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Abstract Marine archaea are a significant compo-

nent of the global oceanic ecosystems, including the

polar oceans. However, only a few attempts have been

made to study archaea in the high Arctic fjords. Given

the importance of Archaea in carbon and nitrogen

cycling, it is imperative to explore their diversity and

community composition in the high Arctic fjords, such

as Kongsfjorden (Svalbard). In the present study, we

evaluated archaeal diversity and community compo-

sition in the size-fractionated microbial population,

viz-a-viz free-living (FL; 0.2–3 lm) and particle-

attached (PA;[ 3 lm) using archaeal V3–V4 16S

rRNA gene amplicon sequencing. Our results indicate

that the overall archaeal community in the surface

water of Kongsfjorden was dominated by the members

of the marine group-II (MGII) archaea, followed by

the MGI group members, including Nitrosopumi-

laceae and Nitrososphaeraceae. Although a clear

niche partitioning between PA and FL archaeal

communities was not observed, 2 OTUs among 682

OTUs, and 3 ASVs out of 1932 ASVs were differen-

tially abundant among the fractions. OTU001/

ASV0002, classified as MGIIa, was differentially

abundant in the PA fraction. OTU006/ASV0006/

ASV0010 affiliated with MGIIb were differentially

abundant in the FL fraction. Particulate organic

nitrogen and C:N ratio were the most significant

variables (P\ 0.05) explaining the observed variation

in the FL and PA archaeal communities, respectively.

These results indicate an exchange between archaeal

communities or a generalist lifestyle switching

between FL and PA fractions. Besides, the particles’

elemental composition (carbon and nitrogen) seems to

play an essential role in shaping the PA archaeal

communities in the surface waters of Kongsfjorden.

Keywords Archaea � Particle-attached � Free-

living � Kongsfjorden � OTU � ASV � Arctic Ocean

Introduction

Microbial degradation of particulate organic carbon is

an integral part of the marine carbon cycle, which

regulates oceanic carbon sequestration via the biolog-

ical pump and influences various climate processes

(Jiao et al. 2014). The role of bacteria in marine

particulate organic matter degradation (Ducklow et al.

1985), and genetic (Smith et al. 2013; Mohit et al.

2014) and physiological differences (Fletcher 1991;

Arnosti et al. 2012; D’Ambrosio et al. 2014; Balmonte
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et al. 2018) between particle-attached (PA) and free-

living (FL) bacteria are well studied. However,

diversification between PA and FL archaea and their

role in particulate organic matter degradation is only

beginning to be understood.

Once considered as obligate extremophiles,

Archaea are now recognized as a ubiquitous and

abundant component of the marine microbial commu-

nities. Marine archaea are classified into three major

lineages, including Marine Group I (MGI) thaumar-

chaeota, Marine Group II (MGII) thermoplasmatota,

and Marine Group III (MGIII) thermoplasmatota,

which is a recently proposed phylum (Rinke et al.

2019). MGI thaumarchaea are cosmopolitan

chemolithoautotrophs that are numerically more

abundant in the ocean’s interior and are responsible

for aerobic ammonia oxidation (Karner et al. 2001).

Currently, members of the MGI have been isolated

from the surface ocean (Könneke et al. 2005; Qin et al.

2014). To date, no representatives of this archaeal

group retrieved from the dark ocean have been

successfully cultured (Swan et al. 2014). Both MGII

and MGIII groups lack cultured representatives.

However, a high abundance of MGII archaea in

particle-rich waters (Galand et al. 2008) and their

physical association with the particles have been

reported (Orsi et al. 2015). Further studies have

demonstrated that the genomic constitution (Orsi et al.

2015) and diversity of free-living MGII are distinct

from those of the particle-attached forms (Galand et al.

2009a). Functional predictions based on metagenomes

of MGII (Iverson et al. 2012; Orsi et al. 2015; Rinke

et al. 2019; Tully 2019) and MGIII (Martin-Cuadrado

et al. 2008; Haro-Moreno et al. 2017) suggest the

potential for degradation of protein, lipid, carbohy-

drate and a preference for adhesion to particulate

organic matter (POM). However, in a few studies, both

MGII and MGIII were identified as the dominant

component in free-living fractions with equal or even

more abundance than PA fractions (Li et al. 2020).

Similarly, some studies reported no distinction in the

relative abundance of MGI archaea among PA and FL

fractions (Eloe et al. 2011; Jing et al. 2018).

Conversely, others reported a higher prevalence of

MGI in the free-living fractions (Li et al. 2020). Thus,

it appears that the preference for PA or FL lifestyle

among archaeal taxa is still elusive and warrant further

studies to understand their association with particles

and delineate their role in POM transformation.

The Arctic is warming at an unprecedented rate,

and as a consequence, it is expected to affect the

carbon cycling in the high Arctic fjords (Smith et al.

2015). Fjords, the interface zone between terrestrial

ecosystems and the open ocean, represent hotspots in

the carbon cycle that bury a significant amount of

organic carbon, making them crucial in regulating the

carbon cycle over time (Smith et al. 2015; Bianchi

et al. 2020). Previous studies have shown that POM in

Arctic fjords is colonized by high molecular weight

polymer degrading bacterial taxa, including Verru-

comicrobia and Bacteroidetes, playing an essential

role in POM transformation (Cardman et al. 2014; Jain

et al. 2019). However, not much is known about PA

and FL archaeal communities from the high Arctic

fjords. Although several studies on archaeal commu-

nities in particle-rich waters of Arctic river, coast, and

shelf ecosystem have been conducted (Bano et al.

2004; Galand et al. 2008, 2009a, b), information from

the high Arctic fjords is very fragmentary (Liu et al.

2018). Besides, experimental and metagenomic-based

studies have indicated that some archaeal taxa (MGII

and MGIII) can attach to POM and degrade (Iverson

et al. 2012; Orsi et al. 2015; Rinke et al. 2019; Tully

2019). Thus, we hypothesized that PA archaeal

community structure would be driven by the chemical

composition of the particles in the high Arctic fjord.

To address the proposed hypothesis the present study

was planned with the following objectives: 1) to

compare PA and FL archaeal communities using 16S

rRNA gene amplicon sequencing and 2) to identify the

most significant environmental factors shaping PA and

FL archaeal communities in Kongsfjorden, a high

Arctic fjord.

Materials and methods

Study site

Kongsfjorden, a glacial fjord located on the north-west

coast of Spitsbergen (Svalbard, Arctic Ocean)

(Fig. 1), is considered the most appropriate site to

study climate change-related processes (Hop et al.

2002). This fjord receives significant meltwater influx

from its tidewater glaciers (Svendsen et al. 2002),

contributing organic and mineral-rich particles to the

fjord. The increased intrusion of warmer and saline

Atlantic water (Cottier et al. 2005; David and
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Krishnan 2017; Singh et al. 2020) affects the phyto-

plankton bloom phenology (Singh et al. 2020),

macroalgal distribution (Bartsch et al. 2016; Hop

et al. 2016) and biogeochemical processes in the

Kongsfjorden (Iversen and Seuthe 2011; Seuthe et al.

2011). As Kongsfjorden is also rich in organic

particles (Sagan and Darecki 2018), it forms an ideal

site to study particle-attached microbial communities.

Fig. 1 Map showing the location of the A Svalbard archipelago, B Kongsfjorden in the Svalbard archipelago, and C sampling locations

(filled red circle) in Kongsfjorden
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Sampling

A sampling of subsurface water (at 10 m depth) was

carried out from 15–20th September 2017 at six

different locations in Kongsfjorden (Fig. 1). Two

liters of water were collected in triplicate from each

sampling site. It was sequentially filtered through

3 lm pore size polycarbonate membrane filter (Mil-

lipore, USA) and then through 0.22 lm pore size

polycarbonate membrane filter (Millipore, USA).

Microbial biomass retained on the 3 lm membrane

was considered a particle-attached fraction, while

biomass within the size range of 3—0.22 lm was

grouped as a free-living fraction. Membrane filters

were stored frozen at -80 �C until analysis.

Environmental variables

Environmental variables including seawater tempera-

ture, salinity, fluorescence, and dissolved oxygen were

measured using different sensors fitted on to the CTD

(SEB 19 plus, Seabird Electronics, USA). Dissolved

inorganic nutrients were measured using standard

colorimetric methods (Grasshoff et al. 1985)(Grassh-

off, K; Ehrhardt, M; Kremling 1985)(Grasshoff, K;

Ehrhardt, M; Kremling 1985)(Grasshoff, K; Ehrhardt,

M; Kremling 1985). Dissolved organic carbon was

measured using Shimadzu TOC AU-10 analyzer.

Particulate organic carbon (POC), organic nitrogen

(PON), and d13C-POC were measured using Isoprime

Stable Isotope Ratio Mass Spectrometer coupled with

an Elemental Analyzer (Isoprime, Vario Isotope

Cube). Colorimetric methods were used for estimating

amounts of particulate-carbohydrates (P-CHO; Ger-

chakov and Hatcher 1972), -protein (P-PRT; Hartree

1972) and –lipids (P-LIP; Bligh and Dyer, 1959;

Barnes and Blackstock 1973). Biopolymeric organic

carbon (BP-C) fraction was calculated as described in

Danovaro et al. (2001).

Archaeal community analyses

DNA from microbial biomass retained on 3 lm (PA

fraction) and 0.22 lm (FL fraction) polycarbonate

membrane filters were extracted using the Pow-

erWater DNA extraction kit (Mo Bio, USA) following

the manufacture’s protocol. DNA samples were sent to

Agrigenome Pvt Ltd (India) to amplify the V3-V4

region of the Archaeal 16S rRNA gene using

ARC344F/Arch806R primer (Raskin et al. 1994) and

amplicon sequencing using Illumina MiSeq platform

2500. The amplicon sequencing data was analyzed for

the operational taxonomic units (OTUs) in MOTHUR

1.44.1 following the standard operating procedure

(http://www.mothur.org/wiki/MiSeq_SOP; Kozich

et al. 2013) as well as for the amplicon sequence

variants (ASVs) in DADA2 1.16 (https://benjjneb.

github.io/dada2/tutorial.html; Callahan et al. 2017).

Both analyses were performed by remote access to the

Pratyush-High Performance Computing facility loca-

ted at the Indian Institute of Tropical Meteorology

(India). The details of the commands used in

MOTHUR 1.44.1 and DADA2 1.16 are provided in

supplementary methods.

Linear discriminant analysis (LDA) effect size

(LEfSe)

LEfSe was used to identify statistically significant

(P[ 0.05) and differentially abundant archaeal OTUs

and ASVs among PA and FL fractions

using lefse command in MOTHUR. LEfSe uses non-

parametric factorial Kruskal–Wallis (KW) and pair-

wise Wilcoxon rank-sum tests, followed by Linear

Discriminant Analysis (LDA) to estimate the effect

size of each differentially abundant taxon indicated by

the logarithm of LDA score (Segata et al. 2011).

Archaeal OTUs with a P value\ 0.05 and LDA score

[log10] of[ 2 were considered differentially abun-

dant. Raw sequences were deposited in the NCBI

Sequence Read Archive under accession number

PRJNA660592 (https://www.ncbi.nlm.nih.gov/sra/

?term=PRJNA660592).

Phylogenetic analysis

Representative sequences from the top 10 OTUs

(covering 95% of the total sequences; Supplementary

table S.4) were used to construct the phylogenetic

trees to compare their relatedness to the NCBI

database sequences. The phylogenetic relatedness

between top10 OTUs and top20 ASVs (covering

85% of the total sequences; supplementary table S.5)

is shown in supplementary figure S.2. The phyloge-

netic trees were constructed in MEGA-5 using max-

imum composite likelihood as a substitution model

and neighbor-joining as the statistical method with

1000 bootstrap replications.
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Statistical analyses

PRIMER v6 software package [Plymouth Marine

Laboratory, UK] was used for comparing archaeal

community profiles (at OTU- and ASV-level) among

samples. For this, the abundance of OTUs and ASVs in

each sample was square-root transformed. The trans-

formed data were used to calculate the Bray–Curtis

similarity index. The similarity matrix was used to

perform cluster analysis using a group-average linking

method along with the similarity profile (SIMPROF)

test. SIMPROF test looks for the statistically signif-

icant clusters in unstructured data (Clarke et al. 2008).

The output of the SIMPROF test was superimposed on

to the NMDS plot. To relate environmental variables

with the OTU- and ASV-based profiles of the FL and

PA archaeal communities, distance-based linear mod-

els (distLM) and distance-based redundancy analysis

(db-RDA) were carried out in PERMANOVA ? ad-

don of PRIMER V6.

Results and discussion

Environmental settings

The decreasing lateral gradient in temperature and

salinity and increasing gradient in nitrate and nitrite

from the KGF1 (outermost station) to KGF5 and

KGF6 (two innermost stations) (Supplementary

table S.1) indicate the influence of glacial meltwater

influx (Cottier et al. 2005; David and Krishnan 2017).

Whereas, the decreasing gradient in fluorescence and

photosynthetically available radiation (PAR) from

outer to the inner fjord (Supplementary table S.1)

indicate a decrease in primary productivity resulting

from reduced light penetration due to inputs of

suspended particles via turbid plumes of glacial

meltwater (Hop et al. 2002). The C: N ratio showed

an increasing trend from outer to the inner fjord,

except at the central location (KGF3) (Supplementary

table S.1). C:N ratio of the organic matter is used for

differentiating the labile and non-labile or refractory

organic matter. C:N = 1–10 indicate phytoplankton

derived labile-OM, whereas C:N[ 20 indicates ter-

rigenous refractory-OM (Meyers 1994). In the present

study C: N ratio ranged from 4.95 to 10.57, suggesting

that the POM was labile and mainly derived from

the in-situ primary production.

Archaeal community composition

Based on the phylogenetic classification of archaeal

16S rRNA gene sequences using silva.nr_v138

database, four major archaeal phyla were identi-

fied. Thermoplasmatota (newly proposed phylum

(Rinke et al. 2019) was the most abundant archaeal

phylum comprising 76% of the total sequences

followed by 23% of Thaumarchaeota (separated

recently from the Crenarchaeota phylum), Nanoar-

chaeota (0.4%), and Halobacterota (0.2%) (Fig. 2A).

MGII Thermoplasmatota was the most abundant taxa,

followed by members of MGI Thaumarchaeota,

including Nitrosopumilaceae and Nitrososphaer-

aceae (Fig. 2B). Conversely, previous studies reported

that MGI was the most abundant archaeal group

followed by MGII in the Arctic Ocean (Galand et al.

2009a), the Svalbard region (Liu et al. 2018) and

Kongsfjorden (Zeng et al. 2021). However, our results

are congruent with Galand et al. (2008), where they

have reported predominance of MGII archaeal group in

16S rRNA gene clone libraries constructed from the

coastal Beaufort Sea. More recently, studies have also

demonstrated that MGII is more abundant in the

surface oceanic waters than MGI, which are more

abundant in the deeper depths (Xia et al. 2017; Rinke

et al. 2019).

Patterns of OTU diversity

A total of 56,35,946 V3–V4 archaeal 16S rRNA gene

sequences with an average length of 410 nucleotides

were obtained from 12 samples after reducing

sequencing and PCR errors followed by chimera

removal in MOTHUR (Table 1). The sequencing

depth of all the samples was normalized to 253,092

reads per sample, yielding 682 OTUs. All the samples

showed a very high species coverage index ([ 99%)

(Table 1) and their rarefaction curves showed asymp-

tote (Fig. 3A), suggesting that an adequate level of

sequencing has been made to capture the diversity

within each sample. Archaeal species richness (ob-

served OTUs) among FL and PA fractions varied

spatially in Kongsfjorden (Table 1, Fig. 3A). Espe-

cially, the highest archaeal species richness was

observed in the PA fraction of the KGF-5, which is

located close to the Kornebreen glacier (Fig. 1). This

location is highly influenced by the glacial meltwater

influx contributing to inorganic particles and particles
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of organic origin (Beszczyńska-Möller et al. 1997),

promoting higher OTU richness at this location as

compared to the rest of the Kongsfjorden. Similarly,

pervious reports suggested that glacial inputs could

modulate the bacterial OTU diversity in Kongsfjorden

(Zeng et al. 2009; Piquet et al. 2010; Jain and Krishnan

2017; Jain et al. 2019). There was no significant

difference in the archaeal alpha diversity between the

PA and FL fractions (Table 1). Similarly, Galand et al.

(2008) found no differences in archaeal diversity

among PA and FL fractions in the western Canadian

Arctic. Further, they recommended that analysis of

additional fractions of the particles (in the range of 0.8

to 3 lm) could have revealed differences in the

archaeal communities. Recently, Orsi et al. (2015)

reported that most MGII archaea were physically

attached to the particles in the size range of 0.8–3 lm

in the central Californian current system. However,

studies from the freshwater (Wang et al. 2020;

Borrego et al. 2020) and marine environment (Jing

et al. 2018; Li et al. 2020), using 3 lm cutoff for the

PA fraction, observed significant differences in the

Fig. 2 The relative abundance of archaeal taxa at A phylum, B family with corresponding class in parentheses, and C genus level in the

PA and FL fractions

Table 1 The total number of sequences, goods coverage, observed OTUs, inverse Simpson and Shannon diversity in the OTU-level

FL and PA archaeal communities at each sampling station

Station_Id Total number of sequences Goods coverage (%) Observed OTUs Inverse Simpson Shannon

FL PA FL PA FL PA FL PA FL PA

KFG1 658,726 722,873 99.99 99.99 112 143 5.50 5.11 1.965 1.932

KFG2 511,451 253,092 99.99 99.99 123 100 5.20 6.48 1.981 2.190

KFG3 357,486 391,353 99.99 99.99 151 134 6.70 6.58 2.233 2.329

KFG4 473,533 421,908 99.99 99.99 144 85 5.05 6.80 2.058 2.192

KFG5 532,234 431,603 99.99 99.99 91 201 3.76 3.55 1.786 1.812

KFG6 567,814 313,873 99.99 99.99 95 158 6.84 4.77 2.076 2.034
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diversity and community composition between FL and

PA archaeal communities. Another possibility for

having similar diversity and community composition

among the FL and PA archaeal communities, as

observed in the present study, could be dislodging of

particle-attached archaeal cells into the free-living

fraction during filtration. However, it should be noted

that we have reported a clear distinction between FL

and PA bacterial communities from the same samples

(Jain et al. 2019) used in the present study. Besides, we

cannot rule out the possibility that the use of various

size-fractions, instead of two fractions, might have

revealed a more comprehensive view of the life-style

preference among the archaeal communities in the

high Arctic fjord.

SIMPROF test segregated the FL and PA archaeal

communities into four statistically different clusters

superimposed on to the NMDS plot (Fig. 3B). Three

out of four clusters contain a mixture of both FL and

PA communities. For instance, in cluster-I: KGF5_PA

Fig. 3 A Rarefaction curves

and B non-metric

multidimensional scaling

plot of the PA and FL

archaeal communities

(OTU-level) from the

surface waters of

Kongsfjorden. The grey

color circles in the NMDS

plot indicate statistically

significant clusters

identified by the SIMPROF

analysis. The samples within

each cluster are statistically

similar, and the samples in

different clusters are

statistically different
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was clustered along with its own FL counterpart

(KGF5_FL); cluster-III: KGF1_FL and KGF6_FL

were grouped along with the other PA communities

(KGF1_PA, KGF2_PA, and KGF4_PA); cluster-IV:

comprised of FL and PA communities from different

sampling locations (KGF6_PA and KGF3_FL). In

cluster-II, FL communities from two other locations

(KGF2_FL and KGF4_FL) were grouped. KGF3_PA

did not cluster with any of these samples suggesting a

distinct archaeal community. The mixing of the PA

and FL communities within SIMPROF clusters (clus-

ter-I, cluster-III and cluster-IV) indicates a high

similarity among FL and PA communities, which

further suggests that there was no clear niche separa-

tion among PA and FL archaeal communities in the

surface waters of Kongsfjorden. This could be due to

exchange between communities and a ‘‘generalists’’

lifestyle, as was observed for size-fractionated

archaeal communities in the western Canadian Arctic

(Galand et al. 2008). Conversely, bacterial commu-

nity analysis from the same samples used in the

present study showed higher bacterial richness and

diversity in the PA than FL fraction and a clear niche

partitioning among PA and FL bacterial communities

(Jain et al. 2019). Further, the richness and diversity of

archaeal OTUs (Table 1) observed in the present study

appear to be lower than that of the bacterial commu-

nities (Supplementary table S.2) and concur with

previous reports (Murray et al. 1998; Li et al. 2020;

Zeng et al. 2021). These results suggest that the

separation among archaeal populations cannot be

resolved using 16S rRNA gene sequences alone. The

inherent lower archaeal diversity creates similarity

across samples which may mask their genomic

functional diversity.

Patterns of ASV-level diversity

A total of 2,488,086 reads were obtained from the 12

samples after quality filtering and chimera removal in

DADA2. The sequencing depth per sample was

rarefied to 84,858 reads, yielding a total of 1932

ASVs. The total number of ASVs (1932) was three-

times higher than the total number of OTUs (682)

obtained in the present study. Similarly, Prodan et al.

(2020) reported the formation of higher numbers of

ASVs than OTUs in HELIUS fecal samples dataset

using DADA2 and MOTHUR, respectively. The

number of ASVs was significantly higher than that

of the number of OTUs in each sample (Supplemen-

tary table S.3). Similarly, both Shannon and inverse

Simpson diversity of ASVs was higher than that of the

OTUs in each sample (Supplementary table S.3).

Prodan et al. (2020) suggest that ground-truth ASV-

level data should always yield higher alpha-diversity

than OTU-level data. The lack of significant differ-

ences in the richness and the diversity of ASVs

between FL and PA archaeal communities are similar

to our observations made using OTU-level data

(Table 1). SIMPROF analysis separated the ASV-

level data into four statistically different clusters

(Supplementary Figure S.1), similar to the clusters

obtained in OTU-level data indicating no differences

in beta diversity patterns among the OTU- and ASV-

level data.

Phylogenetic analysis of top 10 OTUs and 20

ASVs

Phylogenetic tree includes a core community analyses,

considering both fractions. Recent research has shown

that MGII is an order-level lineage named Candida-

tus Poseidoniales (after Gr. n. Poseidon, God of the

sea) comprising of the families Candidatus Posei-

donaceae fam. nov. (Formerly subgroup MGIIa)

and Candidatus Thalassarchaeaceae fam. nov. (for-

merly subgroup MGIIb) (Rinke et al. 2019). There-

fore, representative sequences from MGII OTUs

(Supplementary table S.6) were blasted against

metagenome-assembled genomes (MAGs) using Inte-

grated Microbial Genomes and Microbiomes (https://

img.jgi.doe.gov/). In particular, the assembled gen-

ome of Canditatus Poseidoniales archaeon AHCG

(NCBI taxon id = 274,854) and Canditatus Thalas-

soarchaea mediterranii composite genome (Scaffold

id = IMG 2,645,788,718) were used as reference

genome representing subgroup MGIIa and MGIIb

respectively. OTU001 showed the highest similarity

(99%), followed by OTU003 (98%), OTU004 (97%),

OTU007 (96%), OTU008 (96%), and OTU009 (95%)

with the Canditatus Poseidoniales archaeon AHCG.

OTU005 and OTU006 showed 99% and 93% simi-

larity with Canditatus Thalassoarchaea mediterranii,

respectively. Thus, based on the similarity of repre-

sentative sequences with the reference genomes, the

two subgroups of MGII observed in the phylogenetic

tree were defined as MGIIa and MGIIb (Fig. 4). In the

phylogenetic tree, most of the MGIIa OTUs matched
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very well with the reference sequences reported from

the surface or photic depths ranging from 15 to 50 m

(Fig. 4). MGIIb OTUs matched with the reference

sequences reported from the deeper depth of the Arctic

Ocean and Arctic fjord ranging from 50 to 386 m.

There are reports which indicate that MGIIa is found

more often in surface samples (Frigaard et al. 2006),

while MGIIb is more frequently found in deeper

waters (Massana et al. 2000; Galand et al. 2009a;

Hugoni et al. 2013; Martin-Cuadrado et al. 2015).

Phylogenetic analyses of key metabolic functions in

Ca. Poseidoniales (MGII) suggest that their ancestors

were surface water-dwelling photoheterotrophs that

has evolved to occupy multiple related ecological

niches by spectral tuning of proteorhodopsin genes

(Zhang et al. 2015). OTU010 affiliated with MGI 1b of

soil family Nitrososphaeraceae (Tourna et al. 2011)

matched very well with the reference sequences

reported from the mangrove and paddy soil. OTU002

affiliated with Candidatus Nitrosopumilus (MGI 1a)

showed a high similarity with the reference sequences

obtained from the Antarctica and Gulf of Maine

(Fig. 4). MGI archaea are mainly chemolithoau-

totrophs responsible for aerobic ammonia oxidation

(Pester et al. 2011).

The total number of ASVs was significantly higher

than the total number of OTUs, indicating that

multiple ASVs might represent a single OTU. This is

because OTUs collapse the individual sequence vari-

ation of ASVs into OTU clusters. Therefore, top 20

ASVs (covering 85% of the total sequences, supple-

mentary table S.5 and S.7) were used for comparison

with the top 10 OTUs in a phylogenetic tree (Supple-

mentary figure S.2). All the top 10 OTUs are

represented among the top 20 ASVs. The majority of

OTUs are represented by at least 2 or more ASVs,

except few OTUs (OTU001, OTU008, and OTU005)

(Supplementary figure S.2).

Fig. 4 Phylogenetic tree of representative sequences from top

10 OTUs (covering[ 95% of the total sequences) showing their

affiliation with the NCBI database sequences. Bootstrap

values[ 50 are shown at the nodes. The scale bar indicates

the percentage of sequence divergence. The total number of

sequences in each OTU is shown in the parenthesis next to the

OTU number
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Differentially abundant OTUs and ASVs

No apparent difference in the relative abundances at

phylum, family, and genus levels was observed

between MGII PA and FL archaeal communities

(Fig. 2). This could be attributed to the fact that MGII

belongs to uncultured archaeon, and the taxonomic

information at a more refined level is not available in

the database (Li et al 2020). Therefore, in the present

study difference between MGII PA and FL composi-

tion was unnoticeable (Fig. 2). Lefse analysis was

performed on the OTU- (97% sequences similarity

level) and ASV-level data to find the differentially

abundant OTUs or ASVs. Lefse analysis showed that 2

out of 682 OTUs and 3 out of 1932 ASVs were

differentially abundant between PA and FL fraction.

OTU001 affiliated to Canditatus Poseidoniales

(MGIIa) covering 22% of the total sequences were

differentially abundant (LDA log10 = 4.3363,

P\ 0.05) in the PA fractions. OTU006 (LDA

log10 = 4.0869, P\ 0.05) affiliated with MGIIb that

covered 6.8% of the total sequences was differentially

abundant in the FL fraction. Similarly, ASV0002, aka

OTU001 affiliated with MGIIa covering 17% of the

total sequences, was differentially abundant in the PA

fractions. While ASV0006, and ASV0010, affiliated

with MGIIb (OTU006) were differentially abundant in

the FL fractions. The relative abundance of the top 10

OTUs and top 20 ASVs are shown in Fig. 5. Overall

our understanding of MGII is very fragmentary and

incomplete, largely due to a lack of pure cultures and

whole genomes that would allow us to understand

better these organism’s physiology and biochemistry

(Zhang et al. 2015). However, metagenomic analysis

of MGII revealed the presence of several genes

encoding for cell adhesion, degradation of high

molecular weight organic matter, and photoheterotro-

phy (Iverson et al. 2012; Rinke et al. 2019; Tully

2019), indicating the preference for particle-attached

lifestyle. MGII populations on particles are more

Fig. 5 The relative abundance of A top10 archaeal OTUs (covering[ 95% of the total sequences) and B top20 ASVs (covering 85%

of the total sequences) in the PA and FL fractions. Differentially abundant OTUs and ASVs are shown in boldface in the legends
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abundant (Orsi et al. 2015) and phylogenetically

distinct than free-living MGII (Galand et al. 2008).

However, in the present study, several OTUs and

ASVs affiliated to MGII, including OTU003/

ASV0003/ASV0012, OTU004/ASV0005/ASV0007/

ASV0015, OTU005/ASV0004, OTU007/ASV0008/

ASV0014, OTU008/ASV0009, and OTU009/

ASV0008/ASV0014, were identified as equally abun-

dant in FL and PA fractions (Fig. 5), suggesting that

Kongsfjorden PA MGII archaeal population are not

phylogenetically distinct from their FL counterparts

and there could be an exchange between the

communities.

Abundant and spatially variable OTUs and ASVs

OTU002 (covering 20% of the total sequences)

affiliated with MGI 1a Ca. Nitrosopumilus and its

representative ASVs (ASV0001, ASV0011,

ASV0016; covering 20% of the total sequences)

showed similar spatially variable distribution among

FL and PA communities. In four locations, including

KGF1, KGF2, KGF4, and KGF6, the relative abun-

dance of OTU002 and its affiliated ASVs was higher

in the FL fractions than PA. In contrast, no difference

in their relative abundance between FL and PA

fractions was recorded at KGF3 and KGF5 (Fig. 5).

Previous studies have shown that MGI dominated both

PA and FL fractions with no distinction in their

relative abundance between fractions (Eloe et al.

2011; Jing et al. 2018). However, other studies

reported a higher prevalence of MGI in free-living

fractions (Li et al. 2020) mainly due to their

chemolithoautotrophic metabolism via aerobic ammo-

nia oxidation (Smith et al. 2013; Tarn et al. 2016;

Salazar et al. 2016).

Notably, OTU010/ASV0027/ASV0030 affiliated

with MGI 1b family Nitrososphaeraceae was abun-

dant in the PA than FL fraction only at the sampling

site KGF3. At the same time, they constitute a minor

component of the PA fraction obtained from KGF6

(Fig. 5). The predominance of OTU010/ ASV0027/

ASV0030 explains the separation of the KGF3_PA

community from the rest of the archaeal communities

in the NMDS plots (Fig. 2B and supplementary S.1).

Further, members of the MGI Ib Nitrososphaer-

aceae are mainly associated with the soil ecosystems

(Tourna et al. 2011). Thus, it is possible that their high

occurrence in the KFG3_PA could be due to the

drainage of melt water from the two valley glaciers

Austre and Vestre Broggerbreen via Bayelva catch-

ment area (Nowak and Hodson 2013). The station

KGF3 is located close to the Bayelva catchment area

which is located next to the International Research

facility at Ny-Ålesund (Fig. 1). The entire Bayelva

catchment area has underlying permafrost and

receives meltwater from the two valley glaciers Austre

and Vestre Broggerbreen. During the summer, melt-

water is routed through an extensive network of supra-

glacial drainage networks to Kongsfjorden (Nowak

and Hodson 2013). However, C: N ratio of 4.95

recorded at the KGF3 (lowest among all the stations)

suggests that the POM is mainly derived from the in-

situ production. Thus, the high occurrence of

OTU010/ASV0027/ASV0030 in KGF3_PA could be

associated with the presence of highly liable POM (at

KGF3) rather than contribution from the melt water

inputs. Cai et al. (2019) showed that members of MGI

Ib, in particular, the genus Nitrososphaera of the

family Nitrososphaeraceae were dominant in the par-

ticle-attached ammonia-oxidizing microbial commu-

nities. Recent studies have shown that particle-

attached MGI might be involved in the uptake and

assimilation of ammonia (Li et al. 2020) and organic

compounds released via decomposition of organic

particles (Alonso-Sáez et al. 2012; Qin et al. 2014).

Factors influencing archaeal community structure

Stepwise distance-based linear modeling (distLM) and

distance-based redundancy analysis (db-RDA) were

performed to find the best environmental variables that

explained the observed variation in the OTU- and

ASV-level FL and PA archaeal community structure.

PON and DO concentration were the best variables

that explained the observed variation among OTU-

level FL archaeal communities (Fig. 6A). The first db-

RDA axis explained 41.6% of the total variance, while

the second axis explained 23.7% of the total variance

among FL communities (Fig. 6A). PON showed a

positive correlation (R = 0.880) with the first axis and

was the most significant (P\ 0.05) variable explain-

ing the observed variation in the FL archaeal commu-

nities. There was no significant correlation between

the abundance of differentially abundant OTU006 in

the FL fraction and the PON concentration. However,

the relative abundance of OTU002 (MGI 1a Ca.

Nitrosopumilus) in the FL (R = -0.878) and PA (R = -
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0.586) fraction showed a negative correlation with the

PON concentration. Thus, it appears that organic

nitrogen has a negative effect on the spatial distribu-

tion of MGI 1a OTU002 (Ca. Nitrosopumilus) among

FL and PA communities in Kongsfjorden. Orsi et al.

(2016) reported that MGI thaumarchaea did not

assimilate phytoplankton-derived organic nitrogen or

proteins, which could be associated with their obligate

chemolithoautotrophic metabolism via ammonia oxi-

dation, that makes them unable to use organic nitrogen

or proteins (Könneke et al. 2005).

C: N ratio and PON concentration were the best

variables explaining the observed variation in the PA

archaeal communities (Fig. 6B). The first db-RDA

axis explained 48.3% of the total variance, and the

second axis explained 24.8% of the total variance in

the PA communities (Fig. 6B). C: N ratio was the most

significant variable (P\ 0.05) influencing the PA

archaeal communities (Fig. 6). The relative abun-

dance of differentially abundant MGIIa OTU001 in

the PA fraction showed a strong negative correlation

(R = - 0.7008) with the C: N ratio, suggesting their

preference for fresh and highly liable organic matter.

Metagenomic analyses of the MGII group showed the

presence of protein (Iverson et al. 2012; Orsi et al.

2015; Orellana et al. 2019; Rinke et al. 2019), lipids,

and carbohydrates degradation pathways (Orsi et al.

2016; Xie et al. 2018) indicating their role in the

transformation of dissolved (Orsi et al. 2016) as well

as particulate (Orsi et al. 2015) organic matter in the

marine ecosystem. distLM and db-RDA analysis of

the ASV-level data also showed that PON and C: N

ratio were the most significant variables explaining the

variation in FL and PA communities, respectively

(Supplementary figure S.3), which is similar to our

observations from the OTU-level data.

Conclusions

Our results showed that the top 10 OTUs covered 95%

of the total sequences. The majority of the MGII OTUs

(among top 10 OTUs) showed equal distribution

among FL and PA fractions, except one (OTU001)

that was differentially abundant in the PA fraction.

The most abundant MGI OTU (OTU002) also showed

spatially variable distribution among FL and PA

fractions, i.e., at some locations, it is more abundant

in the FL fractions than PA, and in other sites showed

equal distribution among fractions. SIMPROF and

NMDS analysis showed mixing of the FL and PA

communities from the same as well as different

locations, suggesting a lack of clear niche segregation

among FL and PA archaeal communities. Besides,

ASV-level data provided a more resolved picture of

the FL and PA archaeal communities than the OTU-

level data, producing three times more ASVs than total

OTUs. However, the diversity and spatial distribution

patterns among FL and PA archaeal communities were

similar in both ASV- and OTU-level community

profiles. To the best of our knowledge, this is the first

study to observe the predominance of MGII in both PA

Fig. 6 db-RDA plots showing the best environmental variables explaining the observed variation in the OTU-level A FL and B PA

archaeal communities. The most significant (P\ 0.05) variables are shown in boldface
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and FL fractions in the surface water of an Arctic fjord.

This will form the basis of further research on their

(MGII) physiology and lifestyle preferences in the

Arctic ecosystem.
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A new class of marine Euryarchaeota group II from the

mediterranean deep chlorophyll maximum. ISME J

9:1619–1634. https://doi.org/10.1038/ismej.2014.249

Massana R, Delong EF, Pedrós-Alió C (2000) A few cos-
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