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Abstract The bending and free vibrational behaviors of functionally graded (FG) cylin-
drical beams with radially and axially varying material inhomogeneities are investigated.
Based on a high-order cylindrical beam model, where the shear deformation and rotary
inertia are both considered, the two coupled governing differential motion equations for
the deflection and rotation are established. The analytical bending solutions for various
boundary conditions are derived. In the vibrational analysis of FG cylindrical beams, the
two governing equations are firstly changed to a single equation by means of an auxiliary
function, and then the vibration mode is expanded into shifted Chebyshev polynomials.
Numerical examples are given to investigate the effects of the material gradient indices
on the deflections, the stress distributions, and the eigenfrequencies of the cylindrical
beams, respectively. By comparing the obtained numerical results with those obtained
by the three-dimensional (3D) elasticity theory and the Timoshenko beam theory, the
effectiveness of the present approach is verified.
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1 Introduction

Compared with traditional laminated materials, functionally graded (FG) materials can
significantly reduce the risk for delamination failures. As a result, many kinds of structures
fabricated by FG materials, including beams, plates, and shells, have been used in many different
fields of engineering, and have been widely studied by various theories[1–10].

If a Timoshenko or higher-order beam model is adopted to investigate the free vibrations of
axially FG beams, two coupled governing differential equations with variable coefficients will
be derived, which makes it difficult to obtain the exact solutions due to the arbitrary gra-
dient changes. Many researchers have introduced different numerical methods to solve such
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problems. Based on the finite element method, Shahba et al.[11] discussed the free vibrations
of arbitrarily tapered and axially FG Timoshenko beams under various boundary conditions.
Huang et al.[12] introduced a unified method to analyze the free vibrations of Timoshenko
beams with arbitrarily axial material parameters by transforming the governing equations into
a system of linear algebraic equations under different boundary conditions. Based on the differ-
ential transformation element method, Rajasekaran and Tochaei[13] studied the free vibrations
of axially FG Timoshenko beams. Tang et al.[14] studied the free vibrations of non-uniform FG
Timoshenko beams, and derived the frequency equations in closed form, where the material
properties were assumed to vary in a unified exponential law. Cao et al.[15] used the asymp-
totic development method to discuss the vibrational behaviors of uniform axially FG beams
under different boundary conditions. Zhang et al.[16] presented an effective approximation to
investigate the free vibrations of axially FG beams based on the Euler beam theory and the
Timoshenko beam theory, respectively.

FG beams with bi-directional variations of material parameters have attracted increasing
attention by many scholars recently[17–18] since bidirectional FG structures have better me-
chanical properties and can produce more effective resistance effects and realize the integrated
design of materials and structures. With the symplectic method and the Hamiltonian state
space approach, Zhao et al.[19] derived the elasticity bending solutions of the bi-directional FG
beams under arbitrary lateral loadings. Based on the classical hairbrush hypothesis, Pydah and
Sabale[20] obtained an analytical solution for the flexure of bi-directional FG circular beams sub-
ject to various tip loads. Armagan[21] presented a symmetric smoothed particle hydrodynamics
method to derive the bending solutions of bi-directional FG beams under various boundary
conditions with the Euler-Bernoulli, Timoshenko, and Reddy-Bickford beam theories, respec-
tively. Li et al.[22] proposed a meshless total Lagrangian corrective smoothed particle method
to study the static behavior of bi-directional FG beams with the exponential or power-law
gradient assumption. Based on the Euler-Bernoulli and Timoshenko beam theories, Simsek[23]

used the energy approach to analyze the free and forced vibrations of bi-directional FG beams
subject to the action of moving loads. With the assumption of an exponential-law material
distribution, Deng and Chen[24] introduced the variable substitution method and the dynamic
stiffness matrix method to discuss the dynamic characteristics of bi-directional FG Timoshenko
beams. Huynh et al.[25] used the isogeometric analysis method to study the free vibrations
of bi-directional FG Timoshenko beams with power- and exponential-law models of material
distributions, respectively. Nguyen et al.[26] introduced a finite element method to discuss the
vibrations of bi-directional FG Timoshenko beams under the action of a moving concentrated
loading. Based on the third-order shear deformation theory, Karamanli[27] investigated the free
vibrations of bi-directional FG beams with exponentially graded material properties. Lal and
Dangi[28] used the first-order shear deformation theory and Eringen’s nonlocal elasticity theory
to study the vibrational behavior of bi-directional FG non-uniform Timoshenko nanobeams,
where the material properties varied in both the axial and the thickness directions according
to the power- and exponential-law distributions, respectively.

It should be noted that most of the above mentioned papers are limited to FG beams with
a rectangular cross-section. However, there are very few bending and eigenfrequency results re-
ported for FG circular cylinders with radially or/and axially varying material inhomogeneities.
Abadikhah and Folkow[29] adopted the three-dimensional (3D) elastodynamic theory to study
the dynamic behaviors of simply supported FG cylinders with power- and exponential-law
distributions of the material properties. Zhang et al.[30] introduced a higher-order shear defor-
mation based spectral element model to calculate the stochastic natural frequency of radially
FG beams with a circular cross-section. To the author’s best knowledge, the bending and free
vibrations of axially or two-dimensional (2D) FG cylindrical beams have not yet been reported.
Solid circular beams are common structural elements in macro and micro scales. The analysis
on the bending and free vibrations of FG cylindrical beams is useful for the precise design of
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circular cylindrical composite beams.
The purpose of this paper is to introduce a high-order circular beam model for studying the

bending and free vibrations of 2D FG circular beams, where the shear-free surface condition is
identically satisfied. The analytical bending solutions can be obtained for general cases with
different boundary conditions. By use of a new auxiliary function, a single governing equation
is furthermore derived in the free vibration analysis of 2D FG circular beams. The Chebyshev
polynomials are used to get the characteristic equations. Illustrative examples are given to
show the effects of the gradient parameters on the deflections, the stresses, and the natural
frequencies, respectively.

2 Theory and formulation

An elastic cylindrical beam of the length L and the radius R is considered, subject to the
action of the arbitrary transverse loading q(x) (see Fig. 1). The cylindrical beam is inhomoge-
neous, where the material properties are assumed to vary simultaneously along the length and
radial directions. For such a structure, the Cartesian coordinates (x, y, z) and polar cylindrical
coordinates (x, r, θ) are both used, where y = r cos θ, and z = r sin θ.

Fig. 1 Schematic diagram of a bi-directional FG cylindrical beam under the action of the transverse
loading q(x) with the corresponding coordinates (color online)

With the high-order cylindrical beam model[31], we can express the displacement field as

ux = u0(x, t) + zϕ(x, t) − z3 + zy2

3R2

(∂w(x, t)
∂x

+ ϕ(x, t)
)
, (1)

uy = 0, (2)

uz = w(x, t), (3)

ur = uy cos θ + uz sin θ = zw(x, t)/r, (4)

where ux, uy, uz, and ur are the elastic displacement components in the x-, y-, z-, and r-
directions, respectively. u0 is the axial displacement of any point on the neutral axis. ϕ(x, t) and
w(x, t) are, respectively, the cross-sectional rotation and transverse displacements of the beam.
Based on the small deformation assumption, the relations between the strain and displacement
components can be derived as

εxx =
∂ux

∂x
=

∂u0

∂x
+ z

∂ϕ

∂x
− z3 + zy2

3R2

(∂2w

∂x2
+

∂ϕ

∂x

)
, (5)

γxy =
∂ux

∂y
+

∂uy

∂x
= − 2zy

3R2

(∂w

∂x
+ ϕ

)
, (6)
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γxz =
∂ux

∂z
+

∂uz

∂x
=

3R2 − 3z2 − y2

3R2

(∂w

∂x
+ ϕ

)
, (7)

γxr =
∂ur

∂x
+

∂ux

∂r

= cos θ
∂uy

∂x
+ sin θ

∂uz

∂x
+

∂ux

∂y

∂y

∂r
+

∂ux

∂z

∂z

∂r

= sin θ
∂uz

∂x
+ cos θ

∂ux

∂y
+ sin θ

∂ux

∂z

=
z

r

∂w

∂x
− 2zy2

3R2r

(∂w

∂x
+ ϕ

)
+

z

r
ϕ − 3z3 + zy2

3R2r

(∂w

∂x
+ ϕ

)

=
z

rR2
(R2 − z2 − y2)

(∂w

∂x
+ ϕ

)
, (8)

where ε and γ are the normal strain and the shear strain, respectively.
According to the Saint-Venant principle, we can ignore the effects of σyy, σzz, and τyz for a

cylindrical beam[32]. As a result, the 3D constitutive equations change to

σxx = E(x, r)εxx = E(x, r)
(∂u0

∂x
+ z

∂ϕ

∂x
− z3 + zy2

3R2

(∂2w

∂x2
+

∂ϕ

∂x

))
, (9)

τxy = G(x, r)γxy = −G(x, r)
2zy

3R2

(∂w

∂x
+ ϕ

)
, (10)

τxz = G(x, r)γxz = G(x, r)
3R2 − 3z2 − y2

3R2

(∂w

∂x
+ ϕ

)
, (11)

τxr = G(x, r)γxr =
zG(x, r)

rR2
(R2 − z2 − y2)

(∂w

∂x
+ ϕ

)
, (12)

where σ and τ are the normal stress and the shear stress, respectively. E(x, r) and G(x, r) are
the Young’s modulus and the shear modulus, respectively, which are 2D continuous functions
dependent on both x and r. From Eq. (12), it can be easily found that the shear stress τxr is
zero at the circumference z2 + y2 = R2, which means that the shear-free surface condition is
identically satisfied in this model.

In this thesis, we mainly consider the bending and vibration in the vertical plane, while
neglect the horizontal motion in the Oxy-plane. As a result, the equilibrium equations for the
plane problem change to

∂σxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
= ρ(x, r)

∂2ux

∂t2
, (13)

∂σxz

∂x
+

∂τyz

∂y
+

∂σzz

∂z
= ρ(x, r)

∂2uz

∂t2
, (14)

where ρ(x, r) is the radial and length-dependent mass density of the beam. Integrating both
sides of Eq. (13) over the cross-sectional area A yields

∂N

∂x
= ρ0(x)

∂2u0

∂t2
+ ρ1(x)

∂2ϕ

∂t2
− ρ3(x)

( ∂3w

∂x∂t2
+

∂2ϕ

∂t2

)
, (15)

where

N =
∫

A

σxxdA = E0(x)
∂u0

∂x
+ E1(x)

∂ϕ

∂x
− E3(x)

(∂2w

∂x2
+

∂ϕ

∂x

)
(16)
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is the axial normal force, and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0(x) =
∫

A

E(x, r)dA, E1(x) =
∫

A

E(x, r)zdA = 0,

E3(x) =
∫

A

E(x, r)
z3 + zy2

3R2
dA = 0,

(17)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ0(x) =
∫

A

ρ(x, r)dA, ρ1(x) =
∫

A

ρ(x, r)zdA = 0,

ρ3(x) =
∫

A

ρ(x, r)
z3 + zy2

3R2
dA = 0.

(18)

It should be noted that the following integral results have been used to derive Eq. (15):

∫
A

∂τxy

∂y
dA =

∫ R

−R

dz

∫ √
R2−z2

−√
R2−z2

∂τxy

∂y
dy =

4G(x, R)
3R2

(∂w

∂x
+ ϕ

) ∫ R

−R

z
√

R2 − z2dz = 0, (19)

∫
A

∂τxz

∂z
dA =

∫ R

−R

dy

∫ √
R2−y2

−
√

R2−y2

∂τxz

∂z
dz = 0. (20)

In the absence of the applied axial force N , Eqs. (15) and (16) change to

E0(x)
∂u0

∂x
= 0, ρ0(x)

∂2u0

∂t2
= 0. (21)

Now, applying Eqs. (9)–(11) into Eq. (13), multiplying both sides of Eq. (13) by z, and
integrating both sides over the cross-sectional area A yield

∂

∂x

(
Ê2(x)

∂ϕ

∂x
− E4(x)

∂2w

∂x2

)
− Ĝ0(x)

(∂w

∂x
+ ϕ

)
= ρ̂2(x)

∂2ϕ

∂t2
− ρ4(x)

∂3w

∂x∂t2
, (22)

where

Ê2(x) = E2(x) − E4(x), E2(x) =
∫

A

E(x, r)z2dA, E4(x) =
∫

A

E(x, r)
z4 + z2y2

3R2
dA, (23)

Ĝ0(x) = G0(x) − G2(x), G0(x) =
∫

A

G(x, r)dA, G2(x) =
∫

A

G(x, r)
3z2 + y2

3R2
dA, (24)

ρ̂2(x) = ρ2(x) − ρ4(x), ρ2(x) =
∫

A

ρ(x, r)z2dA, ρ4(x) =
∫

A

ρ(x, r)
z4 + z2y2

3R2
dA. (25)

In the process of deriving the above formulae, the following integral results are used:

∫
A

z
∂τxy

∂y
dA =

∫ R

−R

dz

∫ √
R2−z2

−√
R2−z2

z
∂τxy

∂y
dy = −π

6
R2G(x, R)

(∂w

∂x
+ ϕ

)
, (26)

∫
A

z
∂τxz

∂z
dA =

∫ R

−R

dy

∫ √
R2−y2

−
√

R2−y2
z
∂τxz

∂z
dz =

π

6
R2G(x, R)

(∂w

∂x
+ ϕ

)
−

∫
A

τxzdA. (27)

Furthermore, integrating both sides of Eq. (14) over the cross-sectional area A yields

∂

∂x

(
Ĝ0(x)

(∂w

∂x
+ ϕ

))
= ρ0(x)

∂2w

∂t2
− q(x). (28)
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Up to now, we finally get two coupled dynamic governing equations (22) and (28) for a 2D
FG cylindrical beams in terms of the transverse deflection w and the rotation ϕ. The stress
resultants of the shear force Q and the bending moment M are defined as

Q =
∫

A

τxzdA = Ĝ0(x)
(
ϕ +

∂w

∂x

)
, (29)

M =
∫

A

σxxzdA = Ê2(x)
∂ϕ

∂x
− E4(x)

∂2w

∂x2
. (30)

In the Timoshenko beam theory, the formula of the shear force is Q =
∫

A
κτxzdA, where κ is

the shear correction factor. Because the shear stress is assumed to be uniform in this theory,
we naturally have to introduce a coefficient κ to relax the traction-free surface condition.

3 Bending of 2D FG cylindrical beams

For the bending of 2D FG circular beams, by removing all time-dependent terms, the
governing equations (22) and (28) can be simplified as

d
dx

(
Ê2(x)

dϕ

dx
− E4(x)

d2w

dx2

)
= Ĝ0(x)

(dw

dx
+ ϕ

)
, (31)

d
dx

(
Ĝ0(x)

(dw

dx
+ ϕ

))
= −q(x). (32)

Integrating both sides of Eq. (32) with respect to x from 0 to x yields

dw

dx
+ ϕ =

− ∫ x

0
q(s)ds + A1

Ĝ0(x)
. (33)

Substituting Eq. (32) into Eq. (31) and then integrating both sides of Eq. (31) with respect to
x from 0 to x yield

Ê2(x)
dϕ

dx
− E4(x)

d2w

dx2
= −

∫ x

0

(x − s)q(s)ds + A1x + A2. (34)

Derivating both sides of Eq. (33) yields

dϕ

dx
+

d2w

dx2
=

( 1

Ĝ0(x)

)′(
−

∫ x

0

q(s)ds + A1

)
− q(x)

Ĝ0(x)
. (35)

Solving the above linear equations (34) and (35), we can easily get the solution of d2w
dx2 as

d2w

dx2
= A1U(x) − A2

1
E2(x)

+ V (x), (36)

where ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U(x) =
1

E2(x)

(( 1

Ĝ0(x)

)′
Ê2(x) − x

)
,

V (x) =
1

E2(x)

(∫ x

0

q(s)(x − s)ds − Ê2(x)
(( 1

Ĝ0(x)

)′ ∫ x

0

q(s)ds +
q(x)

Ĝ0(x)

))
.

Then, integrating two times from x = 0 to x on both sides of Eq. (36) yields

w = A1

∫ x

0

(x − s)U(s)ds − A2

∫ x

0

x − s

E2(s)
ds + A3x + A4 +

∫ x

0

(x − s)V (s)ds, (37)
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where Ai (i = 1, 2, 3, 4) are unknown integration constants in the general solution, which can
be determined by means of the boundary conditions. Inserting Eq. (37) into Eq. (33) yields

ϕ = A1

( 1

Ĝ0(x)
−

∫ x

0

U(s)ds
)

+ A2

∫ x

0

1
E2(s)

ds − A3 − 1

Ĝ0(x)

∫ x

0

q(s)ds −
∫ x

0

V (s)ds. (38)

In addition, applying the above expressions of w and ϕ into Eqs. (29) and (30) yields

Q = A1 −
∫ x

0

q(s)ds, (39)

M = A1x + A2 −
∫ x

0

q(s)(x − s)ds. (40)

Substituting Eqs. (37) and (38) into the normal stress σxx and the shear stresses τxz and τxz

yields

σxx = zE(x, r)
(
A1

(( 1

Ĝ0(x)

)′
− U(x)

)
+

A2

E2(x)
−

( 1

Ĝ0(x)

∫ x

0

q(s)ds
)′

− V (x) − z2 + y2

3R2

( 1

Ĝ0(x)

(
A1 −

∫ x

0

q(s)ds
))′)

, (41)

τxy = −G(x, r)

Ĝ0(x)

2zy

3R2

(
A1 −

∫ x

0

q(s)ds
)
, (42)

τxz = G(x, r)γxz =
G(x, r)

Ĝ0(x)

3R2 − 3z2 − y2

3R2

(
A1 −

∫ x

0

q(s)ds
)
. (43)

It is obvious that the above physical quantities will be uniquely determined when the four
constants Aj are obtained. For instance, we consider a simply 2D FG cylindrical beam, where
the corresponding boundary conditions can be stated as

w = 0, M = 0, x = 0, L. (44)

In view of w = 0 and M = 0 at x = 0 and L, from Eqs. (37) and (40), one can derive four linear
equations for Ai as

A4 = 0, (45)

A2 = 0, (46)

A1

∫ L

0

(L − s)U(s)ds − A2

∫ L

0

L − s

E2(s)
ds + A3L + A4 =

∫ L

0

(s − L)V (s)ds, (47)

A1L + A2 =
∫ L

0

q(s)(L − s)ds. (48)

Therefore, A2 = A4 = 0, and A1 and A3 can be obtained by solving the linear equations of
Eqs. (47) and (48) as

A1 =
1
L

∫ L

0

q(s)(L − s)ds, (49)

A3 = − 1
L2

∫ L

0

q(s)(L − s)ds

∫ L

0

(L − s)U(s)ds +
1
L

∫ L

0

(s − L)V (s)ds. (50)

For other boundary conditions, we can use the similar method to determine the four constants
which are omitted here.
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4 Free vibrations of 2D FG cylindrical beams

In this section, we will study the free vibrations of 2D FG cylindrical beams. To this end,
applying q = 0 into Eqs. (22) and (28) yields the governing equations as

∂

∂x

(
Ê2(x)

∂ϕ

∂x
− E4(x)

∂2w

∂x2

)
− Ĝ0(x)

(∂w

∂x
+ ϕ

)
= ρ̂2(x)

∂2ϕ

∂t2
− ρ4(x)

∂3w

∂x∂t2
, (51)

∂

∂x

(
Ĝ0(x)

(∂w

∂x
+ ϕ

))
= ρ0(x)

∂2w

∂t2
. (52)

Since the governing equations (51) and (52) are two coupled higher-order differential equations,
it is almost impossible to find the closed-form solutions of Eqs. (51) and (52) for different in-
homogeneities. Therefore, it is much desired to find a numerical method for dealing with the
free vibrations of such beams effectively. If we can transform two coupled governing differen-
tial equations (51) and (52) into a single governing equation, it is going to be easier for our
subsequent analysis. For this purpose, the deflection w and the rotation ϕ are assumed to be

w =
1

ρ0(x)
∂F (x, t)

∂x
, (53)

ϕ =
1

Ĝ0(x)

∂2F (x, t)
∂t2

− ∂

∂x

( 1
ρ0(x)

∂F (x, t)
∂x

)
, (54)

where F (x, t) is a new auxiliary function. Apply Eqs. (53) and (54) into Eq. (52). Then, one
can check that the two sides of the equation are equal. After putting Eqs. (53) and (54) into
Eq. (51), we can immediately get a single fourth-order partial differential governing equation as

4∑
i=1

Bi(x)
∂iF

∂xi
−

( 2∑
i=0

Ci(x)
∂i

∂xi

)∂2F

∂t2
+ D(x)

∂4F

∂t4
= 0, (55)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1(x) =
(
E2(x)

( 1
ρ0(x)

)′′)′
, B2(x) = E2(x)

( 1
ρ0(x)

)′′
+

(
2E2(x)

( 1
ρ0(x)

)′)′
,

B3(x) = 2E2(x)
( 1

ρ0(x)

)′
+

(E2(x)
ρ0(x)

)′
, B4(x) =

E2(x)
ρ0(x)

,

C0(x) =
(
Ê2(x)

( 1

Ĝ0(x)

)′)′
− 1, C2(x) =

Ê2(x)

Ĝ0(x)
+

ρ2(x)
ρ0(x)

,

C1(x) =
( Ê2(x)

Ĝ0(x)

)′
+ Ê2(x)

( 1

Ĝ0(x)

)′
+ ρ2(x)

( 1
ρ0(x)

)′
, D(x) =

ρ̂2(x)

Ĝ0(x)
.

The advantage of this treatment is that the physical quantities of interest can be expressed
by the auxiliary function F (x, t). For example, the deflection w and the rotation ϕ can be
determined by means of Eqs. (53) and (54), respectively. Keeping Eqs. (29) and (30) in mind,
the bending moment M and the shear force Q can be derived in terms of F as

M = Ê2(x)
∂

∂x

( 1

Ĝ0(x)

∂2F

∂t2

)
− E2(x)

∂2

∂x2

( 1
ρ0(x)

∂F

∂x

)
, (56)

Q =
∂2F

∂t2
. (57)
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In order to analyze the free vibrations of the 2D FG circular cylindrical beams, the auxiliary
function F can be expressed as

F = f(x)eiωt, (58)

where ω is the circular frequency. Plugging Eq. (58) into Eq. (55) yields

4∑
i=1

Bi(x)
dif

dxi
+ ω2

4∑
i=1

Ci(x)
dif

dxi
+ ω4D(x)f = 0. (59)

The key of the problem lies in exactly calculating the natural frequencies w by solving the
fourth-order differential equation (59) associated with the corresponding boundary conditions.
4.1 Solution of the resulting eigenproblem

We know that Chebyshev polynomials play an important role in numerical calculation
applications. In the following, a simple approach called the Chebyshev polynomial expansion
method will be proposed to determine the eigenvalues, which are related to the natural fre-
quencies. The solution f(x) of Eq. (59) can be expressed approximately in terms of the shifted
Chebyshev polynomials with respect to the length coordinate as

f(x) =
N∑

i=0

aiTi(x), 0 � x � L, (60)

where ai and N are unknown coefficients and the orthogonal polynomial order, respectively.
Ti(x) are the first kind of Chebyshev polynomials over the interval [0, L], which are defined by
the following recurrence relations:

T0(x) = 1, T1(x) =
2x

L
− 1, (61)

Ti+1(x) = 2
(2x

L
− 1

)
Ti(x) − Ti−1(x). (62)

It should be noted that the Chebyshev polynomial expansion (60) must satisfy the governing
equation (59) and the boundary conditions at the ends of the beam simultaneously. Now,
putting the Chebyshev expansion (60) into the governing equation (59) for each case, we have

N∑
i=0

( 4∑
k=1

Bk(x)T (k)
i (x) + ω2

2∑
k=0

Ck(x)T (k)
i (x) + ω4D(x)Ti(x)

)
ai = 0, (63)

where T
(k)
i (x) = dkTi

dxk . Multiplying both sides of Eq. (63) by factors Tj(x) (j = 0, 1, 2, · · · , N−4)
and then integrating both sides from 0 to 1 with respect to x yield N − 3 linear equations of
unknown coefficients ai as

N∑
i=0

(Iji + ω2Jji + ω4Kji)ai = 0, j = 0, 1, 2, · · · , N − 4, (64)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iji =
∫ L

0

( 4∑
k=1

Bk(x)T (k)
i (x)Tj(x)

)
dx,

Jji =
∫ L

0

( 2∑
k=0

Ck(x)T (k)
i (x)Tj(x)

)
dx,

Kji =
∫ L

0

D(x)Ti(x)Tj(x)dx.
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Next, take clamped-clamped (CC) 2D FG circular cylindrical beams as an example. Sub-
stitute the expansion (60) to the clamped conditions w = ϕ = 0 at x = 0. Then, the other two
linear equations of a0, a1, · · · , aN will be obtained as

N∑
i=0

aiT
′
i (0) = 0, (65)

N∑
i=0

ai

(T
′′
i (x)

ρ0(x)
+

( 1
ρ0(x)

)′
T ′

i (x) +
ω2Ti(x)

Ĝ0(x)

)
x=0

= 0. (66)

On the other hand, applying the clamped conditions at x = L yields

N∑
i=0

aiT
′
i (L) = 0, (67)

N∑
i=0

ai

(T
′′
i (x)

ρ0(x)
+

( 1
ρ0(x)

)′
T ′

i (x) +
ω2Ti(x)

Ĝ0(x)

)
x=L

= 0. (68)

From Eqs. (64)–(68), we can find that a series of of linear algebraic equations for unknown
coefficients ai have been derived, which forms a system as

(I + ω2J + ω4K)(a1, a2, a3, · · · , aN+1)T = 0. (69)

To make sure that the resulting linear system has a non-zero solution, the determinant of the
coefficient matrix of the system should be zero, i.e.,

det(I + ω2J + ω4K) = 0. (70)

It is clear that the obtained equation (70) is actually a polynomial in the natural frequency
ω. With the help of scientific software, we can easily obtain the multi-roots of its positive
solutions, which correspond to different orders of natural frequencies. For other relevant familiar
end conditions, such as simply-simply (SS), clamped-simply (CS), and clamped-free (CF), we
can also apply the Chebyshev expansion (60) to the corresponding boundary conditions for
getting the last four linear equations, and making the first N − 3 linear equations as the same
form as Eq. (64), where the details are omitted here. This treatment could give rise to a great
simplification on studying the free vibrations of 2D FG circular cylindrical beams with different
end supports.

5 Results and discussion

5.1 Model validation and convergence studies
In order to verify the introduced cylindrical beam model, we first present some results applied

to static and vibrational problems on homogeneous cylindrical beams. In general, however,
it is rather difficult to get the exact bending elasticity solutions of the cylindrical beam for
complex loads under different boundary conditions[32], which can be completely solved only for
some certain special cases. For example, consider a homogeneous cantilevered circular beam
subjected to a concentrated force P at the free end, where the boundary conditions are

x = 0 : w = 0, ϕ = 0, (71)

x = L : M = 0, Q = P. (72)
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In this case, one can use the Saint-Venant semi-inverse method to get the exact solutions[33–34]:

σxx = Pz(x − L)/I, (73)

τxy = − (2ν + 1)Pyz

4(ν + 1)I
, (74)

τxz =
(2ν + 3)P
8(ν + 1)I

(
R2 − z2 − 1 − 2ν

3 + 2ν
y2

)
, (75)

where ν is Poisson’s ratio. Other exact bending solutions, e.g., cylindrical beams under concen-
trated force under CC, SS, or CS supported boundary conditions and cylindrical beams under
linearly distributed loadings, etc., have seldom been found in literatures so far. The introduced
high-order cylindrical beam model is used to analyze the bending of cylindrical beams. It is
actually a simple matter to derive the solutions for different complex loads and boundary condi-
tions. Putting the boundary conditions in Eqs. (71) and (72) into Eqs. (37)–(40), the unknown
Aj can be easily determined. Then, plugging them into Eqs. (41)–(43) yields the expressions of
the normal stress and the shear stresses for a homogeneous cylindrical beam as

σxx = Pz(x − L)/I, (76)

τxy = −yzP/(4I), (77)

τxz = P (3R2 − 3z2 − y2)/(8I). (78)

It is easily found that the expression of the normal stress σxx in Eq. (76) is identical to the exact
solution (73). In addition, the distributions are similar between two results of the shear stresses.
If we do not take the effect of Poisson’s ratio into account, the present solutions (77) and (78)
are equivalent to the exact results. Moreover, it should be noted that the Timoshenko beam
theory cannot give the distribution of the shear stress at the cross-section, but only presents
the shear force resultant at the cross-section.

For examining the convergence and effectiveness of the Chebyshev polynomial expansion
method, next, we will study the free vibration of a homogeneous cylindrical beam with a uniform
circular cross-section. The convergence and verification studies are performed by using different
numbers of terms in the Chebyshev polynomial expansion. By using the proposed method, we
calculate the dimensionless natural frequencies Ωn = ωnR

√
ρ/G for CF cylindrical beams

with various aspect ratios and truncation orders N , where the results are noted in Table 1.
For comparison, the 3D solutions calculated by the Ritz method[35] and the Chebyshev-Ritz
method[36] are also listed in this table. It can be found that the presented approach has a fast
convergence rate. With an increase in the aspect ratio L/R, there is good agreement between
our numerical results and the 3D solutions.

We further use the introduced model to analyze the free vibrations of linearly tapered cylin-
drical beams, where the Young’s modulus and the mass density of the beams keep constants,
and the radius R of the circular cross-section is assumed to be

R(x) = R0 + (RL − R0)
x

L
, 0 � x � L, (79)

where R0 and RL are the corresponding radii of the cross-section at the ends x = 0 and x = L,
respectively. Based on the 3D theory of elasticity, Kang and Leissa used the Ritz method to
investigate the free vibration frequencies and mode shapes of such tapered beams with a circular
cross-section for isotropic materials[37]. For different ratio values of L/(R0 +RL), the first three
dimensionless natural frequencies Ωn = ωnL

√
ρ/G (n = 1, 2, 3) are evaluated for free-free (FF)

boundary conditions, which are displayed in Table 2. We set Poisson’s ratio ν = 0.3 and the
aspect ratio RL/R0 = 3 in this example. Compared with the results derived previously by the
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Euler-Bernoulli beam theory[37], it is obvious that our results agree well with the 3D solutions.
This indicates that the suggested high-order model and numerical method can effectively handle
the dynamic analysis of cylindrical beams.

Table 1 First three dimensionless natural frequencies ωnR
p

ρ/G for the CF uniform cylindrical
beams

L/R Ωn

Present result 3D solution

N = 6 N = 8 N = 10 N = 12 Ref. [35] Ref. [36]

Ω1 0.073 052 0.073 057 0.073 057 0.073 057 0.075 17 0.075 1
6 Ω2 0.360 907 0.348 172 0.348 118 0.348 118 0.364 3 0.364 0

Ω3 0.852 525 0.786 059 0.784 290 0.784 279 0.818 6 0.818 0

Ω1 0.027 549 0.027 551 7 0.027 551 7 0.027 551 7 0.027 97 0.027 9
10 Ω2 0.159 434 0.152 053 7 0.152 018 0.152 017 8 0.156 2 0.156 0

Ω3 0.408 074 0.371 456 6 0.370 583 0.370 577 8 0.382 8 0.382 4

Ω1 0.007 035 0.007 035 0.007 035 0.007 035 0.007 089 0.007 1
20 Ω2 0.044 953 0.042 516 0.042 503 0.042 503 0.043 00 0.042 9

Ω3 0.127 411 0.113 434 0.113 137 0.113 135 0.114 9 0.114 7

Ω1 0.001 768 0.001 768 0.001 768 0.001 768 0.001 77 0.001 8
40 Ω2 0.011 642 0.010 981 0.010 977 0.010 977 0.011 05 0.011 0

Ω3 0.034 476 0.030 387 0.030 301 0.030 300 0.030 54 0.030 4

Table 2 First three dimensionless natural frequencies ωnL
p

ρ/G for the FF tapered cylindrical beams

L/(R0 + RL)
Present result Other solution

N = 6 N = 8 N = 10 N = 12 3D[37] Euler-Bernoulli beam[37]

1.763 809 1.712 408 1.712 599 1.712 597 1.716 1.892
5 4.362 515 3.975 176 3.941 934 3.941 184 3.966 4.907

14.514 850 7.634 360 6.612 236 6.606 935 6.680 9.388

0.949 532 0.920 175 0.920 245 0.920 244 0.920 8 0.945 8
10 2.655 055 2.332 774 2.295 360 2.294 751 2.300 2.454

– 4.784 441 4.169 972 4.168 268 4.187 4.694

0.484 851 0.469 571 0.469 599 0.469 599 0.469 7 0.472 9
20 1.428 524 1.228 676 1.205 438 1.205 096 1.206 1.227

– 2.603 828 2.271 740 2.270 282 2.273 2.347

0.243 751 0.236 029 0.236 043 0.236 042 0.236 1 0.236 5
40 0.729 755 0.623 114 0.610 817 0.610 641 0.610 7 0.613 4

– 1.334 832 1.164 524 1.163 620 1.164 1.174

5.2 Bending of bi-directional FG cylindrical beams
In this section, we will discuss the bending behavior of bi-directional FG cylindrical beams

with a uniform circular cross-section. A typical model called power-law distribution is analyzed,
where the material properties are assumed to be

E(x, r) = Em + (Ec − Em)
( x

L

)px
( r

R

)pr

, (80)

G(x, r) = Gm + (Gc − Gm)
( x

L

)px
( r

R

)pr

, (81)

ρ(x, r) = ρm + (ρc − ρm)
( x

L

)px
( r

R

)pr

, (82)

where px and pr are the gradient parameters indicating the variations of the volume fraction
through the x- and r-axes, respectively. Em (Ec) and Gm (Gc) are the Young’s modulus and
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the shear modulus of metal (ceramic), respectively. Aluminum and zirconia are chosen as the
two materials, where the properties for aluminum are Em = 70GPa, ρm = 2 702kg/m3, and
νm = 0.3 while for zirconia are Ec = 200GPa, ρc = 5 700kg/m3, and νc = 0.3. Now, let us
make some observations on Eqs. (80)–(82). Set px = 0, which means that the Young’s modulus,
the shear modulus, and the mass density of the beam depend only on r. In this case, the
cylindrical beam becomes the radial-dependent FG beam. Keep pr = 0, which means that the
beam becomes the axially FG cylindrical beam. If px = 0 and pr = 0, the beam becomes a
homogeneous cylindrical beam with a uniform cross-section.

Subject to a uniformly transverse loading, i.e., q(x) = q0, the dimensionless transverse de-
flections W (x) = 100EmR3

q0L3 ω(x) of bi-directional FG cylindrical beams are calculated for various
values of the material gradient indices (px, pr). The maximum results of the transverse deflec-
tion W (L/2) under the SS boundary condition are listed in Table 3. For further comparison,
the results of the dimensionless deflection obtained by the Timoshenko beam theory are also
listed in Table 3 with the shear correction factor κ = 6/7. We can find that the results cal-
culated by these two beam models appear to have good consistency. It can also be observed
that an increase in the power-law gradient parameter px or pr implies a stiffness-hardening
effect of the FG beam, which can control the dimensionless maximum transverse deflection to
increase monotonically. The results of the dimensionless maximum transverse deflection with
CC supported ends are tabulated in Table 4.

Table 3 Dimensionless maximum transverse deflections 100EmR3

q0L3 ω(L/2) of the SS beams

L/R pr

px = 0 px = 1 px = 2 px = 4

Present Timoshenko Present Timoshenko Present Timoshenko Present Timoshenko

5

0 3.746 109 3.746 109 5.851 228 5.851 228 7.357 589 7.357 589 8.939 436 8.939 436
0.2 3.902 783 3.891 837 6.001 485 5.992 910 7.477 002 7.470 310 9.014 801 9.008 782
0.5 4.124 677 4.098 198 6.208 478 6.188 752 7.640 244 7.624 745 9.116 485 9.102 567
1 4.462 543 4.413 313 6.512 362 6.478 025 7.877 063 7.849 830 9.261 112 9.236 731
2 5.037 681 4.955 365 7.003 859 6.951 396 8.252 274 8.210 050 9.482 908 9.445 311
5 6.234 961 6.118 154 7.945 842 7.880 390 8.940 900 8.886 688 9.865 569 9.817 517

10

0 6.224 948 6.224 948 9.566 572 9.566 572 12.222 101 12.222 101 15.118 161 15.118 161
0.2 6.442 289 6.436 815 9.786 867 9.782 580 12.399 658 12.396 311 15.219 045 15.216 035
0.5 6.753 002 6.739 762 10.094 658 10.084 795 12.644 832 12.637 083 15.356 469 15.349 510
1 7.233 448 7.208 832 10.555 475 10.538 307 13.005 614 12.991 998 15.554 744 15.542 553
2 8.074 449 8.033 290 11.322 987 11.296 756 13.589 979 13.568 867 15.866 061 15.847 262
5 9.929 139 9.870 736 12.867 114 12.834 388 14.705 051 14.677 945 16.427 713 16.403 687

Table 4 Dimensionless maximum transverse deflections 100EmR3

q0L3 ω(L/2) of the CC beams

L/R pr px = 0 px = 1 px = 2 px = 3 px = 4

5

0 1.666 485 2.626 416 2.989 635 3.208 668 3.362 295
0.2 1.770 761 2.723 928 3.078 133 3.290 352 3.437 962
0.5 1.916 847 2.855 735 3.196 643 3.399 034 3.538 229
1 2.134 839 3.043 137 3.363 002 3.550 337 3.677 129
2 2.490 384 3.328 532 3.611 701 3.773 986 3.881 177
5 3.151 914 3.807 161 4.016 228 4.131 470 4.204 480

10

0 1.703 621 2.677 056 3.079 232 3.321 309 3.483 547
0.2 1.896 556 2.856 601 3.239 520 3.467 190 3.617 896
0.5 1.783 560 2.752 686 3.147 035 3.383 209 3.540 676
1 2.067 854 3.008 199 3.373 038 3.587 548 3.728 035
2 2.938 289 3.695 266 3.957 063 4.102 508 4.193 336
5 2.356 314 3.249 742 3.582 331 3.774 203 3.897 744
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The variations of the dimensionless deflection 100EmR3

q0L3 ω(x) with the dimensionless coordi-
nate x/L are illustrated in Figs. 2 and 3 for CS and CF bi-directional FG cylindrical beams,
respectively, in which pr = 1 and L/h = 10. It is observed from Figs. 2 and 3 that the maximum
values of the transverse deflections for CS and CF beams are not located in the middle positions
of the beams because of the asymmetrical boundary conditions.

−

Fig. 2 Dimensionless transverse deflection
100EmR3

q0L3 ω(x) versus x/L for different
px of CS bi-directional FG cylindrical
beams (color online)

Fig. 3 Dimensionless transverse deflection
100EmR3

q0L3 ω(x) versus x/L for different
px of CF bi-directional FG cylindri-
cal beams (color online)

The effects of px on the dimensionless normal stress σxx(L
2 , 0, z)A/(q0L) of a bi-directional

FG cylindrical beam for SS supported ends are shown in Fig. 4, where pr = 1 and L/h = 10.
It can be found from Fig. 4 that when the gradient index px increases, the maximum normal
stress decreases.

The variations of the dimensionless normal stress σ̃xx(x, 0,−R)A/(q0L) versus x/L are plot-
ted in Fig. 5 under SS boundary conditions, where pr = 1 and L/h = 10. It can be seen from
Fig. 5 that when px increases, the normal stress decreases due to the fact that both the stiffness
and the mass of the beam are increasing.

− − −

Fig. 4 Dimensionless normal stress

σxx(L
2
, 0, z)A/(q0L) versus z/R

for different px of SS bi-directional
FG cylindrical beams (color online)

−

−

−

−

−

−

Fig. 5 Dimensionless normal stress
eσxx(x, 0,−R)A/(q0L) versus x/L for
different px of SS bi-directional FG
cylindrical beams (color online)
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The results of the normal stress distributions under CF boundary conditions have the same
variation tendencies, as shown in Figs. 6 and 7, where pr = 1 and L/h = 10. We derive the
explicit expression of the shear stress under the SS and CF boundary conditions based on the
high-order cylindrical beam model as

SS : τxy = −q0G(x, r)

Ĝ0(x)

2zy

3R2

(L

2
− x

)
, τxz =

G(x, r)

Ĝ0(x)

3R2 − 3z2 − y2

3R2

(L

2
− x

)
; (83)

CF : τxy = −q0G(x, r)

Ĝ0(x)

2zy

3R2
(L − x), τxz =

G(x, r)

Ĝ0(x)

3R2 − 3z2 − y2

3R2
(L − x). (84)

− − −

Fig. 6 Dimensionless normal stress

σxx(L
2
, 0, z)A/(q0L) versus z/R

for different px of CF bi-directional
FG cylindrical beams (color online)

−

Fig. 7 Dimensionless normal stress
eσxx(x, 0,−R)A/(q0L) versus x/L for
different px of CF bi-directional FG
cylindrical beams (color online)

5.3 Natural frequencies of 2D FG cylindrical beams
Till now, the free vibrations of FG circular cylinders have seldom been discussed. Abadikhah

and Folkow[29] adopted the Fourier and power series expansions to calculate the eigenfrequencies
of simply supported cylinders by using the 3D elastodynamic theory for radially varying material
inhomogeneities. Zhang et al.[30] proposed a higher-order shear deformation based spectral
element model to calculate the natural frequency of FG cylindrical beams, where the material
properties were assumed to vary along the r-axis. However, there has been no published work
on discussing the dynamic behaviors of the axially or bi-directional FG cylindrical beam.

In order to investigate the effects of the power-law indeices px and pr in Eqs. (80)–(82) on the
natural frequency of 2D FG cylindrical beams, the results of the first three dimensionless natural
frequencies Ωn = ωnR

√
ρm/Gm under the SS and CF boundary conditions are presented with

N = 12 in Tables 5 and 6, respectively. Some natural frequency results cited from Ref. [30] are
also listed in Tables 5 and 6 with px = 0. Very good agreement between the present results
and the existing numerical results[30] can be observed for the SS and CF 2D FG cylindrical
beams. For a given value of the index pr, one can find from Table 5 that the first three
natural frequencies of the SS beam decrease with the increase in the gradient index px. When
pr increases, the first two dimensionless natural frequencies of the SS beam for a given value of
the index px increase, reach the maximum values, and then decrease.

As the last example, we consider an exponential-law gradient model, where the material
properties can be represented in an exponential form as

E(x, r) = Emeαx
x
L +αr

r
R , G(x, r) = Gmeαx

x
L +αr

r
R , ρ(x, r) = ρmeαx

x
L +αr

r
R , (85)
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Table 5 First three dimensionless natural frequencies Ωn = ωR
p

ρm/Gm of the SS beams, where
L/R = 10

Pr Ωn px = 0 px = 0[30] px = 1 px = 2 px = 3 px = 4

0

Ω1 0.088 381 – 0.083 340 0.080 376 0.078 828 0.077 959
Ω2 0.315 706 – 0.299 274 0.291 138 0.285 970 0.282 547
Ω3 0.618 955 – 0.586 233 0.570 437 0.561 246 0.555 330

0.2

Ω1 0.089 012 0.088 9 0.083 722 0.080 622 0.078 985 0.078 059
Ω2 0.316 900 0.316 5 0.299 751 0.291 302 0.286 093 0.282 684
Ω3 0.619 356 0.618 6 0.585 963 0.570 031 0.560 905 0.555 065

0.5

Ω1 0.089 661 – 0.084 092 0.080 853 0.079 127 0.078 147
Ω2 0.317 912 – 0.300 023 0.291 295 0.286 090 0.282 724
Ω3 0.618 996 – 0.585 102 0.569 183 0.560 226 0.554 531

1

Ω1 0.090 214 0.090 1 0.084 362 0.081 009 0.079 214 0.078 193
Ω2 0.318 305 0.317 9 0.299 778 0.290 900 0.285 797 0.282 534
Ω3 0.616 985 0.616 2 0.583 074 0.567 495 0.558 906 0.553 485

2

Ω1 0.090 295 – 0.084 275 0.080 923 0.079 136 0.078 119
Ω2 0.316 866 – 0.298 225 0.289 577 0.284 806 0.281 786
Ω3 0.611 194 – 0.578 565 0.564 059 0.556 249 0.551 362

5

Ω1 0.088 461 0.088 3 0.082 941 0.080 060 0.078 548 0.077 696
Ω2 0.309 495 0.309 1 0.292 892 0.285 683 0.281 881 0.279 498
Ω3 0.595 376 0.594 7 0.567 856 0.556 338 0.550 313 0.546 579

Table 6 First three dimensionless natural frequencies Ωn = ωR
p

ρm/Gm of the CF beams, where
L/R = 10

pr Ωn px = 0 px = 0[30] px = 1 px = 2 px = 3 px = 4

0

Ω1 0.032 064 – 0.022 980 0.021 939 0.022 035 0.022 351
Ω2 0.176 915 – 0.152 597 0.148 411 0.146 407 0.145 161
Ω3 0.431 271 – 0.394 514 0.385 845 0.378 624 0.373 073

0.2

Ω1 0.032 310 0.032 2 0.023 358 0.022 325 0.022 409 0.022 708
Ω2 0.177 530 0.177 3 0.153 613 0.149 273 0.147 138 0.145 815
Ω3 0.431 453 0.430 9 0.395 384 0.386 364 0.379 101 0.373 608

0.5

Ω1 0.032 565 – 0.023 831 0.022 815 0.022 883 0.023 160
Ω2 0.178 021 – 0.154 767 0.150 276 0.148 006 0.146 609
Ω3 0.431 077 – 0.396 147 0.386 804 0.379 561 0.374 182

1

Ω1 0.032 789 0.032 7 0.024 440 0.023 458 0.023 505 0.023 750
Ω2 0.178 133 0.177 9 0.156 034 0.151 426 0.149 042 0.147 589
Ω3 0.429 512 0.429 0 0.396 535 0.386 994 0.379 904 0.374 747

2

Ω1 0.032 842 – 0.025 243 0.024 336 0.024 357 0.024 555
Ω2 0.177 174 – 0.157 241 0.152 668 0.150 261 0.148 820
Ω3 0.425 251 – 0.395 825 0.386 464 0.379 844 0.375 141

5

Ω1 0.032 181 0.032 1 0.026 317 0.025 605 0.025 594 0.025 718
Ω2 0.172 880 0.172 8 0.157 592 0.153 647 0.151 570 0.150 364
Ω3 0.413 922 0.413 5 0.391 615 0.383 680 0.378 412 0.374 782

where Em, Gm, and ρm denote the Young’s modulus, the shear modulus, and the mass den-
sity value at the reference point (0, 0, 0), respectively. αx and αr are the gradation indices.
To examine the effects of the material gradient indices αx and αr on the vibrational be-
haviors of 2D FG cylindrical beams, the first three dimensionless natural frequencies Ωn =
ωnR

√
ρm/Gm (n = 1, 2, 3) are evaluated for SS and CC boundary conditions, where the re-

sults are tabulated in Tables 7 and 8, respectively. We set ν = 0.3 and L/h = 10 in this
example. It is obvious from Table 7 that if the exponential-law parameter αx increases, the
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Table 7 First three dimensionless natural frequencies Ωn (n = 1, 2, 3) of the SS beams with
exponential-law distribution

αr Ωn αx = 0 αx = 0.2 αx = 0.4 αx = 0.6 αx = 0.8 αx = 1

0

Ω1 0.075 943 0.075 908 0.075 803 0.075 629 0.075 386 0.075 074
Ω2 0.271 276 0.271 291 0.271 337 0.271 415 0.271 524 0.271 665
Ω3 0.531 849 0.531 868 0.531 927 0.532 026 0.532 164 0.532 342

0.2

Ω1 0.076 825 0.076 789 0.076 683 0.076 506 0.076 258 0.075 941
Ω2 0.273 602 0.273 618 0.273 664 0.273 740 0.273 848 0.273 988
Ω3 0.534 915 0.534 935 0.534 993 0.535 091 0.535 227 0.535 404

0.4

Ω1 0.077 673 0.077 637 0.077 529 0.077 349 0.077 098 0.076 775
Ω2 0.275 806 0.275 821 0.275 866 0.275 943 0.276 050 0.276 189
Ω3 0.537 755 0.537 774 0.537 832 0.537 928 0.538 064 0.538 238

0.6

Ω1 0.078 488 0.078 452 0.078 342 0.078 159 0.077 904 0.077 577
Ω2 0.277 888 0.277 903 0.277 948 0.278 024 0.278 130 0.278 268
Ω3 0.540 376 0.540 395 0.540 453 0.540 548 0.540 682 0.540 855

0.8

Ω1 0.079 270 0.079 233 0.079 122 0.078 937 0.078 678 0.078 346
Ω2 0.279 853 0.279 868 0.279 913 0.279 988 0.280 094 0.280 230
Ω3 0.542 790 0.542 809 0.542 865 0.542 960 0.543 092 0.543 263

1

Ω1 0.080 020 0.079 982 0.079 869 0.079 681 0.079 419 0.079 082
Ω2 0.281 705 0.281 720 0.281 764 0.281 838 0.281 943 0.282 078
Ω3 0.545 006 0.545 024 0.545 080 0.545 174 0.545 305 0.545 474

Table 8 First three dimensionless natural frequencies Ωn (n = 1, 2, 3) of the CC beams with
exponential-law distribution

αr Ωn αx = 0 αx = 0.2 αx = 0.4 αx = 0.6 αx = 0.8 αx = 1

0

Ω1 0.148 090 0.148 121 0.148 214 0.148 369 0.148 588 0.148 871
Ω2 0.347 284 0.347 324 0.347 443 0.347 643 0.347 923 0.348 282
Ω3 0.590 518 0.590 556 0.590 671 0.590 862 0.591 130 0.591 475

0.2

Ω1 0.149 094 0.149 125 0.149 219 0.149 375 0.149 595 0.149 880
Ω2 0.348 539 0.348 579 0.348 700 0.348 901 0.349 184 0.349 547
Ω3 0.591 713 0.591 752 0.591 868 0.592 060 0.592 330 0.592 678

0.4

Ω1 0.150 026 0.150 057 0.150 151 0.150 308 0.150 529 0.150 816
Ω2 0.349 650 0.349 690 0.349 812 0.350 016 0.350 301 0.350 667
Ω3 0.592 714 0.592 753 0.592 870 0.593 064 0.593 336 0.593 686

0.6

Ω1 0.150 888 0.150 919 0.151 013 0.151 171 0.151 394 0.151 681
Ω2 0.350 625 0.350 666 0.350 789 0.350 994 0.351 282 0.351 652
Ω3 0.593 536 0.593 575 0.593 692 0.593 888 0.594 162 0.594 514

0.8

Ω1 0.151 682 0.151 714 0.151 809 0.151 967 0.152 191 0.152 480
Ω2 0.351 474 0.351 515 0.351 639 0.351 846 0.352 136 0.352 510
Ω3 0.594 192 0.594 232 0.594 350 0.594 547 0.594 822 0.595 177

1

Ω1 0.152 413 0.152 445 0.152 540 0.152 699 0.152 924 0.153 214
Ω2 0.352 205 0.352 247 0.352 372 0.352 581 0.352 873 0.353 250
Ω3 0.594 698 0.594 737 0.594 856 0.595 054 0.595 331 0.595 688

natural frequencies decrease, but the increase in αr can result in the increase in the natural
frequencies for SS beams. For CC beams, the natural frequencies gradually increase when the
index αx or αr increases.

6 Conclusions

Based on the high-order circular beam theory, where the shear deformation and rotary in-
ertia are both considered without introducing the shear correction factor, the bending and free
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vibrations of 2D FG cylindrical beams are discussed. For any radial/axial nonhomogeneity
of material properties, the coupled governing differential equations of the deflection and ro-
tation are derived. The analytic bending solutions are derived in a closed form for different
boundary conditions. By expanding the auxiliary function into shifted Chebyshev polynomials,
the characteristic polynomial equations in natural frequencies are obtained. Higher accuracy
can be achieved through increasing the order of Chebyshev polynomials. By comparing with
the exact 3D solutions, we present some static and vibrational results of homogeneous cylin-
drical beams to verify the introduced cylindrical beam model. The effects of gradient indices
on the transverse deflections, the stresses, and the natural frequencies of 2D FG cylindrical
beams are studied. Compared with the results calculated by the Timoshenko beam theory and
other exiting numerical results, the accuracy and effectiveness of the introduced approach can
be confirmed.
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