9) 546.2 549.70
(1, 10) 636.8 640.10
(1, 11) 750.7 753.85
(1, 12) 882.2 885.37

Considering that there is no appropriate result from literature on internal resonance of
isotropic thin shells for comparison studies, the present results are compared with numerical
results via the Pseudo-arclength continuation method on the platform of MATLAB[29]. By
adopting the material and geometrical parameters listed in Table 1, the nonlinear resonant
responses of thin cylindrical shell are calculated, where the external excitation amplitude is
f1,n = 0.000 2hω2

1,n, the location of the excitation is x0 = L/2, θ0 = 0, the damping ratio is
2κi = 0.001, kw = kp = 0, and ε = 0.01. The mode (1, 7) is considered here. Owing to the
axial symmetry of the shell, there are two conjugate modes with n = 7 associated with the
same natural frequency, that is, one described by cos(7θ) and the other by sin(7θ). Hence,
there exists a 1:1 internal resonance between the two conjugate modes. A comparison of the
frequency-response curve is shown in Fig. 3. One can see that the present results match those
obtained via the numerical method very well, bespeaking the validity of the present study.
4.2 Results of embedded sandwich FG porous shell

In what follows, the nonlinear dynamics analysis of an embedded sandwich FG porous shell
is investigated, and the following parameters, if not specified, are considered as E = 200 GPa,
ρ = 7 850 kg/m3, ν = 0.33, hf = 0.247 × 10−4 m, hc = 8hf , L = 0.2 m, R = 0.5L, ζ0 = 0.2,
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Fig. 3 Comparison of frequency-response curve of thin cylindrical shell (dotted line: unstable ana-
lytical solution; solid line: stable analytical solution) (color online)

kw = kp = 0, f1,n = 0.000 2hω2
1,n, x0 = L/2, θ0 = 0, 2κi = 0.001, and ε = 0.01. The mode

(1,7) is considered here, which corresponds to the fundamental frequency.
The effect of external excitation on frequency-response curves of the embedded sandwich

FG porous shell with porous metal foam-I distribution is presented in Fig. 4, where the dashed
and solid lines are the unstable and stable analytical solutions, respectively. The response
magnitude of the driven mode is about twice that of the companion mode. Additionally, one
can find that the system exhibits hardening-spring behavior. With the increase in the excitation
frequency from low level to high level, the coupled response loses its stability via a bifurcation.
Furthermore, as the amplitude of external excitation increases, the response magnitude increases
obviously. Meanwhile, the coupled interaction between driven and companion modes becomes
more and more evident at the same time.
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Fig. 4 Effect of external excitation on frequency-response curves: (a) maximum of A1,7/h; (b) maxi-
mum of B1,7/h (dotted line: unstable analytical solution; solid line: stable analytical solution)
(color online)

Figure 5 shows the effect of porous metal foam distribution type on the frequency-response
curves of the embedded sandwich FG porous shell. It is noted that the embedded sandwich FG
shell with porous metal foam distribution-II has the most evident hardening-spring behavior,
while the porous metal foam-I shell has the weakest one. Besides, the resonant amplitude of the
embedded sandwich FG porous shell changes slightly when the porous metal foam distribution
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type alters, indicating the porous metal foam distribution type has insignificant effect on the
vibration amplitude of the system.
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Fig. 5 Effect of porous metal foam distribution type on frequency-response curves: (a) maximum of
A1,7/h; (b) maximum of B1,7/h (color online)

The frequency-response curves of the embedded sandwich FG porous shell under different
foam coefficients are shown in Fig. 6. Four cases of foam coefficient ζ0 = 0, ζ0 = 0.2, ζ0 = 0.4,
and ζ0 = 0.6 are considered. As can be seen, the resonance domain of the system moves to
the low frequency ratio region with the increase in the foam coefficient; in fact, the large foam
coefficient could decrease the natural frequencies of the system. In addition, with the increase in
the foam coefficient, the hardening-spring behavior of the system becomes weaker and weaker.
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Fig. 6 Effect of foam coefficient on frequency-response curves: (a) maximum of A1,7/h; (b) maximum
of B1,7/h (porous metal foam-I) (color online)

In order to discuss the role of elastic foundations in the dynamic behaviors more clearly,
Figs. 7–8 show the effect of Winkler and Pasternak foundation parameters on the frequency-
response curves of the embedded sandwich FG porous shell. It can be found that an increase in
Winkler or Pasternak foundation parameters results in the weakening of the hardening-spring
characteristics of the system. For driven and companion modes, the resonance domain narrows
as the Winkler or Pasternak foundation parameters increase. Furthermore, it is clear that the
hardening nonlinearity behavior of system with Pasternak foundation parameter is less than
the Winkler foundation parameter.
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Fig. 7 Effect of Winkler foundation parameter on frequency-response curves: (a) maximum of A1,7/h;
(b) maximum of B1,7/h (porous metal foam-I) (color online)
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Fig. 8 Effect of Pasternak foundation parameter on frequency-response curves: (a) maximum of
A1,7/h; (b) maximum of B1,7/h (porous metal foam-I) (color online)

Figure 9 highlights the effect of damping ratio on the frequency-response curves of the
embedded sandwich FG porous shell. As expected, the embedded sandwich FG shell with a
smaller damping ratio has a larger resonant amplitude, since the damping ratio reduces the
dynamic response of the embedded sandwich FG porous shell.

The effect of core-to-face ratio on the frequency-response curves of embedded sandwich FG
porous shell is plotted in Fig. 10. Examining the figure shows that a larger core-to-face ratio
makes the resonance domain of both modes move towards the direction of high frequency ratio,
which indicates that an increasing core-to-face ratio could generate more notable hardening-
spring behavior of the system. At a given excitation frequency ratio, the increase in the core-
to-face ratio reduces the response magnitude of the embedded sandwich FG porous shell.

Figure 11 gives the effect of radius-to-length ratio on the frequency-response curves of the
embedded sandwich FG porous shell. In this case, one can find that an increase in radius-
to-length ratio weakens the hardening-spring behavior. For driven and companion modes, the
resonance domains narrow as the radius-to-length ratio increases.

5 Conclusions

In this paper, the nonlinear internal resonance of sandwich FG porous cylindrical shells
embedded in elastic media is investigated, where three types of porosity distribution are con-
sidered. The governing equations are derived by using the improved Donnell’s nonlinear shell
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Fig. 9 Effect of damping ratio on frequency-response curves: (a) maximum of A1,7/h; (b) maximum
of B1,7/h (Porous metal foam-I) (color online)
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Fig. 10 Effect of core-to-face ratio on frequency-response curves: (a) maximum of A1,7/h; (b) max-
imum of B1,7/h (porous metal foam-I) (color online)
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theory and Hamilton’s principle, and then transformed into a set of ordinary differential equa-
tions through the Galerkin method. Afterwards, an approximate analytical solution is obtained
by means of the multiple scales method. Finally, parametric studies of embedded sandwich FG
metal foam porous shells are conducted in detail. Main highlights and conclusions are stated
as follows.

An improved nonlinear displacement expansion method, which requires no Airy stress func-
tion, is adopted to solve the nonlinear forced vibrations of the present shells. Compared with
the traditional nonlinear governing equations including the Airy stress function, the difficulty
of solving the nonlinear vibration issue of thin shells is reduced effectively. The correctness of
the method is proved by the numerical verification.

The nonlinear tendency of the system exhibits hardening-spring behavior. The response
magnitude of the driven mode is about twice that of the companion mode. The embedded sand-
wich FG shell with porous metal foam distribution-II has the most evident hardening-spring
behavior, while the porous metal foam-I shell has the weakest one. In addition, enlarging the
core-to-face ratio yields more notable hardening-spring behavior of the system. Higher values
for foam coefficient and Winkler/Pasternak foundation parameters correspond to the weakening
of the hardening-spring behavior of the embedded sandwich FG porous thin shell.
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[10] RODRIGUES, L., SILVA, F. M. A., and GONÇALVES, P. B. Influence of initial geometric im-
perfections on the 1:1:1:1 internal resonances and nonlinear vibrations of thin-walled cylindrical
shells. Thin-Walled Structures, 151, 106730 (2020)



818 Yunfei LIU, Zhaoye QIN, and Fulei CHU

[11] LIU, Y., QIN, Z. Y., and CHU, F. L. Analytical study of the impact response of shear deformable
sandwich cylindrical shell with a functionally graded porous core. Mechanics of Advanced Materials
and Structures, 5, 1–10 (2020)

[12] DONG, Y. H., LI, Y. H., CHEN, D., and YANG, J. Vibration characteristics of functionally graded
graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Composites
Part B: Engineering, 145, 1–13 (2018)

[13] LI, Q., DI, W., CHEN, X., LEI, L., YU, Y., and WEI, G. Nonlinear vibration and dynamic buckling
analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting
on Winkler-Pasternak elastic foundation. International Journal of Mechanical Sciences, 148, 596–
610 (2018)

[14] CHEN, D., YANG, J., and KITIPORNCHAI, S. Free and forced vibrations of shear deformable
functionally graded porous beams. International Journal of Mechanical Sciences, 108-109, 14–22
(2016)

[15] GAO, W., QIN, Z., and CHU, F. Wave propagation in functionally graded porous plates reinforced
with graphene platelets. Aerospace Science and Technology, 102, 105860 (2020)

[16] LIU, Y. F. and WANG, Y. Q. Thermo-electro-mechanical vibrations of porous functionally graded
piezoelectric nanoshells. Nanomaterials, 9, 301 (2019)

[17] MAGNUCKI, K. and STASIEWICZ, P. Elastic buckling of a porous beam. Journal of Theoretical
and Applied Mechanics, 42, 859–868 (2004)

[18] MAGNUCKA-BLANDZI, E. Axi-symmetrical deflection and buckling of circular porous-cellular
plate. Thin-Walled Structures, 46, 333–337 (2008)

[19] JABBARI, M., MOJAHEDIN, A., KHORSHIDVAND, A. R., and ESLAMI, M. R. Buckling
analysis of a functionally graded thin circular plate made of saturated porous materials. Journal
of Engineering Mechanics, 140, 287–295 (2013)

[20] CHEN, D., YANG, J., and KITIPORNCHAI, S. Elastic buckling and static bending of shear
deformable functionally graded porous beam. Composite Structures, 133, 54–61 (2015)

[21] AMABILI, M. Nonlinear Vibrations and Stability of Shells and Plates, Cambridge University
Press, Cambridge (2008)

[22] DING, H., HUANG, L., MAO, X., and CHEN, L. Primary resonance of traveling viscoelastic
beam under internal resonance. Applied Mathematics and Mechanics (English Edition), 38, 1–14
(2017) https://doi.org/10.1007/s10483-016-2152-6

[23] LI, W., YANG, X. D., ZHANG, W., and REN, Y. Parametric amplification performance anal-
ysis of a vibrating beam micro-gyroscope with size-dependent and fringing field effects. Applied
Mathematical Modelling, 91, 111–124 (2021)

[24] LIU, Y. F., LING, X., and WANG, Y. Q. Free and forced vibration analysis of 3D graphene
foam truncated conical microshells. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 43, 133 (2021)

[25] WANG, Y., LIU, Y., and ZU, J. W. Nonlinear free vibration of piezoelectric cylindri-
cal nanoshells. Applied Mathematics and Mechanics (English Edition), 40, 13–32 (2019)
https://doi.org/10.1007/s10483-019-2476-6

[26] NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New Jersey (1995)

[27] ZHANG, W., CHEN, J., ZHANG, Y. F., and YANG, X. D. Continuous model and nonlinear
dynamic responses of circular mesh antenna clamped at one side. Engineering Structures, 151,
115–135 (2017)

[28] QIN, Z., CHU, F., and ZU, J. Free vibrations of cylindrical shells with arbitrary boundary condi-
tions: a comparison study. International Journal of Mechanical Sciences, 133, 91–99 (2017)

[29] DHOOGE, A., GOVAERTS, W., KUZNETSOV, Y. A., MEIJER, H. G. E., and SAUTOIS, B.
New features of the software MatCont for bifurcation analysis of dynamical systems. Mathematical
and Computer Modelling of Dynamical Systems, 14, 147–175 (2008)


