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Abstract The propagation of shear-horizontal (SH) waves in the periodic layered
nanocomposite is investigated by using both the nonlocal integral model and the nonlocal
differential model with the interface effect. Based on the transfer matrix method and
the Bloch theory, the band structures for SH waves with both vertical and oblique
incidences to the structure are obtained. It is found that by choosing appropriate interface
parameters, the dispersion curves predicted by the nonlocal differential model with the
interface effect can be tuned to be the same as those based on the nonlocal integral
model. Thus, by propagating the SH waves vertically and obliquely to the periodic
layered nanostructure, we could invert, respectively, the interface mass density and the
interface shear modulus, by matching the dispersion curves. Examples are further shown
on how to determine the interface mass density and the interface shear modulus in theory.
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List of symbols

csh, bulk shear wave speed, m/s;
ekl, strain components;
fl, body force density in the l-direction

(l = x, y, z), m/s2;
h, thickness of the unit cell, m;
hj , thickness of the jth layer (j = 1, 2),

m;
h (= hj/h), dimensionless thickness;
k, wavenumber, m−1;
kx, Bloch wavenumber in the

x-direction, m−1;
kh/π, dimensionless wavenumber;
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l1, material intrinsic length which
represents the size of the interface
mass density, m;

l2, material intrinsic length which
represents the size of the interface
shear modulus, m;

l1/h, dimensionless material intrinsic
length which represents the size of
the interface mass density;

l2/h, dimensionless material intrinsic
length which represents the size of
the interface shear modulus;

R (=ε/h), dimensionless internal characteristic
length;

Rd (=εd/h), dimensionless internal characteristic
length in the nonlocal differential
model;

Ri (=εi/h), dimensionless internal characteristic
length in the nonlocal integral model;

R, transfer matrix of the sub-layer;
t, time, s;
T , transfer matrix between the two

adjacent unit cells;
ul, displacement in the l-direction, m;
V , state vector;
x,x′, position vectors;
x, y, z, variables in the rectangular

coordinate system, m;
α(|x′ − x|), influence function;
β, dimensionless wavenumber in the

y-direction;
ε, internal characteristic length, m;
ξ, η, dimensionless variables in the

rectangular coordinate system;
θ, incidence angle, ◦;
λ,μ, Lamé constants, N/m2;
ρ, mass density, kg/m3;
ρs, interface mass density, kg/m2;
σkl, local stress components, N/m2;
τkl, nonlocal stress components, N/m2;
τ s

zy, interface stress components, N/m;
ω, angular frequency, rad/s;
�, dimensionless angular frequency;
Ω, dimensionless frequency.

1 Introduction

As new functional materials, periodic layered composites can suppress the propagation
of elastic waves within a certain frequency range[1–4]. The band-gap properties of periodic
structures have broad applications in designing acoustic devices such as filters[5], transducers[6],
acoustic lens[7], and waveguides[8]. Since these applications of periodic composites are closely
related to the propagation properties of elastic waves, waves in the periodic structure need to
be investigated.

Nanomaterials have excellent material properties, and they are easily tuned to meet the
requirements of the relevant micro devices[9–11]. Based on the first-principle method at the
atomistic level and the classical elastic wave equation at the continuum level, Ramprasad and
Shi[12] compared the acoustic dispersion curves of a multilayer nano-heterostructure made of
alternating HfO2 and ZrO2 layers, and found that the wave propagation properties in nanoscale
were different from those in macroscale. When the structure dimension is reduced to the
nanometer scale, the interface effect dominates. As such, various theories have been proposed
to investigate the material behaviors in nanoscale as relative to those in macroscale[13]. Those
include the couple stress theory[14–15], the micropolar theory[16], the strain gradient theory[17],
the nonlocal theory[18–19], the nonlocal strain gradient theory[20–21], and the surface/interface
theory[22–23].

By using the nonlocal theory of integral form (or simply called the nonlocal integral model),
Chen and Wang[24] studied the shear wave which propagates normally in the one-dimensional
nanoscale HfO2-ZrO2 phononic crystal and found that the first two bands of the dispersion
curves were identical to those based on the first-principle method. In other words, the
proper nonlocal theory could be used to describe the dispersion behaviors of the nanoscale
multilayer structure. The concept of localization factor was introduced by Chen et al.[25]

to describe the dispersion relations of the elastic waves propagating both normally and
obliquely in the periodic nanostructure. Chen et al.[26] obtained analytical solutions for the
time-harmonic waves in three-dimensional magneto-electro-elastic multilayered plates by using
the nonlocal theory of differential form (or simply called the nonlocal differential model). The
dispersion characteristics of elastic waves propagating in a monolayer piezoelectric nanoplate
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were investigated by Zhang et al.[27] via the extended nonlocal differential model combining
further with the surface piezoelectricity. Based on the surface/interface elasticity theory, the
shear-horizontal (SH) waves in a transversely isotropic magneto-electro-elastic nanoplate[28] and
the dispersion characteristics of SH waves in two dissimilar nanolayers[29] were studied. Zhu et
al.[30] obtained the dispersion curves of layered nanostructures by using the Stroh formalism
and the dual variable and position method. So far, however, the difference between the nonlocal
integral model and the nonlocal differential model, with and without the surface/interface effect
has not been fully explored, particularly as related to the dispersion curves predicted by different
models. This motivates the present study.

Thus, in this paper, the SH waves which propagate vertically and obliquely in the periodic
layered nanostructure are studied by using both the nonlocal integral and differential models
with and without the interface effect. The band structures for such SH waves are obtained
based on the transfer matrix method and the Bloch theory. This paper is arranged as follows.
In Section 2, we describe the problem to be solved through the basic equations and interface
conditions. In Section 3, the dispersion equations in the periodic layered nanostructure based
on the nonlocal model with the interface effect are derived via the transfer matrix method
and the Bloch theory. In Section 4, the effects of the nonlocal integral model, the nonlocal
differential model with interface parameters (interface mass density and shear modulus) on the
band structures (also dispersion curves) are analyzed when the SH waves are vertically and
obliquely incident to the periodic structure. Conclusions are drawn in Section 5.

2 Problem description and basic equations

As shown in Fig. 1, the SH waves propagate to the isotropic periodic layered nanostructure
with an incidence angle θ. For this case, the only nonzero displacement component is uz as
a function of x and y. The periodic layered nanostructure is composed of materials 1 and 2
alternatively, with thicknesses h1 and h2, respectively. As such, the thickness of the unit cell is
h = h1 + h2.

Fig. 1 SH waves propagation in a periodic layered nanostructure (color online)

For a homogeneous and isotropic elastic solid, the basic equations with consideration of the
nonlocal theory can be expressed as[19]

τkl,l + ρ (fl − ül) = 0, (1)

τkl (x) =
∫

v

α (|x′ − x|)σkl (x′) dv (x′) , (2)

σkl (x′) = λejj (x′) δkl + 2μekl (x′) , (3)

ekl (x′) =
1
2

(∂uk (x′)
∂x′

l

+
∂ul (x′)

∂x′
k

)
, (4)

where δkl is the Kronecker delta function; τkl, ρ, fl, and ul are the nonlocal stress, the mass
density, the body force density and displacement, respectively; a dot over u denotes time
derivative; x and x′ are the position vectors, and σkl are the local stress components related to
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the strain components ekl and Lamé constants λ and μ; α(|x′−x|) is the influence function. For
the two-dimensional problem considered in this paper, we choose the following simple form[31]:

α (|x′ − x| , ε) =
1
2ε

e−|x′−x|/εδ (|y′ − y|) , (5)

where δ is the Dirac delta function, and ε is the internal characteristic length. With the help of
the differential operator, the constitutive equation of integral form, Eq. (2), can be approximated
by the following differential form: (

1 − ε2∇2
)
τkl = σkl, (6)

where ∇2 is the two-dimensional Laplace operator. Substituting Eqs. (3), (4), and (6) into
Eq. (1), the differential wave equation without the body force can be expressed as

(λ + μ)uk,lk + μul,kk =
(
1 − ε2∇2

)
ρül. (7)

For this anti-plane problem, Eq. (7) can be reduced to the following simple form:

c2
sh∇2uz =

(
1 − ε2∇2

)
üz, (8)

where csh is the bulk shear wave speed defined as c2
sh = μ/ρ. By introducing the dimensionless

local coordinates ξ = x/h and η = y/h (ξ ∈ [0, h], η ∈ (−∞, +∞)) with h = hj/h (j = 1, 2), the
general solution to Eq. (8) can be expressed as

uz =
(
Ae−iqξ + Beiqξ

)
ei(βη−ωt), (9)

where A and B are undetermined constants, i2 = −1, β (= kh sin θ) is the dimensionless
wavenumber in the y-direction, ω is the angular frequency, t is the time, and

q =
√

�2/ (1 − R2�2) − β2 (10)

with � = ωh/csh being the dimensionless angular frequency and R = ε/h being the
dimensionless internal characteristic length (i.e., the ratio of the internal to external
characteristic lengths). From Eqs. (3), (4), and (6), we obtain the nonlocal stress in terms
of the differential form as

τd
zx =

iρc2
shq

(−Ae−iqξ + Beiqξ
)

1 + R2q2 + R2β2
, (11)

where the superscript d stands for the differential form. On the other hand, from Eqs. (2)–(5),
the nonlocal stress based on the integral form can be expressed as

τ I
zx =

∫ h

0

1
2R

e−
|ξ′−ξ|

R μ
∂uz

∂ξ′
dξ′

=
−iρc2

shq

2

((e−iqξ − e−ξ/R

1 − iRq
− e−iqhe(ξ−h)/R − e−iqξ

1 + iRq

)
A

−
(eiqξ − e−ξj/Rj

1 + iRq
− eiqhe(ξ−h)/R − eiqξ

1 − iRq

)
B

)
, (12)

where the superscript I stands for the integral form.
To solve the problem, we also need the interface conditions. Based on the interface theory,

the interface conditions between the two layers can be expressed as[23]{
uzR = uzL,

τzxR − τzxL = ρsü3 − τ s
zy,y,

(13)
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where subscripts L and R denote the left and right sides of the interface, and ρs and τ s
zy

are, respectively, the interface mass density and the interface stress. Notice that the units of
the interface parameters (with superscript or subscript s) are different from those in the bulk
material. In this paper we consider the following three cases: the nonlocal stress in the integral
form without the interface effect (i.e., ρs = τ s

zy = 0 in Eq. (13)), the nonlocal stress in the
differential form without the interface effect (i.e., ρs = τ s

zy = 0 in Eq. (13)), and the nonlocal
stress in the differential form combined further with the interface effect (i.e., the general case
of Eq. (13)).

For the nonlocal case in the differential form with the interface effect, we find that the
nonlocal interface stress can be expressed as (from Eq. (6))

τ s
zy = σs

zy/(1 + R2q2 + R2β2), (14)

where R and q take the values on the interface, and the local interface stress can be obtained
by the following constitutive equation:

σs
zy = μsuz,y. (15)

3 The transfer matrix and dispersion relation

The state vector is defined as V = (uz, τzx)T. Then, its values on the left and right sides of
each sub-layer in the kth unit cell can be expressed as{

V k
L = (uz, τzx)Tξ=0 = M(A, B)T,

V k
R = (uz, τzx)T

ξ=h
= N(A, B)T,

(16)

where M and N are 2×2 matrices. Their elements can be obtained from Eqs. (9), (11) or (12)
as listed in Appendix A. Eliminating the coefficients in Eq. (16), we then obtain the relation
between the state vectors on the left and right sides of the sub-layer as

V k
R = NM−1V k

L
Δ= RV k

L , (17)

where R = NM−1 is the transfer matrix of the sub-layer.
The interface condition (see Eq. (13)) indicates that, on the interface between the sub-layer

of the kth unit cell, the displacement is continuous whilst the traction is not. The general
interface relations are {

uk
z2L = uk

z1R,

τk
zx2L − τk

zx1R = ρsüz − τ s
zy,y,

(18)

where the subscripts 1 and 2 stand for the 1st and 2nd sub-layers, respectively. Combining
Eqs. (14) and (16), we can rewrite Eq. (18) as

V k
2L − V k

1R = P (A2, B2)Tk = PM−1
2 V k

2L, (19)

where P is a 2×2 matrix with its elements listed in Appendix A. Then, by combining Eqs. (17)
and (19), we can finally obtain the relation of the state vectors between the left of 1st sub-layer
and the right of 2nd sub-layer in the kth unit cell after passing the general interface as described
by Eq. (13),

V k
2R = R2(I − PM−1

2 )−1R1V
k
1L, (20)
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where I is the 2×2 unit matrix. Similarly, we consider the 2nd sub-layer’s right side of the
(k−1)th unit cell and the 1st sub-layer’s left side of the kth unit cell, by using the interface
condition (13) and the relation (17). This gives us

V k−1
2R = (I − PM−1

1 )V k
1L. (21)

From Eqs. (20) and (21), we finally derive

V k
2R = R2(I − PM−1

2 )−1R1(I − PM−1
1 )−1V k−1

2R
Δ= TkV k−1

2R , (22)

where Tk = R2(I − PM−1
2 )−1R1(I − PM−1

1 )−1 is the 2× 2 transfer matrix between the two
adjacent unit cells. Considering the periodicity of the layered structure, for all k = 1, 2, · · · , the
matrix Tk is the same. Therefore, it can be denoted as T without the subscript k.

Now through the Bloch theorem[32], we have

V k
2R = eikxhV k−1

2R , (23)

where kx is the Bloch wave number in the x-direction. Combining Eqs. (22) and (23), the
following eigenvalue equation can be obtained:

det
(
T − eikxhI

)
= 0. (24)

Therefore, for the given frequency ω, kx can be solved from Eq. (24). If the solved kx is a
real number, then it means that the waves at the given frequency can propagate in the periodic
layered structure. If kx is an imaginary number, on the other hand, then the wave at the given
frequency cannot propagate in the structure.

It is further noticed that when μs = ρs = 0 and considering the nonlocal integral model, the
problem is then reduced to the layered nanostructure of Ref. [24].

4 Numerical results and discussion

The solutions derived above are now used to calculate the dispersion relation. In order to
compare our results with those obtained by the first-principle method, the materials of layers
1 and 2 are selected as HfO2 and ZrO2, respectively. The mass densities and bulk shear wave
speeds of HfO2 and ZrO2 are ρ1 = 10 873 kg/m3, ρ2 = 6 488 kg/m3, csh1 = 779 m/s, and csh2 =
1 030 m/s. It should be noted that while the surface material parameters should be determined
from the detailed atomistic calculations or the experimental methods[27], such values for the
interface between HfO2 and ZrO2 have been unavailable in the literature so far. By comparing
the surface equation in the absence of residual stress with the approximate boundary conditions
obtained by Mindlin[33] and utilized by Tiersten[34], Gurtin and Murdoch[23] concluded that the
surface moduli are merely scaled versions of their bulk counterparts. Therefore, in the following
computation, the interface material constants are assumed to be proportional to the bulk ones
as

ρs = l1ρ2, μs = l2μ2. (25)

It is noted that since the units of the interface mass density and the interface shear modulus
have different units as compared with their corresponding bulk parameters, the proportional
coefficients l1 and l2 have the unit of length, denoting as the material intrinsic length. These
intrinsic lengths represent, respectively, the sizes of the interface mass density and the interface
shear modulus. In the part of numerical calculation, we use both the positive and negative
interface material constants. This is due to the fact that the interface cannot solely exist
without the bulk material and that the interface material constants can be positive or negative
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depending on the material type and crystal orientation[35–36]. In the following calculation, the
thicknesses of layers 1 and 2 are assumed as h1 = h2 = 0.5h. The internal characteristic lengths
in each layer and on the interface are assumed to be the same, namely, ε1 = ε2 = εs = ε or R1 =
R2 = Rs = R. For convenience, the dimensionless frequency Ω = ωh/(2πcsh1) = �1/(2π), the
dimensionless wavenumber kh/π, and the dimensionless material intrinsic length lj/h (j = 1, 2)
are also introduced.
4.1 Vertical incidence

We first study the SH waves propagating vertically to the periodic layered nanostructure
(i.e., θ = 0 in Fig. 1). In this case, the nonzero displacement uz is a function of x and t only,
and therefore the only nonzero stress component is σzx. This means that only the interface
mass density ρs will be involved in the interface material parameter. Figure 2 shows the band
structures in terms of the dimensionless frequency Ω and the dimensionless wavenumber kh/π.
From Fig. 2(a) for the nonlocal model without the interface effect (l1/h = 0), we can see
that the internal characteristic length has a great effect on the dispersion curve. At a given
wavenumber, the nonlocal differential model (denoted by the subscript d to R as Rd) decreases
the frequency and the nonlocal integral model (denoted by the subscript i to R as Ri) increases
the frequency in the low frequency region (Ω < 1). Figure 2(b) plots the influence of the local
model (R = 0) with the interface effect on the dispersion curves. It is observed from Fig. 2(b)
that, at a given wavenumber, a positive interface mass density decreases the frequency whereas
a negative one increases the frequency. The interesting features in Figs. 2(a) and 2(b) indicate
that by adjusting the negative interface mass density l1, the dispersion curves obtained by
the nonlocal differential model can be tuned to be the same as those from the nonlocal integral
model (when Ri = Rd). This is shown in Fig. 2(c) when R (= Ri = Rd) = 0.05 with an adjusted
value l1. Such a striking feature in Fig. 2(c) demonstrates further that the interface parameters
could be predicted or inverted by matching the band structures based on both the nonlocal
integral and differential models.

Fig. 2 Dispersion curves for the SH waves vertically incident to the HfO2-ZrO2 periodic layered
nanostructure, (a) the nonlocal model without the interface effect (l1/h = 0), (b) the local
model (R = 0) with the interface effect, and (c) the model with combined effects (color online)

The band structures based on the nonlocal integral model, the nonlocal differential model,
and the nonlocal differential model with the interface effect for R (= Ri = Rd) = 0.1 are
shown in Fig. 3. It is observed from Fig. 3(a) that, the cut-off frequency is the same based on
both the nonlocal differential and integral models. Figure 3(b) shows that, when the interface
parameter is l1/h = −0.259 9, the band structures obtained by the nonlocal differential model
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are almost the same as those based on the nonlocal integral model when R (= Ri = Rd) =
0.1. Furthermore, the cut-off frequency is not affected by the interface parameter when
R (= Ri = Rd) = 0.1. These interesting features suggest that there exist some intrinsic
relations between the internal characteristic length and the interface parameter, which will
be investigated later. Additionally, near Ω = 1.5 and 2, the bands are very dense and almost
flat, which show a strong wave localization phenomenon in these frequency ranges.

Fig. 3 Dispersion curves for the SH waves vertically incident to the HfO2-ZrO2 periodic layered
nanostructure, (a) the nonlocal model without the interface effect (l1/h = 0) and (b) the
model with combined effects (color online)

We point out that the nonlocal differential model combined with the interface effect could
be very accurate towards wave modeling in nanoscale. As an example, we present in Fig. 4 the
comparison of the first two SH waves bands in the HfO2-ZrO2 periodic layered nanostructure,
based on the first-principle by Ramprasad and Shi[12] and the present approach. The parameters
used are h1 = h2 = 0.501 5nm (or R = 0.18), and the waves are propagating vertically in
the structure. An angular frequency ω = 1 000 GHz here corresponds to a dimensionless
frequency Ω = 0.210 4 in Fig. 3. It is observed from Fig. 4 that the band structures predicted
by the nonlocal integral model and the nonlocal differential model with the interface density
parameter l1/h = −0.404 3 are identical to those based on the first-principle method (see
Ref. [12]). This excellent agreement opens a possible new path to inverting the interface mass

-

Fig. 4 First two bands of the vertically incident SH waves in the HfO2-ZrO2 periodic layered
nanostructure (color online)
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density in the periodic layered nanostructure. A general relation is presented below for possible
future design use.

Figure 5 predicts the important relation between the interface mass density and the internal
characteristic length when R (= Ri = Rd) �0.3 for the vertical SH waves. Along this special
curve, the dispersion curves obtained by the nonlocal differential model with the interface mass
density are the same as those based on the nonlocal integral model in the low frequency region
(Ω < 2). It is observed from Fig. 5 that, for the given R and within the low frequency range,
the dispersion curves based on the nonlocal differential model can be tuned to be exactly the
same as those based on the nonlocal integral model, thus providing us with a possible channel
to inverting the interface mass density of the given periodic layered nanostructure.

Fig. 5 A general theoretical relation between the dimensionless internal characteristic length and the
dimensionless (negative) interface mass density (color online)

Before we switch to the obliquely incident SH waves case, we show in Fig. 6 the band
structures of the same periodic layered nanostructure when R (= Ri = Rd) = 0.15 and when
frequency is relatively high. While the band gaps are almost the same before the cut-off
frequency based on the nonlocal integral model, there are two extra bands after the last dense
zone when the nonlocal differential model combined with the interface effect is used. This
phenomenon happens only when the internal characteristic length R is relatively large.

Fig. 6 Dispersion curves for SH waves vertically incident to the HfO2-ZrO2 periodic layered
nanostructure (color online)

4.2 Oblique incidence
Now, we investigate the SH waves when the incident angle is 30◦ to the HfO2-ZrO2 periodic

layered nanostructure. The dispersion curves are shown in Fig. 7(a) for the nonlocal model
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without the interface effect (l1/h = 0), in Fig. 7(b) for the local case (R = 0) with the interface
effect, and in Fig. 7(c) for combined effects. Similar to the vertical incidence case, we see
that the band structures described by the nonlocal integral model and the nonlocal differential
model with the interface effect could be tuned to be the same by properly choosing the interface
parameters. While the interface density can be characterized by the vertically incident waves
(see Figs. 3 and 4), the interface shear modulus can be predicted by matching the dispersion
curves of the obliquely incident SH waves. This is discussed further below.

Fig. 7 Dispersion curves for SH waves obliquely incident to the HfO2-ZrO2 periodic layered
nanostructure (at an angle of 30◦), (a) the nonlocal model without the interface effect
(l1/h = 0, l2/h = 0), (b) the local model (R = 0) with the interface effect, and (c) the
model with combined effects (color online)

Figure 8 shows the dispersion curves of the obliquely incident SH waves (at an incident
angle of 30◦) when R (= Ri = Rd) = 0.05, 0.1, and 0.15. It is observed that, the band
structures obtained by the nonlocal integral model are almost the same as those obtained by
the nonlocal differential model combined with the interface effect. This feature again indicates
that there exist some intrinsic relations between the internal characteristic length and the
interface parameters. Furthermore, by comparing Fig. 8(b) with Fig. 3(b), we can easily see

Fig. 8 Dispersion curves of the SH waves obliquely incident to the HfO2-ZrO2 periodic layered
nanostructure at an angle of 30◦ (color online)
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that the cut-off frequency of the obliquely incident SH waves is roughly the same as that of the
vertically incident SH waves.

The relation between the internal characteristic length and the interface shear modulus
is presented in Fig. 9. When R = Ri = Rd, the dispersion curves obtained by the nonlocal
differential model combined with the interface effect can be tuned to be the same as those
based on the nonlocal integral model at the low frequency region. However, different from the
vertically incident waves, for the case of oblique incidence, both the interface mass density and
the interface shear modulus need to be tuned. Since the interface mass density can be tuned
from the vertically incident dispersion curves, here for the obliquely incident waves, we only
need to tune the interface shear modulus. As such, combining both the vertically and obliquely
incident SH waves, one could invert all the interface parameters (both the interface mass density
and the interface shear modulus) for the given internal characteristic length.

Fig. 9 A general theoretical relation between the interface shear modulus and the internal
characteristic length for the SH waves propagating obliquely incident to the HfO2-ZrO2

periodic layered nanostructure, where the interface mass density used is the one tuned from
the vertically incident SH waves in Fig. 5 (color online)

Furthermore, we point out that even though both the nonlocal integral model and the
nonlocal differential model combined with the interface effect can be used to predict the band
nanostructure, both approaches have their own advantages and disadvantages. For example,
the nonlocal integral model has only one scale parameter, but it contains a couple of integrated
items, which could be difficult to calculate for problems involving a high-dimensional and
complex geometric shape. On the other hand, the nonlocal differential model combined with the
interface effect has a relatively simple mathematical expression, but it involves more parameters
which need to be determined.

5 Conclusions

Based on the nonlocal elastic continuum theory and the interface theory, the propagation
properties of SH waves in periodic layered nanocomposites are studied by using the transfer
matrix method and the Block theory. The differences and relations among the nonlocal integral
model, the nonlocal differential model, and the latter model with the interface effect are
studied via their band structures. Numerical examples show further the effects of the internal
characteristic length and the interface parameters on the band structures. From our numerical
results, the following conclusions can be drawn.

(i) By choosing appropriate interface parameters, the dispersion relation of the SH waves
predicted by the nonlocal integral model can be tuned in good agreement with that obtained by
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the nonlocal differential model combined with the interface effect. This feature holds for both
vertically and obliquely incident waves to the periodic layered nanostructure at a low frequency.

(ii) Interface parameters have no effect on the cut-off frequency when considering the
nonlocal theory. In other words, the cut-off frequency will be the same when the internal
characteristic length is small, no matter whether the nonlocal integral or differential model is
used.

(iii) The cut-off frequency of the obliquely incident waves is almost the same as that of the
vertically incident waves.

(iv) By matching the SH waves band structures obtained based on the two different nonlocal
models, we could invert the interface mass density when the wave is vertically incident and invert
the interface shear modulus when the waves is obliquely incident.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.
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Appendix A

The matrices M and N in Eq. (16) are given by

M =

0
@ 1 1

−iρc2
shq

1 + R2q2 + R2β2

iρc2
shq

1 + R2q2 + R2β2

1
A , (A1)

N =

0
@ e−iqξ eiqξ

−iρc2
shqe−iqξ

1 + R2q2 + R2β2

iρc2
shqeiqξ

1 + R2q2 + R2β2

1
A (A2)

for the nonlocal differential model, and

M =

0
@ 1 1

iρc2
shq(e−iqhe−h/R − 1)

2(1 + iRq)

−iρc2
shq(eiqhe−h/R − 1)

2(1 − iRq)

1
A , (A3)

N =

0
@ e−iqξ eiqξ

−iρc2
shq(e−iqh − e−h/R)

2(1 − iRq)

iρc2
shq(eiqh − e−h/R)

2(1 + iRq)

1
A (A4)

for the nonlocal integral model.
The matrix P in Eq. (19) is given by

P =

„
0 0

−ρsω
2 + μsβ

2/ms −ρsω
2 + μsβ

2/ms

«
, (A5)

where ms = 1 for the nonlocal integral model, and ms = 1 + R2q2 + R2β2 for the nonlocal differential
model.


