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Abstract
The purpose of this paper is to evaluate contrasting approaches for handling excess demand
through the lens of a retailer (newsvendor)whose risk attitude (risk-neutral versus risk-averse)
is modeled explicitly.We employ representative newsvendormodels and provide comparison
between two well-established stockout policies when demand exceeds supply. The “while
supplies last” policy avoids the need for a secondary production order to satisfy the excess
demand but faces potential opportunity cost through lost sales. Conversely, the “accepting
backorders” policy relies on recourse production availability which is potentially costly but
meets all levels of realized demand. Across distinct parameter classes, we incorporate com-
parison between the two policies in terms of financial metrics including expected profit and
conditional value-at-risk criteria as well as metrics that relate to inventory availability and,
hence, customer service, e.g., stockout probabilities and expected excess inventory. Pow-
erful analytical results encompass both financial and inventory metrics and reveal that the
outperforming policy is simply determined through relative underage cost values. That is,
our insights indicate general advantages of accepting backorders when profit margins are
sufficiently large and advantages of ignoring excess demand when profit margins are smaller.
Although these extensive analytical takeaways hold in general, our numerical study reveals
mean order quantity deviations (decision bias) in addition to which modeling approaches and
counterpart optimal solutions maintain outperformance (resiliency) or lead to underperfor-
mance (sensitivity) when evaluated across all objective function criteria.

Keywords Stockouts · Newsvendor model · Risk-neutral · Conditional value-at-risk

1 Introduction and literature review

Advancements across manufacturing, transportation, and information technology have
pushedmodern supply chains to become increasingly intricate. The benefits of these expanded
capabilities have resultingly led to the implementation of previously infeasible inventory
management policies now demonstrating improved efficiency. Although this undeniably rep-
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resents growth, there also have been recent instances of inflated supply chain vulnerabilities
(Altay & Pal, 2023; Ergun et al., 2023). Major events such as hurricanes, earthquakes, and
global pandemics have contributed to the exposure of various forms of risk associated with
modern supply chains. From the perspective of inventory policies specifically, we focus on
risks directly related to retailers facing disproportionate demand and supply.

In the context of retail inventory management, stockout costs arise when the on-hand
inventory cannot satisfy demand. There exist a variety of unforeseen reasons for potential
stockout scenarios to occur, and it is crucial to acknowledge the relevant forms of stockout
costs when choosing an inventory policy to employ (Anderson et al., 2006; Corsten &Gruen,
2004; Gruen & Corsten, 2002). One obvious example of realizable stockout costs are lost
opportunities to generate revenue and losing future customers. Another example could be
expedited shipping or offering discounts to fulfill backorders and effectively reducing profit.
Although these examples represent sources that can contribute to a retailer’s stockout costs,
it should be noted that other forms can also be considered (Çetinkaya & Parlar, 1998a, b,
2002). While the concept of stockout costs can be generalized in terms of penalization for
coping with insufficient inventory, the composition of these costs actually depends on the
stockout policy (SOP) in place (Nahmias & Olsen, 2015). In this paper, the SOP dictates
how excess demand is handled when a stockout scenario is realized. We look to analyze and
compare two practical SOPs that represent contrasting approaches.

Specifically, we look to evaluate two opposing SOPs that conflict in terms of how excess
demand is handled and resultingly face distinctive stockout cost components. The first policy
is referred to as “while supplies last” (WSL). The WSL policy is set to fulfill demand only
while inventory is available. This means that if/when the retailer runs out of inventory,
they quit accepting orders and begin realizing lost sales and the opportunity cost from not
obtaining the excess demand profit. The second policy we consider is called “accepting
backorders” (ABO). The ABO policy is capable of satisfying all levels of demand even if a
stockout scenario arises. Further, the retailer will continue to accept orders even if the current
inventory levels are depleted and utilize an extra production cycle subject to additional costs.
Although WSL and ABO face different forms of stockout costs, characterizations of such
policies are commonly employed in practice. This motivates the exploration of circumstances
that give rise to choosing one of these SOPs over the other.

1.1 The newsvendor setting

We focus on implementation of the WSL and ABO policies and choose to utilize a repre-
sentative optimization framework found throughout inventory management literature, the
newsvendor (NV) setting (Arrow et al., 1951). In the classical NV setting, the retailer
(newsvendor) is responsible for determining the quantity of supply to order in preparation
for the upcoming period of sales. After ordering and preparing a specifically chosen level
of inventory, a stochastic demand for this single product will be realized. Depending on the
magnitude of the realized demand, the retailer may or may not be entirely out of inventory. In
the case of having insufficient inventory (stockout), the retailer will realize opportunity cost
and shortage penalization through lost sales. Conversely, if the retailer has inventory remain-
ing after realizing demand, the excess inventory can be salvaged but typically for a fraction
of the initial production cost. Overall, the goal is to determine the optimal single-period order
policy that accounts for the costs associated with overage (too much inventory) and underage
(too little inventory) outcomes. The classical NV setting described above corresponds to the
case where the WSL policy is implemented.
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As an extension to the classical NV setting, the recourse NV setting grants the retailer
an opportunity to utilize an additional production option. In the case of a stockout, this
capability allows the retailer to obtain additional units after realizing demand for the purpose
of satisfying order levels that exceed the initial supply. Although this recourse option allows
all demand to be satisfied, the recourse supply units may correspond to an increased ordering
cost in comparison to the initial ordering cost. Similar to the setting considered in this paper,
existing literature provides examples of NV settings incorporating recourse options (Agrawal
& Seshadri, 2000; Eeckhoudt et al., 1995; Gallego & Moon, 1993; Khouja, 1996; Vipin &
Amit, 2017). Clearly, the ability to fulfill excess demand and obtain additional profit via
recourse has the potential to be advantageous over realizing otherwise lost sales. In the
context of this paper, the NV settings offering recourse capabilities are directly related to
ABO policies. That is, within the category of models with recourse option, we also include
the inventory models allowing backorders for a variety of NV settings (Pando et al., 2013;
Xu et al., 2017; Zhang et al., 2020).

Given the vast applicability of the NV setting, supplemental models have been thoroughly
studied for decades. This has led to books and review articles dedicated to the variety of
extensions and proposed future research directions (Choi, 2012; Khouja, 1999; Petruzzi &
Dada, 1999; Qin et al., 2011). The standardmodeling approach relates to themaximization of
expected profit which correspondingly represents a risk-neutral (RN) attitude by the retailer.
However, there can be a deviation between this modeling approach and reality in terms of the
risk attitude of the retailer (MacCrimmon et al., 1988; Kahn, 1992; Fisher & Raman, 1996;
Schweitzer & Cachon, 2000). Existence of such evidence (empirical/experimental) revealing
this deviation, a.k.a., newsvendor decision bias, resultingly may necessitate consideration of
objectives beyond the traditional expected profit maximization. Hence, the development of
more representative modeling approaches beyond RN attitude, such as those capturing risk-
averse (RA) preferences, is important.

A particularly popular approach incorporating the RA attitude in the context of optimiza-
tion models relies on the criterion known as conditional value-at-risk (CVaR) and represents
the approach adopted in the current paper (Chen et al., 2009; Chen, 2023; Gotoh & Takano,
2007; Jammernegg & Kischka, 2012; Rockafellar & Uryasev, 2002; Sawik, 2020; Xu &
Li, 2010). Other examples of modeling approaches can include expected utility (EU) theory
(Eeckhoudt et al., 1995; Horowitz, 1970), loss-aversion (Schweitzer & Cachon, 2000; Wang
& Webster, 2009), and mean-variance analysis (MVA) (Choi et al., 2008; Wu et al., 2009).
However, these approaches are beyond the scope of the current paper.

As the breadth of risk-based modeling approaches applied to the NV problem has
expanded, a comparison among the resulting RN versus RA decisions has also been explored.
Moreover, such comparisons lend the ability to assess newsvendor decision bias through
analyzing deviations between expected profit maximizing order quantities and order quan-
tities that satisfy optimality for objectives related to RA attitudes (Schweitzer & Cachon,
2000; Wang & Webster, 2009; Katariya et al., 2014; Xinsheng et al., 2015). Nonetheless,
the previous work on the topic does not take into account the impact of alternative SOPs
on resulting expected profits, CVaR criteria, stockout probabilities, and expected excess
inventory encountered by the retailer as potential performance metrics. To the best of our
knowledge, the current paper is the first to compare and contrast explicit impacts of WSL
and ABO policies on these performance metrics vis-a-vis the retailer’s risk attitude (i.e., RN
or RA–as modeled using the CVaR criterion). Additionally, we supplement these analytical
findings with a numerical study revealing mean order quantity deviations between risk atti-
tudes (decision bias) as well as the modeling approaches and counterpart optimal solutions
that either maintain outperformance (resiliency) or lead to underperformance (sensitivity)
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when evaluated across all objective function criteria. Our goal is to deliver a complete set of
comparative results revealing the advantages and disadvantages of WSL and ABO policies
and possibly the optimal SOPwhile also developing solutions of correspondingNVproblems
(based on the CVaR criterion) that have not been studied previously.

1.2 Contributions

In terms of theNVproblems based-onCVaR criterion,we consider two specific loss functions
directly relating to objective functions of the resulting optimization formulations. Namely, we
consider total cost (TC) as represented by the sum of overage and underage cost components
as well as net loss (NL) as represented by a negated profit function. Hence, TC and NL
symbolize risks directly associated with costs increasing and profit decreasing, respectively.

In order to deliver the comparative results of interest, we build on the existing literature
and consider the following six problems:

• RN retailer problems with an expected profit objective under WSL and ABO, denoted
by RNW and RNA, respectively; and

• RA retailer problems (as modeled using the CVaR criterion) with the TC loss function
under WSL and ABO, denoted by RA-TCW and RA-TCA, respectively; and

• RA retailer problems (as modeled using the CVaR criterion) with the NL loss function
under WSL and ABO, denoted by RA-NLW and RA-NLA, respectively.

Table 1 provides an overview of the most relevant previous work considering risk attitudes
within NV settings as they relate to the comparative analysis presented in this paper. Among
the six problems of interest noted in the table, the current paper is the first to develop the
optimal solutions of RA-TCA and RA-NLW . Meanwhile, revisiting the earlier work that
considered RNW , RA-TCW , RA-NLW , and RNA and adopting a consistent notation for a
comparative analysis, the current paper is also the first to compare and contrast the complete
set of six problems highlighting the advantages and disadvantages ofWSL andABOpolicies.
Hence, the main contribution of the paper is centered on an insightful comparison of these
two SOPs with an eye on the impact of RN and RA attitudes.

We note that among the papers listed in Table 1, our work is most closely related to
Gotoh and Takano (2007) and Katariya et al. (2014) which consider the WSL policy only.
A modified SOP is considered in Zhang et al. (2020) to model risk aversion via explicit
consideration of the NL loss function only. The modified SOP is such that the retailer may
choose to satisfy a portion of the backlogged demand at a discounted price; and, hence, it
captures both WSL and ABO. However, the parametric setting considered in Zhang et al.
(2020) is favorable to ABO policies in the sense that the results assume cost of underage
associated with ABO is less than cost of underage associated with WSL. In this paper, we
analyze a general parametric setting that reveals overall optimality between WSL or ABO
depending on the overall problem dynamics without any restrictions on the relative values
of underage and overage costs of the SOPs.

We continue in Sect. 2 by introducing the basic notation and keymodeling fundamentals of
the NV setting while incorporating both the WSL and ABO policies. In Sect. 3, we consider
the case of a RN retailer and solve the associated profit maximization problems (RNW

and RNA). We follow up with a comparative analysis to determine the particular instances
such that one policy outperforms the other. Next, in Sect. 4, we present the mathematical
formulations of Problems RA-TCW , RA-TCA, RA-NLW , and RA-NLA to consider the CVaR
criterion for two relevant loss functions (TC and NL). In doing so, we eventually provide
closed-form optimal solutions of the underlying problems and explore potential analytical
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comparisons. Finally, in Sect. 5, we demonstrate numerical implementation for all derivations
with goals of (i) highlighting particular modeling approaches (RN, RA-TC, or RA-NL) that
either maintain outperformance (resiliency) or yield underperformance (sensitivity) when the
optimal SOP is evaluated across all three objective functions, (ii) evaluate existing decision
bias generalizations between the twomodeling approaches involving CVaR criterion and (iii)
validate analytical results presented in the previous sections for a variety of representative
demand probability distributions and parameter values.

2 Newsvendor with SOPs

We now look to establish the basic notation1 used in the remainder of the paper.
We let c denote the initial ordering cost per unit and p denote the selling price per unit.

Also, we define v, s, and r as the salvage value per unit, shortage penalty per unit, and recourse
production cost per unit, respectively. The ordering cost per unit c is faced by the retailer
at the beginning of the period before the upcoming demand is known whereas the recourse
production cost r is associated with having to obtain additional units through the recourse
option (if pursued) after demand is realized. We assume 0 < v < c < min{p, r}, s > 0 so
that cost/profit parameters make practical sense and trivial cases are avoided.

At the initialization of the planning period, the retailer orders q units of inventory for the
purpose of satisfying the upcoming unrealized random demand of X units (with distribution
and density functions FX (·) and fX (·), respectively, and an inverse distribution function
F−1
X (·)) and adopts either the WSL or ABO policy. We note that the WSL and ABO policies

differ only in the instances relating to underages and that overages lead to identical salvage
opportunities. Altogether, the temporal structure of the setting under consideration can be
enumerated:

1. The retailer places an order for q units at a cost of c ·q in preparation for the upcoming
single-period of demand.

2. With a chosen stockout policy in place and q units of available inventory, the random
demand, X , is realized. In return, the retailer will face costs relating to either an overage
or underage.

3. If the initial order quantity results in an overage (q > X), then the retailer can then
salvage all excess units to obtain v · (q − X) regardless of the SOP in place.

4. If the initial order quantity leads to an underage (q < X), the resulting course of action
depends on the SOP in place.

(i) For WSL, the retailer realizes shortage penalty proportional to the excess demand,
s · (X − q).

(ii) For ABO, the retailer utilizes the recourse option and has additional units produced
at cost r · (X − q).

Going forward, we use subscripts i = W and i = A to correspond to the WSL and ABO
policies, respectively. Now, letting �i denote the profit function under policy i ∈ {W , A}
gives

�W (q, X) =
{
pX − cq + v(q − X) , if X ≤ q, (Overage-WSL)

pq − cq − s(X − q) , if X > q, (Underage-WSL)

1 A summary of the essential notation used throughout the paper is provided in Table 8 in “Appendix A.1”.
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and

�A(q, X) =
{
pX − cq + v(q − X) , if X ≤ q, (Overage-ABO)

pX − cq − r(X − q) , if X > q. (Underage-ABO)

As mentioned previously, the policies lead to equivalent profit when an overage is realized.
However, the deviation between �W (q, X) and �A(q, X) is noticeable when comparing
the underage instances. Further, in the case of underages, the retailer employing WSL only
realizes revenue pq while also facing the shortage penalization s. Conversely, a retailer
employing ABO will realize revenue for the entire magnitude of demand (pX) but faces the
recourse production cost r for the remaining (X−q) units once inventory levels are depleted.

We look to conceptually simplify the components of the profit functions. Moreover, we
can succinctly write each of the profit function expressions (�W (q, X) and �A(q, X)) in
terms of two components: the profit (P) and total costs (Ci ) for policy i ∈ {W , A}. For the
profit component, we designate P = p − c. Let Ci (q, X) denote the total cost of ordering
q units of inventory subject to random demand X for SOP i ∈ {W , A}. Due to WSL and
ABO presenting equivalent overage expressions, we let co = c − v represent the overage
cost component applicable to both policies. Conversely, we denote cuW = p + s − c and
cuA = r −c as the underage cost components for WSL and ABO, respectively. It then follows
that

Ci (q, X) = co · max{q − X , 0} + cui · max{X − q, 0}, i ∈ {W , A}, (3)

and

�i (q, X) = P · X − Ci (q, X), i ∈ {W , A}. (4)

Going forward, we present all of the remaining expressions and results in terms of the overage
and underage cost components. As intuition and our parametric assumptions suggest, the
profit and cost components for both policies are all positive, i.e.,P, co, cuW , cuA > 0. With the
differing SOPs and their respective cost components in place, we can now turn to establish
the RN and RA retailer problems of interest.

3 The RN retailer

Using Eqs. (3) and (4), the expected profit maximization approach representative of RN
attitude lead to

max
q∈R+ E[�i (q, X)] = cui q − (co + cui )q · FX (q) + (P + co) ·

q∫
0

x · fX (x)dx (RNi )

+(P − cui ) ·
∞∫
q

x · fX (x)dx,

for i ∈ {W , A}.
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3.1 Problems RNW & RNA

Letting qRN
i , i ∈ {W , A} denote the optimal order quantity associated with Problems (RNW )

and (RNA), it is now straightforward to verify that

qRN
i = F−1

X

(
cui

co + cui

)
, i ∈ {W , A}. (5)

Given the above closed-form expressions qRN
i , next we compare and contrast these quantities

and the counterpart expected profit functions E[�i (q, X)], with the goal of analyzing the
performances of WSL and ABO policies for a retailer with a RN attitude. Specifically, we
evaluate three metrics under the optimal order quantity for policy i ∈ {W , A} to include the
resulting:

(1) expected profit (i.e., E[�i (qRN
i , X)] ≡ �RN

i ),
(2) stockout probability (i.e., P(X ≥ qRN

i ) ≡ F̄ RN
i ), and

(3) expected excess inventory (i.e., max
{
0, E[qRN

i − X ]} ≡ ERN
i ).

3.2 Comparison ofWSL & ABO for the RN retailer

Our intention here is to evaluate both the WSL and ABO policies in terms of resulting (1)
expected profit and inventory-related risk as captured by (2) stockout probability and (3)
expected excess inventory. As we have indicated earlier, these are three metrics of interest
throughout the paper. Note that all proofs to formal results are located in “Appendix A.2”.

Proposition 1 (Problems (RNW ) and (RNA) Expected Profit Comparison, Fixed q) For any
positive fixed order quantity q, the comparison of expected profits under WSL and ABO
policies (E[�W (q, X)] and E[�A(q, X)]) leads to the following result:

(i) If cuW ≥ cuA, then E[�W (q, X)] ≤ E[�A(q, X)], ∀q ∈ R
+. That is, if the underage

cost of the WSL policy exceeds that of ABO, then the latter policy outperforms in terms
of the expected profit for any positive order quantity.

(ii) If cuW ≤ cuA, then E[�W (q, X)] ≥ E[�A(q, X)], ∀q ∈ R
+. That is, if the underage

cost of the ABO policy exceeds that of WSL, then the latter policy outperforms in terms
of the expected profit for any positive order quantity.

Considering Parts (i) and (ii) of Proposition 1, we have the following observation.

Insight 1 We conclude that the relative values of underage costs of the two policies are the
only indicators of the outperforming SOP in terms of the expected profit, regardless of the
order quantity q. This is an insightful result because it indicates that the retailer’s decision
making power (choice of q) is irrelevant for the preferred SOP.

From Proposition 1 and Insight 1, the expected profit comparison betweenWSL and ABO
for fixed order quantities depend exclusively on the relation of the corresponding underage
cost components, cuW and cuA. It turns out, the same two cases carry over to the comparison
of the optimal quantity magnitudes as well.

Proposition 2 (Problems (RNW ) and (RNA): Optimal Quantity Comparison) For Problems
(RNW ) and (RNA), comparison of the optimal order quantities (qRN

W and qRN
A ) reveal the

following observations:
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(i) If cuW ≥ cuA, then qRN
W ≥ qRN

A , F̄ RN
W ≤ F̄ RN

A , and E RN
W ≥ ERN

A . That is, if the
underage cost of the WSL policy exceeds that of ABO, then the optimal order quantity
of the former policy is larger so that the WSL policy leads to a lower stockout risk and
a higher expected excess inventory level.

(ii) If cuW ≤ cuA, then qRN
W ≤ qRN

A , F̄ RN
W ≥ F̄ RN

A , and E RN
W ≤ ERN

A . That is, if the
underage cost of the ABO policy exceeds that of WSL, then the optimal order quantity
of the former policy is larger so that the ABO policy leads to a lower stockout risk and
a higher expected excess inventory level.

Proposition 2 evaluates the relative magnitudes of the optimal order quantities qRN
W and

qRN
A . Similar to Proposition 1, the insight entirely depends on the respective underage cost

components of WSL versus ABO policies.

Insight 2 Following Proposition 2, the relative values of the underage cost components
between WSL and ABO directly indicate which policy i ∈ {W , A} leads to smaller optimal
order quantities, q RN

i , resulting in less expected excess inventory, Ei . However, inventory
elimination is at the expense of increased stockout-risk, F̄i , under the RN attitude.

That is, the relationship between underage costs is the only indicator of the resulting
stockout probabilities and expected excess inventory under the counterpart optimal solutions.
The next result comes directly as a consequence of both Propositions 1 and 2.

Corollary 1 (Problems (RNW ) and (RNA): Optimal Policy) For Problems (RNW ) and (RNA),
trade-offs between the WSL and ABO policies are determined through two cases:

(i) If cuW ≥ cuA, then the ABO policy with optimal order quantity q RN
A outperforms the

correspondingWSL policy with optimal order quantity q RN
W in terms of expected profit,

i.e.,�RN
W ≤ �RN

A . Hence, ABO is the overall optimal SOP and leads to smaller optimal
order quantities (qRN

W ≥ qRN
A ).

(ii) If cuW ≤ cuA, then the WSL policy with optimal order quantity q RN
W outperforms the

corresponding ABO policy with optimal order quantity q RN
A in terms of expected profit,

i.e.,�RN
W ≥ �RN

A . Hence,WSL is the overall optimal SOP and leads to smaller optimal
order quantities (qRN

W ≤ qRN
A ).

As Corollary 1 states, the underage cost components definitively indicate outperformance
among objective function values (expected profit) in the context of Problems (RNW ) and
(RNA). Moreover, these comparisons between WSL and ABO will always manifest one
policy exhibiting such outperformance over the other.

For Propositions 1, 2, and Corollary 1, the results all depend on sgn(cuW − cuA). In Table 2,
we are able to summarize these analytical findings as they pertain to Problems (RNW ) and
(RNA) through expected profit, stockout probability, and expected excess inventory. Through
Table 2, we emphasize the fact that all of the comparative findings and outperformance
declarations thus far are simply obtained through evaluating the WSL and ABO underage
cost components.

To further support the analytical results summarized in Table 2, Fig. 1 compares the WSL
andABOexpected profits as functions of order quantity. In Fig. 1(a),WSL faces higher under-
age costs in comparison to ABO (6 versus 4) whereas in Fig. 1(b), WSL has lower underage
costs relative to ABO (8 versus 10). For the uniform (left), exponential (middle), and normal
(right) demand distributions all having a mean of 50, it is indicative that Propositions 1, 2,
and Corollary 1 hold true. Additionally, Fig. 1 demonstrates the demand distribution clearly
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Table 2 A summary of the analytical implications from the underage cost component relations and resulting
performance comparisons between WSL and ABO for the RN Retailer

Implications of the underage cost relation between WSL and ABO

Underage
cost
relation

Optimal
order
quantity

Optimal
stockout
probability

Optimal
expected
excess
inventory

Optimal
expected
profit

Optimal
policy

cuW ≥ cuA qRNW ≥ qRNA F̄ RN
W ≤ F̄ RN

A ERN
W ≥ ERN

A �RN
W ≤ �RN

A ABO

cuW ≤ cuA qRNW ≤ qRNA F̄ RN
W ≥ F̄ RN

A ERN
W ≤ ERN

A �RN
W ≥ �RN

A WSL

Fig. 1 A Demonstrative Comparison of Expected Profit between WSL and ABO Policies across Uniform,
Exponential, and Normally Distributed Demand

having an effect on the profit levels as well as the gap between the respective optimal order
quantities. We now look to further evaluate an example contained in Fig. 1 and quantify the
differences between the policies.

Example 1 Assume that demand follows a uniform distribution over the interval [0, 100], i.e.
X ∼ Uni f (0, 100). Further, we reconsider the parameter set and demand distribution used
to generate the left plot of Fig. 1(a) with p = 13, c = 8, v = 2, s = 1, and r = 12. This
leads to qRN

W = 50 and qRN
A = 40 following Eq. (5) for i ∈ {W , A}. Evaluating the expected

profits, we calculate E[�W (qRN
W , X)] = 100 and E[�A(qRN

A , X)] = 130 from the objective
function of Problems (RNW ) and (RNA). In this simple example, the benefit of choosing
the optimal policy (in this case ABO) can lead to a 30% increase in expected profit while
requiring an an initial order quantity that is 20% less thanWSL. This margin of improvement
derived from choosing ABO in terms of both expected profit and expected excess inventory
portray the potential value in evaluating plausible SOPs.
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Although Example 1 motivates and quantifies the value in considering opposing SOPs,
it must be mentioned again that the typical profit maximization approach (representative of
a RN attitude) does not necessarily represent a retailer’s risk attitude in practice. With that
said, there is a need to explore the same comparisons but for RA attitudes that better align
with reality.

4 The RA retailer

The RA retailer looks to hedge against outcomes involving significant losses. Rather than
the approach involving straight-forward computation of expected profit, risk aversion brings
forth a variety of criteria that incorporate objectives beyond expected profit. For a review
of NV settings that capture RA attitudes and associated modeling approaches, we refer to
Choi (2012), Eeckhoudt et al. (1995), Jammernegg and Kischka (2012), Qin et al. (2011).
As mentioned previously, we look to compare WSL and ABO policies through modeling
approaches involving the CVaR criterion. In Sect. 4.1 we provide amathematical introduction
to the CVaR criterion as it pertains to the NV setting. In Sect. 4.2 we define the TC and NL
loss functions before introducing the four resulting RA retailer problems of interest; RA-
TCW , RA-TCA, RA-NLW , and RA-NLA. In Sects. 4.3 and 4.4, we provide the closed-form
solutions to our four RA retailer problems before conducting analytical comparison of the
optimal solutions and relative performances in Sect. 4.5.

4.1 The CVaR criterion in a NV setting

For a NV setting incorporating the CVaR criterion, a retailer considers a particular loss func-
tion characterized by a randomvariable and is taskedwithminimizing conditional expectation
for the corresponding upper tail of the loss distribution. Following (Gotoh & Takano, 2007;
Katariya et al., 2014; Rockafellar & Uryasev, 2002), we consider a loss function, L(q, X),
which is a random variable for fixed ordering quantity q and random demand X . Then, the
corresponding loss distribution function is given as

φ(η|q) := P(L(q, X) ≤ η).

From Rockafellar and Uryasev (2002), the β-value-at-risk (β-VaR) for β ∈ [0, 1) is defined
as

αβ(q) := inf{α | φ(α|q) ≥ β}
and specifies that for a given order quantity q , a loss of αβ(q) or more occurs with probability
1 − β. For our RN retailer, β = 0 and for the RA retailer, β ∈ (0, 1). Once again following
(Rockafellar & Uryasev, 2002), we introduce the upper tail of the loss distribution, referred
to as the β-tail distribution, defined as

�β(η|q) :=
⎧⎨
⎩

0, if η < αβ(q), (6a)

φ(η|q) − β

1 − β
, if η ≥ αβ(q). (6b)

Letting Eβ [·] denote the expectation under the β-tail distribution, �β , the CVaR mini-
mization problem of interest is in regards to Eβ [L(q, X)] and is sometimes referred to as
β-conditional value-at-risk (β-CVaR) of the loss function L(q, X). Additionally, in Rock-
afellar and Uryasev (2002), it is shown that β-CVaR of the loss L(q, X) is approximately
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Fig. 2 A Visual Demonstration of the CVaR Criterion as it pertains to the β-tail Distribution for a Loss
Function L(q, X)

equivalent to the conditional expectation of the loss distribution exceeding αβ(q) with fixed
q and validates the minimization of β-CVaR through a simpler corresponding auxiliary func-
tion given as

Z(q, α) := α + 1

1 − β

∫ ∞

0
[L(q, X) − α]+ fX (x)dx, where [t]+ = max{0, t}. (7)

Resultingly, minimizing Z(q, α) in terms of q ∈ R
+ and α ∈ R simultaneously is represen-

tative of our RA retailer problems of interest. Therefore, we look to incorporate the CVaR
criterion for our NV setting and turn to the direct implementation of WSL and ABO policies
within the auxiliary function from Eq. (7). Figure2 provides an illustration supporting our
introduction of the CVaR criterion as it applies to the NV setting.

4.2 Loss functions and the RA retailer problems

We turn to utilize the CVaR criterion across two practical loss functions: TC and NL (Gotoh
& Takano, 2007; Katariya et al., 2014). The basic distinction between these are that NL
simply represents the negated profit function whereas TC is solely related to the underage
and overage cost components without inclusion of a profit component. Referring to the profit
function Expression (4), the NL and TC loss functions denoted LNL

i (q, X) and LTC
i (q, X)

for SOP i ∈ {W , A}, respectively are

LNL
i (q, X) := −P · X + Ci (q, X), i ∈ {W , A}, (8)

and

LTC
i (q, X) := Ci (q, X), i ∈ {W , A}. (9)

Notice that Eq. (9) represents a special case of Eq. (8) (P = 0). From Rockafellar and
Uryasev (2002) and the parametric assumptions in our NV setting, we ensure convexity of
Z(q, α) in Equation (7) for both loss functions LNL

i (q, X) and LTC
i (q, X), i ∈ {W , A}, and

we can turn to utilizing the CVaR criterion for representing RA retailers across WSL and
ABO. More specifically, we look to address all four problems

min
q∈R+,α∈R

Ti (q, α) := α + 1

1 − β

[ ∫ ∞

0
[Ci (q, X) − α]+ fX (x)dx

]
, i ∈ {W , A},

(RA-TCi )
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min
q∈R+,α∈R

Ni (q, α) := α + 1

1 − β

[ ∫ ∞

0
[Ci (q, X) − P · X − α]+ fX (x)dx

]
, i ∈ {W , A}.

(RA-NLi )

Our aim is to provide closed-form optimal solutions denoted (qTCi , αTC
i ) and (qNL

i , αNL
i )

for each policy i ∈ {W , A}. This will then allow a transition into directly comparing WSL
and ABO as was done for the RN retailer in Sect. 3.2. Although our main focus is not in
terms of directly comparing optimal solutions across the TC and NL loss functions, we refer
to Gotoh and Takano (2007), Katariya et al. (2014) for results pertaining to this.

4.3 Problems RA-TCW & RA-TCA

We now turn our focus to Problems (RA-TCW ) and (RA-TCA). As was the case for Problems
(RNW ) and (RNA), we are able to solve these problems in a general sense that encompasses
both WSL and ABO policies simultaneously.

Proposition 3 (Problems (RA-TCW ) and (RA-TCA): Optimal Solutions) For β ∈ [0, 1) and
i ∈ {W , A}, the optimal solutions (qTCi , αTC

i ) to Problems (RA-TCW ) and (RA-TCA) are

qTCi =
(

co

co + cui

)
· F−1

X

(
cui (1 − β)

co + cui

)
+

(
cui

co + cui

)
· F−1

X

(
β · co + cui
co + cui

)
, (10)

αTC
i =

(
co · cui
co + cui

)
·
(
F−1
X

(
β · co + cui
co + cui

)
− F−1

X

(
cui (1 − β)

co + cui

))
. (11)

In particular, when β = 0, qTCi reduces to the corresponding Problem (RNW ) or (RNA)
optimal order quantity solution (Eq. (5)).

There exists a particularly unique simplification of the optimal order quantity in Eq. (10)
when demand follows a specific distribution family.

Corollary 2 When demand is uniformly distributed (i.e., X ∼ Uni f (a, b) for a, b ∈ R and
a ≤ b), the optimal order quantity for the RA retailer under the CVaR criterion with the TC
loss function coincides with the corresponding RN retailer optimal order quantity. In other
words, Eq. (10) simplifies to Eq. (5), regardless of the value of β implying qTCi = qRN

i for
i ∈ {W , A}.

We must note that the closed-form optimal solutions obtained for Problem (RA-TCW )
(Eqs. (10), (11) with i = W ) are consistent with what is provided in Gotoh and Takano
(2007). Next, we look to derive optimal solutions corresponding to Problems (RA-NLW ) and
(RA-NLA).

4.4 Problems RA-NLW & RA-NLA

Turning to Problems (RA-NLW ) and (RA-NLA), we reiterate that the optimal solutions in
regards to Problem (RA-NLW ) continue to be consistent with what is provided in Gotoh and
Takano (2007). For the sake of completeness, we still choose to derive the expressions with
our chosen notation.

123



Annals of Operations Research

4.4.1 Problem RA-NLW

Now, we revisit the optimal pair corresponding to the NL loss function (qNL
W , αNL

W ) from
Gotoh and Takano (2007). This optimal solution is verified by solving Problem (RA-NLW )
as summarized in the following Proposition.

Proposition 4 (Problem (RA-NLW ): Optimal Solution) For β ∈ [0, 1), the optimal solution
(qNL

W , αNL
W ) to Problem (RA-NLW ) is

qNL
W =

(
co + P
co + cuW

)
· F−1

X

(
cuW (1 − β)

co + cuW

)
+

(
cuW − P
co + cuW

)
· F−1

X

(
β · co + cuW
co + cuW

)
, (12)

αNL
W =

(
co(cuW − P)

co + cuW

)
· F−1

X

(
β · co + cuW
co + cuW

)
−

(
cuW (co + P)

co + cuW

)
· F−1

X

(
cuW (1 − β)

co + cuW

)
.

(13)

In particular, when β = 0, qN L
W reduces to the corresponding Problem (RNW ) optimal order

quantity solution (Eq. (5) with i = W).

In the context of WSL, comparing the optimal solution in Eqs. (12), (13) to the optimal
solution to Problem (RA-TCW ) given in Eqs. (10), (11) for i = W , there are recognizable
similarities. However, notice that (qTCW , αTC

W ) is a particular instance of (qNL
W , αNL

W ), as
previously mentioned (when P = 0). Going forward, we must now solve Problem (RA-
NLA).

4.4.2 Problem RA-NLA

In solving Problem (RA-NLA), there are distinct parametric cases to consider. Due to poten-
tially varying relationships between the selling price, p, and the recourse production cost, r ,
the objective function will differ depending on sgn(p − r). Resultingly, this yields unique
optimal solutions for both parametric cases p > r and p < r .

Proposition 5 (Problem (RA-NLA): Optimal Solution, p > r ) For β ∈ [0, 1), the optimal
solution (qNL

A , αNL
A ) to Problem (RA-NLA) is given through the following two cases

Case1 : p > r

qNL
A = F−1

X

(
cuA(1 − β)

co + cuA

)
, (14)

αNL
A = (cuA − P) · F−1

X

(
1 − β

)
− cuA · F−1

X

(
cuA(1 − β)

co + cuA

)
. (15)

In particular, when β = 0 and for any αNL
A satisfying αNL

A ≤ −qNL
A · P , the solution

satisfies optimality and qNL
A reduces to the corresponding Problem (RNA) optimal order

quantity solution (Eq. (5) with i = A).
Case2 : p < r

qNL
A =

(
co + P
co + cuA

)
· F−1

X

(
cuA(1 − β)

co + cuA

)
+

(
cuA − P
co + cuA

)
· F−1

X

(
β · co + cuA
co + cuA

)
, (16)

αNL
A =

(
co(cuA − P)

co + cuA

)
· F−1

X

(
β · co + cuA
co + cuA

)
−

(
cuA(co + P)

co + cuA

)
· F−1

X

(
cuA(1 − β)

co + cuA

)
.

(17)
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In particular, when β = 0, qN L
A reduces to the corresponding Problem (RNA) optimal order

quantity solution (Eq. (5) with i = A).

For the case of p > r , we easily determine that the optimal quantity given in Eq. (14)
will be less than the corresponding optimal solution to Problem (RNA), i.e., qNL

A ≤ qRN
A

when p > r . For the case with p < r , it appears that (qNL
A , αNL

A ) fits the same general form
as (qNL

W , αNL
W ) from Eqs. (12) and (13). At this point, we have derived all desired optimal

solutions and focus on comparison across the policies. Further, for policy i ∈ {W , A}, we
evaluate the optimal solutions across the resulting:

(1) CVaR under TC (i.e., Ti (qTCi , αTC
i ) ≡ T TC

i ),
(2) CVaR under NL (i.e., Ni (qNL

i , αNL
i ) ≡ N NL

i ),
(3) stockout probabilities (i.e., P(X ≥ qTCi ) ≡ F̄TC

i and P(X ≥ qNL
i ) ≡ F̄ N L

i ), and
(4) expected excess inventory (i.e., max

{
0, E[qTCi − X ]} ≡ ETC

i and max{
0, E[qNL

i − X ]} ≡ ENL
i ).

4.5 Comparison ofWSL & ABO for the RA retailer

Similar to the comparisons in Sect. 3.2, we continue with our analysis between WSL and
ABO but in the context of a RA retailer. Our collection of closed-form optimal solutions to
Problems (RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA) do lend reasonable analytical
evaluations among the corresponding objective function values (T and N ). Additionally,
between WSL and ABO, we are able to assess and compare magnitudes of the optimal order
quantities (qTCW vs. qTCA and qNL

W vs. qNL
A ). Consequently, this also leads to insight regarding

stockout probabilities (F̄TC
W vs. F̄TC

A and F̄ N L
W vs. F̄ N L

A ) as well as expected excess inventory
(ETC

W vs. ETC
A and ENL

W vs. ENL
A ).

Proposition 6 (Problems (RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA) CVaR Com-
parison, Fixed (q, α)) Let β ∈ [0, 1) and (q, α) be a fixed solution to either Problems
(RA-TCW ) and (RA-TCA) or (RA-NLW ) and (RA-NLA). Then, the CVaR comparison between
WSL and ABO policies under either TC or NL loss functions (TW (q, α) vs. TA(q, α)) or
(NW (q, α) vs. NA(q, α)) leads to the following results:

(i) If cuW ≥ cuA, then TW (q, α) ≥ TA(q, α) and NW (q, α) ≥ NA(q, α), ∀q ∈ R
+, α ∈ R.

That is, if the underage cost of the WSL policy exceeds that of ABO, then the latter
policy outperforms in terms of CVaR regardless of the loss function (TC or NL).

(ii) If cuW ≤ cuA, then TW (q, α) ≤ TA(q, α) and NW (q, α) ≤ NA(q, α), ∀q ∈ R
+, α ∈ R.

That is, if the underage cost of the ABO policy exceeds that of WSL, then the latter
policy outperforms in terms of CVaR regardless of the loss function (TC or NL).

Notice the analytical results provided in Proposition 6 hold for all parametric cases and
determine which policy yields the lower objective function value between Problems (RA-
TCW ) and (RA-TCA) or (RA-NLW ) and (RA-NLA) when the solutions are fixed.

Following Parts (i) and (ii) of Propositions 6, we have the following observation.

Insight 3 Analogous to Insight 1, we conclude that the relative values of underage costs of the
two policies are the only indicators of the outperforming SOP in terms of CVaR under TC or
NL, regardless of the values of the order quantity q ∈ R

+ and quantile α ∈ R. Therefore, no
matter the risk attitude and corresponding modeling approach, the underage costs indicate
the retailer’s decision making power is irrelevant for the preferred SOP.
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From Proposition 6 and Insight 3, given a solution, the CVaR objective function (under
either TC or NL) comparison between WSL and ABO depend exclusively on the relation
of the corresponding underage cost components, cuW and cuA. Similar to Proposition 2, we
find that the relative underage costs carry over to the comparison of optimal order quantity
magnitudes as well.

Proposition 7 (Problems (RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA): Optimal
Quantity Comparison) For Problems (RA-TCW ) and (RA-TCA) or (RA-NLW ) and (RA-NLA),
comparison between the optimal order quantities (qTCW and qTCA ) or (qNL

W and qNL
A ) reveal

the following observations:

(i) If cuW ≥ cuA, then q j
W ≥ q j

A, F̄
j
W ≤ F̄ j

A, and E j
W ≥ E j

A for j ∈ {TC, NL}. That is,
if the underage cost of the WSL policy exceeds that of ABO, then the optimal order
quantity of the WSL policy is larger than the optimal order quantity of the ABO policy.
This also leads to lower stockout risk and a higher expected excess inventory level for
the WSL policy.

(ii) If cuW ≤ cuA, then q j
W ≤ q j

A, F̄
j
W ≥ F̄ j

A, and E j
W ≤ E j

A for j ∈ {TC, NL}. That is,
if the underage cost of the ABO policy exceeds that of WSL, then the optimal order
quantity of the ABO policy is larger than the optimal order quantity of the WSL policy.
This also leads to lower stockout risk and a higher expected excess inventory level for
the ABO policy.

Proposition 7 addresses relative comparison of optimal quantities, stockout probabilities, and
expected excess inventory with takeaways identical to those from Proposition 2, but in the
context of Problems (RA-TCW ) and (RA-TCA) or (RA-NLW ) and (RA-NLA) for the RA
retailer. Considering Parts i) and ii) of Propositions 2 and 7, we have the following takeaway.

Insight 4 Following Propositions 2 and 7, across all risk attitudes and corresponding mod-
eling approaches that we’ve examined, the underage cost component relations between WSL
and ABO solely indicate the policy comparisons among optimal quantities, stockout proba-
bilities, and expected excess inventory.

That is, the relationship between underage costs is the only indicator of the resulting
stockout probabilities and expected excess inventory under the counterpart optimal solutions.
As was the case for Corollary 1, the next result comes directly as a consequence of both
Propositions 6 and 7.

Corollary 3 (Problems (RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA): Optimal Policy)
For Problems (RA-TCW ) and (RA-TCA) or (RA-NLW ) and (RA-NLA), trade-offs between the
WSL and ABO policies are determined through two cases:

(i) If cuW ≥ cuA, then the ABO policy with optimal solution (qTCA , αTC
A ) or (qNL

A , αNL
A )

outperforms the corresponding WSL policy with optimal solution (qTCW , αTC
W ) or

(qNL
W , αNL

W ), i.e., T TC
W ≥ T TC

A or N NL
W ≥ N NL

A . Hence, ABO is the overall optimal
SOP and leads to smaller optimal order quantities ((qTCW ≥ qTCA ) or (qNL

W ≥ qNL
A )).

(ii) If cuW ≤ cuA, then the WSL policy with optimal solution (qTCW , αTC
W ) or (qNL

W , αNL
W )

outperforms the corresponding ABO policy with optimal solution (qTCA , αTC
A ) or

(qNL
A , αNL

A ), i.e., T TC
W ≤ T TC

A or N NL
W ≤ N NL

A . Hence, WSL is the overall optimal
SOP and leads to smaller optimal order quantities ((qTCW ≤ qTCA ) or (qNL

W ≤ qNL
A )).
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Table 3 ASummary of the Analytical Implications from the Underage Cost Component Relations and Result-
ing Performance Comparisons between WSL and ABO for the RA Retailer

Implications of the underage cost relation between WSL and ABO under the CVaR criterion

Underage
cost
relation

Loss
function

Optimal
order
quantity

Optimal
stockout
probability

Optimal
expected
excess
inventory

Optimal
CVaR
objective

Optimal
policy

cuW ≥ cuA TC qTCW ≥ qTCA F̄TC
W ≤ F̄TC

A ETC
W ≥ ETC

A TW ≥ TA ABO

NL qNL
W ≥ qNL

A F̄ N L
W ≤ F̄ N L

A ENL
W ≥ ENL

A NW ≥ NA ABO

cuW ≤ cuA TC qTCW ≤ qTCA F̄TC
W ≥ F̄TC

A ETC
W ≤ ETC

A TW ≤ TA WSL

NL qNL
W ≤ qNL

A F̄ N L
W ≥ F̄ N L

A ENL
W ≤ ENL

A NW ≤ NA WSL

As Corollary 3 states, the underage cost components definitively indicate outperformance
among objective function values (CVaR) in the context of Problems (RA-TCW ) and (RA-
TCA) or (RA-NLW ) and (RA-NLA). Similar to the RN retailer, these comparisons between
WSL and ABO will always result in one policy exhibiting such outperformance over the
other.

For Propositions 6, 7, and Corollary 3, the results all depend on sgn(cuW − cuA). In Table 3,
we are able to summarize these analytical findings as they pertain to Problems (RA-TCW ),
(RA-TCA), (RA-NLW ), and (RA-NLA) through CVaR, stockout probability, and expected
excess inventory.

Insight 5 Following both Corollaries 1 and 3, the relative values of the WSL and ABO
underage cost components completely determine the optimal SOP. That is, across all risk
attitudes and corresponding modeling approaches explored in this paper, the values of cuW
and cuA are sufficient in determining the outperforming SOP as well as the relative stockout
and excess inventory risks.

Through Tables 2 and 3 and Insight 5, we again highlight that all of the comparative
findings and outperformance declarations are simply obtained through evaluating the WSL
andABOunderage cost components.We now turn to numerical implementation of all optimal
solutions obtained.

5 Numerical experimentation

We have presented three modeling approaches for choosing the optimal order quantity under
the WSL and ABO policies. Namely, we’ve considered Problems (RNW ), (RA-TCW ), and
(RA-NLW ) for WSL and Problems (RNA), (RA-TCA), and (RA-NLA) for ABO. From ana-
lyzing each problem we’ve discovered that, regardless of the approach, the outperforming
policy is revealed by the relative values of the underage cost components (cuW and cuA). That
is, as summarized by Insight 5, WSL is the optimal SOP when cuW ≤ cuA whereas ABO is the
optimal SOP when cuW ≥ cuA.

For all practical purposes, given a problem instance with fixed parameter values and a
known demand distribution, we can determine the optimal SOP by evaluating cuW and cuA.
Once the optimal SOP has been identified, the next set of fundamental questions are in regards
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to the tradeoffs between using the RN, TC, or NL modeling approaches to pick the order
quantity as described below:

• Suppose the problem instance is such that ABO is the optimal policy (cuW ≥ cuA). Then,
let’s also suppose that we choose to implement the corresponding optimal solution to
Problem (RA-TCA) (qTCA , αTC

A ), i.e., we adopt the RA modeling approach with a TC
loss function. This choice introduces unavoidable tradeoffs in terms of the expected profit
(E[�(qTCA , X)] := �TC

A ) and net loss (N (qTCA , αTC
A ) := N TC

A ). In other words, by
choosing to implement the optimal solution to Problem (RA-TCA), (qTCA , αTC

A ), we are
inherently deviating from the optimal expected profit maximizer (qRN

A ) and the optimal
CVaR minimizer under NL (qNL

A , αNL
A ) for the problem instance at hand. That is, for

the above example, while T TC
A ≤ T TC

W can we additionally verify �TC
A ≥ �TC

W and
NA(qTCA , αTC

A ) ≤ NW (qTCW , αTC
W )? Hence, at the core of the numerical results presented

in the remainder of the paper are the answers to the following two questions referred as
Q1 and and Q2:

Q1 For a given problem instance with the three alternative order quantity solutions
under the optimal SOP, does a particular alternative maintain outperformance
across all three objective function criteria? If there exists such an alternative, then
we refer to this alternative as resilient.

Q2 For a given problem instance with the three alternative order quantity solutions
under the optimal SOP, does a particular alternative lead to underperformance
in terms of the other two alternative objective functions? If there exists such an
alternative, then we refer to this alternative as sensitive.

• Moreover, what can we expect in terms of the order quantity magnitude deviations
between the expected profit maximizer (qRN

A ) and the optimal CVaR minimizer under
TC (qTCA )? That is, what effect does the RA attitude have on optimal inventory levels in
comparison to the RN attitude? Given our results, we synthesize these kind of deviations
using a carefully designed numerical study and look to answer the following additional
question:

Q3 For a given SOP and the three alternative order quantity solutions, we define deci-
sion bias as the percentage difference between the optimal CVaRminimizing order
quantity (under TC or NL) and the expected profit maximizing order quantity.
Hence, the last question of interest, referred as Q3, is: What are the generalized
decision bias characteristics for CVaR under TC and CVaR under NL?

In addition to validating our analytical findings, we keep Questions Q1, Q2, and Q3 at
the heart of our numerical study and look to first produce a resilient/sensitive evaluation of
WSL and ABO across each of the three objective function criteria (�, T , and N ). Provided
that we consider four models ((RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA)) with
objectives not inline with the RN retailer expected profit maximization, our second aim is to
assess decision bias across each of the four RA retailer problems. To compute our notion of
decision bias as the percentage deviation between expected profitmaximizing order quantities
and order quantities that satisfy optimality for objectives related to RA retailer, we utilize

DTC
i := 100 ·

(
qTCi − qRN

i

q RN
i

)
and DNL

i := 100 ·
(
qNL
i − qRN

i

q RN
i

)
, i ∈ {W , A}.

(18)
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Table 4 Numerical experiment parameter values and feasible instances

Experiment parameter setup

Parameter c p v s r Total

Values 15, 25, 35 50, 65, 85 10, 20, 30 20, 30, 40 35, 55, 85 Feasible

55, 75, 105 125, 175, 235 40, 50, 60 60, 80, 120 125, 175, 225 Instances

145, 200 335, 450 80, 100 160, 220 300, 400 = 8838

Table 5 The assumptions, total instances, and optimal policy for parameter classes P1, P2, and P3

Parameter class Class assumptions Total instances Optimal policy

P1 p > r cuW > cuA 4768 ABO

P2 p < r cuW < cuA 2767 WSL

P3 p < r cuW > cuA 1303 ABO

The experiment setup and results are reported below. Throughout the numerical exper-
imentation, we will consider a total of three demand distributions. We employ uniform
(X ∼ Uni f (0, 200)), exponential (X ∼ Exp(1/100)), and normal (X ∼ N (100, 25))
distributions all with the same mean value of 100. As is noted in Gotoh and Takano (2007),
even though product demand intuitively has a non-negative support, we utilize the normal
distribution to contribute to the comparison of WSL and ABO performances across demand
distributions with contrasting shapes.

In terms of the experiment parameters, we first establish values for those found in the
two profit functions (c, p, v, s, and r ) from Sect. 2. For these five parameters, we consider a
total of eight values each. From there, we impose the same parametric relationships assumed
throughout. As an additional restriction, we avoid any instances satisfying cuW = cuA as they
do not make practical sense.

Table 4 provides all of the values for each of the parameters considered.We determine that
this particular collection of 85 parameter combinations subject to our parameter relationship
assumptions produces 8838 feasible instances. These instances are then separated into three
parameter classes denoted P1, P2, and P3. We note that these three parameter classes are
mutually exclusive and collectively exhaustive in regards to our NV setting. Additionally,
notice that our three classes are sufficient given that a parameter class characterized with
assumptions of p > r and cuW < cuA leads to an empty set.

We summarize the parameter classes in Table 5 as well as how many of the 8838 feasible
instances are compartmentalized into each of the three classes. We also provide the optimal
policy as they correspond to each parameter class. Finally, for the evaluation of optimal
solutions corresponding to Problems (RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA),
we choose tofixβ so that the optimization is in regards to the upper 10%of the loss distribution
(β = 0.9).

In order to answerQuestionsQ1 andQ2, we provide results that summarize the percentage
of instances associatedwith parameter classes P1, P2, and P3 under each of the three demand
distributions such that the following relationships hold: � j

W > �
j
A, �

j
W < �

j
A, T

j
W > T j

A ,

T j
W < T j

A ,N
j
W > N j

A, andN j
W < N j

A. Recall the usage of superscripts j ∈ {RN , TC, NL}
and subscripts i ∈ {W , A} indicate which of the six optimal solutions to Problems (RNW ),
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(RNA), (RA-TCW ), (RA-TCA), (RA-NLW ), or (RA-NLA) is being evaluated at a particular
objective function (�, T , or N ).

For example, we know that under uniform demand and parameter class P1, ABO is the
declared optimal SOP (Table 5). However, in Table 6, we find the optimal order quantity
solution to Problem (RNA) (qRN

A ) actually leads to net loss that is worse than the optimal
order quantity solution corresponding to Problem (RNW ) (qRN

W ), i.e., N RN
A > N RN

W , for a
majority of instances (69.23%). We embolden the cells corresponding to such drastic cases
of sensitivity and characterize the alternative as such in the final column. Notice that there do
exist particular parameter class and demand distribution combinations where the outperform-
ing policy may not exhibit outperformance over all instances, but does so a majority of the
time. We do not embolden these cells as they still suggest favor to the outperforming policy,
but we are not able to report the alternative as resilient in the final column as outperformance
is not achieved across all objective function criteria for 100% of the instances. The results
lead to several takeaways worthy of mentioning.

Insight 6 In answering Q1, optimal solutions to Problems (RA-TCW ) and (RA-TCA) rep-
resent the only alternative that universally maintain resiliency across all three objective
function criteria. Moreover, we found that choosing this RA modeling approach with a TC
loss function is resilient for 100% of problem instances (WSL in P2, ABO in P1 and P3),
regardless of the parameter class or demand distribution.

As mentioned in Insight 6, the RA modeling approach under the TC loss function is
resilient in terms of the optimal SOP and is the only alternative to achieve 100% resiliency
for every possible parameter class and demand distribution combination (see final column
of Table 6). Therefore, based on our results with this modeling approach, the WSL (ABO)
policy will maintain outperformance in parameter class P2 (P1 and P3) across all three
objective function criteria. It should be noted that the RN modeling approach leads to the
same conclusion but only in parameter classes P2 and P3. In parameter class P1, the optimal
solutions to Problems (RNW ) and (RNA) led to the optimal policy (ABO) achievingworse net
loss thanWSL, i.e.,N RN

A > N RN
W a majority of instances and for every demand distribution.

With that said, it appears that the most significant performance sensitivity is attained from
the solutions to Problems (RA-NLW ) and (RA-NLA).

Insight 7 In answering Q2, we found mixed results in terms of modeling approaches that
impose sensitivity on the optimal SOP. Specifically, optimal solutions to Problems (RA-NLW )
and (RA-NLA) perform moderately well in parameter class P1 and support the optimal SOP
for a majority of instances, regardless of the demand distribution. However, in P2 and P3,
the RA modeling approach with a NL loss function yields several examples of the optimal
SOP producing sensitive results across the other two objective function criteria (� and T ).
Additionally, optimal solutions to Problems (RA-NLW ) and (RA-NLA) were the only to not
achieve resiliency for any parameter class and demand distribution combination.

AlthoughNL represents a generalization of the correspondingTC loss function (whenP =
0), Insights 6 and 7 indicate that these modeling approaches actually produced sufficiently
different resilient/sensitive evaluation results. For example, between qTCi and qNL

i for i ∈
{W , A}, we had four of the nine parameter class and demand distribution combinations yield
expected profit output favoring opposing policies. Therefore, just within the RA modeling
approaches, whether the RA retailer chooses to incorporate the TC or NL loss function can
significantly affect the resulting resiliency/sensitivity.
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Table 7 The mean decision bias (%) evaluation for optimal order quantity solutions to RA retailer problems
(RA-TCW ), (RA-TCA), (RA-NLW ), and (RA-NLA)

A mean decision bias (%) assessment for RA retailer problems

Evaluation TC NL

Criteria DTC
W (%) DTC

A (%) DNL
W (%) DNL

A (%)

Uniform demand

Class P1 0.00 0.00 −64.64 −90.00

Class P2 0.00 0.00 −45.40 −27.38

Class P3 0.00 0.00 −29.70 −44.50

Exponential demand

Class P1 71.14 87.06 −49.66 −95.26

Class P2 81.40 73.47 −9.08 22.03

Class P3 75.18 80.94 17.66 −8.12

Normal demand

Class P1 11.31 5.33 −33.10 −45.70

Class P2 9.15 11.05 −19.65 −7.46

Class P3 11.06 9.58 −9.07 −19.04

In order to answer Question Q3, we look to report the mean values of DTC
W , DTC

A , DNL
W ,

andDNL
A across parameter classes P1, P2, and P3 under each of the three demand distribu-

tions. Following Eq. (18), these evaluations and percentage calculations are in relation to the
corresponding SOP expected profit maximizing order quantity given in Eq. (5). The average
decision bias output for WSL and ABO is reported for all nine combinations of parameter
classes and demand distributions.

From Table 7, we immediately verify Corollary 2 as the order quantity solutions to Prob-
lems (RA-TCW ) and (RA-TCA) both coincide with their corresponding RN retailer optimal
order quantity (decision bias is zero) when demand is uniformly distributed. Beyond this
observation, there do appear to be general relationships in terms of decision bias among the
alternativemodeling approaches involving theCVaR criterion. Based on the results in Table 7,
CVaR under TC reveals non-negative mean decision bias percentages whereas CVaR under
NL mostly shows negative mean decision bias. Notice that although there are two positive
percentages reported under exponential demand for CVaR under NL (17.66% and 22.03%),
these increases represent smaller deviations than the corresponding output for the TC loss
function.

Insight 8 In answering Q3, optimal order quantity solutions to Problems (RA-TCW ) and
(RA-TCA) led to decision bias in the form of relatively larger inventory levels compared
to the RN retailer. Conversely, for optimal order quantity solutions to Problems (RA-NLW )
and (RA-NLA), the mean decision bias output reveals a general decrease in inventory levels.
Throughout all mean decision bias calculations forCVaRunder TCandNL, the extent of these
increases and decreases were noticeably dependent on the assumed demand distribution and
parameter class.

As impactful as the choice between WSL and ABO can be, the risk attitude and cor-
responding modeling approach for deriving optimal solutions also prove to sometimes
have a significant effect on additional performance evaluations in terms of the resulting
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resiliency/sensitivity. Regarding decision bias and comparison with the RN retailer order
quantities, across both SOPs the RA retailer can generally expect significant increases
(decreases) in optimal inventory levels with the TC (NL) loss function. Given these gen-
eral takeaways of our numerical findings, for all practical purposes, we emphasize the need
to evaluate sensitivity, resiliency, and decision bias for carefully estimated parameters and
demand information of interest.

6 Conclusion

We expand on the large body of optimization literature that incorporates both risk-neutrality
and risk-aversion within the NV setting. We also make a general distinction between the
NV settings which do and do not allow recourse production. In turn, this distinction aligns
precisely with two common practices for handling stockout scenarios. Utilizing the well-
recognized and accommodating NV setting, we implement a setup amenable to the direct
comparison between two practically relevant SOPs referred to as theWSL and ABO policies
throughout this work. We develop methodology to compute the optimal order quantities
and discover the optimal SOP for both RN and RA risk attitudes and counterpart modeling
approaches represented by Problems (RNi ), (RA-TCi ), and (RA-NLi ). As the first paper to
do so, we provide direct comparison between two opposing stockout policies and evaluate
performances for both RN and RA attitudes. In doing so, we employ the CVaR criterion
across two loss functions found in existing literature (Gotoh & Takano, 2007; Katariya et
al., 2014), but for both WSL and ABO policies. We provide methodological contributions
through solving two newCVaRminimization problems as they correspond to the ABO policy
and provide a comparative framework amenable to analytical and numerical comparisons.

The findings in this paper lend us the ability to analytically prove that, regardless of the
modeling approach or the retailer’s risk attitude, the optimal SOP is dictated by the relative
values of the underage cost components between WSL and ABO policies. Further, the rela-
tionships between the WSL and ABO order quantities, stockout probabilities, and expected
excess inventory are conclusively deduced based on the underage cost components for any
risk attitude as well. This qualitative result intrinsically highlights the value in accurately
measuring and quantifying underage costs. Needless to say, this finding should not and does
not undervalue the fact that each problem considered here ((RNW ), (RNA), (RA-TCW ),
(RA-TCA), (RA-NLW ), and (RA-NLA)) is representative of a different risk-attitude and/or
modeling approach leading to its own unique analytical representation and solution (see
Eq. (5) for Problems (RNi ), Eqs. (10) and (11) for Problems (RA-TCi ), Eqs. (12) and (13)
for Problem (RA-NLW ), and Eqs. (14)–(17) for (RA-NLA)). Hence, the quantitative result
of each modeling approach is distinct.

While the qualitative result of the overall analysis reveals that the preferred SOP is deduced
by a comparison of the relative values of the underage costs, the actual operational policy
parameters as dictated by the order quantities (quantitative results) indeed depend on the
risk-attitude and modeling approach as revealed by Eqs. (5), (10), (12), (14), and (16). With
these findings at hand, we also resort to numerical experimentation to evaluate the three
alternative modeling approaches (leading to six unique models) across varying combinations
of parameter classes and demand distributions. In doing so, we determine which alternative
approaches perform with resiliency or sensitivity when evaluated across expected profit and
CVaR objective function criteria. Additionally, we are able to assess the general decision bias
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characteristics between CVaR under TC and CVaR under NL as they correspond to the RA
retailer.

In general, we found that products yielding sufficient profitmargins (e.g., high-end durable
goods) yield advantageous opportunities for the ABO policy. Conversely, products with rela-
tively lower profit (e.g., single-use non-durable goods) tend to produce favorable performance
with the WSL policy. Interestingly, in our numerical experimentation, we found that the RA
modeling approaches produced both the most resilient (RA-TCi ) and sensitive (RA-NLi )
performances across expected profit and CVaR objective function criteria.

Given the full spectrum of analytical results, the analysis presented here can be replicated
for any applicable products, demand information, or parameter data. However, throughout
this work, it was assumed that all parameters and demand distributions were known and
that all consumers were willing to purchase the backordered item. In reality, measuring or
quantifying the relative costs, demand, and consumer preferences can be difficult. As our
intention was to provide a general comparison between the two contrasting SOPs, explo-
ration among specific industries and products with appropriate modeling approaches and
assumptions should be considered. Further, expanding SOP comparisons and newsvendor
decision bias across additional risk-based methodology (e.g., expected utility, loss-aversion,
and mean-variance analysis) also represent important directions for related future work.
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A Appendix

A.1 Summary of essential notation

See Table 8.

A.2 Proofs of formal results

A.2.1 Proof of Proposition 1

For a fixed q , E[�W (q, X)] − E[�A(q, X)] = (cuW − cuA) · ∫ ∞
q (q − x) · fX (x)dx . Given

that the integral term is negative, the sign of the expression depends on sgn(cuW − cuA).
Therefore, when cuW ≥ cuA (case i), the difference in expected profits is negative implying
E[�W (q, X)] ≤ E[�A(q, X)]. Conversely, if cuW ≤ cuA (case i i), then the expression is
positive and results in E[�W (q, X)] ≥ E[�A(q, X)].
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Table 8 Notation of parameters, random variables, objective functions, and decision variables

Symbol Description

c Ordering cost per unit

p Selling price per unit

v Salvage value per unit

s Shortage penalty per unit

r Production cost per unit after realizing demand

β Probability corresponding to tail of the loss distribution

α Loss quantile associated with probability β

X Non-negative and continuous random variable representing demand

fX (·) Probability density function of demand random variable X

FX (·) Cumulative distribution function of demand random variable X

�i (q, X) Profit function for Policy i ∈ {W , A}
Ti (q, α) Total cost CVaR objective function for Policy i ∈ {W , A}
Ni (q, α) Net loss CVaR objective function for Policy i ∈ {W , A}
qRNi Optimal risk-neutral (RN) order quantity under Policy i ∈ {W , A}
qTCi Optimal total cost (TC) order quantity under Policy i ∈ {W , A}
αTC
i Optimal total cost (TC) quantile value under Policy i ∈ {W , A}

qNL
i Optimal net loss (NL) order quantity under Policy i ∈ {W , A}

αNL
i Optimal net loss (NL) quantile value under Policy i ∈ {W , A}

A.2.2 Proof of Proposition 2

i) If cuW ≥ cuA, then
cuW

co+cuW
≥ cuA

co+cuA
. Applying the associated monotone inverse cdf, F−1

X ,

yields F−1
X

(
cuW

co+cuW

)
≥ F−1

X

(
cuA

co+cuA

)
. Therefore, qRN

W ≥ qRN
A , as desired.

ii) An analogous approach for the converse case yields the desired result.

A.2.3 Proof of Corollary 1

(i) Following Proposition 1 and since qRN
A is a maximizer of the concave expected profit

function E[�A(q, X)], if cuW ≥ cuA, then E[�W (qRN
W , X)] ≤ E[�A(qRN

W , X)] ≤
E[�A(qRN

A , X)]. Hence, E[�W (qRN
W , X)] ≤ E[�A(qRN

A , X)].
(ii) An analogous approach for the converse case yields the desired result.

A.2.4 Proof of Proposition 3

Case1 : α < 0 Under Case 1, the objective function from Problems (RA-TCW ) and (RA-
TCA) simplifies to

Ti (q, α) = α + 1

1 − β

[ ∫ q

0
[co · (q − x) − α] fX (x)dx

+
∫ ∞

q
[cui · (x − q) − α] fX (x)dx

]
(19)
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Solving for this first case only produces optimal solutions when β = 0. Further, any αTC
i

satisfying αTC
i < 0 remains optimal but the optimal order quantity qTCi reduces to the

optimal order quantity solution given in equation (5).
Case2 : α ∈ [0, co · q) Under Case 2, the objective function from Problems (RA-TCW )

and (RA-TCA) simplifies to

Ti (q, α) = α + 1

1 − β

[ ∫ co ·q−α

co

0
[co · (q − x) − α] fX (x)dx

+
∫ ∞

cui ·q+α

cui

[cui · (x − q) − α] fX (x)dx

]
(20)

Solving Case 2 yields the optimal solution pair (qTCi , αTC
i ) presented in Eqs. (10) and (11).

Case3 : α ≥ co · q Under Case 3, the objective function from Problems (RA-TCW ) and
(RA-TCA) simplifies to

Ti (q, α) = α + 1

1 − β

[ ∫ ∞
cui ·q+α

cui

[cui · (x − q) − α] fX (x)dx

]
(21)

Solving Case 3 produces no solution as the derivation requires β = 1 which contradicts
β ∈ [0, 1).

A.2.5 Proof of Corollary 2

Let X ∼ Uni f (a, b) for a, b ∈ R and a ≤ b. Resultingly, F−1
X (x) = a + x(b − a) and

inserting this inverse cdf into Eqs. (5) and (10) yields the same order quantity expression.

A.2.6 Proof of Proposition 4

Case1 : α < −P · q Under Case 1, the objective function from Problem (RA-NLW ) simpli-
fies to

NW (q, α) = α + 1

1 − β

[ ∫ q

0
[co · (q − x) − P · x − α] fX (x)dx

+
∫ ∞

q
[cuW · (x − q) − P · x − α] fX (x)dx

]
(22)

Solving for this first case only produces optimal solutions when β = 0. Further, any αNL
W

satisfying αNL
W < −P · qNL

W remains optimal but the optimal order quantity qNL
W reduces to

the corresponding optimal order quantity solution given in Eq. (5) for i = W .
Case2 : α ∈ [−P · q, co · q) Under Case 2, the objective function from Problem (RA-

NLW ) simplifies to

NW (q, α) = α + 1

1 − β

[ ∫ co ·q−α

co+P

0
[co · (q − x) − P · x − α] fX (x)dx

+
∫ ∞

cuW ·q+α

cuW −P
[cuW · (x − q) − P · x − α] fX (x)dx

]
(23)

Solving Case 2 yields the optimal solution pair (qNL
W , αNL

W ) presented in Eqs. (12) and (13).
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Case3 : α ≥ co · q Under Case 3, the objective function from Problem (RA-NLW ) sim-
plifies to

NW (q, α) = α + 1

1 − β

[ ∫ ∞
cuW ·q+α

cuW −P
[cuW · (x − q) − P · x − α] fX (x)dx

]
(24)

Solving Case 3 produces no solution as the derivation requires β = 1 which contradicts
β ∈ [0, 1).

A.2.7 Proof of Proposition 5

Case1 : p > r Case1.1 : α < −P · q Under Case 1.1, the objective function from Problem
(RA-NLA) and p > r simplifies to

NA(q, α) = α + 1

1 − β

[ ∫ q

0
[co · (q − x) − P · x − α] fX (x)dx

+
∫ cuA ·q+α

cuA−P

q
[cuA · (x − q) − P · x − α] fX (x)dx

]
(25)

Solving for this first case yields the optimal solution pair (qNL
A , αNL

A ) presented in Eqs. (14)
and (15). Case1.2 : α ∈ [−P · q, co · q) Under Case 1.2, the objective function from Prob-
lem (RA-NLA) and p > r simplifies to

NA(q, α) = α + 1

1 − β

[ ∫ co ·q−α

co+P

0
[co · (q − x) − P · x − α] fX (x)dx

]
(26)

Solving Case 1.2 produces no solution as the derivation requires β = 1 which contradicts
β ∈ [0, 1). Also, note that NA(q, α) = α for any α ≥ co · q and obviously leads to no
optimal solution.

Case2 : p < r
Case2.1 : α < −P · q Under Case 2.1, the objective function from Problem (RA-NLA)

and p < r simplifies to

NA(q, α) = α + 1

1 − β

[ ∫ q

0
[co · (q − x) − P · x − α] fX (x)dx

+
∫ ∞

q
[cuA · (x − q) − P · x − α] fX (x)dx

]
(27)

Solving for this case only produces optimal solutions when β = 0. Further, any αNL
A satis-

fying αNL
A < −P · qNL

A remains optimal but the optimal order quantity qNL
A reduces to the

corresponding optimal order quantity solution given in Eq. (5) for i = A.
Case2.2 : α ∈ [−P · q, co · q)Under Case 2.2, the objective function fromProblem (RA-

NLA) and p < r simplifies to

NA(q, α) = α + 1

1 − β

[ ∫ co ·q−α

co+P

0
[co · (q − x) − P · x − α] fX (x)dx

+
∫ ∞

cuA ·q+α

cuA−P
[cuA · (x − q) − P · x − α] fX (x)dx

]
(28)
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Solving Case 2.2 yields the optimal solution pair (qNL
A , αNL

A ) presented in Eqs. (16) and
(17).

Case2.3 : α ≥ co · q Under Case 2.3, the objective function from Problem (RA-NLA)
and p < r simplifies to

NA(q, α) = α + 1

1 − β

[ ∫ ∞
cuA ·q+α

cuA−P
[cuA · (x − q) − P · x − α] fX (x)dx

]
(29)

Solving Case 2.3 produces no solution as the derivation requires β = 1 which contradicts
β ∈ [0, 1).

A.2.8 Proof of Proposition 6

Under the TC loss function: For a fixed solution (q, α), we have the following two cases
depending on α:

TW (q, α) − TA(q, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − β

∫ ∞
q

[(cuW − cuA)(x − q)] fX (x)dx, if α ≤ 0, (30a)

1

1 − β

[ ∫ ∞
cuW ·q+α

cuW

[cuW · (x − q) − α] fX (x)dx

−
∫ ∞
cuA ·q+α

cuA

[cuA · (x − q) − α] fX (x)dx

]
, if α > 0. (30b)

In either case, if cuW ≥ cuA (cuA ≥ cuW ) then Eqs. (30a) and (30b) are positive (negative)
and lead to the desired result.
Under the NL loss function:

If p > r (which implies cuW > cuA), then for a fixed solution (q, α), we have the following
two cases depending on α:

NW (q, α) − NA(q, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − β

[ ∫ ∞

q
[cuW · (x − q) − P · x − α] fX (x)dx

−
∫ cuA ·q+α

cuA−P

q
[cuA · (x − q) − P · x − α] fX (x)dx

]
, if α ≤ −P · q, (31a)

1

1 − β

[ ∫ ∞
cuW ·q+α

cuW

[cuW · (x − q) − P · x − α] fX (x)dx

]
, if α > −P · q. (31b)

In either case, Eqs. (31a) and (31b) are positive and indicate NW (q, α) > NA(q, α). If
p < r , then for a fixed solution (q, α), we have the following two cases depending on α:

NW (q, α) − NA(q, α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − β

∫ ∞

q
[(cuW − cuA)(x − q)] fX (x)dx, if α ≤ −P · q, (32a)

1

1 − β

[ ∫ ∞
cuW ·q+α

cuW −P
[cuW · (x − q) − P · x − α] fX (x)dx

−
∫ ∞

cuA ·q+α

cuA−P
[cuA · (x − q) − P · x − α] fX (x)dx

]
, if α > −P · q. (32b)

Between these two cases, if cuW ≥ cuA (cuA ≥ cuW ) then Eqs. (32a) and (32b) are positive
(negative). Hence, the result holds regardless of sgn(p − r).
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A.2.9 Proof of Proposition 7

The result for j = TC can be obtained through differentiation with respect to the underage
cost component, as follows.

∂qTCi
∂cui

=
(
co

2
(1 − β)

(co + cui )3

)
· (F−1

X )′
(
cui (1 − β)

co + cui

)
+

(
co · cui (1 − β)

(co + cui )3

)
· (F−1

X )′
(

β · co + cui
co + cui

)

+
(

co

(co + cui )2

)
·
(
F−1
X

(
β · co + cui
co + cui

)
− F−1

X

(
cui (1 − β)

co + cui

))
> 0 (33)

Since the derivative expression shown in Eq. (33) is positive, this means that the policy with
the higher underage cost will resultingly lead to a larger optimal order quantity.

For j = NL , consider the first case such that p > r (cuW ≥ cuA). Following Eqs. (12) and
(14), we want to show

(
co + P
co + cuW

)
· F−1

X

(
cuW (1 − β)

co + cuW

)
+

(
cuW − P
co + cuW

)
· F−1

X

(
β · co + cuW
co + cuW

)
≥ F−1

X

(
cuA(1 − β)

co + cuA

)
.

We can simply separate the RHS (qNL
A ) into a linear combination representation similar to

the LHS (qNL
W ) and deduce the inequality relationship for each of the components separately.

Algebraic simplification yields both(
co + P
co + cuW

)
· F−1

X

(
cuW (1 − β)

co + cuW

)
≥

(
co + P
co + cuW

)
· F−1

X

(
cuA(1 − β)

co + cuA

)
(34)

(
cuW − P
co + cuW

)
· F−1

X

(
β · co + cuW
co + cuW

)
≥

(
cuW − P
co + cuW

)
· F−1

X

(
cuA(1 − β)

co + cuA

)
(35)

Through Inequalities (34) and (35), we confirm the desired relation that qNL
W ≥ qNL

A . The
result for the second case with p < r can be obtained through differentiation with respect to
the underage cost component, as follows

∂qNL
i

∂cui
=

(
co · (co + P)(1 − β)

(co + cui )
3

)
· (F−1

X )′
(
cui (1 − β)

co + cui

)

+
(
co · (cui − P)(1 − β)

(co + cui )
3

)
· (F−1

X )′
(

β · co + cui
co + cui

)

+
(

co + P
(co + cui )

2

)
·
(
F−1
X

(
β · co + cui
co + cui

)
− F−1

X

(
cui (1 − β)

co + cui

))
> 0. (36)

Since the derivative expression shown in Eq. (36) is positive, this means that the policy with
the higher underage cost will resultingly lead to a larger optimal order quantity.

A.2.10 Proof of Corollary 3

(i) Following Proposition 6 and since (qTCA , αTC
A ) ((qNL

A , αNL
A )) is a minimizer of the

CVaR objective function TA(q, α) (NA(q, α)), if cuW ≥ cuA, then TW (qTCW , αTC
W ) ≥

TA(qTCW , αTC
W ) ≥ TA(qTCA , αTC

A ) (NW (qNL
W , αNL

W ) ≥ NA(qNL
W , αNL

W ) ≥ NA(qNL
A ,

αNL
A )). Hence, TW (qTCW , αTC

W ) ≥ TA(qTCA , αTC
A ) (NW (qNL

W , αNL
W ) ≥ NA(qNL

A , αNL
A )).

(ii) An analogous approach for the converse case yields the desired result.
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