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Abstract The Burton-Miller boundary integral formulation is solved by a complex vari-
able boundary element-free method (CVBEFM) for the boundary-only meshless analysis
of acoustic problems with arbitrary wavenumbers. To regularize both strongly singular
and hypersingular integrals and to avoid the computation of the solid angle and its nor-
mal derivative, a weakly singular Burton-Miller formulation is derived by considering the
normal derivative of the solid angle and adopting the singularity subtraction procedures.
To facilitate the implementation of the CVBEFM and the approximation of gradients of
the boundary variables, a stabilized complex variable moving least-square approximation
is selected in the meshless discretization procedure. The results show the accuracy and
efficiency of the present CVBEFM and reveal that the method can produce satisfactory
results for all wavenumbers, even for extremely large wavenumbers such as k = 10 000.
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1 Introduction

The numerical analysis of acoustic problems has various applications in many scientific
fields[1]. In recent years, various meshless methods, such as the singular meshless method[2],
the boundary point interpolation method[3], the singular boundary method[4], the localized
method of fundamental solutions[5], the localized boundary knot method[6], the local radial
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point interpolation method[7], the Galerkin meshfree method[8], and the element-free Galerkin
method[9], have been applied to acoustic problems. Boundary integral equations (BIEs)[1,10]

are powerful and popular for the numerical solutions of acoustic problems, since they reduce the
problem dimensionality and fulfill the radiation condition at infinity in a nature way. Bound-
ary element methods (BEMs)[1] and boundary-type meshless methods[2–4,11] possess significant
advantages over domain-type methods such as the finite element method for acoustic problems,
especially with unbounded domains.

Different from the BIEs for Laplace and elasticity problems, the BIEs for exterior acoustic
problems may fail to offer unique solutions at some characteristic wavenumbers of the associ-
ated interior problem. Various techniques have been developed to circumvent this annoying
shortcoming successfully. The well-known Burton-Miller formulation[12] presents a direct BIE
method by using a linear combination of the singular BIE and the associated hypersingular
BIE, while the combined field integral equation (CFIE)[13–14] presents an indirect BIE method
by using a combination of single and double layer potentials. The applications of the CFIE
have been studied mainly to acoustic problems with Dirichlet boundary conditions, rarely to
problems with Neumann conditions, and none to problems with mixed conditions[13–14]. In the
case of using the CFIE, the computational formulae for Dirichlet and Neumann problems are
different, and cannot be unified.

It has been proven theoretically and verified numerically that the Burton-Miller formulation
can obtain unique solutions for exterior acoustic problems with arbitrary wavenumbers. The
applications of the Burton-Miller formulation have been studied extensively by the BEM[15–17].
Although numerous reported studies indicate that BIE-based meshless methods perform excel-
lently in solving boundary value problems such as Laplace and elasticity problems[18], very few
applications of the Burton-Miller formulation to BIE-based meshless methods have been found.

The boundary element-free method (BEFM)[18] is a promising BIE-based meshless method.
It not only alleviates the meshing-related shortcomings, but also enhances the precision of
BEMs. With the aid of the singular BIE, the BEFM can be applied to acoustic problems free
of characteristic wavenumbers[19]. With the aid of the CFIE, the BEFM can be applied to
acoustic problems with pure Dirichlet[13] and pure Neumann[14] boundary conditions.

In this paper, a stabilized complex variable moving least-square (CVMLS) approximation[20]

is used to approximate the boundary variables in the Burton-Miller formulation, a complex
variable BEFM (CVBEFM) for solving the acoustic problems with arbitrary wavenumbers and
mixed boundary conditions. The main work of this paper is as follows.

First, a weakly singular version of the Burton-Miller formulation is derived theoretically.
The main difficulty in the numerical implementation of the Burton-Miller formulation is to
calculate the hypersingular integrals[15–17]. Some regularization techniques produce integrals
which are restricted to special boundary elements in BEMs or are still hard to calculate nu-
merically. Some regularization techniques are based on the assumptions such as the solid angle
is constant and/or the normal derivative of the solid angle on the boundary is zero[15–16]. In
this research, by considering the normal derivative of the solid angle and using the singular-
ity subtraction procedures for regularization, the regularization is implemented globally, rather
than locally along each element as in some BEMs. Besides, the present weakly singular Burton-
Miller formulation successfully gets rid of both strongly singular and hypersingular integrals
and astutely avoids the computation of the solid angle and its normal derivative.

Second, a stabilized CVMLS approximation is selected to facilitate the discretization of
the weakly singular Burton-Miller formulation. In the BEFM and other BIE-based meshless
methods, boundary curvilinear coordinates are used to avoid the singularity in the process of
boundary variable approximations, although using curvilinear coordinates is burdensome for
some problems. More seriously, using curvilinear coordinates complicates the approximation
of the gradients of the boundary variables. The present CVMLS approximation directly uses
Cartesian coordinates, and thus facilitates the implementation of the CVBEFM and the ap-
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proximation of the gradients of the boundary variables in the weakly singular Burton-Miller
formulation.

Third, numerical results are provided to demonstrate the effectiveness of the current Burton-
Miller CVBEFM for acoustic problems with arbitrary and large wavenumbers. The results show
that the CVBEFM in conjunction with the weakly singular Burton-Miller formulation is sta-
ble and robust for all wavenumbers including the characteristic wavenumbers. In previously
reported numerical results, the applications of meshless methods to acoustic problems focused
mainly on k < 10 and seldom on k � 100. In this paper, although no extra term is added to elim-
inate the nasty pollution error existing in many numerical methods[21], the present CVBEFM
can produce satisfactory results for all wavenumbers, even for extremely large wavenumbers
such as k = 10 000.

2 Problem description and hypersingular Burton-Miller formulation

The acoustic problem in a bounded homogeneous medium Ω ⊂ R
2 or an unbounded homo-

geneous medium Ω′ = R
2/(Ω ∪ Γ) is governed by the following acoustic wave equation:

Δu(x) + k2u(x) = 0, x = (x1, x2)T ∈ Ω or Ω′, (1)

where u(x) is the sound pressure, k is the wavenumber, and Γ = ∂Ω is the boundary of Ω. For
exterior problems, u should fulfill the radiation condition at infinity as lim

r→∞
√

r(∂u
∂r − iku) = 0,

where r = |x|, and i =
√−1.

If the normal vector nx on the boundary Γ points from Ω into Ω′ for interior problems and
points from Ω′ into Ω for exterior problems, the solution of both interior and exterior acoustic
problems (1) can be unified as follows:

u(y) =
∫

Γ

q(x)u∗(x, y)dΓx −
∫

Γ

u(x)
∂u∗(x, y)

∂nx
dΓx + uin(y), y = (y1, y2)T ∈ Ω or Ω′, (2)

while the associated singular BIE is

c(y)u(y) =
∫

Γ

q(x)u∗(x, y)dΓx −
∫

Γ

u(x)
∂u∗(x, y)

∂nx
dΓx + uin(y), y ∈ Γ, (3)

where q(x) = ∂u(x)
∂nx

is the acoustical flux on x, u∗(x, y) is the fundamental solution to Eq. (1),
uin(y) is the incident wave, and c(y) is a coefficient determined by the boundary geometry at
y.

Physically, c(y) denotes the solid angle in the acoustic domain[1,15–16]. Of course, we have
c(y) = 1/2 when Γ is smooth around y. The singular BIE (3) is valid for both interior and
exterior problems. However, if the normal vector nx is defined pointing from Ω into Ω′ for both
interior and exterior problems, it is not trivial to obtain a unified singular BIE[1,19].

Derivating the singular BIE (3) with respect to ny yields the hypersingular BIE as follows:

c(y)q(y) +
∂c(y)
∂ny

u(y)

=
∫

Γ

q(x)
∂u∗(x, y)

∂ny
dΓx −

∫
Γ

u(x)
∂2u∗(x, y)
∂ny∂nx

dΓx + qin(y), y ∈ Γ, (4)

where qin(y) = ∂uin(y)
∂ny

. It should be stressed that the term ∂c(y)
∂ny

u(y) should appear on the

right-hand side of Eq. (4), since the normal derivative ∂c(y)
∂ny

is usually not equal to zero when

y ∈ Γ[15–16].
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Both the singular BIE (3) and the hypersingular BIE (4) hold for the exterior and interior
acoustic problems, but their solutions may fail for the exterior problems at some characteristic
wavenumbers of the associated interior problem. Since the characteristic wavenumbers of the
two BIEs are different, one can use the following hypersingular Burton-Miller formulation:

αc(y)u(y) + βc(y)q(y) + β
∂c(y)
∂ny

u(y)

=α

∫
Γ

q(x)u∗(x, y)dΓx − α

∫
Γ

u(x)
∂u∗(x, y)

∂nx
dΓx + αuin(y)

+ β

∫
Γ

q(x)
∂u∗(x, y)

∂ny
dΓx − β

∫
Γ

u(x)
∂2u∗(x, y)
∂ny∂nx

dΓx + βqin(y), (5)

where y ∈ Γ, and α and β are coupling constants which can be taken as α = 1 and β =
i/max(k, 1) to ensure the valid solutions for arbitrary wavenumbers[1,22]. Clearly, both singular
and hypersingular BIEs are special cases of the hypersingular Burton-Miller formulation (5).

3 Regularization

Lemma 1 Let u∗
0(x, y) = − 1

2π ln |x − y|. For any y ∈ Γ, the solid angle c(y) satisfies

∫
Γ

∂u∗
0(x, y)
∂nx

dΓx = −c(y), (6)

∫
Γ

∂2u∗
0(x, y)

∂ny∂nx
dΓx = −∂c(y)

∂ny
. (7)

In addition,∫
Γ

(x − y)
∂2u∗

0(x, y)
∂ny∂nx

dΓx =
∫

Γ

nx
∂u∗

0(x, y)
∂ny

dΓx +
∫

Γ

ny
∂u∗

0(x, y)
∂nx

dΓx. (8)

Proof The singular BIE for the Laplace equation Δv(x) = 0 is[1]

c(y)v(y) =
∫

Γ

∂v(x)
∂nx

u∗
0(x, y)dΓx −

∫
Γ

v(x)
∂u∗

0(x, y)
∂nx

dΓx, y ∈ Γ. (9)

Setting v(x) = 1 yields Eq. (6). Besides, since the normal derivative of a double layer potential
is continuous across Γ[1], i.e.,

lim
ỹ→y,ỹ∈Ω

∂

∂nỹ

∫
Γ

∂u∗
0(x, y)
∂nx

dΓx = lim
ỹ→y,ỹ∈Ω′

∂

∂nỹ

∫
Γ

∂u∗
0(x, y)
∂nx

dΓx =
∫

Γ

∂2u∗
0(x, y)

∂ny∂nx
dΓx,

using Eq. (6) yields

∫
Γ

∂2u∗
0(x, y)

∂ny∂nx
dΓx =

∂

∂ny

∫
Γ

∂u∗
0(x, y)
∂nx

dΓx = −∂c(y)
∂ny

,

which shows that Eq. (7) is true.
Taking the derivative of Eq. (9) with ny and sending x → Γ yield

∂c(y)
∂ny

v(y) + c(y)
∂v(y)
∂ny

+
∫

Γ

v(x)
∂2u∗

0(x, y)
∂ny∂nx

dΓx =
∫

Γ

∂v(x)
∂nx

∂u∗
0(x, y)
∂ny

dΓx.
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Set v(x) = xi (i = 1, 2). Then,

∂c(y)
∂ny

yi + c(y)nyi +
∫

Γ

xi
∂2u∗

0(x, y)
∂ny∂nx

dΓx =
∫

Γ

nxi

∂u∗
0(x, y)
∂ny

dΓx,

i.e.,

∂c(y)
∂ny

y + c(y)ny +
∫

Γ

x
∂2u∗

0(x, y)
∂ny∂nx

dΓx =
∫

Γ

nx
∂u∗

0(x, y)
∂ny

dΓx.

Hence, in view of Eqs. (6) and (7), we have

−y

∫
Γ

∂2u∗
0(x, y)

∂ny∂nx
dΓx − ny

∫
Γ

∂u∗
0(x, y)
∂nx

dΓx +
∫

Γ

x
∂2u∗

0(x, y)
∂ny∂nx

dΓx =
∫

Γ

nx
∂u∗

0(x, y)
∂ny

dΓx,

which shows that Eq. (8) is true.

Theorem 1 The Burton-Miller formulation (5) can be regularized as the following weakly
singular BIE :

α

∫
Γ

u(x)
∂

∂nx
(u∗(x, y) − u∗

0(x, y))dΓx − β

∫
Γ

q(x)
∂

∂ny
(u∗(x, y) − u∗

0(x, y))dΓx

+ α

∫
Γ

(u(x) − u(y))
∂u∗

0(x, y)
∂nx

dΓx − β

∫
Γ

∇(u(x) − u(y)) · nx
∂u∗

0(x, y)
∂ny

dΓx

+ β

∫
Γ

(u(x) − u(y) −∇u(y) · (x − y))
∂2u∗

0(x, y)
∂ny∂nx

dΓx

=α

∫
Γ

q(x)u∗(x, y)dΓx − β

∫
Γ

u(x)
∂2

∂ny∂nx
(u∗(x, y) − u∗

0(x, y))dΓx

+ αuin(y) + βqin(y), y ∈ Γ. (10)

Proof According to Eq. (6), we have

∫
Γ

u(x)
∂u∗(x, y)

∂nx
dΓx

=
∫

Γ

u(x)
∂

∂nx
(u∗(x, y) − u∗

0(x, y))dΓx +
∫

Γ

(u(x) − u(y))
∂u∗

0(x, y)
∂nx

dΓx − c(y)u(y), (11)

∫
Γ

q(x)
∂u∗(x, y)

∂ny
dΓx

=
∫

Γ

q(x)
∂

∂ny
(u∗(x, y) − u∗

0(x, y))dΓx +
∫

Γ

∇u(x) · nx
∂u∗

0(x, y)
∂ny

dΓx

+
∫

Γ

q(y)
∂u∗

0(x, y)
∂nx

dΓx + c(y)q(y), (12)
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u(x)
∂2u∗(x, y)
∂ny∂nx

dΓx

=
∫

Γ

u(x)
∂2

∂ny∂nx
(u∗(x, y) − u∗

0(x, y))dΓx

+
∫

Γ

(u(x) − u(y) −∇u(y) · (x − y))
∂2u∗

0(x, y)
∂ny∂nx

dΓx

+ ∇u(y) ·
∫

Γ

(x − y)
∂2u∗

0(x, y)
∂ny∂nx

dΓx + u(y)
∫

Γ

∂2u∗
0(x, y)

∂ny∂nx
dΓx, (13)

where q(x) = ∇u(x) · nx.
From Eq. (8), it follows that

∇u(y) ·
∫

Γ

(x − y)
∂2u∗

0(x, y)
∂ny∂nx

dΓx

= ∇u(y) ·
∫

Γ

nx
∂u∗

0(x, y)
∂ny

dΓx + ∇u(y) ·
∫

Γ

ny
∂u∗

0(x, y)
∂nx

dΓx

= ∇u(y) ·
∫

Γ

nx
∂u∗

0(x, y)
∂ny

dΓx + q(y)
∫

Γ

∂u∗
0(x, y)
∂nx

dΓx. (14)

Inserting Eq. (14) into Eq. (13) and using Eq. (7), we have∫
Γ

u(x)
∂2u∗(x, y)
∂ny∂nx

dΓx

=
∫

Γ

u(x)
∂2

∂ny∂nx
(u∗(x, y) − u∗

0(x, y))dΓx

+
∫

Γ

(u(x) − u(y) −∇u(y) · (x − y))
∂2u∗

0(x, y)
∂ny∂nx

dΓx

+
∫

Γ

∇u(y) · nx
∂u∗

0(x, y)
∂ny

dΓx + q(y)
∫

Γ

∂u∗
0(x, y)
∂nx

dΓx − u(y)
∂c(y)
∂ny

. (15)

Finally, substituting Eqs. (11), (12), and (15) into Eq. (5) yields the desired result.
Remark 1 Let r = |x − y|. Then,

u∗(x, y) =
i
4
H

(1)
0 (kr),

∂u∗(x, y)
∂nx

= − ik
4

H
(1)
1 (kr)

∂r

∂nx
, (16)

∂2u∗(x, y)
∂ny∂nx

= ik
( 1

2r
H

(1)
1 (kr) − k

4
H

(1)
0 (kr)

) ∂r

∂nx

∂r

∂ny
+

ik
4r

H
(1)
1 (kr)nx · ny, (17)

where H
(1)
0 and H

(1)
1 are the first kind Hankel functions of orders zero and one, respectively.

When r = |x − y| → 0, we have

∂

∂nx
(u∗(x, y) − u∗

0(x, y)) ∼ O(1),
∂

∂ny
(u∗(x, y) − u∗

0(x, y)) ∼ O(1),

u(x) − u(y) ∼ O(r),
∂u∗

0(x, y)
∂nx

∼ O
(1

r

)
,

∇(u(x) − u(y)) · nx ∼ O(r),
∂u∗

0(x, y)
∂ny

∼ O
(1

r

)
,
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u(x) − u(y) −∇u(y) · (x − y) ∼ O(r2),
∂2u∗

0(x, y)
∂ny∂nx

∼ O
( 1

r2

)
.

Thus, as x → y, i.e., r → 0, the singularities in all integrals on the left-hand side of Eq. (10)
can be canceled completely. As a result, all integrals on the left-hand side of Eq. (10) are always
regular.

Remark 2 Let c = 0.577 215 664 9 · · · be the Euler constant. As r = |x − y| → 0, u∗(x, y)
can be expanded as[19]

u∗(x, y) = − 1
2π

ln
kr

2
+

i
4
− c

2π
+

i
4

∞∑
m=1

(−1)m

(m!)2
(kr

2

)2m(
1 +

2i
π

(
ln

kr

2
+ c −

m∑
j=1

1
j

))
,

from which it can be verified that

u∗(x, y) ∼ O(ln r),
∂2

∂ny∂nx
(u∗(x, y) − u∗

0(x, y)) ∼ O(ln r).

Thus, the two integrals on the right-hand side of Eq. (10) have weak logarithmic singularities
as x → y.

Remark 3 Equation (10) is the weakly singular version of the hypersingular Burton-
Miller formulation (5). Undoubtedly, similar to Eq. (5), Eq. (10) admits a unique solution for
all wavenumbers. However, compared with Eq. (5), Eq. (10) gets rid of both strongly singular
and hypersingular integrals.

Remark 4 Equation (10) is valid for both interior and exterior acoustic problems with
mixed boundary conditions of Dirichlet and Neumann types. When α = 1 and β = 0, Eq. (10)
is degradated as the weakly singular form of the singular BIE (3). When α = 0 and β = 1,
Eq. (10) is the weakly singular form of the hypersingular BIE (4). Furthermore, by setting
k = 0 in Eq. (10), we can obtain the weakly singular forms of the singular and hypersingular
BIEs for Laplace problems.

Remark 5 The solid angle c(y) and its normal derivative ∂c(y)
∂ny

are not included in Eq. (10).
Compared with Eq. (5), the present weakly singular Burton-Miller formulation does not need
the terms c(y) and ∂c(y)

∂ny
, and thus astutely avoids the computation of the two terms. In

previous studies, it was usually assumed that c(y) ≡ 1/2 and/or ∂c(y)
∂ny

≡ 0. Such assumptions
are not required in the present formulation (10).

4 Meshless discretization

4.1 Boundary variable approximations
To solve the weakly singular Burton-Miller formulation (10) numerically, let {xI}N

I=1 be N
nodes on the boundary Γ and h = max

1�I�N
min

1�J�N,J �=I
|xI − xJ | be the nodal spacing. Using

complex variables, the point x = (x1, x2)T ∈ Γ and the node xI = (xI1, xI2)T ∈ Γ can be
denoted as z = x1 + ix2 and zI = xI1 + ixI2, respectively.

To obtain the meshless approximation of the boundary function u(z), we define

u(z, z∗) =
m∑

j=0

pj(z
∗)aj(z), ∀z ∈ Γ, (18)

where z∗ can either be z or a node zI in the influence domain of z, aj(z) is the coefficient,
and pj(z) is the conjugate of the basis function pj(z). As proven in Refs. [20] and [23], the
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shifted and scaled function pj(z) = (z − ze)j/hj can enhance the stability and performance of
the CVMLS approximation, where ze is fixed in the influence domain of z. Minimizing

∑
I∈∧(z)

wI(z)
∣∣∣ m∑
j=0

pj(zI)aj(z) − ûI

∣∣∣2

yields

aj(z) = (A−1(z)B(z)û)j , (19)

where ûI is the approximation to the nodal value u(zI), the set ∧(z) Δ= {I1, I2, · · · , Iτ} ⊆
{1, 2, · · · , N} is defined such that I ∈ ∧(z) if and only if the weight function wI(z) > 0,
û = (ûI1 , ûI2 , · · · , ûIτ )T, Akj(z) =

∑
I∈∧(z)

wI(z)pk(zI)pj(zI) for k, j = 0, 1, · · · , m, and Bj�(z) =

wI�
(z)pj(zI�

) for j = 0, 1, · · · , m and � = 1, 2, · · · τ . Inserting Eq. (19) into Eq. (18) yields the
CVMLS approximation of u(z) as follows:

u(z) = u(z, z∗) |z∗=z =
N∑

I=1

ΦI(z)ûI , (20)

where the CVMLS shape function is

ΦI(z) =

⎧⎪⎪⎨
⎪⎪⎩

m∑
j=0

pj(z)(A−1(z)B(z))jk, I = Ik ∈ ∧(z),

0, I /∈ ∧(z).

(21)

Similarly, the CVMLS approximation of the boundary function q(z) is

q(z) =
N∑

I=1

ΦI(z)q̂I , (22)

where q̂I is the approximation to the nodal value q(zI).
4.2 Discretization for mixed boundary conditions

Using Eqs. (20) and (22), the weakly singular Burton-Miller formulation (10) can be dis-
cretized as the following linear system of algebraic equations:

α

N∑
I=1

ûI

∫
Γ

ΦI(x)
∂

∂nx
(u∗(x, xj) − u∗

0(x, xj))dΓx

− β
N∑

I=1

q̂I

∫
Γ

ΦI(x)
∂

∂nxj

(u∗(x, xj) − u∗
0(x, xj))dΓx

+ α
N∑

I=1

ûI

∫
Γ

(ΦI(x) − ΦI(xj))
∂u∗

0(x, xj)
∂nx

dΓx

− β

N∑
I=1

ûI

∫
Γ

∇(ΦI(x) − ΦI(xj)) · nx
∂u∗

0(x, xj)
∂nxj

dΓx

+ β

N∑
I=1

ûI

∫
Γ

(ΦI(x) − ΦI(xj) −∇ΦI(xj) · (x − xj))
∂2u∗

0(x, xj)
∂nxj ∂nx

dΓx
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= α

N∑
I=1

q̂I

∫
Γ

ΦI(x)u∗(x, xj)dΓx − β

N∑
I=1

ûI

∫
Γ

ΦI(x)
∂2

∂nxj∂nx
(u∗(x, xj) − u∗

0(x, xj))dΓx

+ αuin(xj) + βqin(xj), j = 1, 2, · · · , N. (23)

All integrals on the left-hand side of Eq. (23) are always regular and can be calculated by
using the standard Gaussian quadrature. The integrals on the right-hand side of Eq. (23) contain
weak logarithmic singularities and can be calculated by the logarithmical Gaussian quadrature
or the improved integration procedure[19].

Since the CVMLS shape function Φj(x) lacks the delta function property[18,20], i.e., Φj(xI) =
δjI , we have ûI = u(xI) and q̂I = q(xI). Thus, as in other meshless methods[24–28], the bound-
ary conditions in the present CVBEFM must be dealt with carefully. For problems in potential
theory and linear elasticity, the boundary conditions in the boundary node method can be sat-
isfied by coupling discretized BIEs in terms of approximate nodal variables, together with equa-
tions relating these approximations to their exact values through the MLS approximation[18].
For acoustic problems, an analogous technique is adopted in this study.

The mixed boundary conditions for the acoustic wave equation (1) are

u(x) = u(x), x ∈ Γu, (24)

q(x) = q(x), x ∈ Γq = Γ/Γu, (25)

where u and q are known. In this case, the unknown boundary data are q on Γu and u on Γq.
To simplify the representation, we assume that the first Nu boundary nodes {xj}Nu

j=1 ⊂ Γu

and the remaining N − Nu boundary nodes {xj}N
j=Nu+1 ⊂ Γq. For a well-posed problem, the

values of either u(xj) or q(xj) are known at each node xj . Then, inserting Eq. (20) into Eq. (24)
and collocating Eq. (24) for the boundary nodes {xj}Nu

j=1 ⊂ Γu yield

N∑
I=1

ΦI(xj)ûI = u(xj), j = 1, 2, · · · , Nu. (26)

Besides, inserting Eq. (22) into Eq. (25) and collocating Eq. (25) for the nodes {xj}N
j=Nu+1 ⊂ Γq

yield

N∑
I=1

ΦI(xj)q̂I = q(xj), j = Nu + 1, Nu + 2, · · · , N. (27)

Equations (23), (26), and (27) form a linear system of 2N algebraic equations, and can
be solved together for the 2N unknowns {ûI}N

I=1 and {q̂I}N
I=1. Finally, the pressure u in the

acoustic medium can be approximated by using Eq. (2) as follows:

uh(y) =
N∑

I=1

q̂I

∫
Γ

ΦI(x)u∗(x, y)dΓx −
N∑

I=1

ûI

∫
Γ

ΦI(x)
∂u∗(x, y)

∂nx
dΓx + uin(y), y ∈ Ω or Ω′.

4.3 Discretization for pure Dirichlet or Neumann boundary conditions
The procedure in Subsection 4.2 is valid for mixed boundary conditions including pure

Dirichlet or Neumann types. This procedure makes that the number of algebraic equations is
2N and the unknowns comprise both ûI and q̂I for all boundary nodes {xI}N

I=1 ⊂ Γ. In the
cases of pure Dirichlet boundary condition (i.e., Γq = ∅) or pure Neumann boundary condition
(i.e., Γu = ∅), the number of algebraic equations can be reduced into N . In this section, the
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detailed formulation is presented for pure Dirichlet boundary condition. The corresponding
formulation for pure Neumann boundary condition is similar.

For Eq. (1), if the given boundary condition is pure Dirichlet type, i.e.,

u(x) = u(x), x ∈ Γ, (28)

the unknown function is just the acoustical flux q on Γ. In this case, since u is known on Γ,
the approximation for u in Eq. (20) is no longer required. Thus, with Eq. (22) only, the weakly
singular Burton-Miller formulation (10) can be discretized as follows:

β1

∫
Γ

u(x)
∂

∂nx
(u∗(x, xj) − u∗

0(x, xj))dΓx

− β2

N∑
I=1

q̂I

∫
Γ

ΦI(x)
∂

∂nxj

(u∗(x, xj) − u∗
0(x, xj))dΓx

+ β1

∫
Γ

(u(x) − u(xj))
∂u∗

0(x, xj)
∂nx

dΓx − β2

∫
Γ

∇(u(x) − u(xj)) · nx
∂u∗

0(x, xj)
∂nxj

dΓx

+ β2

∫
Γ

(u(x) − u(xj) −∇u(xj) · (x − xj))
∂2u∗

0(x, xj)
∂nxj∂nx

dΓx

= β1

N∑
I=1

q̂I

∫
Γ

ΦI(x)u∗(x, xj)dΓx − β2

∫
Γ

u(x)
∂2

∂nxj ∂nx
(u∗(x, xj) − u∗

0(x, xj))dΓx

+ β1uin(xj) + β2qin(xj), j = 1, 2, · · · , N,

which can be solved directly to obtain the N unknowns {q̂I}N
I=1. Finally, the pressure u in the

acoustic medium can be approximated as follows:

uh(y) =
N∑

I=1

q̂I

∫
Γ

ΦI(x)u∗(x, y)dΓx −
∫

Γ

u(x)
∂u∗(x, y)

∂nx
dΓx + uin(y), y ∈ Ω or Ω′.

5 Numerical examples

Three examples are solved in this section to show the efficiency of the present Burton-Miller
CVBEFM. In this study, the quadratic basis function is used, and the radius of the influence
domain for meshfree approximation is 2.5h. To evaluate the performance of the method, we
define an average relative error as follows:

e(u) =
1
Nt

Nt∑
j=1

∣∣∣∣u(xj) − uh(xj)
u(xj)

∣∣∣∣,
where u(xj) and uh(xj) are analytical and numerical results of u(x) on the Nt points xj ,
respectively.
5.1 Example 1

The first example solves an exterior acoustic problem in an infinitely long cylinder with
the radius a = 2.0. In the polar coordinate system (r, θ), the Neumann boundary condition is
imposed as ∂u

∂n = eiθ, and the analytical solution is[29]

u(r, θ) =
aeiθH

(1)
1 (kr)

H
(1)
1 (ak) − akH

(1)
0 (ak)

, r � a, 0 � θ < 2π. (29)
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To study the performance of the CVBEFM for all wavenumbers, the weakly singular versions
of the singular BIE (i.e., α = 1 and β = 0 in Eq. (10)), the hypersingular BIE (i.e., α = 0 and
β = 1 in Eq. (10)), and the Burton-Miller formulation (10) are independently used in the
CVBEFM. Figure 1 depicts the results of |u(r, θ)| at (4.0, π/4) with respect to the wavenumber
k obtained by using 20 boundary nodes, Fig. 2 depicts the error e(u), while Fig. 3 depicts the
condition number of the system matrices.

-M

Fig. 1 Results of |u(4.0, π/4)| versus k obtained by the CVBEFM with three BIEs (color online)

-

Fig. 2 Results of e(u) versus k obtained by the CVBEFM with three BIEs (color online)

-

Fig. 3 Results of the condition number versus k obtained by the CVBEFM with three BIEs (color
online)

From Figs. 1 and 2, we can find that the singular BIE performs worse as k approximates
to 1.915 852, 3.507 789, 5.086 727, 6.661 836, 8.235318, and 9.808 106, the hypersingular BIE
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performs worse as k approximates to 2.666 592, 4.269 718, 5.855 423, 7.435 340, and 9.012799,
while the Burton-Miller formulation produces satisfactory results in all cases. Additionally, from
Fig. 3, we can find that singular and hypersingular BIEs may produce large condition numbers
when k approximates to these characteristic wavenumbers, but the Burton-Miller formulation
produces well-conditioned system matrices in all cases. Consequently, the CVBEFM in con-
junction with the Burton-Miller formulation is robust to avoid the influence of characteristic
wavenumbers.

In Fig. 4, the convergence of the Burton-Miller CVBEFM is displayed for k = 1, 1.915852,
2.666 592, 3.507 789, 4.269 718, 5.086 727, 5.855 423, 6.661 836, 7.435 34, 8.235 318, 9.012799,
9.808 106, and 10. As shown in the figure, the average related error e(u) decreases monotonously
and quickly when the nodal spacing h decreases. Thus, the Burton-Miller CVBEFM is able to
produce stable convergence results with high experimental convergence rate, about 3 even for
characteristic wavenumbers. However, the accuracy does not change monotonously when the
wavenumber increases. The reason is unclear and requires further research.

In Fig. 5, the absolute error |u − uh| at (r, θ) = (4.0, π/4) of the Burton-Miller CVBEFM
obtained by using 128 boundary nodes is displayed for some wavenumbers. The results of
the BEM[29] obtained by using 128 boundary elements and the BPIM[3] obtained by using
128 boundary nodes are also displayed for comparison. We can find that the precision of the
CVBEFM is higher than the precision of either the BEM or the BPIM. Especially, the precision
of the CVBEFM is several orders of magnitude higher than that of the BEM.

Fig. 4 Results of e(u) at different k for the
first example (color online)

Fig. 5 Results of |u − uh| at (r, θ) =
(4.0, π/4) obtained by the BEM, the
BPIM, and the CVBEFM (color on-
line)

It is well-known that the solutions of acoustic problems are highly oscillatory for large
wavenumbers. Then, because of the nasty pollution error, in many numerical techniques, the
node number must increase much faster than the wavenumber so as to obtain satisfactory
numerical results[21]. To study the performance of the Burton-Miller CVBEFM for extremely
large wavenumbers, Fig. 6 compares the analytical and numerical results of the real part of
u(r, π/4) for r ∈ [2.0, 2.1] and k = 2 500, while Fig. 7 depicts the absolute error |u − uh| of
u(r, π/4) for r ∈ [2.0, 3.0]. These numerical results are obtained by using k = 2 500, N = 2 500,
and a = 1.0. Although the solution is highly oscillatory for this large wavenumber, Figs. 6 and
7 show that the Burton-Miller CVBEFM produces very accurate numerical results.
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Fig. 6 Real part of u(r, π/4), where k = 2500 and N = 2 500 (color online)

Fig. 7 Results of |u − uh| of u(r, π/4), where k = 2 500 and N = 2500 (color online)

In Table 1, the relative error |u − uh|/|u| at four points and the average relative error e(u)
of the Burton-Miller CVBEFM are displayed for various wavenumbers k. Although the number
of boundary nodes is set to be N = k in this analysis, from Table 1, we can find that the
present CVBEFM can produce satisfactory results, even for extremely large wavenumbers such
as k = 10 000.

Table 1 Errors of the CVBEFM obtained by using various k with N = k

Error Point
k

50 100 250 500 1 000 2 500 5 000 10 000

|u − uh|/|u|
(2.0, π/4) 0.015 8 0.007 6 0.018 9 0.035 5 0.042 8 0.006 0 0.027 0 0.047 5

(2.0, 5π/8) 0.020 2 0.011 1 0.019 3 0.040 5 0.038 6 0.001 0 0.032 3 0.047 5

(2.0, 7π/6) 0.015 4 0.010 1 0.019 3 0.033 7 0.042 7 0.001 5 0.034 9 0.047 7

(2.0, 11π/6) 0.018 9 0.006 9 0.019 2 0.039 1 0.036 6 0.008 3 0.027 2 0.056 1

e(u) – 0.017 9 0.009 8 0.018 9 0.037 4 0.040 9 0.003 8 0.029 8 0.050 6

5.2 Example 2
The second example solves an exterior acoustic problem describing an incident plane wave

uin(r, θ) = eikr cos θ scattered by an infinitely long cylinder with the radius a = 2.0. The
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Dirichlet boundary condition is imposed for the scattered wave field us as us = 0, and the
analytical solution is[30]

us(r, θ) = − J0(ka)

H
(1)
0 (ka)

H
(1)
0 (kr) − 2

∞∑
t=1

it
Jt(ka)

H
(1)
t (ka)

H
(1)
t (kr) cos(tθ),

where r � a, 0 � θ < 2π, Jt is the Bessel function of order t, and H
(1)
t is the Hankel function

of the first kind of order t. The total wave field for this example is u = us + uin.
Figure 8 shows the distributions of the scattered wave field us and the associated absolute

error |us − ush| obtained by the Burton-Miller CVBEFM with 200 boundary nodes for k = 5π.
We can find that the error is less than 7 × 10−3, which indicates that the present CVBEFM
obtains very efficient results.

Fig. 8 Real and imaginary parts of us and |us − ush| (color online)

In Fig. 9, the convergence of the Burton-Miller CVBEFM is displayed for k = 1, π, 2π, 4π,
and 8π. Again, the average related error e(u) decreases monotonously and quickly with the
decrease in the nodal spacing h, and thus the Burton-Miller CVBEFM is able to produce stable
convergence results.

In Table 2, the relative error |u − uh|/|u| at four points and the average relative error e(u) of
the Burton-Miller CVBEFM are displayed for various wavenumbers k. These numerical results
are obtained by using N = 4k and a = 1.0. We can find from Table 2 that the CVBEFM can
produce satisfactory results even for large wavenumbers.
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π
π
π
π

Fig. 9 Results of e(u) at different k for the second example (color online)

Table 2 Errors of the CVBEFM obtained using various k for the second example

Error Point
k

10 20 50 100 200 500 1 000 2 000

|u − uh|/|u|
(2.0, π/4) 0.000 91 0.003 02 0.004 56 0.004 56 0.004 57 0.003 83 0.003 46 0.003 34

(2.0, 5π/8) 0.001 07 0.000 96 0.001 55 0.000 85 0.000 27 0.000 65 0.000 69 0.000 16

(2.0, 7π/6) 0.000 37 0.000 82 0.000 40 0.000 18 0.000 03 0.000 33 0.000 14 0.000 36

(2.0, 11π/6) 0.001 83 0.002 24 0.001 98 0.003 03 0.003 50 0.005 05 0.005 68 0.006 65

e(u) – 0.000 86 0.001 77 0.001 51 0.001 35 0.001 28 0.001 20 0.001 22 0.001 25

5.3 Example 3
The third example considers an interior acoustic problem with mixed boundary conditions in

a unit circle centered at the origin. Dirichlet and Neumann boundary conditions are imposed on
the upper and lower halves of the boundary, respectively. The analytical solution is u(x1, x2) =
sin(πx1)e(π2−k2)x2.

In Fig. 10, the results of u are presented along the curve given by x1 = 0.5 cos θ and x2 =
0.5 sin θ with θ ∈ [0, 2π]. The numerical results are obtained by the Burton-Miller CVBEFM
using 100 boundary nodes for k = 10, 20, and 30. Clearly, the numerical results agree well
with analytical results. The convergence is presented in Fig. 11, from which we can see that the
method is fast convergent.

6 Conclusions

This paper discusses the meshless numerical analysis of acoustic problems by introducing
the Burton-Miller formulation to develop a Burton-Miller CVBEFM for improving the quality
of numerical solutions, particularly in the neighborhood of characteristic wavenumbers.

By the utilization of the normal derivative of the solid angle and singularity subtraction
procedures, a weakly singular Burton-Miller formulation is derived theoretically to transform
both strongly singular and hypersingular integrals into weakly singular integrals. The weakly
singular Burton-Miller formulation is valid for both interior and exterior acoustic problems
with mixed boundary conditions, admits a unique solution for all wavenumbers, and avoids the
computation of the solid angle and its normal derivative. Due to these merits, the CVBEFM
is efficient for all wavenumbers, and all integrals in the CVBEFM are at most weakly singular.

In the meshless discretization process of the weakly singular Burton-Miller formulation, the
CVMLS approximation is used to approximate unknown boundary variables, which further
facilitates the meshless implementation, especially the approximation of boundary variable gra-
dients in the weakly singular Burton-Miller formulation.
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Fig. 10 Real parts of u at different k for the third example (color online)

20

Fig. 11 Results of e(u) at different k for the third example (color online)

Numerical examples testify that the present Burton-Miller CVBEFM only requires boundary
nodes and is stable and effective for acoustic problems with arbitrary wavenumbers. Although
the performance of meshless methods in previously reported numerical results has been shown
mostly for k < 10 and seldom for k � 100, this research shows that the present CVBEFM can
produce satisfactory results for all wavenumbers, even for extremely large wavenumbers such
as k = 10 000.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
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