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Abstract
Traditional network interdictionproblems focus on removingvertices or edges fromanetwork
so as to disconnect or lengthen paths in the network; network diversion problems seek to
remove vertices or edges to reroute flow through a designated critical vertex or edge. We
introduce the all-pairs vitality maximization problem (VIMAX), in which vertex deletion
attempts to maximize the amount of flow passing through a critical vertex, measured as
the all-pairs vitality of the vertex. The assumption in this problem is that in a network for
which the structure is known but the physical locations of vertices may not be known (e.g.,
a social network), locating a person or asset of interest might require the ability to detect a
sufficient amount of flow (e.g., communications or financial transactions) passing through the
corresponding vertex in the network. We formulate VIMAX as a mixed integer program, and
show that it is NP-Hard. We compare the performance of the MIP and a simulated annealing
heuristic on both real and simulated data sets and highlight the potential increase in vitality
of key vertices that can be attained by subset removal. We also present graph theoretic results
that can be used to narrow the set of vertices to consider for removal.

Keywords Vitality · Network flow · Centrality · Network disruption

1 Introduction

Network disruption has important applications to infrastructure design (Brown et al., 2006;
McMasters &Mustin, 1970; Church et al., 2004), energy transmission (Callaway et al., 2000;
Holmgren, 2006), robust network design (Crucitti et al., 2004b; Dodds et al., 2003; Estrada,
2006), biological systems (Rasti & Vogiatzis, 2022), illicit trade networks (Anzoom et al.,
2021), and counterterrorism (Basu, 2005; Sageman, 2004). Much of this work focuses on
two primary problem types: network flow interdiction and network diversion. In network
interdiction, an attacker is interdicting vertices or edges to maximize the minimum cost of
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routing flow through a network (Alderson et al. 2015). This is commonly examined in the
literature in the form of two special cases: selecting an interdiction set that minimizes the
maximum flow between a source and sink (e.g., Altner et al. (2010), Balcioglu and Wood
(2003), Bertsimas et al. (2016), Lei et al. (2018), Lim and Smith (2007), Royset and Wood
(2007), Wood (1993), Enayaty-Ahangar et al. (2019)), or such that the shortest path between
a source and sink is maximized (e.g., Israeli and Wood (2002), Pay et al. (2019), Zhang et al.
(2018)). In network diversion, a minimum cost, minimal cutset of edges is identified such that
when removed, any source-sink path in the network is forced to travel through a particular
set of critical edges (e.g., Cintron-Arias et al. (2001), Cullenbine et al. (2013), Curet (2001)).

Of interest in this paper is the concept of vertex (equivalently, edge) vitality, which mea-
sures the reduction in the maximum flow between the source and sink when that vertex (or
edge) is removed from the graph (Ausiello et al., 2019; Koschützki et al., 2005). A vertex
having high vitality is needed to achieve a high volume of flow from source to sink, and as
such, this vertex will have a high volume of flow passing through it when the maximum flow
is achieved. We define the all-pairs vitality of a vertex v to be the summed reduction in the
maximum flow between all pairs of nodes (themselves excluding vertex v), when vertex v is
removed from the graph.

We present the following combinatorial optimization problem, the all-pairs vitality
maximization problem (VIMAX): Given a connected, directed, general capacity graph
G = (V , E) with vertex set V , edge set E , and a key vertex of interest, k, identify a subset
of vertices S, whose removal from the graph G maximizes the all-pairs vitality of k. This
problem was first introduced in the second author’s unpublished manuscript for the specific
context of undirected, unit-capacity graphs, for which the maximum flow between a pair
of vertices represents the number of edge-disjoint paths between that pair (Martonosi et al.
2011).

VIMAX can be considered a network disruption problem that is distinct from the three
forms outlined above. Covert organizations, such as terrorist groups or drug cartels, tend to
communicate along longer paths that are difficult to trace, suggesting a trade-off between
efficiency and secrecy that could render path-length-based attacks ineffective (Anzoom et
al., 2021; Freeman et al., 1991; Morselli et al., 2007). Moreover, we leverage the possibility
that critical vertices in certain types of networks can become vulnerable if they are forced
to become more active. (As an example, Osama bin Laden and, subsequently, Ayman al-
Zawahiri were known to be leaders of the al-Qaeda terrorist network, yet they remained in
hiding for many years before U.S. intelligence could pinpoint their geographic locations.)
If we assume the volume of communication, money, or illicit substances passing through
a vertex is a proxy for that corresponding member’s visibility to intelligence officers, and
communication between pairs of members in the organization is proportional to path capac-
ity, then VIMAX can identify members of the organization whose removal will maximize
communication through an important but clandestine leader. Unlike in network diversion
problems, we do not require all flow in the remaining graph to be routed through this vertex
(indeed in a network diversion problem, the volume of flow passing through the critical vertex
might be quite small after vertex or edge removal); instead we seek to maximize the total
flow routed through this vertex.

In this paper, we examine VIMAX from both computational and theoretical perspectives.
In Sect. 2, we frame this work in the context of the existing literature. In Sect. 3, we define
VIMAX, present it as a mixed integer linear program, and demonstrate that it is NP-Hard.
Section4 presents a simulated annealing heuristic for solving VIMAX. The computational
performance of these two methods is compared in Sect. 5. Section6 presents mathematical
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properties of VIMAX that can be leveraged to streamline computations. Section7 provides
future extensions of this work and concludes.

2 Literature review

We first contrast the network interdiction and diversion problems commonly seen in the
literature with the VIMAX problem we will present in this paper. We then discuss the rela-
tionship between vitality and other graph centrality metrics. Finally, we present research on
optimization approaches that could be useful to the problem of vitality maximization.

2.1 Network interdiction and diversion

Network interdiction models address the logistical problem of removing edges or vertices
from a graph to inhibit the flow of resources through a network. This has applications to
military operations and combating drug or human trafficking (Konrad et al., 2017; Tezcan
and Maass, 2023; Zhang et al., 2018). Analysis of complex network interdiction typically
focuses on disconnecting the network, increasing the lengths of shortest paths, cutting overall
flow capacity, or reducing the desirability of paths in the network (Albert et al., 2000; Flaxman
et al., 2007; Cavallaro et al., 2004; Gallos et al., 2004, 2005; Gallos et al., 2006; Gierszewski
et al., 2006; Grubesic et al., 2008; Holme et al., 2002; Holzmann & Smith, 2021; Memon et
al., 2008; Paul et al., 2005; Pay et al., 2019; Sun et al., 2007; Tezcan & Maass, 2023; Wu et
al., 2007; Zhang et al., 2018). The most well-known model involves maximum flow network
interdiction and its variants (Altner et al., 2010; Bertsimas et al., 2016; Cormican et al., 1998;
Lei et al., 2018; McMasters & Mustin, 1970; Phillips, 1993; Ratliff et al., 1975; Royset &
Wood, 2007; Wood, 1993). Of note, Wood (1993) introduces the “dualize-and-combine”
method that is commonly used in network interdiction literature, as well as in this paper.
Smith and Song thoroughly survey the network interdiction literature, and demonstrate that
the assumptions widely held across the papers they survey make interdiction problems a
special case of Stackelberg games (Smith & Song, 2020).

A related problem to network interdiction is the network diversion problem in which
an attacker seeks to interdict, at minimum cost, a set of edges (equivalently, vertices) such
that all source-sink flow must be routed through at least one member of a pre-specified set
of “diversion” edges or vertices. This problem was first posed by Curet (2001). Applica-
tions include military operations, in which it might be beneficial to force a foe to divert its
resources through a target edge that is heavily armed; and information networks, in which
communications are routed through a single edge that can more easily be monitored (Lee et
al., 2019).

Cullenbine et al. also study the network diversion problem (Cullenbine et al., 2013). They
present an NP-completeness proof for directed graphs, a polynomial-time solution algorithm
for s − t planar graphs, a mixed integer linear programming formulation that improves upon
that given in Curet (2001), and valid inequalities to strengthen the formulation.

Lee et al. examine an extension of the network diversion problem known as the multiple
flows network diversion problem in which there are many source-sink pairs being considered
simultaneously (Lee et al., 2019). They define a set S of possible source nodes and T of
possible sink nodes. They are interdicting aminimum cost set of edges such that all remaining
flow in the network passes through the diversion edge. They formulate the problem as amixed
integer linear program, and compare its performance to standard combinatorial Benders
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decomposition and a branch-and-cut combinatorial Benders decomposition. Without loss of
generality, vertex interdiction can be formulated as arc interdiction in which each vertex v

in the original graph is represented by two vertices vi and vo in a modified graph having a
single arc between them, (vi , vo). Each arc (u, v) in the original graph is then transformed
to a corresponding arc (uo, vi ) in the modified graph. Interdicting this arc in the modified
graph is equivalent to interdicting the vertex in the original graph. For undirected graphs, the
graph is first transformed into a directed one before doing the transformation.

There are several aspects of Lee et al. (2019) worth noting as they connect to our work.
First, after the interdiction set is removed from the graph, there is no guarantee that the total
flow passing through the diversion edge is particularly large. In the vitality maximization
problem that we present here, we are identifying an interdiction set of vertices such that the
flow through the target vertex is maximized, thus ensuring that the target being surveilled
has ample flow. Although our formulation does not associate a cost with each vertex that
is interdicted, it is disadvantageous for the removal subset to be very large, as that would
inherently cause the flow through the target vertex to drop. Second, we adopt their testing
schemeof examining the performance of the algorithmswedevelop ongrid networks (planar),
as well as random Gn,m graphs (Knuth 2014), and a drug trafficking network (Natarajan
2000).

A question conversely related to network interdiction and diversion is that of network
resilience and detection of attacks. Sharkey et al. survey literature on four types of resilience:
robustness, rebound, extensibility, and adaptability, with a primary focus on research address-
ing network robustness and the ability of a network to rebound following an attack (Sharkey
et al., 2021). Dahan et al. study how to strategically locate sensors on a network to detect
network attacks Dahan et al. (2022).

2.2 Vitality and other graph centrality measures

Vitality is one of several types of graph centrality metrics. Centrality metrics quantify the
importance of a given vertex in a network. The book of Wasserman and Faust provides
a detailed examination of social network analysis stemming from the field of sociology
and includes discussion of many commonly known centrality metrics, including degree,
betweenness, and closeness (Wasserman & Faust, 1994). The survey of Rasti and Vogiatzis
presents centrality metrics commonly used in computational biology (Rasti & Vogiatzis,
2019).

The degree of a vertex is the number of neighbors it has. The betweenness of a vertex is
the number of shortest paths between all pairs of vertices on which the vertex lies. Closeness
measures the average shortest path length between the vertex and all other vertices in the
graph.Vogiatzis et al. presentmixed integer programming formulations for identifying groups
of vertices having the largest degree, betweenness, or closeness centrality in a graph (Vogiatzis
et al., 2015).

Stephenson and Zelen first proposed information centrality and applied it to a network of
men infected with AIDS in the 1980s (Stephenson & Zelen, 1989). They are among the first
to develop a centrality metric that does not require an assumption that information must flow
along shortest paths. They use the theory of statistical estimation to define the information
of a signal along the path to be the reciprocal of the variance in the signal. Assuming the
noise induced along successive edges of a path is independent, the variance along each path
is additive, and the total variance in the signal grows with the path length. They then use this
assumption to evaluate the total information sent between any pair of vertices (s, t). From
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here, they define the centrality of a vertex i to be the harmonic average of the sum of the
inverses of the information sent from from vertex i to every other vertex. They point out that
“information . . . may be intentionally channeled through many intermediaries in order to
‘hide’ or ‘shield’ information in a way not captured by geodesic paths.” This appears to be
the case in terrorist and other covert networks as well (Carpenter et al., 2002).

Centrality metrics can be used to guide network disruption approaches. Cavallaro et al.
show that targeting high betweenness vertices efficiently reduces the size of the largest
connected component in a graph based on a Sicilian mafia network (Cavallaro et al. 2004).
Grassi et al. find that betweenness and its variants can be used to identify leaders in criminal
networks Grassi et al. (2019).

There also exist centrality measures related to network flows, as surveyed in Koschützki
et al. (2005). In particular, for any real-valued function on a graph, Koschützki et al. define
the vitality of a vertex (or edge) to be the difference in that function with or without the vertex
(or edge). When the function represents the maximum flow between a pair of vertices, the
vitality of a vertex k in a graph (equivalently, an edge u) with respect to an s − t pair of
vertices is defined to be the reduction in the maximum flow between s and t when vertex k
(equivalently, edge u) is removed from the graph. Moreover, when one examines the same
reduction in maximum flow in the network over all possible s − t pairs with respect to a
given vertex, we have what Freeman et al. define as network flow centrality (Freeman et al.,
1991), or what we refer to as all-pairs vitality in this paper.

Themost-vital edge or component is the one whose removal decreases the maximum flow
through the network by the greatest amount. Identifying the most-vital edge in a network is a
long-studied problem dating back to the work of Corley and Chang (1974), Wollmer (1963),
and Ratliff et al. (1975).More recent examination includes the work of Alderson et al. (2013),
who formulate a mathematical program to maximize resilience, using a defender-attacker-
defender model. They additionally cite several applications for the most-vital edge problem
including electric power systems, supply chain networks, telecommunication systems, and
transportation. Ausiello et al. provide a method for calculating the vitality of all edges (with
respect to a given s and t) with only 2(n − 1) maximum flow computations, rather than
the m computations expected if one were to calculate the vitality of each edge individually
(Ausiello et al., 2019). None of the found literature pertaining to vitality focuses on the
problem presented here: that of identifying a set of removal vertices to maximize the vitality
of a key vertex (VIMAX).

3 Optimization framework

We will show that VIMAX can be formulated as an integer linear program. We start by
presenting terminology that will be used in the paper.

3.1 Definitions

We consider a connected, directed graph G = (V , E) with vertex set V , edge set E , and a
key vertex of interest, k. Each edge (i, j) has a capacity ui j reflecting the maximum amount
of flow that can be pushed along that edge. The graph has a key vertex, k, which could
represent, for example, an important but elusive participant in an organization. The vitality
maximization problem (VIMAX) seeks to identify a subset of vertices whose removal from
the graph G maximizes the all-pairs vitality of k. Thus, the objective is to identify a set of
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vertices to remove from the graph to make the key vertex k as “active” as possible by forcing
flow to pass through that vertex.

For any source-sink s-t pair, let zst (G) be the value of the maximum s-t flow in graph G.
We call Zk(G) the flow capacity of graph G with respect to vertex k, which is the all-pairs
maximum flow in G that does not originate or end at k. Thus,

Zk(G) =
∑

s,t∈V \{k}
s �=t

zst (G). (1)

The all-pairs vitality of k, Lk(G), equals the flow capacity of the graph with respect to k
minus the flow capacity with respect to k of the subgraph G\{k} obtained when vertex k is
deleted:

Lk(G) = Zk(G) − Zk (G \ {k}) . (2)

It is worth noting that maximizing the all-pairs vitality of k does not imply an assumption
that all s−t pairswill communicate simultaneously. Rather,maximizing the sumover all pairs
is equivalent to maximizing the average vitality of k when an s − t pair is chosen uniformly
at random from all pairs. Thus, we are maximizing the expected communication through the
key vertex for a randomly chosen pair of vertices. The framework that follows can be easily
extended to weighted pairs according to their likelihood of engaging in communication; we
outline this in Sect. 3.3.

To measure how the removal of a subset of vertices impacts the vitality of the key vertex,
we define the vitality effect of subset S on key vertex k to be the change in the key vertex k’s
vitality caused by removing subset S: Lk(G \ S) − Lk(G). If the vitality effect of S on k is
positive, then removing subset S from the graph has diverted more flow through k, a desired
effect.

The goal of this research is to identify the subset of vertices S that maximizes the vitality
effect, which is equivalent to maximizing the value of Lk(G \ S). We formally define the
all-pairs vitality maximization problem (VIMAX) as

maxS⊆V Lk(G \ S). (3)

From expressions (1) and (2), we see that there is no guarantee that the vitality effect
on k of removing any subset S need ever be positive. When subset S is removed from the
graph, the overall flow capacity Zk(G\S) generally decreases, and never increases, because
S’s contribution to the flow is removed. In order for subset S’s removal to have a positive
vitality effect on key vertex k, the remaining flow must be rerouted through k in sufficiently
large quantities to overcome the overall decrease in flow through the network. However, as
we will show in Sect. 5.3, identification of an optimal or near-optimal removal subset often
dramatically increases the vitality of the key vertex.

3.2 Mixed integer linear programming formulation

To formulate VIMAX as an optimization problem, we first formulate a linear program to
solve for the vitality of k in any graph G. Then we expand that formulation into a mixed
integer programming formulation that seeks the optimal subset S of vertices to remove from
the graph to maximize the vitality of k in the resulting graph.
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3.2.1 Vitality max-flow subproblems.

Following the approach of Israeli andWood (2002),we take the dual of problem Zk(G\{k}) to
convert it into a minimum cut problem having the same optimal objective function value, and
embed it in the formulation of Lk(G). Since the dual problem is a minimization problem, the
objective function will correctly correspond to the vitality. Letting V ′ = V \{k}, and letting
E ′ be the set of edges that remain after removing vertex k and its incident edges, we obtain
the following linear program for finding Lk(G):

Maximize
∑

s,t∈V ′
s �=t

vs,t −
∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
ui, jαi, j,s,t

subject to

∑

j :(i, j)∈E
xi, j,s,t −

∑

j ′:( j ′,i)∈E
x j ′,i,s,t =

⎧
⎪⎨

⎪⎩

vs,t if i = s

−vs,t if i = t

0 otherwise
∀i ∈ V ,∀s, t ∈ V ′

xi, j,s,t ≤ ui, j , ∀(i, j) ∈ E,∀s, t ∈ V ′
βi,s,t − β j,s,t + αi, j,s,t ≥ 0, ∀(i, j) ∈ E ′,∀s, t ∈ V ′
−βs,s,t + βt,s,t ≥ 1, ∀s, t ∈ V ′

vs,t ≥ 0, ∀s, t ∈ V ′
xi, j,s,t ≥ 0, ∀(i, j) ∈ E,∀s, t ∈ V ′
αi, j,s,t ≥ 0, ∀(i, j) ∈ E ′,∀s, t ∈ V ′
βi,s,t unrestricted, ∀i, s, t ∈ V ′.

(4)

Variables xi, j,s,t and vs,t are the primal variables from the maximum flow formulation of
problem Zk(G). xi, j,s,t represent the optimal s − t flow pushed along edge (i, j), and vs,t
represent the optimal s − t flow values. Variables αi, j,s,t and βi,s,t are the dual variables
from the minimum cut formulation of problem Zk(G \ {k}). We can interpret βi,s,t as vertex
potentials: For every edge (i, j), if βi,s,t < β j,s,t , meaning vertex i has lower potential than
vertex j when computing the minimum s − t cut, then edge (i, j) must cross the cut. In such
a case, dual variable αi, j,s,t = 1, and edge capacity ui, j is counted in the objective function.

3.2.2 VIMAX: choosing an optimal removal subset.

Now that we have expressed the vitality of k in G as a linear program, we can return to
VIMAX, which finds a subset S of vertices whose removal maximizes the vitality of k. Given
a set S, the linear program in Eq.4 applied to graphG\S solves forLk(G\S).Wemustmodify
the LP above to choose a subset S that maximizes the objective function Lk(G \ S).

We can formalize this by creating binary variables qi for each vertex i such that qi = 1
if vertex i remains in the graph, and qi = 0 if vertex i is removed from the graph (that is, i
is included in subset S). We also define variables wi, j for each edge that indicate whether or
not edge (i, j) remains in the graph following the removal of S and/or k. We define linking
constraints so that whenever both vertices i and j remain in the graph (that is, qi = q j = 1),
then wi, j must equal 1, and whenever either vertex i or j is selected for deletion (that is,
qi = 0 or q j = 0 or both) then wi, j must equal 0. (Due to this relationship between wi, j and
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the binary qi , the wi, j are effectively constrained to be binary variables without explicitly
declaring them as such.)

To Eq.4, we make the following adjustments to the original primal and dual constraints.
We constrain the primal flow variables xi, j,s,t ≤ ui, jwi, j , reflecting whether or not edge
(i, j) remains in the graph. We also modify the dual potential constraints so that αi, j,s,t = 0
whenever vertices i and j are at the same potential (as before) or edge (i, j) no longer exists
in the graph.

Introducing the variables qi and wi, j and the modifications on our vitality constraints, we
can nowwrite the full mixed-integer linear program. Given a graphG = (V , E), a key vertex
k, and a maximum size, m, of the removal set, the following mixed-integer linear program
solves VIMAX.

Maximize
∑

s,t∈V ′
s �=t

vs,t −
∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
ui, jαi, j,s,t

subject to

∑

i∈V
qi ≥ n − m

qk = 1
wi, j ≤ qi , ∀(i, j) ∈ E
wi, j ≤ q j , ∀(i, j) ∈ E
wi, j ≥ qi + q j − 1, ∀(i, j) ∈ E

∑

j :(i, j)∈E
xi, j,s,t −

∑

j ′:( j ′,i)∈E
x j ′,i,s,t =

⎧
⎪⎨

⎪⎩

vs,t if i = s

−vs,t if i = t

0 otherwise
∀i ∈ V ,∀s, t ∈ V ′

xi, j,s,t ≤ ui, jwi, j , ∀(i, j) ∈ E,∀s, t ∈ V ′
βi,s,t − β j,s,t + αi, j,s,t ≥ −(1 − wi, j ), ∀(i, j) ∈ E ′,∀s, t ∈ V ′
−βs,s,t + βt,s,t ≥ 1, ∀s, t ∈ V ′

qi binary, ∀i ∈ V
wi, j ≥ 0, ∀(i, j) ∈ E
vs,t ≥ 0, ∀s, t ∈ V ′
xi, j,s,t ≥ 0, ∀(i, j) ∈ E,∀s, t ∈ V ′
αi, j,s,t ≥ 0, ∀(i, j) ∈ E ′,∀s, t ∈ V ′
βi,s,t unrestricted, ∀i, s, t ∈ V ′

(5)

Extending the approach of Ovadia (2010) to general capacity, directed graphs, we can
show that VIMAX is NP-Hard. In the case thatm = 1 and we can remove at most one vertex,
we can do brute-force and solve the above MIP setting qi = 0 and all other q j = 1 for all
i ∈ V ′.

Theorem 1 The all-pairs vitality maximization problem is NP-Hard.

Proof The proof of this can be found in Appendix A. 	
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3.3 Extension to pairwise weights

Maximizing the sum over all pairs is equivalent to maximizing the average vitality of k when
an s − t pair is chosen uniformly at random from all pairs. Thus, we are maximizing the
expected communication through the key vertex for a randomly chosen pair of vertices. How-
ever, not all pairs may be equally likely to communicate. The objective function above can
be easily extended to weight each pair according to their likelihood of engaging in commu-
nication. Let Ps,t be a weight corresponding to the frequency that pair s − t communicates.
For example, traffic matrix estimation can be used to estimate the pairwise demands for an
internet network Zhang et al. (2003); Medina et al. (2002). The objective function in Eq.5
can be modified to include these weights to maximize the expected communication through
the key vertex.

Maximize
∑

s,t∈V ′
s �=t

Ps,tvs,t −
∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
Ps,t ui, jαi, j,s,t

4 Simulated annealing heuristic

As an alternative to solving VIMAX exactly with a MIP, we develop a simulated annealing
heuristic. Each iteration of simulated annealing begins with a candidate removal subset. In
the first iteration, this is the empty set, and in subsequent iterations the initial solution is the
best solution found at the conclusion of the previous iteration. The objective function value
of each solution is computed as the vitality of the key vertex when this subset is removed
from the graph. Each call to the algorithm consists of an annealing phase and a local search
phase.

During the annealing phase, neighboring solutions of the current solution are obtained by
toggling a single vertex’s, or a pair of vertices’, inclusion or exclusion from the candidate
removal subset, subject to the constraint that |S| ≤ m. If the neighboring solution improves
the objective function value, it is automatically accepted for consideration. If the neighboring
solution has aworse objective function value, it will be accepted to replace the current solution
with an acceptance probability governed by a temperature function, T .When the temperature
is high (in early iterations), there is a high probability of accepting a neighboring solution
even if its objective function value is worse than that of the incumbent solution. This permits
wide exploration of the solution space. In later iterations, the temperature function cools,
reducing the likelihood that lower objective function value solutions will be considered. This
permits exploitation of promising regions of the solution space.

Given temperature T , the probability of accepting a solution having objective function
value e0 when the best objective function value found so far is emax > e0 is given by
P = e−(emax−e0)/T . The initial temperature, T , is chosen so that the acceptance probability
of a solution having at least 90% of the initial objective function value is at least 95%. In
subsequent iterations, T is cooled by a multiplicative factor of 0.95.

After a set number of annealing iterations, a single iteration of local search is conducted on
the best solution found so far by toggling each vertex sequentially to determine if its inclusion
or exclusion improves the objective function value. The best solution found is returned.

We use a Gomory-Hu tree implementation of the all-pairs maximum flow problem to
rapidly calculate the vitality of the key vertex on each modified graph encountered by the
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heuristic (Gomory & Hu, 1961; Gusfield, 1990). For mathematical reasons that are dis-
cussed in Sect. 6, we can exclude leaves from consideration in any removal subset. These
two enhancements permit the simulated annealing heuristic to run very fast on even large
instances, as we discuss in Sect. 5.3.

5 Computational analysis

We now present performance comparisons on a variety of datasets of the MIP formulation
and the simulated annealing heuristic. Following the approach of Lee et al. (2019), we
generate grid networks, which are planar. We also test the performance of the methods
on random networks (Knuth, 2014) and on a real drug trafficking network (Natarajan, 2000).
We first describe these data sets and the computational platform used, and then we present
the results. Code and data files are available at our Github repository: https://github.com/
alicepaul/network_interdiction.

5.1 Data

5.1.1 Grid networks

Wegenerate grid networks in a similar fashion as Lee et al. (2019).We generate squareM×M
grids with M varying from five to eight. Such graphs have an edge density of 4

M(M+1) , which
ranges from 13.3% for M = 5 to 5.6% for M = 8. On each grid, we generate edge capacities
independently and uniformly at random from the integers from 1 to M . For each case, we
likewise consider two scenarios, testing a maximum removal subset size ofm = 1 orm = M
(that is,

√|V |). For each grid size and removal subset size combination, we generate three
trial graphs. For each trial, a key vertex is selected uniformly at random over the vertices.

5.1.2 Random Gn,m Networks.

Random Gn,m graphs are parametrized by a number of vertices, n = |V |, and a number
of edges, m = |E | (Knuth 2014). Each graph is sampled by finding a random graph from
the set of all connected graphs with n nodes and m edges. We test our methods on graphs
having the same number of vertices and same number of edges as the grid networks above:
|V | = {25, 36, 49, 64} vertices, with |E | = {40, 60, 84, 112}, respectively. On each graph,
we generate edge capacities independently and uniformly at random from the integers from
1 to

√|V |. For each case, we likewise consider two scenarios, testing a maximum removal
subset size ofm = 1 orm = √|V |. For each graph size and removal subset size combination,
we generate three trial graphs. For each trial, the key vertex is selected to have the highest
betweenness centrality.

5.1.3 Drug trafficking network

Lastly, we test our models on a real-world covert cocaine trafficking group, prosecuted in
NewYork City in 1996 (Natarajan, 2000). This network consists of 28 people between whom
151 phone conversations were intercepted over wiretap over a period of twomonths. An edge
exists between persons i and j if at least one conversation between them appears in the data
set. There are 40 edges in this graph, corresponding to an edge density of 10.6%. We can
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Fig. 1 Cocaine trafficking network of Natarajan et al. Line width is proportional to number of wiretapped
calls made between pairs of operatives (Natarajan, 2000)

Table 1 Roles of notable vertices
in the cocaine trafficking network
of Natarajan et al. (Natarajan,
2000)

Vertex Role

1, 2, 3 Colombian Bosses

5 Courier

6 Managing Operations

7 Task Distribution

14 Technical Operations

16 Security

consider a unit capacity version of the network, as well as a general capacity version in which
the capacity on edge i − j is equal to the number of conversations between them appearing
in the data. The weighted network is shown in Fig. 1, where line width is proportional to the
number of wiretapped calls occurring between two operatives. According to Natarajan et al.,
some individuals in the network are known to have the roles described in Table 1. We test a
maximum removal subset size of m = 1 or m = 5 ≈ √|V |. Because the Colombian bosses
(vertices 1, 2, and 3) are high-level leaders important to the functioning of the organization,
we treat these vertices as the key vertices on which we attempt to maximize vitality.

5.2 Computational framework

The performance of the MIP and the simulated annealing heuristic was tested on a computer
with a 3 GHz 6-Core Intel Core i5 processor and 16 GB of memory. The Single-VIMAX
and VIMAX MIP instances were run in python 3.9.6 calling the CPLEX solver through
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the CPLEX python API, and were each limited to two hours of computation time. The
simulated annealing heuristic was also coded in python and limited to 10,000 iterations on
each trial instance. Initial results were collected using the Extreme Science and Engineering
Discovery Environment (XSEDE) supercomputers (Towns et al., 2014) and up to five hours
of computation time but did not show substantially different results. In addition to the general
VIMAX MIP, a single vertex removal MIP (Single VIMAX) was also tested. Single vertex
removal simulated annealing results are not reported, as they are effectively equivalent to
brute force search.

5.3 Results

Table 2 presents the results of all completed trials. The first five columns explain the graph
type, number of vertices (|V |), number of edges (|E |) and for the general VIMAX problem
allowing multiple removals, the maximum allowed size, m, of the removal subset. Column
six gives the initial vitality of the key vertex in the original graph with no vertices removed.
Columns seven through ten provide results on the performance of the single vertex removal
MIP (SingleVIMAX); columns eleven through fifteen provide results from themulti-removal
MIP (VIMAX); and columns sixteen through nineteen provide results from themulti-removal
simulated annealingheuristic. (There is noneed to use simulated annealing for SingleVIMAX
because it can be solved by sequentially testing the removal of each vertex.) For the three
methods, the best vitality found within the time or iteration limit, the MIP gap if available,
the percentage increase of the best vitality found by the method over the original vitality of
the key vertex in the full graph, and the running time in seconds are given. For the multi-
removal methods, the size of the best found removal subset (|S|) is also given. MIP instances
that terminated due to time limit have Time reported as ′−′. Figures2, 3, and 4 plot, for
each graph type, vitality averaged over the three trials by removal method (original vitality,
single-removal MIP, multi-removal MIP, and multi-removal simulated annealing).

First we note that Table 2 and Figs. 2–4 provide a proof-of-concept demonstrating that it
is possible to increase (sometimes dramatically) the vitality of the key vertex through subset
removal. Removing a single vertex increased the vitality by 42%-200% in all grid network
instances for which the MIP solved to optimality within the time limit, and by up to 82% in
the random graph instances; single vertex removal was not able to increase the vitality of the
key vertex in the drug network. When allowing multiple removals, simulated annealing was
able to identify removal subsets that increased the vitality on the key vertex by as much as
1,373%.

Unsurprisingly, the full VIMAXMIP allowingmultiple removals is substantially harder to
solve than the single removal MIP. On grid and random networks, theMIP failed to terminate
within the two-hour time limit on all instances with at least n = 36 nodes. On the n = 36
random and the 7 × 7 and 8 × 8 grid network instances, the single removal MIP also did
not terminate within the time limit, but an improving solution was returned in more cases.
The large MIP gaps on the multi-removal MIP indicate a failure to find improving integer
solutions.

For multiple vertex removal, the simulated annealing heuristic yielded excellent solutions
in a fraction of the time required by even the single removal MIP. On the large instances for
which the multiple removal MIP reached the time limit, the simulated annealing heuristic
found substantially better solutions than the MIP incumbents. For those instances in which
the multiple removal MIP solved to optimality, the solutions found by simulated annealing
are often optimal and always near-optimal.
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Fig. 2 Mean vitality across three trials for the unit capacity and general capacity instances of the drug net-
work, by removal type (original graph, single-removal MIP, multi-removal MIP, and multi-removal simulated
annealing)

Fig. 3 Mean vitality across three trials for each size of the random network, by removal type (original graph,
single-removal MIP, multi-removal MIP, and multi-removal simulated annealing)
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Fig. 4 Mean vitality across three trials for each size of the grid network, by removal type (original graph,
single-removal MIP, multi-removal MIP, and multi-removal simulated annealing)

The effectiveness of vertex removal tomaximize vitality appears to depend on the network
structure and choice of key vertices. While the drug network has approximately the same
number of vertices and edges as the 25-node instances of the random and grid networks, the
key vertices (corresponding to vertices Boss 1, Boss 2, and Boss 3 in Fig. 1) chosen in these
trials are less amenable to vitality maximization. The drug network has a large number of
leaves, whereas the grid networks do not. As we will see in Sect. 6, vertices, such as leaves,
that do not have at least two vertex-disjoint paths to the key vertex will never appear in an
optimal removal subset.

Lastly, in these trials, we chose to restrict the removal subset size to at most m vertices.
The reason to restrict the removal subset size is to reduce the solution space, and thus the
complexity, of the problem. This decision is justifiable because we know removing too many
vertices will cause overall flow in the network to drop such that the vitality on the key vertex
cannot increase. Thus, an important question is what should be an appropriate value of m to
effectively reduce the solution space without compromising the quality of solutions found?
We do not have a definitive answer to this question. However, we see that inmany of the trials,
the best removal subset identified by any method has a size strictly less than m ≈ √|V |,
suggesting that this choice of m is reasonable for the sizes and types of graphs considered
here.

6 Leveraging structural properties of vitality

Thus far, we have established that subset removal can dramatically increase the vitality of a
key vertex. However, solving this problem exactly as aMIP is computationally intractable for
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even modestly sized graphs. Fortunately, simulated annealing is an appealing alternative that
yields very good solutions in dramatically less time than the MIP. In this section, we explore
mathematical properties that characterize vertices that can be ignored by subset removal
optimization approaches. We demonstrate how these properties can be leveraged to simplify
the graph on which VIMAX is run.

6.1 Identifying vitality-reducing vertices

To reduce the complexity of the optimization formulation, we turn to identifying conditions
that cause a vertex to have a vitality-reducing effect on the key vertex. This allows us to
ignore such vertices in any candidate removal subset and reduce the solution space of the
VIMAX problem.

Our first observation is that the presence of a cycle is necessary for the removal of a vertex
to increase the vitality of a key vertex. The vitality of a leaf is always equal to 0, so the
removal of any subset that results in k becoming a leaf also cannot increase the vitality of
k. As a corollary, if k has neighbor set N (k) and more than |N (k)| − 2 of k’s neighbors are
removed, the vitality effect on k will be nonpositive.

We can generalize this further. When there are not at least two vertex-disjoint paths from
i to k, any removal subset including i will have a vitality effect on k no greater than the same
subset excluding i , as stated by the following theorem.1:

Theorem 2 Let G be a graph with key vertex k, and let i be a vertex such that there do not
exist at least two vertex-disjoint paths starting at i and ending at k. Let S be any vertex subset
containing i , and let T = S \ {i}. Then, Lk(G\S) ≤ Lk(G\T ). Therefore, T will have at
least as large a vitality effect on k as S.

Proof The proof of this can be found in Appendix B. 	

Put simply, the existence of only one vertex-disjoint path between i and k means that i and

k do not lie on a cycle together. Therefore when i is removed, any s − t paths that previously
passed through i cannot be rerouted through any alternate path passing through k.

Note that identifying vertices that do not have at least two vertex-disjoint paths to k is
computationally straightforward.We can solve an all u−k pairs maximumflow problem on a
related graph Ĝ in which every vertex u is replaced with a pair of vertices connected by a unit
capacity edge: (u, u′). For every directed edge i− j in the original graph, we include directed
edge (i ′, j) in the modified graph. Through the use of a Gomory-Hu tree, we can solve this
in O(|V |3√|E |) time (Gomory & Hu, 1961; Gusfield, 1990). Any vertex u corresponding
to vertex u

′
in Ĝ that has a maximum u

′ − k flow of one in Ĝ does not have at least two
vertex-disjoint paths to k in the original graph and can be ignored by any removal subset. We
call the set of such vertices,Q. Every vertex inQ should be maintained in the graph and not
be considered for removal.

These properties show that when seeking a vitality-maximizing subset for removal, we
can ignore all subsets that include:

1 A more general cut theorem holds for the specific case of an undirected graph in which all edges in the
graph have unit capacity (Martonosi et al., 2011) In such a graph, the value of the maximum s − t flow equals
the number of edge disjoint paths between s and t in the graph. In this case, the relationship between the
size of the cut between the key vertex k and a candidate for removal, i , and the connectivity between vertices
along the boundaries of that cut conveys information about the vitality effect on k of removing i . The reader
is also referred to Paul (2012) for an overview of how this theorem might be implemented in practice for unit
capacity, undirected graphs.
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Table 3 Improvement in key VIMAX instance size parameters by identifying vitality-reducing vertices and
using graph-simplification. |Q| is the number of vertices that do not have at least two vertex-disjoint paths to
k; vertices inQ can be ignored by VIMAX (see Sect. 6.1). |V̂ | and |Ê | are the numbers of vertices and edges,
respectively, in the reduced graph after applying the graph simplification method of Sect. 6.2. The last two
columns report the percentage decrease in time and percentage increase in best objective function value of the
graph simplification method compared to the Multi-Removal MIP results reported in Table 2. Entries denoted
by ’-’ indicate instances in which the MIP did not terminate within two hours

% Decr % Inc
Graph Type |V | |E | |Q| |V̂ | |Ê | Time Obj

Drug Network unit cap. 28 40 14 18 30 93.19 0.00

28 40 14 18 30 94.68 0.00

28 40 13 18 30 91.83 0.00

gen. cap. 28 40 14 20 32 89.40 0.00

28 40 14 20 32 92.91 0.00

28 40 13 20 32 90.98 0.00

Random n = 25 25 40 23 12 11 99.98 0.00

25 40 1 25 40 62.92 0.00

25 40 6 24 38 23.98 0.00

n = 36 36 60 33 5 4 99.99 0.00

36 60 4 35 59 – 13.56

36 60 8 35 59 – 0.00

n = 49 49 84 6 48 83 – 0.00

49 84 7 47 82 – 0.00

49 84 7 48 83 – 0.00

n = 64 64 112 8 64 112 – 0.00

64 112 10 63 111 – 0.00

64 112 10 63 111 – 0.00

• vertices in Q (i.e. they do not share a cycle with k);
• more than |N (k)| − 2 of k’s neighbors.

After performing preprocessing on the graph to identify N (k) and Q, we can add the
following constraints to the MIP formulation:

qi = 1,∀i ∈ Q∑

i∈N (k)

qi ≥ 2 (6)

Although the above constraints provide a tighter formulation for VIMAX, the anticipated
benefits of these constraints are likely to bemodest. Table 3 shows |Q| (the number of vertices
that do not have at least two vertex-disjoint paths to k) for each graph used for testing in Sect. 5.

Unsurprisingly given their structure, all the vertices in the grid networks have at least two
vertex-disjoint paths to k; thus none of these vertices can be eliminated from consideration
and are omitted from Table 3. By contrast, the sparse drug trafficking network has nearly
half of its vertices that do not have at least two vertex-disjoint paths to the key vertex; this
is a significant reduction in the number of candidate vertices for removal, but VIMAX was
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readily tractable on this already-small network. Thus, this criterion alone is unlikely to render
previously intractable MIP instances tractable.

6.2 Simplifying the graph

Because VIMAX grows rapidly in the number of vertices, we can improve the computational
tractability of VIMAX by simplifying our original graph into a vitality-preserving graph
having fewer vertices. We rely heavily on Theorem 2 to do this.

Suppose that a vertex v disconnects the graph into two components T1 and T2 such that
k ∈ T1. Then, by Theorem 2, an optimal solution will not contain any vertex in T2. Further,
the maximum flows between pairs of vertices within T2 do not contribute to the vitality effect
on k. Therefore, all that is needed to preserve the vitality effect on k in the simplified graph
is to preserve information about the maximum flow between all pairs of vertices s, t such
that s ∈ T1 and t ∈ T2.

For all vertices t ∈ T2 we create a single edge between t and v with capacity equal to
the maximum flow between t and v. This replaces all previous edges between vertices in T2.
This affects the value of the all-pairs maximum flow problem but does not affect the vitality
effect on k for any subset S ⊂ T1. Further, if any subset of vertices T ′ ⊆ T2 all have the same
new capacity value, we combine T ′ into a single vertex with weight |T ′|. When calculating
the maximum flow between any pair of vertices s and t in the graph, we multiply the flow by
the product of the weights of the vertices to account for this simplification.

Using the process described in the previous section, we can identify the subset of vertices
Q ⊆ V \ {k} that do not have at least two vertex-disjoint paths to k. Given a vertex i ∈ Q,
we find a path from i to k and find the first vertex v along i’s path to k such that v has at
least two vertex-disjoint paths to k. Removing the vertex v disconnects the graph. Therefore,
we follow the simplification process above and mark all vertices in the corresponding T2,
including i , as processed. We then repeatedly identify any unprocessed vertex inQ to further
simplify the graph. After all vertices in Q have been processed, all these vertices will be
weighted leaves in the new simplified graph where the weight depends on howmany vertices
have been combined. All other vertices will retain a weight of one.

Figure 5 shows an example of this simplification process in which there are two compo-
nents that have been simplified. Note that vertices 4, 6, and 7 have been combined together
into a vertex with weight three. Further, vertices 5 and 8 have been combined together into
a vertex with weight two.

As argued above, the maximum flow between all pairs of vertices that were in the same
simplified component never contribute to the vitality effect on k. Therefore, we ignore these
pairs in the optimization problem by removing the appropriate variables and constraints. We
therefore just need to check that we have preserved the maximum flow between all pairs of
vertices that were not in the same component. This is true by nature of the weights which are
multiplied. For example, in Fig. 5, we multiply by weight 4 for the maximum flow between
vertex 4 and vertex 1, accounting for all the paths between vertices 4, 6, and 7 and vertex
1. Thus, our optimization problem still finds an optimal subset to remove on the simplified
graph that is optimal in the original graph. The number of pairs of vertices decreases from
45 to 19 since the number of vertices excluding k decreases from 10 to 7 and we can ignore
the flow between vertices 9 and 10 and between vertices 4 and 8 in the simplified graph.

Table 3 shows the number of vertices (|V̂ |) and edges (|Ê |) in each test graph after apply-
ing the graph simplification algorithm. The only graph types experiencing an appreciable
reduction in size after simplification are the drug trafficking network and the smaller random
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Fig. 5 An example of a graph (left) and its simplified version (right) with vertex weights. Vertices 4, 6, and 7
have been combined together into a vertex with weight three. Further, vertices 5 and 8 have been combined
together into a vertex with weight two

graphs. We posit that highly connected graphs such as the grid networks are less amenable
to the simplification method than sparser networks. In Table 3 we also include the percent-
age decrease in time and percentage increase in the best objective function value found via
graph simplification to the Multi-Removal MIP removal results reported in Table 2. The time
includes the time to perform the graph simplification, which is very efficient. For graphs with
a significant reduction in the number of nodes and edges, we see a corresponding decrease in
the runtime for the MIP. For the larger networks that did not terminate within the time limit,
we only see the best vitality found improve in one instance.

7 Future work and conclusions

In this paper we have presented the VIMAX optimization problem that identifies a subset of
vertices whose removalmaximizes the volume of flow passing through a key vertex in the net-
work. VIMAX is NP-Hard. We have used the dualize-and-combine method of Wood (1993)
to formulate VIMAX as a mixed integer linear program, and we compared its performance
to that of a simulated annealing heuristic. We also demonstrated how identifying vertices not
having at least two vertex-disjoint paths to the key vertex can be used to simplify the graph
and reduce computation time on certain graph types. Key limitations to the work presented
are the computational bottlenecks. Future work could focus on two areas highlighted in this
paper - graph simplification and the Bender’s Decomposition.

• Graph Simplification: Additional properties of vitality-reducing vertices, such as those
outlined in Paul (2012) for the unit capacity case, could be derived for the general capacity
case and used to preprocess or simplify the graph to reduce the solution space of VIMAX.
In particular, it would be beneficial to identify small cuts in the graph such that all vertices
on the other side of the cut as k can be ignored from consideration.

• Bender’s Decomposition: Because the number of constraints in the VIMAX MIP grows
on the order of O(|E ||V |2), we can use Bender’s decomposition algorithm to solve our
problem for large graphs. The decomposition is presented inAppendix C, but preliminary
testing did not improve the MIP performance. The survey of Smith and Song illustrates a

123



Annals of Operations Research

variety of approaches that could be applied to improve the performance of the Bender’s
decomposition of VIMAX (Smith and Song 2020).

Additionally, this paper opens up a rich area of future research on extensions of this
problem.

• Optimization: In this paper, we have focused on identifying vertices having high vitality
effect on the key vertex without considering the cost or difficulty of removing them from
the graph. An enhancement to VIMAX could include a budget constraint restricting the
choice of subsets based on the difficulty of their removal.

• Dynamic response: The disruption technique described in this paper focuses on the net-
work at one snapshot in time and assumes that any subset removal occurs simultaneously
and that the network remains static. This might be a reasonable assumption for networks
that evolve slowly over time, such as transportation supply chains, or for disruption inter-
ventions that occur over a short time scale, such as military maneuvers. On the other
hand, social networks might be able to more rapidly reconfigure following a disruption,
counter to our assumption. Extensions to VIMAX might explore cascading effects of
sequential vertex removal, similar to the literature on multi-period interdiction (Enayaty-
Ahangar et al., 2019), cascading failures (Crucitti et al., 2004a; Motter & Lai, 2002;
Zhao et al., 2005), and agent-based models for counter-interdiction responses Magliocca
et al., 2019).

• Imperfect information: The VIMAX formulation presented here assumes complete and
perfect knowledge of the network’s structure. However, the complete structure of a covert
network is typically not known to enforcement agencies, and can evolve rapidly (Konrad
et al., 2017). Future work could address applying VIMAX to networks with uncertain
or unknown structure and capacities. For example, one could examine the robustness
of the vitality measure and vitality-maximizing subset to graph perturbations over an
uncertainty set.

• Robust network design: We can use the results of this research to design networks, such
as telecommunication and other infrastructure networks, to be robust to vitality-diverting
attacks (Crucitti et al., 2004b).

• Multiple key vertices: In the case that we want to maximize the flow through a subset
S of key vertices, we can extend the definition of vitality maximization to maximize
the all-pairs vitality of S. The MIP and simulated annealing algorithm can be updated
accordingly.

VIMAX has broad applicability to problems including disrupting organized crime
rings, such as those used in terrorism, drug smuggling and human trafficking; disrupting
telecommunications networks and power networks; as well as robust network design.

Appendix A Proof of Theorem 1

In this section we prove Theorem 1 stating that the all-pairs vitality maximization problem
is NP-Hard. Our proof extends the proof of Ovadia (2010) for the special case of undirected,
unit-capacity edges. We first restate VIMAX as a decision problem: For a fixed valueC , does
there exist a subset S such that Lk(G \ S) ≥ C?

Theorem 1 The all-pairs vitality maximization problem is NP-Hard.
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Fig. 6 Graph representation of a single clause 3SAT problem with three variables and the clause (x1 or x2 or
x3). All edge capacities equal one except where indicated otherwise

Proof We use a reduction from the 3-Satisfiability problem (3SAT). Given an instance of
3SAT with n boolean variables x1, x2, . . . , xn and m clauses in 3-conjunctive normal form
c1, c2, . . . , cm , the 3SAT decision problem is whether there is an assignment of variables to
true/false values such that all clauses are satisfied. As an example with three variables,
any assignment with x3 set to false would satisfy the two clauses (x1 or x2 or x3) and
(x1 or x2 or x3).

Given an instance of 3SAT, we construct a corresponding instance of VIMAX. We start
building our directed graph G with three vertices d1, k (the key vertex), and d2 with an
edge from k to d2 with capacity n + m. Further, for each variable xi we create four vertices
{ai , bi , ti , fi } and add edges (d1, ai ), (ai , ti ), and (ai , fi ) each with capacity two and edges
(ti , bi ), ( fi , bi ), (ti , d2), ( fi , d2), and (bi , k) each with capacity one.

Then, for each clause c j , we create two vertices u j and v j and add unit capacity edges
(d1, u j ) and (v j , k). To encode this clause, for each variable xi in clause c j we add unit edges
(u j , ti ) and (ti , v j ); for each variable xi in clause c j we add unit edges (u j , fi ) and ( fi , v j ).
Last, we create M = 8 · (m + n + n · m) leaves with unit edges to d1 and M leaves with
unit edges from d2 and set C = (M + 1)2(n + m). An example graph of a single-clause,
three-variable, 3SAT problem having clause (x1 or x2 or x3) is given in Fig. 6.

Note that the leaves adjacent to d1 and d2 essentially increase the weight of the flow
between d1 and d2. In particular, if we define

Ls,t
k (G \ S) := zst (G \ S) − zst (G \ (S ∪ {k}))
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and let V ′ be all vertices excluding these leaves as well as d1, d2, and k, then we can rewrite
the all-pairs vitality as

Lk(G \ S) =
∑

s,t∈V \(S∪{k})
s �=t

Ls,t
k (G \ S)

=(M + 1)2Ld1,d2
k (G \ S) +

∑

s,t∈V ′\S
s �=t

Ls,t
k (G \ S)+

(M + 1)
∑

s∈V ′\S

[
Ld1,s
k (G \ S) + Ls,d2(G \ S)

]

=(M + 1)2Ld1,d2
k (G \ S) + (M + 1)

∑

s∈V ′\S
Ls,d2(G \ S).

The last line holds since paths from d1 to s ∈ V ′ \ S or between s and t ∈ V ′ \ S cannot
travel through k. Further, we can bound the second half of the sum above by bounding the
vitality by the capacity out of the starting node for each maximum flow.

(M + 1)
∑

s∈V ′\S
Ls,d2(G \ S) ≤ (M + 1)(4m + 9n + 2m · n) ≤ 1

2
(M + 1)2.

This shows that themaximumflow from pairs that are not {d1, d2} contributes a trivial amount
to the overall vitality. Therefore, finding a subset such thatLk(G\S) ≥ C = (M+1)2(n+m)

is equivalent to finding a subset S such that Ld1,d2
k (G \ S) ≥ n + m.

We now show that given an assignment of variables to boolean values that satisfy all
clauses, we can find an equivalent subset S such that Ld1,d2

k (G \ S) ≥ n + m. Let S contain
ti for all i such that xi is set to false and fi for all i such that xi is set to true.

Consider the maximum flow between d1 and d2 in G\S. For each variable xi such that
ti ∈ S, we send two units of flow: one along the path (d1–ai– fi–bi–k–d2) and one along the
path (d1–ai– fi–d2). If, instead, fi ∈ S, then the paths change to use ti instead of fi . Further
for each clause j , since this clause is satisfied, there exists at least one vertex ti or fi adjacent
to u j that is not in S. Without loss of generality, let this vertex be ti . We send one unit of
flow along the path (d1–u j–ti–v j–k–d2). The overall flow has value 2n +m. Since all edges
adjacent to d1 are saturated, this is a maximum flow.

Now consider the maximum flow between d1 and d2 in G\(S ∪ {k}). For each variable
xi such that ti ∈ S, we send one unit of flow along the path (d1–ai– fi–d2). If, instead,
fi ∈ S, then the path changes to use ti instead of fi . The overall flow has value n. Since all
edges adjacent to d2 are saturated in G\(S ∪ {k}) this is a maximum flow. This shows that
Ld1,d2
k (G \ S) ≥ n + m.
We must now show the reverse direction to complete the proof. Suppose that we have

found a subset S such that Lk(G \ S) ≥ C . Then, given that all pairs except d1 and d2
contribute at most 1

2 (M + 1)2 to the vitality, it must be the case that Ld1,d2
k (G\S) ≥ n + m.

We decompose the flow into unit flow paths from d1 to d2. Let f (s, t) be the number of these
paths that go from s to t in the maximum flow from d1 to d2 in G\S and f ′(s, t) be the
number of paths from s to t in the maximum flow between d1 and d2 in G\(S ∪ {k}). Then,

Ld1,d2
k (G \ S) =

n∑

i=1

[
f (ai , d2) − f ′ (ai , d2)

] +
m∑

j=1

[
f
(
u j , d2

) − f ′ (u j , d2
)]

. (A1)
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For the first term in Eq.A1, we can verify that
[
f (ai , d2) − f ′(ai , d2)

] ≤ 1 if exactly one
of ti and fi is in S and {ai , bi } ∩ S = ∅ and at most zero otherwise. In particular, if ti and fi
are both in S then f (ai , d2) = f ′(ai , d2) = 0. If both ti and fi are not in S, then at most two
units of flow can go from ai to d2 in both graphs and both ti and fi can avoid using vertex
k. Only when exactly one of ti or fi has been chosen will at least one path be forced to go
through vertex k. For the second term, each term is also at most one given the unit capacity
of the edge from d1 into u j . Therefore,

Ld1,d2
k (G \ S)=

n∑

i=1

[
f (ai , d2) − f ′ (ai , d2)

]+
m∑

j=1

[
f
(
c j , d2

)− f ′ (c j , d2
)] ≤ n + m. (A2)

Since Ld1,d2
k (G \ S) ≥ n + m this implies equality throughout and that |{ti , fi } ∩ S| = 1

for all i = 1, 2, . . . , n. For each variable for which ti is in S, we set that variable to false.
Otherwise, we set the variable to true. Last, in order for every clause to contribute at least
one to the overall vitality, u j must be adjacent to some ti or fi not in S. Given the design of
our network, this indicates that the assignment satisfies that clause.

Overall, this shows that every 3SATdecision problemcan be reduced to aVIMAXdecision
problem and that VIMAX is NP-Hard. 	


Appendix B Proof of Theorem 2

Here we prove Theorem 2 stating that the removal of any vertex not having at least two
vertex-disjoint paths to the key vertex k can never increase the vitality of k.

Theorem 2 Let G be a graph with key vertex k, and let i be a vertex such that there do not
exist at least two vertex-disjoint paths starting at i and ending at k. Let S be any vertex subset
containing i , and let T = S \ {i}. Then, Lk(G\S) ≤ Lk(G\T ). Therefore, T will have at
least as large a vitality effect on k as S.

Proof Let G be a graph with key vertex k and let i be a vertex such that there do not exist at
least two vertex-disjoint paths starting at i and ending at k. Then there exists a cut vertex v

whose removal would disconnect the graph into at least two components. We consider two
cases, v �= i and v = i .

When v �= i , then v separates a component Gk that includes k from a component Gi that
includes i . Consider the maximum flow between an s − t pair (s, t �= k).

• If both s and t are in Gi , the flow between them is unaffected by the removal of vertex
k, whether or not vertex i is removed from the graph. This is because any optimal flow
path that passes through vertex k must first go into and out of vertex v, creating a flow
cycle, s − . . . − v − . . . − k − . . . − v − . . . − t , and thus is equivalent to a flow path that
avoids Gk entirely, s − . . . − v − . . . − t .

• If both s and t are inGk , their contribution to the vitality of k is unaffected by the removal
of i by the same logic as above: any optimal flow path that passes through vertex i must
go into and out of vertex v, creating a flow cycle, and thus is equivalent to a flow path
that avoids Gi entirely.

• If, without loss of generality, s ∈ Gi and t ∈ Gk , then the removal of vertex i may reduce
the flow between s− . . .−v, but the remainder of the path v − . . .− t is unaffected. Thus
no additional flow can be routed through k when i is removed than when i is present.

When v = i , then i separates a component Gk that includes k from the remainder of the
graph, Gi . In this case, the removal of i will eliminate all s − t flow between s ∈ Gi and
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t ∈ Gk , regardless of whether or not k is in the graph. Thus, no additional flow can be routed
through k when i is removed from the graph than when i is present. 	


Appendix C Benders decomposition

Because the number of constraints in the VIMAX MIP grows on the order of O(|E ||V |2),
we can use Benders decomposition algorithm to solve our problem for large graphs. In our
case, the integer master problem chooses the subset of vertices to remove; this problem has
relatively few variables and constraints. Given a fixed removal subset, we are left with a large
linear network flow subproblem that is guaranteed to have an integer optimal solution.

We see in Eq.5 constraints that couple wi, j , xi, j,s,t , αi, j,s,t and βi,s,t . We let the qi ’s and
wi, j ’s be the variables in our master problem. Our initial master problem contains only the
constraints related to the wi, j ’s and qi ’s, representing the choice of subset to remove. Thus
the master problem is

Maximize Lk

subject to ∑
i∈V qi ≥ n − m

qk = 1
wi, j ≤ qi , ∀(i, j) ∈ E
wi, j ≤ q j , ∀(i, j) ∈ E
wi, j ≥ qi + q j − 1, ∀(i, j) ∈ E

qi binary, ∀i ∈ V
wi, j ≥ 0, ∀(i, j) ∈ E
Lk ≥ 0.

(C3)

Here, Lk represents the optimal vitality of k. It currently has no restrictions on its value.
Solving Eq.C3 determines a feasible z and w, which we can use to compute the vitality

of k in the dual of the linear subproblem. When taking the dual we let γi,s,t be the dual
variables corresponding to the flow balance constraints of the xi, j,s,t ’s and δi, j,s,t be the dual
variables corresponding to the capacity constraints on the xi, j,s,t ’s. Similarly, we let ζi, j,s,t
be the dual variables corresponding to the edge constraints on αi, j,s,t , and we let ηs,t be the
dual variables corresponding to the constraints on the relationship between βs,s,t and βt,s,t .
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The linear subproblem becomes

Minimize
∑

s,t∈V ′
s �=t

∑

(i, j)∈E
ui, jwi, jδi, j,s,t +

∑

s,t∈V ′
s �=t

ηs,t−

∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
(1 − wi, j )ζi, j,s,t

subject to
γi,s,t − γ j,s,t + δi, j,s,t ≥ 0,∀(i, j) ∈ E,∀s, t ∈ V ′
−γs,s,t + γt,s,t ≥ 1,∀s, t ∈ V ′

∑

j :(i, j)∈E ′
ζi, j,s,t −

∑

k:(k,i)∈E ′
ζk,i,s,t =

⎧
⎪⎨

⎪⎩

ηs,t if i = s

−ηs,t if i = t

0 otherwise
∀i, s, t ∈ V ′

ζi, j,s,t ≥ −ui, j ,∀(i, j) ∈ E ′,∀s, t ∈ V ′

γi, j,s,t ≥ 0,∀(i, j) ∈ E,∀s, t ∈ V ′
δi,s,t unrestricted,∀i, s, t ∈ V ′
ηs,t ≤ 0,∀s, t ∈ V ′
ζi, j,s,t ≤ 0,∀(i, j) ∈ E ′,∀s, t ∈ V ′.

(C4)

At the beginning of each iteration c, the master is solved and we obtain the optimal values
for qi and wi, j . Initially, we start with an infinite objective function and all qi = 1. The dual
of the linear subproblem, shown in Eq.C4, is then solved with the optimal wi, j ’s substituted
in.

If the subproblem is unbounded, simplex returns the extreme ray, defining γ c, δc, ηc and
ζ c, and we add to the master problem the constraint

∑

s,t∈V ′
s �=t

∑

(i, j)∈E
ui, jwi, jδ

c
i, j,s,t +

∑

s,t∈V ′
s �=t

ηcs,t −
∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
(1 − wi, j )ζ

c
i, j,s,t ≥ 0.

If the subproblem has an objective function value less than or equal to the incumbent value
of Lk , then we add to the master problem the constraint

∑

s,t∈V ′
s �=t

∑

(i, j)∈E
ui, jwi, jδ

c
i, j,s,t +

∑

s,t∈V ′
s �=t

ηcs,t −
∑

s,t∈V ′
s �=t

∑

(i, j)∈E ′
(1 − wi, j )ζ

c
i, j,s,t ≥ Lk .

Otherwise, the algorithm terminates.We set a max difference of 1e−5 betweenLk and the
subproblem objective function value as our definition of convergence and stopping condition.

Preliminary testing of the Benders decomposition of VIMAX reveals the same problem
that plagues large instances of the MIP formulation: the objective function values of the
linear subproblems encountered are quite large compared to the objective function value of
any feasible integer solution. Thus, the cuts added do not adequately constrain the master
problem. Future work is needed to develop improved Benders decompositions.
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