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Abstract
Logistics companies partition the customers they serve into delivery zones as a tactical deci-
sion and manage the customers assigned to each zone as a cluster for the purpose of routing,
workload allocation, etc. Frequently, this partition is made in accordance with customers’
geographical location, which can result in very unbalanced clusters in terms of the number
of customers they include. In addition, in the day-to-day operations, not necessarily all cus-
tomers need to be served every day so, even if the clusters originally created are balanced,
daily needs may lead to unbalanced clusters. Given an a priori assignment of customers to
clusters, improving the balance between clusters in advance of workload management is
therefore a key issue. This paper addresses the problem of balancing clusters, when there
is a distance constraint that prevents reassigning customers to clusters far away from their
original pre-assignment. This problem is formulated as a lexicographic biobjective optimiza-
tion model. The highest priority objective function minimizes the variance of the number of
customers in the clusters. The second ranked objective function minimizes the total distance
resulting from all reassignments. A fast and effective heuristic algorithm is developed, based
on exploring customer reassignments, either by comparing clusters two by two or by extend-
ing the search to allow for sequential customer swaps among clusters. Both the quality of the
solution and the computational time required encourage the use of this algorithm by logistics
companies to balance clusters in real scenarios.

Keywords Balancing clusters · Distance constraint · Heuristic algorithm

All of the authors have contributed equally to this work.

B Herminia I. Calvete
herminia@unizar.es

Carmen Galé
cgale@unizar.es

José A. Iranzo
joseani@unizar.es

1 Departamento de Métodos Estadísticos, Instituto Universitario de Investigación en Matemáticas y
Aplicaciones (IUMA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

2 Departamento de Métodos Estadísticos, Instituto Universitario de Investigación en Matemáticas y
Aplicaciones (IUMA), Universidad de Zaragoza, María de Luna 3, 50018 Zaragoza, Spain

3 Departamento de Métodos Estadísticos, Instituto Universitario de Investigación en Matemáticas y
Aplicaciones (IUMA), Universidad de Zaragoza, Violante de Hungría 23, 50009 Zaragoza, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-024-06017-1&domain=pdf
http://orcid.org/0000-0001-7603-9380
https://orcid.org/0000-0002-5630-3719
https://orcid.org/0000-0001-9993-9816


Annals of Operations Research

1 Introduction

Grouping users of a service (from now on customers) in geographical areas (districting) is
a common practice in different areas. Kalcsics and Ríos-Mercado (2019) state that there are
four major areas of application: political districting, sales territory design, service districting
and distribution districting, and provides relevant literature on these topics. District mapping
is a common strategy adopted by logistics companies to better manage their resources and
workload. To partition the distribution area generally allows each zone, subarea or cluster
of customers to be regularly served by the same set of drivers, which improves customer
service and reduces routing complexity by handling smaller sets of customers (Vidal et al,
2020). As a strategic decision, clusters of customers are created a priori, usually based on
their geographical location (zip code zones). This form of grouping customers can result
in clusters that are very unbalanced in terms of the number of customers they include. In
addition, in the day-to-day operations of companies, not necessarily all customers need to
be served every day so, even if the clusters originally created are balanced, daily needs may
lead to unbalanced clusters. This is of concern to logistics companies, for whom a balanced
workload is an important issue (Matl et al, 2018, 2019).

This paper addresses the problem of constructing new clusters, by removing some cus-
tomers from their pre-assigned cluster and reassigning them to a different one, so that the
number of customers in the new clusters be as balanced as possible. In practical applica-
tions like logistics and supply chain management, balanced clusters help optimize resource
utilization, streamline operations, and ultimately reduce costs. This problem was brought to
our attention by Alerce https://www.alerce-group.com/, a consultancy company which pro-
vides services to the logistics industry. The aim was to make changes in such a way that the
allocation of the workload or the calculation of routes would not be impacted significantly.
Broadly speaking, these changes should affect customers who are close to the zone to whose
cluster they are to be reassigned. In addition, this reassignment should be done in a very short
computing time so that it can be used when the daily workload is planned. Hence, this work
focuses primarily on the strategic aspect of balancing customer clusters, implicitly assuming
that the logistics company has sufficient resources to accommodate the reallocation of cus-
tomers. By assuming adequate resources, we aim to isolate the impact of customer clustering
strategies on workload distribution and operational efficiency.

Constructing clusters with the same or nearly the same number of customers can be
easily solved by assigning to each cluster a number of customers equal to (or close to) the
average. However, from a company operations point of view, it may be impractical to group
geographically distant customers into the same cluster. Therefore, it is necessary to take
into account a distance constraint which prevents the reassignment of customers to clusters
in a distant zone. It is this distance constraint that makes it difficult to deal with cluster
balancing as it may be impossible to assign almost the same number of customers to all
clusters. From now on, the above problem will be called the Balancing customer Clusters
with a Distance constraint Problem (BCDP). It is worth emphasizing that there is no general
agreement on how to address what is meant by balancing. Depending on the area of study and
on the objective looked for, there have been different manners of approaching the balancing
problems. This issue can be considered close to that of equity measurement, which has been
the subject of multiple economic studies for a long time (Atkinson, 1970; Young, 1994; Sen
and Foster, 1997). Karsu and Morton (2015) point out that incorporating equitability in the
decision process depends on the structure of the problem as well as on what is understood by
a fair distribution. Taking into account the BCDP characteristics, in this paper we propose
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to measure the imbalance by the variance of the number of customers in the clusters. Since
the distance constraint does not, in general, allow clusters with a cardinal equal to the mean
number of customers, the variance provides a measure of the degree of spread around the
mean. Moreover, since it is also important to make changes that have the least possible
impact on the company’s initial organization, a goal related to the total distance resulting
from customers’ reassignments will be considered.

Both issues, balancing the number of customers and handling the distance, aremodeled as a
biobjectivemixed integer optimization problem. In general, when dealingwithmultiobjective
optimization, there is no single feasible solution which minimizes both objective functions at
the same time. Hence, it has been studied from different points of view (Ehrgott, 2005).When
an order among the objectives can be established, the lexicographic approach is appropriate
since it allows determining an optimal solution by applying the lexicographic order induced
among the feasible solutions (Romero, 2001). This approach assigns pre-emptive priorities
to the objective functions in order to minimize them in a lexicographic order. Thus, first the
highest priority objective function, related to balancing, is minimized over the feasible region
defined by the constraints. Then, from the set of optimal solutions to this single-objective
problem, an optimal solution which minimizes the second objective function, referring to
distance, is selected.

The paper describes the development of a specially tailored heuristic for solving the BCDP
that is accurate and fast. This heuristic consists of four steps. The first and the second steps aim
to obtain balanced clusters by exploring the existence of customers which can be reassigned
to reduce the imbalance. This is made by comparing either clusters by pairs or addressing
sequential customer exchanges. From the solution obtained at the end of these steps, and
without modifying its highest priority objective function value, the third and fourth steps of
the algorithm aim to explore if a better reassignment is possible from the point of view of the
total distance of reassignment. Compared to a general purpose solver, this algorithm provides
outstanding results in very short computing times. Thus, it can be successfully implemented
in real-life scenarios and so this methodology can help logistic companies when the daily
workload is known and balancing is needed.

In summary, the main contributions of this paper are the following:

• We introduce a new problem, the BCDP.
• We formally model the BCDP as a lexicographic biobjective nonlinear integer optimiza-

tion problem.
• We propose a heuristic algorithm based on reassigning customers among clusters.
• We perform extensive computational experiments on instances derived from real-world

data that show that the algorithm provides high-quality solutions in short computing
times.

The paper is organized as follows. Following the Introduction section, Sect. 2 summarizes
related work focusing on areas in which districting or balancing are relevant topics. Section3
establishes the mathematical model for the BCDP. Section4 describes the characteristics of
the heuristic algorithm developed for solving the BCDP. In Sect. 5, we analyze the perfor-
mance of the algorithm by comparing the results provided with a general purpose solver,
using a set of large instances based on real-world data. Finally, in Sect. 6 we summarize the
key insights and present some concluding remarks and future work.
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2 Related work

In this section, without being exhaustive, we present some relevant papers in different fields
in which balancing plays an important role. These papers are relevant in their own right, but
also because they provide a number of references that we do not reproduce here for the sake
of conciseness. Balancing problems have been studied mainly in connection with district
design, clustering, routing or facility location problems.

2.1 Districting

Related to districting problems, Kalcsics and Ríos-Mercado (2019) provide a state-of-the-art
review in different areas of application. They also describe the problems associatedwith quan-
tifying different characteristics that are desirable, because of their different focus depending
on the area in which the problem is being formulated. Tasnádi (2011) and Goderbauer
and Winandy (2018) surveys focus on political districting to avoid unequal representation
of citizens. Liberatore et al (2020) and Samanta et al (2022) refer to the police districting
problem in which the purpose is to improve the ability of police agencies to stop and prevent
crime. Benzarti et al (2013) analyze the role of districting in home health care services. The
criteria considered are compactness, accessibility, conformity to administrative boundaries,
indivisibility and workload balance. Sandoval et al (2022) address the problem of delivery
district design in postal and last mile logistics from a real-world problem. The model is based
on the classic district design problem but focuses on the quality of service rather than on
workload balancing. Based on a real-world problem of a major dairy company, Zhou et al
(2021) develop a heuristic technique for dealing with districting, aiming to minimize the
total operational cost computed as a function of the fixed costs of the districts and the routing
costs. Finally, the following papers take into consideration the existence of some random
component. Diglio et al (2020) study a stochastic districting problem in which demand is
assumed to be random. The focus is on overall compactness while meeting balancing con-
straints defined as average demand per district. Haugland et al (2007) focus on designing
districts for vehicle routing problems with stochastic demands. The purpose is to partition
a set of customers in contiguous districts in such a way that customers in the same districts
are served by the same vehicle. In the proposed approach, first customers are allocated to
districts and this allocation remains fixed whatever the demand pattern that occurs. In the
second stage, vehicle routing problems (VRP) associated to each district are solved.

2.2 Clustering

Clustering is a methodology used in unsupervised learning to categorize data points based
on their similarity and differences. Widely utilized in exploratory data analysis, it holds
significant importance across various applications, including pattern recognition and market
and customer segmentation, among others. The k-means algorithm is a widely used method
for clustering data points into distinct groups, or clusters, based on similarity. The algorithm
iteratively partitions the data into k clusters by minimizing the sum of squared distances
between data points and the centroid of their assigned cluster. The algorithm k-means is
computationally efficient and easy to implement, making it a popular choice for clustering
tasks in various domains. However, it is sensitive to the initial placement of centroids andmay
converge to local optima, requiring multiple runs with different initializations to obtain the
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optimal clustering solution. Moreover, in some cases, it can lead to clusters of very different
sizes.

Ensuring balanced clusters holds significant importance across various fields and appli-
cations. Balanced clusters facilitate more effective decision-making processes, enhance the
interpretability of results, and enable fair resource allocation. In fields such as machine
learning and data analysis, balanced clusters contribute to the accuracy and robustness of
models, leading to improved predictive performance. Additionally, in social sciences and
market research, balanced clusters ensure representative samples, leading to more accurate
insights and informed decision-making. Therefore, various algorithms have been presented
in the literature to construct balanced clusters. These algorithms aim to address the challenge
of creating clusters with roughly equal numbers of data points. Malinen and Fränti (2014)
propose what they call a balanced k-means which differs from the k-means in the assign-
ment phase which forces all clusters to be of the same size. Lin et al (2019) address the
problem of balancing clusters using a regularization term which acts on the cluster sizes to
control their balance. This regularization technique is similar to that used in machine learn-
ing models to prevent overfitting. De Maeyer et al (2023) offer a comprehensive review of
existing approaches to balanced clustering and introduce an alternative method based on the
k-means algorithm. Central to this approach is the inclusion of an escalating penalty term into
the assignment function of the k-means algorithm. This augmented function encourages the
assignment of objects to smaller clusters, thus promoting a more balanced distribution. Ding
(2020) assumes that the k cluster centers are provided and proceeds to construct a spatial par-
tition framework which serves as the foundation for developing an algorithm tailored to the
k-means clustering problem, wherein the size of each cluster is constrained by predetermined
lower and upper bounds

2.3 Balancing in VRP and location problems

Vidal et al (2020) provide a recent review of existing and emerging variants of VRP in
which balancing is one of the emerging objectives, measured as workload balance, service
equity or collaborative planning. VRP with route balancing aims to preserve equity among
drivers through a good balance of their workload. This problem is usually modeled as a
biobjective problem in which both the distance traveled and a measure of the workload
imbalance are minimized. As mentioned by Matl et al (2018), who provide an extensive
survey on workload equity in VRP, most models and methods proposed in the literature
measure workload by the route distance and aim tominimize the longest route length (Golden
et al, 1997; Jozefowiez et al, 2009) or the difference between the longest route length and the
shortest route length (Lacomme et al, 2015). They conclude by emphasizing the importance
of properly selecting what is to be balanced as this determines the solutions that will be
obtained. Lee and Ueng (1999) minimize the distance traveled and what they call the best
working time balance defined as the sum of the working time difference between each vehicle
and the vehiclewith the shortestworking time. Jozefowiez et al (2007) approach the balancing
problem from a biobjective point of view considering the distance traveled by the vehicles and
the difference between the longest route length and the shortest route length as minimization
objectives. Matl et al (2019) supplement their previous work. They analyze, among other
aspects, how the obtained solutions represent the preference structure of decision makers or
what is the degree of agreement onwhat ismeant bywell-balancedVRP solutions.Halvorsen-
Weare andSavelsbergh (2016) carry out an exhaustive reviewof papers dealingwithworkload
balancing inVRP.Moreover, theyhighlight how the selectionof the objective functions affects
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the resulting Pareto front. Lehuédé et al (2020) propose to refine the min-max approach in
the sense that, when a minimal value has been found for the longest route, the second longest
route is considered, then the third longest route, and so on, until all ties have been broken,
and develop a multi-directional local search approach. Nikolakopoulou et al (2004) aim to
balance the time utilization of the vehicles used by partitioning the distribution network into
subnetworks each served from a single depot. Bektaş et al (2019) study the Balanced Vehicle
Routing Problem, where each route is required to visit a maximum and a minimum number
of customers. They describe several families of facet-inducing inequalities which are used
in a branch-and-cut algorithm. Mancini et al (2021) focus on carriers which collaborate to
better use the available resources and introduce the collaborative VRP with time and service
consistency and workload balance for which they develop an efficient matheuristic. Linfati
et al (2020) indicate that traditional approaches tomeasuring theworkload balance have some
problems and so propose considering customers’ compactness and visual attractiveness by
using several objective functions.

The literature on facility location problems has also devoted attention to the issues of
equity and fairness, aiming to measure to what extent facilities cover homogeneously the
people they serve (see, for instance, Marsh and Schilling (1994); Eiselt and Laporte (1995);
Bélanger et al (2019) and references therein). In general, these papers deal with equity from
the customer’s point of view, since it is important that the coverage of customers by open
facilities has a similar quality. Ogryczak (2000) analyzes efficiency and inequality measures
through the properties of solutions to location models. Marín (2011) considers a discrete
facility location problem where the difference between the maximum and minimum number
of customers allocated to every plant has to be minimized. Two different formulations of the
problem are proposed and valid inequalities are developed. Related to humanitarian logistics,
Liu et al (2021) focus on the location problem in the preparedness phase of disasters, using
distributionally robust chance constraints to characterize uncertainties.

2.4 Reassigning customers in VRP

The problem of reassigning customers has been addressed in the literature relating to the
well-known cluster first - route second approach for the VRP. In this approach, logistics
companies establish delivery zones as a tactical decision. To partition the distribution area
generally allows each zone, subarea or cluster of customers to be regularly served by the same
set of drivers, which improves customer service and reduces routing complexity by handling
smaller sets of customers. In this regard, some studies have considered the possibility of
allowing reassignments among zones in the process of computing the routes. Wong and
Beasley (1984) propose a routing strategy based upon the division of the depot area into
subareas where a single vehicle is assigned to each subarea and develop a heuristic algorithm
which generates an initial partition and, by exchanging customers between subareas, attempts
to minimize the cost of the partition. Janssens et al (2015) assume a given partition of the
distribution region into smallermicrozones that are assigned to a preferred vehicle. Then, they
develop a metaheuristic to address the problem of reassigning the microzones to vehicles,
aiming to balance the workload of the different vehicles while the total distance traveled is
minimized. Schneider et al (2015) realize that pre-assigning customers to drivers improves
service consistency but worsens route efficiency as measured by total distance traveled,
especially when time windows constraints are present. Hence, they develop a procedure
that selects a set of seed customers from which they generate the service territories which
are served by specific drivers by adding a predefined percentage of customers. Then, the
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daily routes are designed based on these service territories. From a real-world problem
arising in parcel delivery, Bender et al (2020) propose a two-stage solution approach which
establishes delivery districts in the first stage and computes routes adapted to the daily demand
realizations in the second stage, allowing for some reassignments of basic areas. They aim
to establish a compromise between service consistency and daily demand fluctuations. They
also present a complete review of districting problems for VRP with demand uncertainty.
Note that the aforementioned papers address customer reassignment in the route construction
process, but they do not have in mind balancing customer assignment across zones.

3 Problem formulation

In this section, the BCDP is described and the mathematical model is formulated. We assume
a logistics company with a portfolio of customers that have been grouped, generally based on
geographic proximity, into a set of clusters. Every day, the company serves those customers
who request its services, organizing the workload or the distribution routes in each cluster.
The clusters obtained as a result of the customers to be served each day can be very different
in terms of the number of customers they group together, which can lead to an undesirable
imbalance. The goal is to reassign the customers served each day, henceforth referred to as
customers, to provide balanced new clusters. On the other hand, it is often impossible to
reassign a customer to a cluster that is far away from their current one. Therefore, we also
assume the existence of a measure indicating the distance between each customer and every
cluster, along with a designated maximum distance that allows for reassignment. When a
customer is pre-assigned to a cluster, their distance to that cluster is zero. Given that the
distance constraint typically prevents clusters from having a cardinality equal to the mean
number of customers, we assume the variance of the number of customers in the clusters
as the measure of the imbalance. In addition, if there exist several optimal solutions with
respect to the imbalance objective, one with the least total distance should be preferred.
The model is particularly well suited for addressing the challenges encountered by logistics
companies involved in the distribution of small parcels, particularly within densely populated
urban areas. In such scenarios, where a considerable volume of customers must be served
daily from one or more warehouses, the model offers the possibility of achieving clusters as
balanced as possible, taking into account the distance constraint. This strategic approachmay
enable them, for instance, to optimize service delivery by assigning a single driver, thereby
enhancing customer satisfaction and streamlining routing complexities. It is worth noting
that while the model is tailored for these specific logistics scenarios, its adaptable nature
allows for potential application in a broader range of contexts.

3.1 Themathematical model

The following notations are used to formulate the BCDP:
Indexes

i Index of customer
j, k Index of cluster

Parameters
n Number of customers
m Number of clusters
di j Distance from customer i to cluster j

123



Annals of Operations Research

D Maximum distance to allow a reassignment
Sets:

I Set of customers, I = {1, . . . , n}
J Set of clusters, J = {1, . . . ,m}

Variables:
xi j If the customer i is reassigned to the cluster j , xi j = 1; otherwise xi j = 0
The BCDP can be formulated as the following lexicographic biobjective nonlinear integer

optimization problem:

lexmin

⎛
⎝Z1 = 1

m

∑
j∈J

(∑
i∈I

xi j − 1

m

∑
k∈J

∑
i∈I

xik

)2

, Z2 =
∑
i∈I

∑
j∈J

di j xi j

⎞
⎠ (1)

subject to ∑
j∈J

xi j = 1, i ∈ I (2)

di j xi j ≤ D, i ∈ I , j ∈ J (3)

xi j ∈ {0, 1}, i ∈ I , j ∈ J (4)

The objective function (1) lexicographically optimizes the two ranked objectives. The
objective function with the highest priority, Z1, minimizes the imbalance, i.e., it minimizes
the variance of the number of customers in the clusters. Notice that

∑
i∈I xi j provides the

number of customers which are finally assigned to the cluster j . Furthermore, by expanding
the summation and removing the constant terms, Z1 is equivalent to

∑
j∈J (

∑
i∈I xi j )2.

The objective function with the second priority, Z2, refers to the total distance resulting
from customers’ reassignments. Constraints (2) ensure that each customer is assigned to
exactly one cluster. Constraints (3) refer to the maximum reassignment distance. Finally, the
integrality requirements for the decision variables xi j are expressed by constraints (4).

Next, we illustrate the behavior of the BCDP with the help of two examples.

3.2 Example with full balance

This real-world example arose during the early stages of the COVID pandemic. The con-
sultancy company which provided the data collaborated with an initiative to provide free
home-delivered meals for the elderly in Barcelona (Spain). Figure1a displays a map show-
ing the location of the 594 customers needing to be served. Note that the customers are fairly
evenly distributed in the geographical area. As an initial step, the company established the
nine delivery zones represented in Fig. 1a by different shades of purple, the more intense the
color the greater the number of customers in the zone. The cardinality of the correspond-
ing clusters ranges from 34 to 91 customers, in contrast with having about 66 customers
which correspond to fully balanced clusters. Taking into account the distances involved, the
maximum distance to allow the reassignment of a customer has been set to D = 1 km.

The optimal solution of BCDP provides fully balanced clusters, i.e. clusters with 66
customers each, with the least total distance resulting from reassignments. Figure1b displays
this optimal solution. Each color represents a cluster. For instance, the optimal cluster of zone
1, whose customers are drawn as orange circles, includes the original 34 customers in this
zone plus 11 customers reassigned from zone 4, 3 customers reassigned from zone 5 and 18
customers reassigned from zone 6. Note that only 94 out of the 594 customers need to be
reassigned.
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Fig. 1 Fully balance clusters

3.3 Example with incomplete balance

The second example corresponds to a particular distribution day of a logistics company
in the area surrounding Barcelona. In this case, there are 10 zones and 1098 customers.
Figure2a displays the distribution of customers and the pre-assignment of customers to
clusters. If the clusters were balanced, each of them should have about 110 customers.
However, the cardinality of the pre-assigned clusters ranges from 47 to 230 customers. Note
that the distribution of customers in this example is quite heterogeneous, with the number
of customers assigned to each of the clusters being very different. Moreover, due to the
geographical distribution of zones, customers are only close to one or two clusters, which
makes balancing the problem more difficult due to the distance constraint. The maximum
distance to allow the reassignment of a customer has been set to D = 2 km. Figure2b shows
the optimal solution provided by BCDP. As above, each color represents a cluster. In this
solution, 100 out of the 1098 customers are reassigned. Now, the cardinality ranges from 70
to 152, with clusters of four sizes: three clusters with 70–71 customers, three clusters with 85
customers, two clusters with 123–124 customers and two more clusters with 192 customers.
Despite the complexity of balancing this problem due to restrictions on customer movement
between clusters, this model achieves the company’s goal of having more balanced customer
clusters.

4 HBCDP: a heuristic for solving the BCDP

The HBCDP algorithm is based on exploring customer reassignments by pairwise cluster
comparisons or by extending the search to include sequential customer exchanges between
clusters. It consists of four steps which are described below. Roughly speaking, the first
two stages focus on minimizing the objective function Z1, whereas the other two focus
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Fig. 2 Incomplete balance clusters

on minimizing Z2 while keeping the previously achieved value of Z1. Moreover, we have
developed two variants of the third step which will be evaluated in Sect. 5.

We assume as given the pre-assigned clusters. Let C j denote the set of customers preas-
signed to the cluster j . Let I j denote the set of customers which can be reassigned to the
cluster j , i.e. I j = {i ∈ I : di j ≤ D}. At each step, the algorithm constructs feasible solu-
tions by assigning customers to clusters, where customers either remain in their pre-assigned
cluster or are reassigned to a cluster within a maximum distance of D. In the following, we
denote by y j the number of customers in the incumbent cluster j . For the sake of clarifying

123



Annals of Operations Research

the algorithm, it is worth noting that the variance of the number of customers in the clusters
can be alternatively expressed as

∑
j∈J

∑
k∈J (y j − yk)2/(2m2). Thus, in order to decrease

the objective function Z1, it is of interest to reduce the value of the difference between y j
and yk . Additionally, we set xi j = 1 if the customer i ∈ I is included in the incumbent
cluster j ∈ J ; otherwise, xi j = 0. These values will be updated as the algorithm progresses
through the steps. The algorithm applies the steps in the order in which they are explained
in the paper.

4.1 Step 1: Improving Z1 with direct reassigning

At this stage, the clusters are selected in pairs. Let j be the cluster to be examined. This
cluster is paired with the remaining clusters k ∈ J . The cluster j is selected in increasing
order of the number of customers in the pre-assigned clustersC j . The clusters k is selected in
increasing order of the distance � jk , where � jk measures the distance between the clusters
j and k.

Reassigning a customer from the cluster j to the cluster k decreases Z1 only if y j > yk+1.
Let this be the case and let m jk be the number of customers currently assigned to the cluster
j which can be reassigned to the cluster k. This means that the distance from any of these
customers to the cluster k is less than or equal to D. Then, r customers are reassigned from
the cluster j to the cluster k, where

r = min

{
m jk,

⌊
y j − yk

2

⌋}

and �a� denotes the greatest integer value which is less than or equal to a. These r customers
are selected from among those i who can be reassigned from the cluster j to the cluster k
in increasing order of dik − di j . With this selection the purpose is to take into account the
second objective function Z2.

This step is repeated while there exist pairs of clusters j and k for which y j > yk + 1 and
m jk > 0. Algorithm 1 displays the pseudocode of Step 1.

4.2 Step 2: Improving Z1 with path reassigning

This stage extends Step 1 in the sense that it looks for reassignments which involve several
clusters. For this purpose, we construct a directed graph that enables the identification of
paths through which customers can be transferred among clusters.

Let G = (J , A) be a directed graph where A = {( j, k) : m jk > 0, j, k ∈ J }. Given
a cluster j , we are looking for a path { j = j0 → j1 → j2 → · · · → jt−1 → jt } in G
finishing in a cluster jt such that y j > y jt + 1. The existence of this path guarantees that at
least one customer can be reassigned from cluster j0 to j1, from j1 to j2, …, and from jt−1 to
jt , thus decreasing the value of Z1. For the purpose of computing the path (if any exists) we
apply the Breadth-First Search (BFS) algorithm (Cormen et al, 2009) in the graph G starting
at node j . After finding the path, r customers are reassigned along it, where

r = min

{
m j0 j1 ,m j1 j2 , . . . ,m jt−1 jt ,

⌊
y j0 − y jt

2

⌋}
(5)

The selection of the cluster j as well as the selection of the customers i which are reassigned
from cluster jl to cluster jl+1 is made as explained in Sect. 4.1. This step is repeated while
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Algorithm 1: Pseudocode of Step 1

1 xi j = 1 for i ∈ C j ;
2 xi j = 0 for i /∈ C j ;
3 y j = |C j | for each j ∈ J ;
4 m jk = |{i ∈ Ik : xi j = 1}| for each j, k ∈ J ;
5 do
6 for j ∈ J selected in increasing order of |C j | do
7 for k ∈ J selected in increasing order of � jk do
8 if y j − yk > 1 then

9 r = min

{
m jk ,

⌊
y j − yk

2

⌋}
;

10 for r ′ = 1, . . . , r do
11 i ′ = argmin

i∈Ik
{dik − di j : xi j = 1};

12 Update x , y and m based on the reassignment of the customer i ′ from cluster j to
cluster k;

13 end
14 end
15 end
16 end
17 while some reassignment occurs;

there exist pairs of clusters j and k for which y j > yk + 1 and a path from j to k exists in
G. Algorithm 2 displays the pseudocode of Step 2.

Algorithm 2: Pseudocode of Step 2

1 do
2 for j ∈ J selected in increasing order of |C j | do
3 Let V be the set of vertices connected with a path starting at j over the graph G = (J , A), with

A = {( j, k) : m jk > 0}, computed by using the BFS algorithm;
4 if V ∩ {k ∈ J : y j − yk > 1} 	= ∅ then
5 Let p = ( j0 = j, j1, . . . , jt ) be a path in G with y j0 − y jt > 1;

6 r = min

{
m j0 j1 , . . . ,m jt−1 jt ,

⌊
y j0 − y jt

2

⌋}
;

7 for t ′ = t, . . . , 2, 1 do
8 for r ′ = 1, . . . , r do
9 i ′ = argmin

i∈I jt ′
{di jt ′ − di jt ′−1

: xi jt ′−1
= 1};

10 Update x , y and m based on the reassignment of the customer i ′ from cluster jt ′−1
to cluster jt ′ ;

11 end
12 end
13 end
14 end
15 while some reassignment occurs;

At the end of Step 2, the value of the objective function with the highest priority, Z1 is
fixed and, in the following steps, the algorithm aims to improve, if possible, the reassignment
of the customers from the point of view of the second ranked objective function Z2, without
worsening Z1.
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4.3 Step 3: Improving Z2 without modifying the number of customers in the clusters

At this stage, the cardinality of the current clusters remains unchanged. As previously men-
tioned, we have developed two variants of Step 3, which differ in the way in which the
exchange of customers is made. These variants will be evaluated in Sect. 5.

4.3.1 Variant 1: Improving Z2 by exchanging pairs of customers

The variant 1 explained in this section involves looking for pairs of customers which can
be exchanged between clusters in order to reduce the value of Z2. For j, k ∈ J such that
m jk > 0, we define

g jk = min
i∈Ik

{dik − di j : xi j = 1}
i jk = argmin

i∈Ik
{dik − di j : xi j = 1} (6)

If it is possible to reassign customers from j to k, g jk measures the minimum impact in Z2

for assigning a customer of the cluster j to the cluster k. This customer is i jk . Hence, in this
step we look for pairs of clusters j and k such that g jk + gkj < 0 and, if this is the case, the
customers i jk and ik j are exchanged.

This step is repeated while there exist pairs of clusters j and k for which the above-
mentioned conditions are verified. The selection of the clusters j and k is made as explained
in the pseudocode of Step 3 variant 1, which is displayed in Algorithm 3.

Algorithm 3: Pseudocode of Step 3 - variant 1

1 g jk = min
i∈Ik

{dik − di j : xi j = 1} for each j, k ∈ J with m jk > 0;

2 g jk = ∞ for each j, k ∈ J with m jk = 0;
3 do
4 for j ∈ J selected in increasing order of |C j | do
5 k′ = argmin

k∈J
{g jk + gk j };

6 if g jk′ + gk′ j < 0 then
7 i jk′ = argmin

i∈Ik′
{dik′ − di j : xi j = 1};

8 ik′ j = argmin
i∈I j

{di j − dik′ : xik′ = 1};

9 Update x , y, m and g based on the reassignments of the customer i jk′ from cluster j to
cluster k′ and of the customer ik′ j from cluster k′ to cluster j ;

10 end
11 end
12 while some reassignment occurs;

4.3.2 Variant 2: Improving Z2 by using an optimization model

The variant 2 of Step 3 considers multiple exchanges of customers simultaneously to reduce
the value of Z2. It seeks a better assignment of customers which does not change the cardi-
nality of the current clusters which, as mentioned before, is given by y j , j ∈ J , by solving
a transportation problem. For this problem, the sources are the customers, each supplying
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1 unit, and the demand points are the clusters, each demanding its current cardinality units.
The cost ci j associated with the source i and the demand point j is di j if di j < D and M
otherwise, where M is a big enough constant.

Let the decision variable fi j be equal to 1 if customer i is assigned to cluster j , and 0
otherwise. The transportation problem can be formulated as:

min
fi j

∑
i∈I

∑
j∈J

ci j fi j

subject to ∑
j∈J

fi j = 1, i ∈ I
∑
i∈I

fi j = y j , j ∈ J ,

fi j ≥ 0, i ∈ I , j ∈ J .

(7)

After solving problem (7), the customers are reassigned according to the optimal solution
f ∗
i j , i.e. xi j = f ∗

i j , i ∈ I , j ∈ J .

4.4 Step 4: Improving Z2 by exchangingmultiple customers

The above variants of Step 3 do not modify the number of customers in the clusters obtained
at the end of Step 2. The purpose of Step 4 is to reassign customers (possibly modifying the
value of y j , j ∈ J , but not the value of Z1) in such a way as to achieve a reduction in the
value of Z2.

For this purpose, let us consider the graph G = (J , A) introduced in Sect. 4.2 and let g jk

defined in (6) be the parameter cost of the arc ( j, k) ∈ A. Given a cluster j , we are looking for
a path { j = j0 → j1 → j2 → · · · → jt−1 → jt } with negative cost such that y j = y jt + 1
or a cycle { j0 → j1 → j2 → · · · → jt−1 → jt = j0} with negative cost. This path or cycle
is computed by applying the Bellman-Ford algorithm (Cormen et al, 2009). If a negative cost
cycle is obtained, then the customers i j0 j1 , i j1 j2 , . . . , i jt−1 j0 (see (6)) are reassigned to the
corresponding cluster. If a path with negative cost from j to jt is obtained and y j = y jt + 1
then the customers i j j1 , i j1 j2 , . . . , i jt−1 jt are reassigned to the corresponding cluster. In both
cases, the objective function Z2 is reduced.

This step is repeated while it is possible to find cost negative cycles or paths for which the
above-mentioned conditions are verified. The selection of the cluster j is made as explained
in the pseudocode of Step 4, which is displayed in Algorithm 4.

5 Computational experiment

The purpose of the computational experiment was to analyze the performance of the heuristic
algorithm HBCDP. Since there are no benchmark instances in the literature for this problem,
we built a set of large instances from real-world data provided by a consultancy company.
These instances vary both in the geographical distribution of customers and the number of
partitions established, which influences the pre-assignment of customers to clusters. These
data correspond to four large areas surrounding the Spanish cities of Barcelona (BCN),
Madrid (MAD), Valencia (VLC) and Zaragoza (ZAZ), which have 13,319, 14,210, 5518 and
6138 customers, respectively (see Fig. 3). The company provided three instances for each set
which partition the customers in 10, 25 and 100 clusters corresponding to zones defined by
polygons. Moreover, following the suggestions given by the company, a maximum distance
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Algorithm 4: Pseudocode of Step 4
1 do
2 for j ∈ J selected in increasing order of |C j | do
3 Apply Bellman-Ford algorithm to compute the shortest paths, if any, from j to the remaining

vertices on the graph G = (J , A), with A = {( j, k) : m jk > 0} and cost g jk for each arc;
4 if there is some negative cycle then
5 Let p = ( j0, j1, . . . , jt = j0) be a negative cycle in G;
6 for t ′ = 1, 2, . . . , t do
7 i jt ′−1 jt ′ = argmin

i∈I jt ′
{di jt ′ − di jt ′−1

: xi jt ′−1
= 1};

8 Update x , m and g based on the reassignment of the customer i jt ′−1 jt ′ from cluster

jt ′−1 to cluster jt ′ ;
9 end

10 else
11 Let V be the set of vertices such that the shortest path from vertex j has negative cost;
12 if V ∩ {k ∈ J : y j − yk = 1} 	= ∅ then
13 Let p = ( j0 = j, j1, . . . , jt ) a path in G with y j0 − y jt = 1 and the least cost;
14 for t ′ = t, . . . , 2, 1 do
15 i jt ′−1 jt ′ = argmin

i∈I jt ′
{di jt ′ − di jt ′−1

: xi jt ′−1
= 1};

16 Update x , y, m and g based on the reassignment of the customer i jt ′−1 jt ′ from
cluster jt ′−1 to cluster jt ′ ;

17 end
18 end
19 end
20 end
21 while some reassignment occurs;

to allow reassignment of D = 10 km and D = 20 km was established as these values are
within the working standards of the logistics companies. This results in 24 instances.

The experiments were carried out on a PC Intel Core i7-6700 with 3.4 GHz, having 32.0
GB of RAM and Windows 10 64-bit as the Operating System. The BCDP was solved using
IBM ILOG CPLEX 22.1.1. Although we had a multi-processor computer at hand, only one
processor was used in our tests. In addition, a preprocessing step was performed to eliminate
all variables xi j such that di j > D, since these reassignments are not possible. The CPLEX
stopping criterion was set at 7200s. The problem was solved in two stages. In the first stage,
the BCDPwas solved with the objective function Z1. Let Z∗

1 be its optimal value. If there was
remaining time within the 7200s limit, it was utilized in the second stage, which involves
solving the BCDP with the objective function Z2 and the additional quadratic constraint
Z1 = Z∗

1 . Furthermore, in the second stage, the solution obtained at the end of the first
stage was provided as the initial solution. The code of HBCDP was written in C++. For
solving the transportation problem (7), we selected the simplex algorithm for Transportation
Problems (MacDonald, 2015). Throughout the experiment, it is assumed that the clusters
were created by partitioning the distribution area into zones defined by polygons. Hence, the
distance di j is the Euclidean distance of customer i to the nearest line segment of the polygon
defining zone j and � jk measures the distance between the polygons which define zones j
and k.

Table 1 displays the results of the computational experiment. The first to third columns
show the characteristics of the instance (area, value of D and number of zones). The fourth
and sixth columns display in bold the optimal value of the first and the second ranked objective
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Fig. 3 Customer distribution in the benchmark instances

functions Z1 and Z2 when the instance is solved to optimality by CPLEX; otherwise, they
show the best objective function value provided by CPLEX. Considering the values taken
by Z1, we have selected MIP gap tolerance = 1e-06 to ensure a more accurate comparison
between the results obtained from CPLEX and the algorithm HBCDP. Since both variants
of the algorithm yield identical values for Z1 and Z2, the table presents a single column
corresponding to each objective. Thus, the fifth and seventh columns display the best value
of both objective functions provided by the algorithm HBCDP. The symbol ‘=’ indicates
that HBCDP provides the same value as CPLEX. It is worth mentioning that HBCDP always
provides the same value of Z1 as CPLEX. Regarding Z2, HBCDP always provides values
which are less than or equal to those given by CPLEX.

CPLEX is only capable of completely solving two instances in the alloted time, those
corresponding to MAD with D = 10 and D = 20, and |J | = 10. In 14 out of the remaining
22 instances, CPLEX is only able to yield the optimal solution with respect to the first ranked
objective function Z1, but terminates due to the stopping criterion while solving the problem
with the second objective function Z2. In the remaining 8 examples, CPLEX stops when
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Table 2 Percentage decrease of Z1 and Z2 through the steps of the algorithm

Area D |J | HBCDP1 HBCDP2
PDs1

Z1
PDs2

Z1
PDs3

Z2
PDs4

Z2
PDs3

Z2
PDs4

Z2

BCN 10 10 64.95 0.00 7.38 0.37 7.68 0.05

25 80.35 0.00 9.39 0.39 9.75 0.00

100 69.62 0.01 8.87 0.48 9.28 0.04

20 10 90.92 0.00 8.39 0.04 8.43 0.00

25 97.89 0.01 9.98 0.29 10.23 0.01

100 88.34 0.08 7.06 0.64 7.62 0.04

MAD 10 10 86.61 0.00 4.15 0.03 4.16 0.02

25 78.72 0.00 11.36 0.16 11.47 0.04

100 79.04 0.02 12.75 1.53 13.97 0.13

20 10 97.40 0.00 16.54 0.26 16.74 0.02

25 94.87 0.00 12.57 0.97 13.39 0.03

100 94.93 0.02 10.76 0.84 11.37 0.16

VLC 10 10 76.97 0.00 0.03 0.06 0.04 0.06

25 88.08 0.00 4.70 0.02 4.71 0.02

100 80.41 0.14 8.63 0.52 9.03 0.08

20 10 87.69 0.00 7.92 0.05 7.93 0.05

25 92.99 0.01 6.09 0.24 6.30 0.02

100 90.49 0.08 9.12 0.46 9.41 0.14

ZAZ 10 10 74.18 0.00 0.00 0.00 0.00 0.00

25 78.21 0.00 1.40 1.01 2.35 0.05

100 76.41 0.02 4.83 0.44 5.06 0.20

20 10 89.71 0.00 3.65 0.04 3.65 0.04

25 86.16 0.00 5.52 0.12 5.53 0.11

100 90.47 0.05 4.18 0.20 4.30 0.07

Mean 84.81 0.02 7.30 0.38 7.60 0.06

solving the problem with the objective function Z1. In these cases, the table shows the value
of Z2 corresponding to the solution provided by CPLEX when it terminates. In summary,
HBCDPmatches the optimal solution when it is available and provides a better solution when
CPLEX stops at the time limit.

In order to show the impact on the variance value of the clustering provided by the algo-
rithm compared to the initial clustering, the fourth column of Table 2 displays the percentage
decrease in the value of Z1 after step 1 calculated as:

PDs1
Z1

= Zinit
1 − Zstep1

1

Zinit
1

× 100

Notice that the reduction ranges from 64.95 to 97.89, with an average of 84.81. As expected,
the greater the distance, the greater the reduction. The fifth column displays the percentage
decrease in the value of Z1 after step 2 computed as:

PDs2
Z1

= Zstep1
1 − Zstep2

1

Zstep1
1

× 100 (8)
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Fig. 4 Boxplot of the relative percentage of CPU time according to the variant used in Step 3 of the algorithm

This step results in smaller decreases, since, in many cases, the optimal solution is achieved
following step 1. The subsequent four columns illustrate the percentage decrease in the
second objective function value after steps 3 and 4, respectively, depending on the variant.
This percentage reduction has been computed in a manner analogous to the expression (8),
using Z2 and adjusting the step accordingly. Both variants yield comparable reductions.

Regarding the computing time, the eighth column shows the CPU time in seconds spent
by CPLEX in solving the instances. The ninth and tenth columns display HBCDP1 and
HBCDP2, the CPU time needed by HBCDP with the first and the second variant in step 3,
respectively. It can be observed that the algorithm HBCDP requires significantly less time
compared to CPLEX, regardless of the variant used. It is worth pointing out that when variant
1 of Step 3 is used, the algorithmHBCDPconsistently takes less than threeminutes. Similarly,
when variant 2 is utilized, it takes less than five minutes. When comparing the CPU times
according to the variant, we conclude that, in 15 out of the 24 instances, variant 1 spends
less time than variant 2. Moreover, variant 1 generally performs better when the instance is
larger. Finally, to gain an insight into how each variant of the algorithm HBCDP uses the
CPU time, for each instance and variant we have computed the relative percentage of CPU
time invested in each step. Figure4 shows the corresponding boxplots. Note that variant 2,
i.e. solving the transportation problem (7), leads to less time in step 4, although in general
step 3 consumes more CPU time. Moreover, the variability in steps 3 and 4 increases when
using variant 1.

6 Conclusions

This paper addresses a problem often faced by logistics companies, that of establishing
clusters of their customers that allow the companies to efficiently manage their resources
and workload. The difficulty arises when the clusters cannot be formed by customers that are
too far apart, as this hinders the daily management of the logistics company. For this reason,
logistics companies generally divide their geographical distribution area into zones and group
their customers according to their geographical location. Depending on the characteristics of
the zones, this can lead to very unbalanced clusters. In addition, the number of customers to
be served varies from day to day, which can also contribute to this imbalance. Therefore, the
problem dealt with in this paper is that of reassigning customers to achieve balanced clusters
formed by customers who are reasonably close.

The first issue to be addressed in order to solve this problem is to establish how the
balance, in terms of the number of customers, between clusters should be measured when
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there is a distance constraint that prevents reassigning customers to clusters that are too far
apart. We propose to measure the imbalance through the minimization of the variance of the
number of customers in the clusters. Hence, the lexicographic biobjective nonlinear integer
problem proposed to model the BCDP, considers this imbalance measure as the highest
priority objective function. Moreover, looking for the optimal solution with the least total
distance resulting from customers’ reassignments, this distance is taken as the second ranked
objective function.

The large instances faced by logistics companies are very time-consuming to solve by
using commercial software. This prevents cluster balancing from being incorporated into the
daily work routine. Hence, we have developed a tailored algorithm that is accurate and fast.
The algorithm reassigns customers by pairs or sequentially as long as the objective functions
improve. The performance of the algorithm has been tested in a set of large instances provided
by the consultancy company. For all of them, the solution provided by the algorithm is better
than or equal to the solution provided by the commercial software CPLEX, and the CPU
times are smaller. In fact, none of the instances need more than 2.5min of CPU time when
solved by the algorithm.

From a managerial point of view, it is worth mentioning that the BCDP and thus the
approach taken to handle the cluster imbalance both allow the companies to construct groups
of clusters with a fairly homogeneous cardinality. Moreover, the accuracy and speed of the
developed algorithm allows it to be used in real time. Hence, both provide a useful decision
support tool which can be used by logistics companies in their day-to-day operations, prior
to workload allocation or routing.

Although particularly effective in addressing challenges faced by logistics firms distribut-
ing small parcels, especially in densely populated urban areas, it isworth considering potential
future applications in other areas. One possible direction for future research involves extend-
ing this procedure to address other problems that incorporate balancing in user clusters, such
as districting. This extension could involve the consideration of additional constraints beyond
distance, which would help to maintain the desired properties for a district. Also, at the clus-
tering level, it would be interesting to investigate the possibility of modifying the algorithm
to generate balanced clusters from scratch. The modeling and algorithm presented here offer
a different perspective from those commonly found in the literature, which often prioritize
the objective defining clusters by altering the phase of introducing elements into clusters in
an attempt to provide balanced clusters. The natural progression of the study about the use
of balanced clusters in the logistics environment presented in this paper leads to consider
additional constraints. These constraints may involve scenarios where customers possess
multiple packages or there are capacity restrictions on the number of customers that can be
assigned to a cluster.
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Bektaş, T., Gouveia, L., Martínez-Sykora, A., et al. (2019). Balanced vehicle routing: Polyhedral analysis and
branch-and-cut algorithm. European Journal of Operational Research, 273, 452–463. https://doi.org/10.
1016/j.ejor.2018.08.034

Bélanger, V., Ruiz, A., & Soriano, P. (2019). Recent optimization models and trends in location, relocation,
and dispatching of emergency medical vehicles. European Journal of Operational Research, 272, 1–23.
https://doi.org/10.1016/j.ejor.2018.02.055

Bender, M., Kalcsics, J., & Meyer, A. (2020). Districting for parcel delivery services: A two-stage solution
approach and a real-world case study. Omega, 96(102283), 1–21. https://doi.org/10.1016/j.omega.2020.
102283

Benzarti, E., Sahin, E., & Dallery, Y. (2013). Operations management applied to home care services: Analysis
of the districting problem. Decision Support Systems, 55, 587–598. https://doi.org/10.1016/j.dss.2012.
10.015

Cormen, T., Leiserson, C., Rivest, R., et al. (2009). Introduction to algorithms (3rd ed.). Cambridge, MA: The
MIT Press.

De Maeyer, R., Sieranoja, S., & Fränti, P. (2023). Balanced k-means revisited. Applied Computing and
Intelligence, 3(2), 145–179. https://doi.org/10.3934/aci.2023008

Diglio, A., Nickel, S., & Saldanha-da-Gama, F. (2020). Towards a stochastic programming modeling
framework for districting. Annals of Operations Research, 292(1), 249–285.

Ding, H. (2020). Faster balanced clusterings in high dimension. Theoretical Computer Science, 842(1), 28–40.
Ehrgott, M. (2005). Multicriteria Optimization (2nd ed.). Berlin: Springer.
Eiselt, H., & Laporte, G. (1995). Objectives in location problems. In Z. Drezner (Ed.), Facility location: A

survey of applications and methods (pp. 151–179). Berlin: Springer.
Goderbauer, S., & Winandy, J. (2018). Political districting problem: Literature review and discussion with

regard to federal elections in Germany https://www.or.rwthaachen.de/researchpublications/LitSurvey_
PoliticalDistricting_Goderbauer_Winandy_20171123.pdf

Golden, B., Laporte, G., & Taillard, E. (1997). An adaptive memory heuristic for a class of vehicle routing
problems with minmax objective. Computers & Operations Research, 24(5), 445–452. https://doi.org/
10.1016/S0305-0548(96)00065-2

Halvorsen-Weare, E., & Savelsbergh, M. (2016). The bi-objective mixed capacitated general routing problem
with different route balance criteria. European Journal of Operational Research, 251, 451–465. https://
doi.org/10.1016/j.ejor.2015.11.024

Haugland, D., Ho, S., & Laporte, G. (2007). Designing delivery districts for the vehicle routing problem with
stochastic demands. European Journal of Operational Research, 180, 997–1010.

Janssens, J., Van den Bergh, J., Sörensen, K., et al. (2015). Multi-objective microzone-based vehicle routing
for courier companies: From tactical to operational planning.European Journal of Operational Research,
242, 222–231. https://doi.org/10.1016/j.ejor.2014.09.026

Jozefowiez, N., Semet, F., & Talbi, E. (2007). Target aiming pareto search and its application to the vehicle
routing problem with route balancing. Journal of Heuristics, 13(3), 455–469. https://doi.org/10.1007/
s10732-007-9022-6

Jozefowiez, N., Semet, F., & Talbi, E. (2009). An evolutionary algorithm for the vehicle routing problem with
route balancing. European Journal of Operational Research, 195(3), 761–769. https://doi.org/10.1016/
j.ejor.2007.06.065

Kalcsics, J., & Ríos-Mercado, R. (2019). Districting problems. In G. Laporte, S. Nickel, F. Saldanha da Gama
(Eds) Location science. Springer, pp. 705–743, https://doi.org/10.1007/978-3-030-32177-2_25

Karsu, O., & Morton, A. (2015). Inequity averse optimization in operational research. European Journal of
Operational Research, 245, 343–359. https://doi.org/10.1016/j.ejor.2015.02.035

Lacomme, P., Prins, C., Prodhon, C., et al. (2015). A multi-start split based path relinking (MSSPR) approach
for the vehicle routing problem with route balancing. Engineering Applications of Artificial Intelligence,
38, 237–251. https://doi.org/10.1016/j.engappai.2014.10.024

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0022-0531(70)90039-6
https://doi.org/10.1016/0022-0531(70)90039-6
https://doi.org/10.1016/j.ejor.2018.08.034
https://doi.org/10.1016/j.ejor.2018.08.034
https://doi.org/10.1016/j.ejor.2018.02.055
https://doi.org/10.1016/j.omega.2020.102283
https://doi.org/10.1016/j.omega.2020.102283
https://doi.org/10.1016/j.dss.2012.10.015
https://doi.org/10.1016/j.dss.2012.10.015
https://doi.org/10.3934/aci.2023008
https://www.or.rwthaachen.de/researchpublications/LitSurvey_PoliticalDistricting_Goderbauer_Winandy_20171123.pdf
https://www.or.rwthaachen.de/researchpublications/LitSurvey_PoliticalDistricting_Goderbauer_Winandy_20171123.pdf
https://doi.org/10.1016/S0305-0548(96)00065-2
https://doi.org/10.1016/S0305-0548(96)00065-2
https://doi.org/10.1016/j.ejor.2015.11.024
https://doi.org/10.1016/j.ejor.2015.11.024
https://doi.org/10.1016/j.ejor.2014.09.026
https://doi.org/10.1007/s10732-007-9022-6
https://doi.org/10.1007/s10732-007-9022-6
https://doi.org/10.1016/j.ejor.2007.06.065
https://doi.org/10.1016/j.ejor.2007.06.065
https://doi.org/10.1007/978-3-030-32177-2_25
https://doi.org/10.1016/j.ejor.2015.02.035
https://doi.org/10.1016/j.engappai.2014.10.024


Annals of Operations Research

Lee, T., & Ueng, J. (1999). A study of vehicle routing problems with load-balancing. International
Journal of Physical Distribution & Logistics Management, 29(10), 646–657. https://doi.org/10.1108/
09600039910300019

Lehuédé, F., Péton, O., &Tricoire, F. (2020). A lexicographicminimax approach to the vehicle routing problem
with route balancing.European Journal of Operational Research, 282, 129–147. https://doi.org/10.1016/
j.ejor.2019.09.010

Liberatore, F., Camacho-Collados, M., & Vitoriano, B. (2020). Police districting problem: Literature review
and annotated bibliography. In R. Ríos-Mercado (Ed) Optimal districting and territory design. Springer,
Cham, pp. 9–29, https://doi.org/10.1007/978-3-030-34312-5_2

Lin, W., He, Z., & Xiao, M. (2019). In Proceedings of the twenty-eighth international joint conference on
artificial intelligence (IJCAI-19). AAAI Press, Macao, China, pp. 2987–2993.

Linfati, R., Yáñez-Concha, F., & Escobar, J. (2020). Mathematical models for the vehicle routing problem
by considering balancing load and customer compactness. Sustainability, 14(12937).https://doi.org/10.
3390/su141912937.

Liu, K., Zhang, H., & Zhang, Z. (2021). The efficiency, equity and effectiveness of location strategies in
humanitarian logistics: A robust chance-constrained approach. Transportation Research Part E, 156,
102521. https://doi.org/10.1016/j.tre.2021.102521

MacDonald, D. T. (2015). C++ implementation of the transportation simplex algorithm. Available online
https://github.com/engine99/transport-simplex

Malinen, M., & Fränti, P. (2014). Balanced k-means for clustering. In P. Fränti, G. Brown, M. Loog, et al.
(Eds.) Structural, syntactic, and statistical pattern recognition. S+SSPR2014. LectureNotes inComputer
Science, vol. 8621. Springer, pp. 32–41.

Mancini, S., Gansterer, M., & Hartl, R. (2021). The collaborative consistent vehicle routing problem with
workload balance. European Journal of Operational Research, 293, 955–965. https://doi.org/10.1016/j.
ejor.2020.12.064

Marín, A. (2011). The discrete facility location problem with balanced allocation of customers. European
Journal of Operational Research, 210, 1–17. https://doi.org/10.1016/j.ejor.2010.10.012

Marsh, M., & Schilling, D. (1994). Equity measurement in facility location analysis: A review and framework.
European Journal of Operational Research, 74, 1–17. https://doi.org/10.1016/0377-2217(94)90200-3

Matl, P., Hartl, R., & Vidal, T. (2018). Workload equity in vehicle routing problems: A survey and analysis.
Transportation Science, 52(2), 239–260. https://doi.org/10.1287/trsc.2017.0744

Matl, P., Hartl, R., & Vidal, T. (2019). Workload equity in vehicle routing: The impact of alternative workload
resources. Computers & Operations Research, 110, 116–129. https://doi.org/10.1016/j.cor.2019.05.016

Nikolakopoulou, G., Kortesis, S., Synefaki, A., et al. (2004). Solving a vehicle routing problem by balancing
the vehicles time utilization. European Journal of Operational Research, 152, 520–527. https://doi.org/
10.1016/S0377-2217(03)00042-0

Ogryczak, W. (2000). Inequality measures and equitable approaches to location problems. European Journal
of Operational Research, 122, 374–391. https://doi.org/10.1016/S0377-2217(99)00240-4

Romero, C. (2001). Extended lexicographic goal programming: A unifying approach. Omega, 29, 63–71.
https://doi.org/10.1016/S0305-0483(00)00026-8

Samanta, S., Sen, G., & Ghosh, S. (2022). A literature review on police patrolling problems. Annals of
Operations Research, 316, 1063–1106. https://doi.org/10.1007/s10479-021-04167-0

Sandoval, M., Álvarez-Miranda, E., Pereira, J., et al. (2022). A novel districting design approach for on-time
last-mile delivery: An application on an express postal company. Omega, 113, 102687. https://doi.org/
10.1016/j.omega.2022.102687

Schneider, M., Stenger, A., Schwahn, F., et al. (2015). Territory-based vehicle routing in the presence of
time-window constraints. Transportation Science, 49(4), 732–751. https://doi.org/10.1287/trsc.2014.
0539

Sen, A., & Foster, J. (1997). On economic inequality (Enlarged). New York: Oxford University Press.
Tasnádi, A. (2011). The political districting problem: A survey. Society and Economy, 33(3), 543–554.
Vidal, T., Laporte, G., & Matl, P. (2020). A concise guide to existing and emerging vehicle routing problem

variants. European Journal of Operational Research, 286, 401–416. https://doi.org/10.1016/j.ejor.2019.
10.010

Wong, K., & Beasley, J. (1984). Vehicle routing using fixed delivery areas. Omega, 12(6), 591–600. https://
doi.org/10.1016/0305-0483(84)90062-8

Young, H. (1994). Equity in theory and practice. Princeon, NJ: Princeton University Press.
Zhou, L., Zhen, L., Baldacci, R., et al. (2021). A heuristic algorithm for solving a large-scale real-world

territory design problem. Omega, 103(102442), 1–28. https://doi.org/10.1016/j.omega.2021.102442

123

https://doi.org/10.1108/09600039910300019
https://doi.org/10.1108/09600039910300019
https://doi.org/10.1016/j.ejor.2019.09.010
https://doi.org/10.1016/j.ejor.2019.09.010
https://doi.org/10.1007/978-3-030-34312-5_2
https://doi.org/10.3390/su141912937
https://doi.org/10.3390/su141912937
https://doi.org/10.1016/j.tre.2021.102521
https://github.com/engine99/transport-simplex
https://doi.org/10.1016/j.ejor.2020.12.064
https://doi.org/10.1016/j.ejor.2020.12.064
https://doi.org/10.1016/j.ejor.2010.10.012
https://doi.org/10.1016/0377-2217(94)90200-3
https://doi.org/10.1287/trsc.2017.0744
https://doi.org/10.1016/j.cor.2019.05.016
https://doi.org/10.1016/S0377-2217(03)00042-0
https://doi.org/10.1016/S0377-2217(03)00042-0
https://doi.org/10.1016/S0377-2217(99)00240-4
https://doi.org/10.1016/S0305-0483(00)00026-8
https://doi.org/10.1007/s10479-021-04167-0
https://doi.org/10.1016/j.omega.2022.102687
https://doi.org/10.1016/j.omega.2022.102687
https://doi.org/10.1287/trsc.2014.0539
https://doi.org/10.1287/trsc.2014.0539
https://doi.org/10.1016/j.ejor.2019.10.010
https://doi.org/10.1016/j.ejor.2019.10.010
https://doi.org/10.1016/0305-0483(84)90062-8
https://doi.org/10.1016/0305-0483(84)90062-8
https://doi.org/10.1016/j.omega.2021.102442


Annals of Operations Research

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Balancing the cardinality of clusters with a distance constraint: a fast algorithm
	Abstract
	1 Introduction
	2 Related work
	2.1 Districting
	2.2 Clustering
	2.3 Balancing in VRP and location problems
	2.4 Reassigning customers in VRP

	3 Problem formulation
	3.1 The mathematical model
	3.2 Example with full balance
	3.3 Example with incomplete balance

	4 HBCDP: a heuristic for solving the BCDP
	4.1 Step 1: Improving Z1 with direct reassigning
	4.2 Step 2: Improving Z1 with path reassigning
	4.3 Step 3: Improving Z2 without modifying the number of customers in the clusters
	4.3.1 Variant 1: Improving Z2 by exchanging pairs of customers
	4.3.2 Variant 2: Improving Z2 by using an optimization model

	4.4 Step 4: Improving Z2 by exchanging multiple customers

	5 Computational experiment
	6 Conclusions
	Acknowledgements
	References


