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Abstract A serious problem for humans is the

propensity of Candida albicans to adhere to various

surfaces and its ability to form biofilms. Surfactants or

biosurfactants can affect the cell surfaces of microor-

ganisms and block their adhesion to different sub-

strates. This study investigated adhesion of C. albicans

strains differing in cell surface hydrophobicity (CSH)

to polystyrene microplates in order to compare the

ability of lipopeptide biosurfactants pseudofactin (PF

II) and surfactin (SU) to prevent fungal adhesion to

polystyrene. The biosurfactants decreased adhesion of

tested strains by 35–90 % when microplates were

conditioned before the addition of cells. A 80–90 %

reduction of adhesion was observed when cells were

incubated together with lipopeptides in microplates.

When microplates were pre-coated with biosurfactants,

PF II was less active than SU, but when cells were

incubated together with biosurfactants, the activity of

both compounds was similar, independent of the CSH

of strains. When cells were preincubated with lipopep-

tides and then the compounds were washed out, the

adhesion of hydrophobic strains increased two times in

comparison to control samples. This suggests irre-

versible changes in the cell wall after the treatment with

biosurfactants. CSH of hydrophobic strains decreased

only by 20–60 % after incubation with biosurfactants

while adhesion decreased by 80–90 %; the changes in

cell adhesion can be thus only partially explained

through the modification of CSH. Preincubation of C.

albicans with biosurfactants caused extraction of cell

wall proteins with molecular mass in the range of

10–40 kDa, which is one possible mechanism of action

of the tested lipopeptides.

Keywords Candida albicans � Lipopeptides �
Biosurfactants � Adhesion � CSH

Introduction

Candida albicans is responsible for fungaemia, espe-

cially in immunocompromised patients. Cell features

that cause mycoses encompass, e.g., adhesion, secretion

of hydrolytic enzymes, filamentation and hydropho-

bicity (Verstrepen and Klis 2006). Understanding how

C. albicans morphogenesis modulates the molecular

composition of the fungal cell surface and interactions

with biotic and abiotic surfaces is important, but still

unclear.
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The microbial adhesion results from specific inter-

actions between cell surface structures and the surface

of the substrate, or from non-specific interaction

forces, including Brownian movement, van der Waals

attraction, gravitational forces and surface electrostatic

charges. One of the important factors is the hydropho-

bicity of cell surface (Krasowska and Sigler 2014).

Cell surface hydrophobicity (CSH) is connected

with adhesion and pathogenic processes ofC. albicans.

Hydrophobic cells are more adherent than hydrophilic

ones to epithelial and endothelial tissues as well as to

abiotic surfaces (Glee et al. 2001; Hazen 2004).

Hydrophobicity of C. albicans cells alters in

response to changes in environmental conditions

(e.g. temperature, composition of medium) and

growth phases (Hazen et al. 2001) and can be switched

between hydrophilic and hydrophobic phenotypes

(Masuoka and Hazen 1997). Hydrophilic cells have

an elongated acid-labile mannan fraction in the cell

wall and the length of this structure affects the folding

of cell wall fibrils (Masuoka and Hazen 1999).

Chaffin (2008) supposed that Csh1 protein influ-

ences the acid-labile mannan composition, because of

differences between hydrophobic and hydrophilic

cells in mannan fractions. Mannoproteins can there-

fore be potential targets for new antifungal drugs

(Gow et al. 1999).

Biosurfactants such as lipopeptides are particularly

interesting as antifungals because of their high surface

activity and antibiotic potential. Several natural

lipopeptides, e.g. echinocandins, block specific enzy-

matic reactions in the synthesis of cell wall compo-

nents (e.g. b-1,3-glucan or chitin). Lipopeptides such

as surfacin (SU), iturin and bafilomycin disturb the

plasma membrane (Makovitzki et al. 2006). The

adsorption of biosurfactant molecules on a surface

was found to change its hydrophobicity, which might

cause changes in the adhesion processes (Zhong et al.

2008; Singh et al. 2013).

Previously, we described the antiadhesive activity

of the lipopeptide pseudofactin II (PF II), produced by

Pseudomonas fluorescens BD5 (Janek et al. 2010)

against several uropathogenic bacteria and C. albi-

cans, and did not detect a significant impact on C.

albicans growth (Janek et al. 2012).

PF II and SU are both cyclic lipopeptides. In the PF

II molecule a palmitic acid is connected to hydrophilic

‘‘head’’ of eight uncharged amino acids (Janek et al.

2010), whereas SU is a lipoheptapeptide linked to a b-

hydroxyl fatty acid. Commercially available SU

(Sigma-Aldrich) is a mixture of congeners that differ

in the length of the carbon chain (C12–C16). Moreover

SU is negatively-charged because of Asp and Glu

amino acids within the molecule (Raaijmakers et al.

2010). These differences cause a variations in the

biological activity of lipopeptides e.g. disruption of

plasma membrane by SU.

In this work we compared the action of PF II and SU

onC. albicans strains that differ in CSH. We examined

the influence of lipopeptides on the viability and

adhesion of C. albicans on polystyrene. We also

checked the impact of the biosurfactants on CSH of C.

albicans. Our results suggest differences in the

mechanisms of action between PF II and SU. Micelles

of PF II and SU cause irreversible changes in the cell

wall of hydrophobic strains of C. albicans but a

decrease in adhesion could be explained only partially

by the influence of lipopeptides on CSH. Moreover,

the biosurfactants appeared to be able to extract some

cell surface-associated proteins from C. albicans cell

wall (CWP), which is demonstrated for the first time in

this work.

Materials and methods

Microorganisms and culture conditions

Biosurfactant-producing strain P. fluorescens BD5,

obtained from freshwater from Arctic Archipelago of

Svalbard, was cultivated in LB medium as described

earlier (Janek et al. 2010). C. albicans strains

(Table 1) were a generous gift from D. Sanglard

(Lausanne, Switzerland) and were cultivated in 5 ml

YPG broth containing 10 g/l bactopeptone (Difco,

USA), 10 g/l yeast extract (Difco, USA), and 20 g/l

glucose (Bioshop, Canada). Candida cultures were

incubated at 28 �C for 24 h without agitation and then

stored at 4 �C for a maximum of 2 weeks. All

experiments were carried out on fresh C. albicans

pre-cultures (4.85 ml of YPG inoculated with 150 ll

of C. albicans culture and incubated for 24 h at

28 �C). Before conducting the experiments C. albi-

cans cells were centrifuged twice (10009g) for

washing out the culturing medium and resuspended

in PBS pH = 7.4 (8 g/l NaCl, 1.4 g/l Na2HPO4,

0.25 g/l KH2PO4, 0.2 g/l KCl) or phosphate buffer

(PB; 16.9 g/l K2HPO4, 7.3 g/l KH2PO4).
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Production, isolation and purification

of pseudofactin II (PFII)

For the production of PFII, P. fluorescens BD5 was

cultivated in mineral salt medium (MSM) containing

7 g/l K2HPO4, 2 g/l KH2PO4, 1 g/l (NH4)2SO4, 0.5 g/l

sodium citrate 9 2H2O, and 0.1 g/l MgSO4 9 7H2O

supplemented with 20 g/l glucose at 28 �C without

agitation as described earlier (Janek et al. 2010).

Briefly, 0.5 l of MSM was inoculated with 5 ml of P.

fluorescens BD5 culture in LB (24 h, 28 �C) and

incubated for 1 week at 28 �C without agitation. Cell-

free supernatant was afterwards extracted three times

with ethyl acetate. The solvent was evaporated under

vacuum and crude extract was dissolved in methanol

and purified by RP-HPLC (Janek et al. 2010).

Biosurfactant concentrations

Biosurfactants were tested in the final concentrations

of 0.035 or 0.1 mg/ml for PFII and 0.005 or 0.015 mg/

ml for SU. These concentrations were chosen to test the

influence of biosurfactant monomers (*0.5 9 CMC)

and micelles (*1.5 9 CMC). PFII was extracted and

purified as described above. SU was manufactured by

Sigma-Aldrich (USA). Biosurfactant stock solutions

were dissolved in PBS and stored at -20 �C.

Antifungal activity of biosurfactants

The antifungal activity of biosurfactants was tested

in 96-well flat-bottom polystyrene microplates

(Sarstedt, Germany). We added 50 ll of double

strength YPG and 50 ll of biosurfactant solution in

PBS to each well or PBS to control wells. Every

well was afterwards inoculated with overnight

Candida culture in YPG to reach the initial optical

density at 600 nm (OD600) of 0.01. The microplates

were then incubated for 24 h at 30 �C. After

incubation the OD600 was measured with UMV

340 microplate reader (Asys Hitech, Austria). An-

tifungal activity of biosurfactants is expressed as a

Table 1 Candida albicans strains used in work

Strain Genotype Reference

SC5314 Clinical isolate (Gillum et al. 1984)

CAF2-1 Dura3::imm434/URA3 (Fonzi and Irwin 1993)

CAF4-2 Dura3::imm434/Dura3::imm434 (Fonzi and Irwin 1993)

DSY653 Dcdr2::hisG/Dcdr2::hisG-URA3-hisG (Sanglard et al. 1997)

DSY1050 Dcdr1::hisG/Dcdr1::hisG Dcdr2::hisG/Dcdr2::hisG

Dmdr1::hisG-URA3-hisG/Dmdr1::hisG

(Mukherjee and Chandra 2003)

Fig. 1 Cell surface

hydrophobicity (CSH) of C.

albicans strains cultivated in

YPG medium supplemented

with 0.2 % glucose (black

bars) or 2 % glucose (grey

bars). Differences in CSH

between strains cultivated in

different media were

analyzed using modified

paired Student t test

*P\ 0.05, **P\ 0.001
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growth inhibition in comparison to samples without

biosurfactants (100 %):

Growth inhibition %ð Þ ¼ 100 � 1 � ODT

ODC

� �

where ODT is the OD600 of wells containing biosur-

factants in PBS and ODC is the OD600 of control

samples (wells without biosurfactants).

Cell surface hydrophobicity (CSH)

For determining the effect of biosurfactants on C.

albicans CSH, cell suspensions in PB were transferred

to Eppendorf test tubes and PFII or SU stock solutions

in PBS were added to reach the biosurfactant final

concentrations. The same amount of PBS was added to

the control samples. Suspensions were incubated for

2 h at 37 �C with agitation (300 rpm) and then diluted

to an OD600 of 0.5. The MATH (microbial adhesion to

hydrocarbon) was used to evaluate the CSH of

Candida cells (Coimbra et al. 2009). Briefly, 2 ml of

the cell suspension in PB were moved to a glass tube

(100 9 15.5 mm) and 100 ll of hexadecane w added.

The samples were then vortex-shaken for 3 min and

the phases were allowed to separate for 1 h. The OD600

of the aqueous phase was measured and CSH, defined

as percentage of cells adhering to hexadecane, was

calculated as follows:

CSH %ð Þ ¼ 100 � 1 � OD600

0:5

� �

where OD600 is the optical density of the aqueous

phase at 600 nm. In modified trials, biosurfactants

were washed out (centrifugation 10009g) with PB

before diluting cell suspensions to an OD of 0.5 and

measuring CSH.

Fig. 2 Growth of C.

albicans strains in the

presence of 0.035 mg/ml

(grey bars) and 0.1 mg/ml

(inverse-hatched bars) PF II

in PBS or 0.005 mg/ml

(hatched bars) and

0.015 mg/ml (white bars)

SU in PBS, compared to

control (black bars)

Fig. 3 Adhesion of C.

albicans strains to

polystyrene microplates

pretreated with 0.035 mg/ml

(grey bars) and 0.1 mg/ml

(inverse-hatched bars) PF II

in PBS or 0.005 mg/ml

(hatched bars) and

0.015 mg/ml (white bars)

SU in PBS, compared to

control adhesion (black

bars). Statistical analysis

was performed with

modified paired t test

*P\ 0.05, **P\ 0.01,

***P\ 0.001
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Fig. 4 Adhesion of C. albicans strains in the presence of

0.035 mg/ml (grey bars) and 0.1 mg/ml (inverse hatched bars)

PF II in PBS or 0.005 mg/ml (hatched bars) and 0.015 mg/ml

(white bars) SU in PBS, compared to adhesion of strains

incubated in PBS (black bars) after 2-h incubation in 37 �C.

Statistical analysis was performed with a modified paired t test

*P\ 0.05, **P\ 0.01, ***P\ 0.001

Fig. 5 Adhesion of C.

albicans cells preincubated

with 0.035 mg/ml (grey

bars) and 0.1 mg/ml

(inverse hatched bars) PF II

in PBS or 0.005 mg/ml

(hatched bars) and

0.015 mg/ml (white bars)

SU in PBS, compared to

adhesion of strains

preincubated in PBS (black

bars). Two different assays

were performed:

biosurfactants were present

in solution during adhesion

test (a) or were washed out

after 2 h of preincubation

prior to adhesion test (b).

Statistical analysis was

performed by modified

paired t test * P\ 0.05,

** P\ 0.01, *** P\ 0.001
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Adhesion of Candida albicans to polystyrene

PF II and SU were tested as C. albicans adhesion-

inhibiting agents in flat-bottom 96-well polystyrene

microplates (Sarstedt, Germany) in three different

assays. In pre-adhesion assay, microplate wells were

preincubated with 100 ll of biosurfactant solutions in

PBS for 2 h at 37 �C with agitation (300 rpm). PBS

buffer was used as a positive control. Subsequently,

wells were washed two times with PBS. C. albicans

suspensions in PBS were diluted to give an OD600 of

0.6. The highest adhesion of C. albicans strains to

polystyrene was observed at this OD (Janek et al.

2012). 100 ll of Candida suspensions were added to

wells and incubated for 2 h at 37 �C with agitation

(300 rpm). Then supernatants were removed and wells

were washed two times with PBS to remove non-

adherent cells. Adherent cells were stained with 0.1 %

crystal violet for 5 min and then wells were washed

three times with PBS. The dye was released by 200 ll

of 0.05 M HCl with 1 % SDS in isopropanol and the

absorbance at 590 nm (Abs590) was read off with Asys

UMV 340 microplate reader (Asys Hitech, Austria).

Cell adhesion was expressed as the Abs590 or as the

percentage of Abs590 of control samples (100 %):

Adhesion %ð Þ ¼ 100 � 1 � AbsT

AbsC

� �

where Abst is the Abs590 of wells pretreated with

biosurfactants and Absc is the Abs590 of control wells

(pretreated with PBS only). In addition, we tested C.

albicans adhesion to microplates in the presence of

biosurfactants. Briefly, we added biosurfactants to

Candida suspensions in PBS to reach final concentra-

tions and the OD600 of 0.6. The same amount of PBS

was added to the control samples. Then, 100 ll of

suspensions were added to microplate wells and

incubated for 2 h at 37 �C with agitation (300 rpm).

The microplates were washed, stained and read as

described before. We also investigated the influence of

preincubation of C. albicans strains with biosurfac-

tants on their adhesion abilities. In brief, Candida cell

suspensions in PBS were transferred to Eppendorf test

tubes and biosurfactants were added to the desired

final concentrations. The same amount of PBS was

added to the control samples. Suspensions were

incubated for 2 h at 37 �C with agitation (300 rpm)

and diluted to an OD600 of 0.6. Then, 100 ll of

suspensions were added to microplate wells and

incubated for 2 h at 37 �C with agitation (300 rpm).

Microplates were washed, stained and read as de-

scribed before. In modified trials, biosurfactants were

washed out (centrifugation 10009g) with PBS before

diluting cell suspensions to an OD600 of 0.6 and

conducting the adhesion assay.

Extraction of cell-wall associated proteins (CWP)

by biosurfactants

We also tested if the addition of biosurfactants can

cause extraction of proteins from the C. albicans cell

surface. To conduct the experiment, Candida cell

suspensions in PBS were transferred to Eppendorf test

tubes and biosurfactants were added to the final

concentrations. The same amount of PBS was added to

the control samples. Suspensions were incubated for

2 h at 37 �C with agitation (300 rpm). Then cells were

removed by centrifugation (10009g) and filtration

(0.2 lm). Proteins in supernatants were concentrated

with Amicon Ultra 0.5 mL 3 kDa centrifugal filters

(Millipore, USA). Concentrated samples were mixed

with 96 denaturation buffer (150 mM Tris; 0.6 M

EDTA; 12 % SDS; 60 mM DTT), heated at 95 �C for

5 min and loaded onto 15 % polyacrylamide gel.

Silver-stained gels were photographed with Chemi-

Doc System (Bio-Rad, USA).

Fluorescence microscopy

Candida cell suspensions in PBS were transferred to

Eppendorf test tubes and biosurfactants were added to

the final concentrations. The same amount of PBS was

added to the control samples. SDS was added to the

final concentration of 1 % and served as positive-

control samples. Suspensions were incubated for 2 h

at 37 �C with agitation (300 rpm) as described above.

Then cells were centrifuged twice (10009g) and

resuspended in PBS buffer. PI from stock solution

(Bioshop, Canada) was added to the final concentra-

tion of 6 lM and suspensions were incubated for

5 min at room temperature. Next, Candida cells were

pelleted and washed twice with PBS. 4 ll of Candida

pellets were viewed with Zeiss Axio Imager A2

fluorescence microscope.
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Fig. 6 Cell surface

hydrophobicity (CSH) of C.

albicans strains pretreated

with 0.035 mg/ml (grey

bars) and 0.1 mg/ml

(inverse hatched bars) PF II

in PBS or 0.005 mg/ml

(hatched bars) and

0.015 mg/ml (white bars)

SU in PBS, compared to

control samples (black

bars). The CSH was

measured in the presence of

biosurfactants in Candida

suspension (a) or after

rinsing out the surface-

active compounds (b).

Statistical analysis was

performed by modified

paired t test *P\ 0.05,

**P\ 0.01, ***P\ 0.001

Fig. 7 SDS-PAGE electrophoresis of proteins obtained after

incubation of C. albicans cells with 0.1 mg/ml PF II or

0.015 mg/ml SU in comparison to control samples (C)

Fig. 8 Propidium iodine (PI) fluorescence and differential

interference contrast (DIC) microphotographs of C. albicans

cells incubated with 0.1 mg/ml PF II or 0.015 mg/ml SU in

comparison with control samples (C) and 1 % SDS as positive

controls
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Statistical analysis

All described assays were carried out at least three

times in three replicates. Statistical analyses were

performed using paired t test with Bonferroni correc-

tion. P values of\0.05 were considered significant.

Results and discussion

C. albicans can use various carbon sources: glucose,

galactose, fructose or hydrocarbons. Carbon sources at

different concentrations promote changes in the

structure of cell wall (McCourtie and Douglas 1981);

thus increasing sugar concentration in the medium

from 50 to 500 mM resulted in the production of an

outer fibrillar-floccular layer of mannoproteins and

also a linear increase of adherence to acrylic surfaces

(McCourtie and Douglas 1981). Different culture

conditions have therefore an impact on surface

properties of Candida cells (Hobden et al. 1995).

In our collection of C. albicans strains (Table 1),

CAF4-2 and DSY653 were more hydrophobic than

other strains (P\ 0.001) (Fig. 1).

A change in glucose concentration in the medium

from 2 to 0.2 % decreased CSH but only in the case of

two strains with the highest hydrophobicity (Fig. 1).

These results suggest differences in cell wall compo-

sition and metabolism of URA3 mutants as reported

earlier (Bain et al. 2001). Our results also indicate an

impact of the site of integration of URA3 in C.

albicans genome on changes in surface properties.

Strains DSY653 and DSY1050 that vary in the site of

integration of URA3 differ in some aspects such as

CSH (Fig. 1).

Microbial surfactants often have antimicrobial

properties but knowledge about mechanisms of their

action is scarce. A few studies have shown that

rhamnolipids increase the membrane permeability and

alter its barrier function, causing cell damage

(Sotirova et al. 2008). Lipopeptides such as SU, iturin

or lichenisyn form ion-conducting membrane chan-

nels (Pueyo et al. 2009; Bensaci et al. 2011). In

contrast to many other lipopeptides (Peypoux et al.

1999; Grangemard et al. 2001), PF II showed much

weaker antimicrobial activity against bacterial and C.

albicans strains (Janek et al. 2012). Also SU in tested

concentrations exhibited no antifungal activity

(Fig. 2). PF II was found to possess an antiadhesive,

concentration-dependent activity against bacteria and

yeast. The highest reduction of adhesion (80–99 %)

was observed for C. albicans wild-type strain SC5314

(Janek et al. 2012). PF II was effective above the

critical micelle concentration (0.072 mg/ml) and the

adhesion was thus inhibited more strongly by micelles

than by monomers (Janek et al. 2012). The microbial

adhesion depends on the composition of the outer cell

layer and is connected with hydrophobic/hydrophilic

and ionic properties of the cell as well as with the

properties of the polystyrene surface of microplates

used in experiments (Neu 1996). PF II, due to its

nonionic character, can probably coat positively or

negatively charged surfaces, changing their properties.

We studied the adhesion of C. albicans to

polystyrene microplates in a number of different

experiments to compare the ability of PF II and SU to

prevent fungal adhesion to abiotic surfaces. It is

obvious that strains CAF4-2 and DSY653 have

modified surface properties, but the nature of these

changes is not clear (Bain et al. 2001).

We observed a decrease in adhesion of all tested C.

albicans strains when the microplates were pretreated

with PF II before the addition of the microorganisms

(pre-adhesion assay) (Fig. 3). PF II was more active in

concentrations higher than CMC (0.1 mg/ml) (Fig. 3).

We observed a similar concentration-dependent effect

for SU used as a standard lipopeptide biosurfactant,

which decreased the adhesion even more than PF II

(P\ 0.001) (Fig. 3). CAF4-2 and DSY653 adhered to

the polystyrene microplate surface better than the

other strains (P\ 0.01) and were able to adhere to a

surface pretreated with lipopeptides more strongly

than other strains (P\ 0.001) (Fig. 3).

Surprisingly, when cells and lipopeptides were

incubated together for 2 h in the polystyrene mi-

croplate, the adhesion was blocked even more strongly

(Fig. 4). Both PF II and SU micelles reduced C.

albicans adhesion by *90 %. As for biosurfactant

monomers, the action of lipopeptides was different. In

this case, PF II was found to be a better antiadhesive

agent than SU (Fig. 4). The antiadhesive activity of

SU was similar to the situation when it coated the

microplate before the addition of Candida suspension

(cf. Figs. 3, 4). PF II was less active than SU in the

case of hydrophobic strains when the microplate was

coated before the addition of cells but when hy-

drophobic cells were incubated together with PF II,

their adhesion decreased like in hydrophilic strains
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(Figs. 3, 4). These results suggest differences in the

mechanisms of action between PF II and SU, e.g.

interactions between cell surface and/or polystyrene.

Interesting results were observed when the cells

were preincubated with biosurfactants and the adhe-

sion of coated and non-coated cells to polystyrene

microplate was investigated (Fig. 5). When present in

the solution (Fig. 5a), lipopeptides act as strong

antiadhesives in micellar concentrations. PF II mono-

mers reduced the adhesion of hydrophilic strains

approximately two times and did not alter adhesion of

hydrophobic strains CAF4-2 and DSY653 (Fig. 5a).

Monomers of SU did not change adhesion of hy-

drophilic strains and increased it in the case of

hydrophobic strains (Fig. 5a). During incubation of

Candida cells with the biosurfactants, the predisposi-

tion of cells to adhesion changed and was different

from the case when the microplate was pre-coated

with PF II or SU (Figs. 3, 5). However, micelles of PF

II decreased adhesion to the same low level (10–20 %)

as in experiments with a 2-h adhesion of cells coated

with PF II (Fig. 4). When the biosurfactants were

washed out before conducting the experiment, the

adhesion of hydrophilic strains was comparable to

control samples whereas for hydrophobic strains

adhesion increased approximately two times (Fig. 5b).

This result suggests irreversible changes in the cell

wall of hydrophobic strains of C. albicans caused by

micelles of PF II and SU after a 2-h incubation.

The microbial ability of adhering to different

surfaces is connected with CSH, hence our intention

was to investigate the influence of lipopeptides on

Candida CSH. Biosurfactants can change CSH due to

adsorbing to the cell surface (Kaczorek et al. 2013),

like rhamnolipids which strongly adsorbed on the cell

surface of yeast (Kaczorek et al. 2008).

After a 2-h incubation with PF II or SU, CSH of C.

albicans CAF4-2 and DSY653 significantly decreased

and this effect was concentration-dependent. Mono-

mers of PF II influenced CAF4-2 and DSY653 more

strongly than monomers of SU. Other tested strains

seemed resistant to the influence of biosurfactants

(Fig. 6a). On the other hand, when biosurfactants were

washed out, CSH level of hydrophobic cells recovered

(Fig. 6b). In this assay the time of incubation with

biosurfactants was 2 h and these conditions can be

compared to experiments with adhesion of cells

treated with biosurfactants (Fig. 4). CSH of hydropho-

bic strains decreased only by 20–60 % (Fig. 6) while

adhesion decreased by 80–90 % (Fig. 4). Also the

potential irreversible changes in the cell surface of C.

albicans caused by lipopeptides have an impact on

adhesion but not on CSH of hydrophobic strains (cf.

Figs. 5, 6). This result suggests that decrease in cell

adhesion by lipopeptides can be only partially ex-

plained by the modification of CSH and should be

considered only in the case of hydrophobic strains

CAF4-2 and DSY653.

One of the mechanisms of action of lipopeptides on

C. albicans cells could be a decrease in the level of some

compounds (e.g. chitin, b-1,3-glucan) in the cell wall

(Bizerra et al. 2011). Some protocols for the frac-

tionation of fungal cell walls include treatment with

synthetic surfactants (Pitarch et al. 2002; Klis et al.

2007). Therefore, we isolated several proteins from cell-

free supernatants after preincubation ofC. albicans cells

with biosurfactants and visualized them on silver-

stained polyacrylamide gels (Fig. 7). We determined

molecular masses of these proteins after SDS-PAGE

electrophoresis to be in the range from *10 to 40 kDa

and observed no differences between the action of PF II

and SU or between hydrophobic and hydrophilic strains

(Fig. 7). Simultaneously, PAS (Periodic acid-Schiff)

staining for glycoproteins showed no bands on the gels

(data not shown). Therefore, partial disruption of cell

wall and extraction of cell surface-associated proteins

can be the possible mechanism of the action of

lipopeptide biosurfactants on C. albicans.

To exclude the possibility of contamination of cell-

free supernatants (Fig. 7) with cytoplasmic proteins,

we analyzed viability and membrane permeability of

Candida cells with fluorescence microscopy (Fig. 8).

The lack of propidium iodine (PI) fluorescence in

control samples and cells incubated with lipopeptides

indicate that cells were viable and membranes perme-

ability was undisturbed (Fig. 8), which also confirms

viability results shown earlier (Fig. 2). In contrast,

cells treated with 1 % SDS showed significant

fluorescence of dead cells.
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