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Abstract
The aim of this paper is to optimize the allocation of multiple advertisements on a Web
banner, where the price of an advertisement depends on the location at the banner. This
problem can be defined as a two-dimensional single orthogonal knapsack problem with a
location-based pixel-pricemodel.A formulation is proposed inwhich the problem is specified
as a 0–1 integer programming problem. As this problem is NP-complete, we mainly focus
on a heuristic approach to solve the problem. We propose two new heuristic algorithms:
the reactive GRASP algorithm and the partitioning left-justified algorithm. Next to that, we
present an exact algorithm that is able to solve small problem instances in a reasonable time.
These newly presented algorithms are compared with respect to efficiency and effectiveness
to existing algorithms that solve the problem without a location-based pixel-price model. To
test the quality of the algorithms, we have executed two experiments. The results of these
experiments show that overall the reactive GRASP algorithm is the most effective algorithm,
whereas the greedy stripping algorithm is the most efficient.
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1 Introduction

Worldwide, digital ad spending has dominated total media ad spending over the last
few years and continues to grow at increasingly higher rates compared to non-digital
ad spending (https://www.insiderintelligence.com/content/worldwide-digital-ad-spending-
2021). The main reason for this remarkable difference is the difference in the cost of target-
ing between online and offline advertising (Goldfarb, 2014). The Internet is a medium that
is particularly well-suited for reaching a large number of (potential) customers. There are
different types of online advertising, one of them being pixel advertisement.

Pixel advertisement originates from the Million Dollar Homepage.1 The website was
developed in 2005 by an English student Alex Tew. His goal was to earn a million dollars by
selling advertising space at the Million Dollar Homepage, an empty grid of 1000 by 1000
pixels. Advertisers could buy blocks of 10 by 10 pixels for 1 dollar per pixel, place an adver-
tisement, and link it to their website. The website became a viral hit and sold out in 138
days. The last 1000 of pixels were sold at the Ebay auction. Overall, the most widely used
auction system is one where various advertisers compete for a place on a banner each time
a different user loads a Web page (see, e.g., https://support.google.com/google-ads/answer/
142918, https://ads.microsoft.com). Such auctions are designed to happen within seconds as
the sooner the ad is shown, the more impact it can provide. This is beneficial for advertising
companies as they can get more sales, but also for advertisers as when their customers are
satisfied with the service, they will order more ads. Additionally, having multiple adver-
tisements on a banner, despite not being an industry standard at the moment, is interesting
as it can provide a significant business value for the advertisers. Hence, the idea of pixel
advertisement, displaying several advertisements on a larger two-dimensional area, has been
further investigated.

In the work of Boskamp et al. (2011) the researchers aimed to incorporate pixel adver-
tisements in the design of Web banners. Small advertisements are presented by advertisers
to place on a banner. Each advertisement has a different length, height, and price per pixel.
In the work of Boskamp et al. (2011), several algorithms are presented to solve the ‘Multiple
Advertisement Allocation problem’ (MAA-problem): how to allocate these advertisements
such that the revenue for the owner of the banner is maximized. Note that not every adver-
tisement can be placed, which leads to concurrency and a higher price per pixel. As described
by Boskamp et al. (2011) the multiple advertisement allocation problem can be defined as
a two-dimensional, single, orthogonal knapsack problem. The starting point in a knapsack
problem is a set of small items (the advertisements) and a set of empty containers (the Web
banner). The goal is to find a feasible allocation of a subset of these items to the containers,
such that the total value of the items packed is maximized. We are dealing with a single
knapsack because there is only one banner to fill. Finally, the advertisements and the banner
are both two-dimensional and the sides of the advertisements must be parallel to the sides of
the banner, which makes the problem orthogonal.

The problem addressed in this paper is a modification of the MAA-problem. In the paper
of Boskamp et al. (2011) an advertiser needs to pay a certain price per pixel, independent
of the location of the advertisement on the banner. It would be more realistic to charge a
higher price per pixel for locations that are more frequently viewed. We define this new
problem as the ‘Multiple Advertisement Allocation problem with a Location-based Pixel-
Price model’ (MAALP-problem). To create a realistic price model, we use results from
eye-tracking studies. Technically, we model this difference in prices with respect to location

1 http://www.milliondollarhomepage.com.
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as discounting the highest price per pixel (which corresponds to the most-viewed part of the
screen).

Boskamp et al. (2011) formulate the MAA-problem, which is in fact the same as the two-
dimensional knapsack problem, as a 0–1 integer programming problem. This problem is one
of theKarp’s 21NP-complete problems (Karp, 1972), whichmeans that the computation time
of any currently known algorithm to solve these problems exactly, increases very quickly if
the size of the problem increases. As the location-based price model only changes the way the
total revenue is calculated, the MAALP-problem is also NP-complete (each solution for the
MAA-problem is also feasible for the MAALP-problem). This is the reason why we mainly
focus on a heuristic approach to solve the problem.

The two new heuristics are the partitioning left-justified algorithm and the reactive Greedy
Randomized Adaptive Search Procedure (GRASP) algorithm. The effectiveness and effi-
ciency of these algorithms are compared to three heuristics presented by Boskamp et al.
(2011) that solve the MAA-problem: the left-justified algorithm, the orthogonal algorithm,
and the greedy stripping algorithm. For this comparison, several simulation experiments are
executed. Moreover, an exact algorithm that is able to solve small problems is also executed.

The two main contributions of this paper are as follows:

• The formulation of the MAA-problem has been extended to account for prices that are
dependent on the pixel locations on a banner (MAALP-problem). This phenomenon is
being modelled through discounting the highest price possible based on eye-tracking
attention studies;

• Two new heuristics are proposed to solve the MAALP-problem: the reactive GRASP
algorithm which is an extension of the GRASP algorithm, and the partitioning left-
justified algorithm which is an extension of the left-justified algorithm.

The remainder of this paper is structured as follows. Existing related literature is discussed
inSect. 2. In Sect. 3, themultiple advertisement allocation problemwith a location-based price
model is formally defined and two formulations of this problem are presented. Section4
presents an exact algorithm and two heuristics to solve this problem. The set-up and results
of the simulations we run to compare the algorithms are given in Sect. 5. In Sect. 6, we draw
conclusions from the results we obtained and provide suggestions for future work.

2 Related work

Advertisement optimization problems can be seen from two angles. The first one is the
perspective of advertising companies that aim to maximize their revenues (Manik et al.,
2016; Malthouse et al., 2019; Kim & Moon, 2020), and the second one is that of customers
trying to maximize the efficiency of their ad placements between platforms, ad types, etc.
(Dayanik & Parlar, 2013; Rodríguez et al., 2016; Yang et al., 2021). In this paper, we will
look at the perspective of the advertising companies looking to increase their revenues.

The MAA-problem has not been thoroughly investigated in the literature until now. In
Wojciechowski and Kapral (2009), the authors propose a heuristic to solve this problem.
This algorithm is tested for several problem instances. Boskamp et al. (2011) propose 4
different heuristic algorithms to solve the MAA-problem. Moreover, a brute force algorithm
that generates an exact solution is described.The efficiency and effectiveness of the algorithms
are compared by running two simulations. One simulation compares the heuristics and the
exact algorithm for several small instances. The other simulation is a comparison between
the heuristics for several large instances. Kaul et al. (2018) reformulate the model based only
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on the start location of an advertisement. Using this representation, the authors manage to
improve the execution time.

On the contrary, cutting and packing problems are studied extensively in the literature. So,
Dyckhoff (1990) gives a typology for different cutting and packing problems. This typology is
further improved byWäscher et al. (2007). According to this typology, the problem addressed
in our paper is defined as a two-dimensional single orthogonal knapsack problem.

There is a lot of literature available in which variants of the two-dimensional knapsack
problem are analyzed. In these previous studies, both exact algorithms and heuristic algo-
rithms are described. Below we will shortly describe these works.

Caprara andMonaci (2004) present 4 exact algorithms to solve the two-dimensional single
orthogonal constrained knapsack problem, which are based on enumeration schemes. The
basis of these enumeration schemes is a natural relaxation of the two-dimensional knapsack:
the one-dimensional knapsack problem, with item weights equal to the size of the item.
Moreover, a (1-ε)-approximation algorithm is presented, which creates a feasible solution
with a value of at least 1/3 of the optimal solution, with polynomial computation time.

Hadjiconstantinou andChristofides (1995) propose an exact tree-search procedure to solve
the two-dimensional single orthogonal constrained knapsack problem. The problem is for-
mulated as a 0–1 integer programming problem. Such problems can be solved by tree-search
algorithms. The speed of these algorithms depends on the goodness of the upper bound on
the optimal solution of the problem. The tighter this upper bound, the faster the algorithm.
In the paper, a Lagrangian relaxation of the formulation of the problem is used to obtain an
upper bound. This upper bound is further reduced by a subgradient optimization procedure.

The 2-staged two-dimensional knapsack problem is analyzed by Lodi andMonaci (2003).
This variant of the problem requires that the maximum number of cut directions allowed to
obtain each item is fixed to 2, there is no rotation allowed and the number of copies is
constrained. In the paper, two integer linear programming models are presented and tested
by solving them by a branch-and-bound method of the integer linear programming solver of
CPLEX. Finally, several upper bound procedures for the two-dimensional knapsack problem
are presented. The first upper bound is obtained by a linear relaxation of the proposedmodels,
so the binary variables can be any value between 0 and 1. The next upper bound is found
by column generation. With column generation, only the subset of the variables that are
relevant is considered. Last, dual-feasible functions are used to generate an upper bound. A
dual-feasible function is a function that maps a problem instance into a new problem instance
such that any feasible solution for the original problem is feasible for the new problem.

In the work of Beasley (1985), an exact non-guillotine cutting tree-search algorithm to
solve the two-dimensional cutting problem is analyzed. This problem is defined as cutting a
number of rectangular pieces from a single large rectangle, with the objective tomaximize the
value of the pieces cut. Hadjiconstantinou and Christofides (1995) use Lagrangian relaxation
and a subgradient procedure to obtain a good upper bound; however, the models used in the
papers are completely different.

Examples of metaheuristic algorithms described in the existing literature are genetic algo-
rithms (Bortfeldt &Winter, 2009), simulated annealing (Egeblad & Pisinger, 2009) and tabu
search (Alvarez-Valdes et al., 2007). In all these works, the algorithms are tested on several
instances. We will present below some of the metaheuristics.

The genetic algorithm presented by Bortfeldt andWinter (2009) addresses several variants
of the two-dimensional orthogonal knapsack problem. A genetic algorithm is very similar to
natural selection. It works with ‘generations’ of a fixed number of solutions. Each solution
is created with a layer structure. The next generation of solutions is obtained by saving the
best solution of the previous generation and adding new solutions by adapting solutions from
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the previous generation. After this, a post-optimization procedure of the previously best-
found solution is executed. This procedure tries to reduce area losses and layer borders in
the solution.

In the research paper of Egeblad and Pisinger (2009), a heuristic for the two-dimensional
knapsack problem of subtype 4 is presented, where the items may be rotated by 90 ◦ and guil-
lotine cutting is not required. This work is based on a local search neighbourhood controlled
by simulated annealing. In this heuristic, a sequence pair representation of a solution is used.
This means that a solution is presented as a pair of sequences. In the simulated annealing part
of the algorithm, a small modification is iteratively made to the sequence pair. This sequence
pair is translated into a packing solution and the value of this solution is determined.

The tabu search algorithm, described by Alvarez-Valdes et al. (2007), is created for the
two-dimensional non-guillotine cutting problem. The algorithm consists of a constructive
algorithm that creates iteratively an initial solution. This solution is improved by a tabu
search algorithm. The initial solution is adjusted by searching for improving moves in the
same neighbourhood as the solution. This is done by removing pieces from the solution or
adding pieces to the solution. A move is tabu if the combination of the value of the objective
function and the smallest empty rectangle on the banner for the new solution is already
included in the tabu list.

The effectiveness of the discussed metaheuristic algorithms in comparison to GRASP has
been studied extensively in previous works. For example, Benavides et al. (2009) compared
tabu search to GRASP for the switch allocation problem and finds that GRASP obtains better
results than tabu search. Additionally, for the flexible job-shop scheduling problem with
various constraints, Rajkumar et al. (2010, 2011) found that GRASP is able to provide better
solutions than a genetic algorithm.

Because of the demonstrated effectiveness of the GRASP algorithm for optimization
problems, we contribute to the literature by proposing a reactive GRASP algorithm as an
extension thereof. For our second approach, we extend the left-justified algorithm to the
partitioning left-justified algorithm. We propose these approaches to solve the MAALP-
problem, an extension of the MAA-problem that additionally accounts for prices that depend
on the pixel locations on a banner, modelled through discounting the highest price possible
based on eye-tracking attention studies.

3 Problem definition

In this section, we define the MAALP-problem formally and give two 0–1 integer linear
programming formulations for this problem. First, we provide a formal definition of the
problem in Sect. 3.1. In Sect. 3.2 a model based on a formulation for the two-dimensional
cutting problem is modified such that it is applicable for the MAALP-problem. A second
formulation, by adjusting the model given in Sect. 3.2 for a popular tool, is presented in
Sect. 3.3.

3.1 Formal definition

The formal definition of the MAALP-problem is very similar to the definition of the MAA-
problem, as described byBoskamp et al. (2011). To this end, wewill first give the definition of
theMAA-problem and afterwards point out the differences between theMAA- andMAALP-
problem.
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In the MAA-problem, there is a banner B with a widthW and height H in which we need
to allocate advertisements from the set A. The properties of an advertisement ai ∈ A are its
width (wi ), its height (hi ) (both measured in pixels), and the price per pixel the advertiser
is willing to pay (ppi ), for each i ∈ {1, ..., |A|}. The ‘starting point’ of an ad is defined as
(p, q). This means that the left top of the advertisement is at the pth row and the q th column
of the banner if we start counting banner pixels from the left top of the banner. The objective
of the problem is formulated as maximizing the value of all allocated ads in the banner, such
that the ads do not overlap and fit in the banner.

The difference between the MAA-problem and the MAALP-problem is the price model.
The price per pixel an advertiser needs to pay depends on the location of the advertisement
in the banner. We capture this dependence by giving a location-based discount on ppi . We
reformulate ppi asmppi , the maximum price per pixel an advertiser is willing to pay because
the real price per pixel might be lower, which is caused by the discount. For this reason, we
can define the MAALP-problem as a two-dimensional single orthogonal knapsack problem
with a location-based price model.

3.2 Formulation

As stated in Sect. 1, we can formulate the MAALP-problem as a 0–1 integer linear program-
ming problem. The formulation given in this section is based on the models described by
Boskamp et al. (2011), Beasley (1985). Boskamp et al. (2011) consider theMAA-problem for
which they give a formulation, although the constraints in their model are non-linear. Using
the decision variables of Beasley (1985), the model can be linearized. Moreover, the function
to calculate the total price of a banner (the objective function that needs to be maximized)
must be changed, to take into account the location of the ad. Next to the sets and parameters
as defined in Sect. 3.1, we need to define extra sets, parameters, and decision variables to
formulate the 0–1 integer programming problem. These will first be given, and afterwards
the full model is presented.

3.2.1 Sets

Wehave already defined one set in the formal definition: A, the set of all advertisements. Let us
define the new sets X and Y as the set of the columns and rows of the banner. Mathematically,
we can display this as follows:

X = {x | 1 ≤ x ≤ W }
Y = {y | 1 ≤ y ≤ H}.

Let Xi (Yi ) be the set of all possible starting columns (rows) of ai . Xi and Yi are subsets of
X and Y because ai cannot start at each point in the banner, without violating the boundaries
of the banner, which is visualized in Fig. 1 below. This can be stated as:

Xi = {x | 1 ≤ x ≤ W − wi + 1}
Yi = {y | 1 ≤ y ≤ H − hi + 1}.
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Fig. 1 Visualization of the sets X , Y , Xi and Yi , for advertisement ai on Banner

3.2.2 Parameters and decision variables

In themodel, the value of the parameters vi pq , the price of placing advertisement i on location
(p, q) is calculated using Eq. (1).

vi pq =
p+hi−1∑

r=p

q+wi−1∑

s=q

mppi · (1 − discountrs) (1)

Here, discountrs is a parameter that denotes the amount of discount one gets on the
maximum price at location (r , s). So, for each location occupied in the banner by ai , if
starting at (p, q), we discount the maximum price. Finally, we take the sum over all these
discounted prices. In Sect. 5, we will further specify how we determine the discount (which
is problem-dependent). Additionally, let

aipqrs =
{
1 if p ≤ r ≤ p + hi − 1 and q ≤ s ≤ q + wi − 1

0 otherwise.

In other words, aipqrs is equal to 1 if ai cuts through point (r , s) when it starts at point
(p, q), and equals 0 otherwise. These parameters exist ∀p ∈ Yi , ∀q ∈ Xi , ∀r ∈ Y , ∀s ∈
X and ∀i ∈ A.

We furthermore define our decision variables as:

xipq =
{
1 if the left top of ai is allocated on position (p, q) of the banner

0 otherwise.

Similarly, these variables exist ∀p ∈ Yi , ∀q ∈ Xi , and ∀i ∈ A.

3.2.3 Model

The 0–1 integer programming problem can be modelled as follows

Max.
∑

i∈A

∑

p∈Yi

∑

q∈Xi

vi pq xipq (2)

s.t.
∑

i∈A

∑

p∈Yi

∑

q∈Xi

aipqrs xipq ≤ 1 ∀r ∈ Y , ∀s ∈ X (3)

∑

p∈Yi

∑

q∈Xi

xipq ≤ 1 ∀i ∈ A (4)

xipq ∈ B ∀i ∈ A, ∀p ∈ Yi , ∀q ∈ Xi (5)
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The objective function (2) maximizes the value of all the allocated advertisements. The
set of constraints (3) ensure that each location (r , s) on the banner is occupied by at most
one advertisement, so overlapping ads are not allowed. Constraint set (4) ensures that each
ad is allocated at most once on the banner. Finally, the decision variables are required to be
binary by constraint set (5).

3.3 Formulation adapted to theMATLAB solver

Various programming languages such asMATLAB,2 AIMMS3 orExcel4 have built-in solvers
to solve an integer linear programming problem. Some of these solvers are very flexible (e.g.,
AIMMS) and allows one to enter complex constraints as in the first formulation. However,
other built-in solvers are more restrictive, and can only solve (mixed) integer linear program-
ming problems in a standard form.

The second formulation of theMAALP-problemwe present here does not differ in essence
from the first formulation. However, it adds practicality by providing an alternative specifi-
cation for the MATLAB community. It is a rewritten version of the first formulation to this
standard form, as MATLAB can only solve problems in this form. To be able to do this, we
define new sets, parameters, and decision variables. Note that we will not use the second
formulation in our implementation of the exact algorithm due to speed limitations in the
MATLAB environment.

3.4 Sets

We define two new sets

J = { j | j = (i, p, q), i ∈ A, p ∈ Yi , q ∈ Xi }
K = {k | k = (r , s), r ∈ Y , s ∈ X}.

The set J consist of all possible starting points for all advertisements, so the cardinality of J
is

∑
i∈A|Yi | · |Xi |. The set K contains all points in the banner, so |K | = H · W .

3.5 Parameters and decision variables

Using the new set J , we can vectorize the parameters vi pq and variables xipq to v j and x j ,
with j ∈ J . We can define parameter aipqrs as a jk . Moreover, we define a new parameter

aa ji =
{
1 if index j belongs to ai
0 otherwise.

3.6 Model

We can rewrite Formulation 1 as the 0–1 integer programming problem like so.

Max.
∑

j∈J

v j x j (6)

2 http://nl.mathworks.com/help/optim/ug/mixed-integer-linear-programming-algorithms.html.
3 http://www.aimms.com/aimms/overview/.
4 http://www.solver.com/excel-solver-help.
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s.t.
∑

j∈J

a jk x j ≤ 1 ∀k ∈ K (7)

∑

j∈J

aa ji x j ≤ 1 ∀i ∈ A (8)

x j ∈ B ∀ j ∈ J (9)

The order of the objective function and restrictions (6–9) is the same as that of (2–5).
Restrictions (7–8) ensure that the ads do not overlap and that each ad can only be placed once,
respectively. Restrictions (9) set a binary domain for all decision variables. This formulation
can easily be written in the standard matrix notation. We create two vectors f and x , with
elements v j , respectively x j , with j ∈ J . Let the restriction matrix Arest consist of two
sub-matrices A1 and A2. Then the elements of A1 are a jk , and the elements of A2 are aa ji .
Finally, we create a column vector bwith all elements equal to one, with a length of |K |+|A|.
This gives us the following formulation.

Min. − f t x (10)

s.t. Arest · x ≤ b with Arest =
[
A1

A2

]
(11)

0 ≤ x ≤ 1 (12)

x ∈ Z (13)

4 Algorithms

This section describes the different algorithms which have the purpose to give an efficient
and effective solution for this problem—a solution is efficient when it is fast to compute; a
solution is effective when its quality is high (the generated revenue is high in our context).
We have implemented an exact algorithm and two heuristic algorithms to solve the MAALP-
problem: the reactive GRASP algorithm and the partitioning left-justified algorithm. The
algorithms will be compared to the heuristics that solve the MAA-problem, as described by
Boskamp et al. (2011).

4.1 Exact algorithm

The exact algorithm that solves the MAALP-problem is implemented in the programming
language Java and makes use of the IBM CPLEX Optimizer. We have used a Java wrapper
for CPLEX as we would like the code to be usable by Web applications which are often
developed in Java. This optimization tool is able to solve the problem formulated in (2–5).

To solve the MAALP-problem exactly, first the parameters need to be generated. With
the set of advertisements A, the empty banner B, and the matrix discount , the parameters
are generated according to the formulas in Sect. 3.2.2. Now, we perform the so-called exact
algorithm which entails going through all the possible pixels and ad sets.

With these parameters, the objective function from (2) and the constraints from (3) and
(4) are added to the model, such that the CPLEX Optimizer is able to find the exact solution.
Finally, the solution found by the CPLEX Optimizer is translated to a representation of the
banner in matrix form.
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As said before in Sect. 1, the MAALP-problem is NP-complete. This means that the
computation time of an exact algorithm, as presented in this section, increases exponentially
with the size of the problem, unless P = NP. As a result of this fact, this exact algorithm is
impractical for real MAALP-problems in our online context.

Research by Shaikh et al. (2010) has shown that majority of the people on the Web break
their sessions after 15 s of waiting for a result. Hence, taking into account the desired use of
the algorithm on the Web similar to the one of Knoops et al. (2009), the computation time of
an algorithm should not be long. However, since the problem is, as described by Boskamp
et al. (2011), very specific, and due to the experiments performed, we set the maximum
computation time to 30s.

For these reasons, we only solve relatively small instances exactly. These instances are
described in detail in Sect. 5.2.1. To solve more realistic instances, we only use heuristics.

4.2 Reactive GRASP algorithm

The reactive GRASP algorithm we present is based on the algorithm described by Alvarez-
Valdes et al. (2005). The authors of this paper propose aGreedyRandomizedAdaptive Search
Procedure (GRASP) algorithm for the constrained two-dimensional non-guillotine cutting
problem. This algorithm has beenmodified slightly and we added some extra options to make
it suitable for solving the MAALP-problem. We start by giving an overview of a generic
GRASP algorithm in Sect. 4.2.1. Subsequently, we describe the specific construction phase
(Sect. 4.2.2), and the improvement phase (Sect. 4.2.3) used in the reactive GRASP algorithm.
Finally, we give an overview of the complete reactive GRASP algorithm in Sect. 4.2.4.

4.2.1 GRASP

The GRASP algorithm was first described by Feo and Resende (1995) as an iterative ran-
domized sampling technique for solving combinatorial optimization problems. The generic
structure is displayed in Algorithm 1. A GRASP is an iterative algorithm that executes
two phases in each iteration: a construction phase, which creates an initial solution, and an
improvement phase, in which this solution is possibly improved using a local search algo-
rithm. If the found solution improves on the best solution found in the previous iterations,
this solution is saved.

Algorithm 1 Pseudo-code of the generic GRASP algorithm
for iteration = 1: maximum iterations do

Run construction phase
Run improvement phase
if solution better than best found solution then

Update best found solution
end if

end for
return: Best found solution

The construction phase of a GRASP algorithm is iterative as well. In each iteration of the
construction phase, one element is added to the solution created thus far. The determination of
this element to add is done by ordering the set of all possible elements according to a greedy
function. The adaptive component of the heuristic is that in each iteration, this ordering is
done again, and might be adjusted because of the addition of the previous element. The
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element chosen to be added does not need to be the best option from this ordered list. The
element is chosen randomly from the best options.

The initial solution, created in the construction phase, is not necessarily locally optimal.
During the improvement phase, a local search algorithm tries to find a better solution in the
neighbourhood of the found solution.

4.2.2 Construction phase

The pseudo-code of the specific construction phase we use to build an initial solution is
displayed inAlgorithm 2. This construction phase is an iterative process as well and considers
the (partly filled) banner as a set of empty rectangles that need to be filled (L). Before the
iterations, the algorithm sorts the set of advertisements A.

We sort the ads in decreasing order according to the maximum price per pixel (mp) or the
maximum total price of the ad (w × h × mp). We think these are the most effective sorting
criteria because allocating advertisements with a high maximum (total) price will lead to a
large increase in the total value of the banner. Ties for one criterion will be broken by a second
sorting criterion. For this second sorting criterion, we use one proposed by Boskamp et al.
(2011): the width (w), height (h), si ze (w × h), f latness (w/h) and proportionali t y
(|log(w/h)|) of an ad. So for each primary sorting criterion, we have 10 different secondary
sorting criteria (5 different criteria ascending and descending). Hence, there are in total 20
different orderings for each set of advertisements A.

After this ordering, we try to fill the banner with advertisements, by allocating ads from
the set A to empty rectangles in the banner. The set of all empty rectangles in the banner L
first needs to be sorted. We use three options for this, of which only the first option was used
in the original GRASP algorithm:

1. Sort the set L ascending according to size;
2. Sort the set L ascending according to the average discount per pixel in the rectangle;
3. ‘Sort’ the set L randomly.

The reason why only option one was considered by Alvarez-Valdes et al. (2005) is that if a
large rectangle is filled with a small piece at the beginning, the resulting rectangles might be
useless for large pieces that still need to be cut. We added the second option because we think
it might be profitable to allocate the advertisement with the highest (total) price to rectangles
with a low discount percentage. The last option is added to see whether the ordering of the
rectangles has indeed an influence on the total price of the banner. After sorting A and L , the
iterative process starts. In each iteration, we iterate through the sorted list L , until we find a
rectangle in which an advertisement from A fits. If there is no such rectangle left, we stop
and return the initial solution. If there is an advertisement ai that does fit in a rectangle, we
add ai and all the other ads which fit in the same rectangle to the set Afitting.

We determine the ad to place from this set Afitting in three ways:

1. Select the ad at random from the set S = { j | v j ≥ d × vmax };
2. Select the ad at random from the 100(1 − d)% ‘best’ ads;
3. Select the ‘best’ ad.

In the first option, vmax is the value of the primary sorting criterion of the first ad placed in
Afitting, sowe choose ads from a set inwhich the value of the primary sorting criterion deviates
at most 100(1−d)% from the highest value of the primary sorting criteria. In options two and
three, the ‘best’ ads, are the ones placed first in the set Afitting. Options one and two are the
probabilistic factor of the GRASP algorithm, whereas option three leads to a deterministic
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Algorithm 2 Pseudo-code of the construction phase
1: function construction_phase(A, B, d, L,C, S, discount)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H ,W ), which represents the banner
Require: d ∈ [0.1, 0.2, ..., 0.9]
Require: L = Set of empty rectangles in the banner and their properties
Require: C = Set of advertisements already allocated and their properties
Require: S = Price of banner B
Require: discount = Matrix of size (H ,W ), which represents the discount for each pixel of the banner
2: Order set of advertisements A
3: done = false;
4: while done == false do
5: Order set of empty rectangles L %% Option 1%%
6: f i t ting_piece_ f ound = false; Afitting = []; j = 1;
7: while f i t ting_piece_ f ound == false && j ≤ |L| do
8: if rect j ∈ L is not marked as unusable then
9: for all ai ∈ A do
10: if ai fits in rect j then
11: rectangle = rect j ;
12: add ai to Afitting;
13: f i t ting_piece_ f ound = true;
14: end if
15: end for
16: if f i t ting_piece_ f ound == false then
17: mark rect j as unusable; %% no ad fits in rectangle %%
18: end if
19: end if
20: if f i t ting_piece_ f ound == false then
21: j = j+1; %% check next rectangle %%
22: end if
23: end while
24: if f i t ting_piece_ f ound == false then
25: done = true;
26: break; %% stop if there is no usable empty rectangle left %%
27: end if
28: Select ad from Afitting to add to the rectangle and calculate the discounted price of ad %% Option 2%%
29: Place ad in banner B %% Option 3%%
30: S = S + price;
31: Remove ad from A; remove rectangle from L
32: Add ad to set of allocated ads C
33: Check if there are new rectangles created for L , by placing the ad
34: if new rectangles for L then
35: try to merge them with existing rectangles in L
36: end if
37: Add new rectangles to L
38: end while
39: return: A, B,C, L, S;
40: end function

constructive phase. Therefore, option three is only used in the improvement phase, which
will be explained in Sect. 4.2.3. The parameter d is a value between 0.1 and 0.9, and is chosen
randomly before the construction phase. How the parameter d is chosen, will be elaborated
on in Sect. 4.2.4.

If the rectangle that will be filled, and the ad that will be allocated are chosen, this ad will
be placed on the banner, and removed from A. The chosen rectangle is removed from L . The
advertisement will always be placed in a corner because this results in the largest new empty
rectangles. We use two different approaches to decide in which corner of the rectangle the
advertisement is placed:

1. Place the ad in the corner which is nearest to a corner of the banner;
2. Place the ad in the corner which yields the highest price for the ad.
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Fig. 2 Examples of partially filled rectangles

Table 1 Summary of the different options in the construction phase

Identifier Description Possibilities

Option 1 Sorting L 1. Sort L ascending w.r.t. size

2. Sort L ascending w.r.t. average discount per pixel

3. ‘Sort’ L randomly

Option 2 Selecting ad to place 1. Select ad from S = { j | v j ≥ d × vmax }
2. Select ad from 100(1 − d)% ‘best’ ads

Option 3 Placing ad 1. Place in corner nearest to a corner of the banner

2. Place in the corner which yields the highest price for the ad

Under option one, once the ad has been placed in the corner of a rectangle, the ad is then
moved as close as possible to the corresponding corner of the banner (in order to maximize
the empty space in the center of the large rectangle). Only option one is used by Alvarez-
Valdes et al. (2005), and is expected to result in a higher fill rate of the banner. I.e., the new
empty rectangles are centered in the middle of the banner and can thus be more easily merged
with existing ones, so more ads can be allocated. On the contrary, the reason for adding the
second option is that it leads to a higher price of the ad. If the ad is placed on the banner, the
total price of the banner S is updated, by adding the discounted price of the placed ad.

An advertisement can fill a rectangle totally or partially. If the width (height) of the ad
is equal to that of the rectangle, but the height (width) is smaller, there arises only one new
rectangle, see Fig. 2.

If both the size and the width of the ad are smaller than the rectangle, there are two new
rectangles. There are two possibilities to choose the rectangles. We use the option where the
next ad of the sorted set A fits in the largest rectangle, i.e., the rectangle with the largest size.
For the newly created rectangles, we check whether it is beneficial to merge one of them with
existing empty rectangles in L . Again, the option where the first ad of the sorted set A fits in
the biggest rectangle is chosen. These new rectangles are added to the set L and the original
rectangles are deleted.

The different options we use to sort L , select an ad to place, and place an ad, are displayed
in Table 1. We added some new options that are not used in the research paper of Alvarez-
Valdes et al. (2005), which take the location-based price model into account (for example
Option 1.2 and Option 3.2).

4.2.3 Improvement phase

The improvement phase of the GRASP algorithm takes as input the output of the construction
phase. The pseudo-code of the improvement phase is displayed in Algorithm 3. The initial
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solution created in the construction phase is adapted by removing several advertisements
from the banner.

The removed ads will be put back into the set A, and this set is ordered again using the
same sorting criteria employed in the construction phase. Removing the ads results in new
empty rectangles, which are added to L . We try to merge each rectangle in L with another
rectangle in L , according to the method described in Sect. 4.2.2. If we succeed in merging, we
iterate through L again. We stop until it is not beneficial to merge any of the rectangles in L
anymore. This partial solution is extended by executing a deterministic construction phase.
In this phase, the selection of the ad is done deterministically, as described in Sect. 4.2.2.
Only if the price of the solution is improved, the solution is updated. The method of how to
remove the ads from the banner is one of those displayed in Table 2. Under the method which
removes β% of the ads at random from the banner, we first remove ads that are adjacent to
empty spaces thus enabling to create bigger empty spaces.

Algorithm 3 Pseudo-code of the improvement phase
1: function improvement_phase(A, B, L,C, S)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H ,W ), which represents the empty banner; all elements are equal to zero
Require: L = Set of empty rectangles in the banner and their properties
Require: C = Set of advertisements already allocated and their properties
Require: S = Price of banner B
2: Remove β% of the allocated ads from banner B and set C ; %% Option improve %%
3: Add removed ads to set A; add empty rectangles to L;
4: Update S;
5: Order set of advertisements A;
6: Try to merge rectangles in L;
7: %% execute deterministic construction phase (d has no influence) %%
8: d = 0;
9: [∼, B2,C2, ∼, S2] = construction_phase(A, B, d, L,C, S1, discount);
10: if S2 < S then %% if not improved, return values from constr. phase %%
11: S2 = S; B2 = B; C2 = C ;
12: end if
13: f illed = sum of the sizes of all ads in C2;
14: alloc_count = |C2|;
15: return: B2, S2, f illed, alloc_count ;
16: end function

4.2.4 The main reactive GRASP

The reactive GRASP algorithm (Algorithm 4) is a specific version of the GRASP algorithm.
During the reactive GRASP, the probability of choosing d from a set D (for selecting an ad
to place) is updated after a certain amount of iterations. We define the set D as [0.1, 0.2,...,
0.9]. At first the probability of choosing d is equal for all values of this set. The total price of

Table 2 Summary of the different options in the improvement phase

Identifier Description Possibilities

Option improve Removing ads 1. Remove the β% last added ads from the banner

2. Remove β% of the ads at random from the banner

β 5, 10, 15
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the best-found solution (Sbest) and the total price of the worst found solution (Sworst) over
all iterations are updated if necessary. Moreover, we keep track of the sum of the total price
of all the solutions obtained by using the chosen d by the parameter sumSd . Each time the
number of iterations is a multiple ofmax I ter/5, we update the probability for each possible
d , pd . So, if for a certain d good results are obtained, the probability to choose this d will
increase.

We propose another method to update the parameter pd compared to the one used by
Alvarez-Valdes et al. (2005), which is shown in Eqs. (14–16). As we use the mean price per
pixel for a givend (meanppd = meand

W×H ), the price per pixel in theworst solution (Sworstpp =
Sworst
W×H ) and the price per pixel in the best solution (Sbestpp = Sbest

W×H ), the evaluation of the
banners does not depend on the size of the banner as was the case in the original method.
Moreover, because we take into account the previous value of pd , we can never generate a
probability of 0, which could be the case in the method of Alvarez-Valdes et al. (2005). In
case Sbestpp = Sworstpp, evald is not possible to compute and, hence, eval2d will not be
updated.

evald = meanppd − Sworstpp

Sbestpp − Sworstpp
(14)

eval2d = pd + evald∑
d∈D evald

(15)

pd = eval2d∑
d∈D eval2d

(16)

If the maximum number of iterations is reached, the banner with the highest price found
over all iterations is returned. A big advantage of the reactive GRASP algorithm is that one
can choose the maximum number of iterations yourself. For a more effective solution, a
higher maximum number of iterations may be desired; for a more efficient, but probably less
accurate solution, one could decrease the maximum. Moreover, because of the randomness
in the construction phase, there is a smaller risk of getting stuck in a local optimum. The
iterations are independent, so in each iteration the algorithm starts from the beginning. Due to
its superior flexibility compared to the GRASP algorithm, we will consider in the evaluation
only the reactive GRASP algorithm.

4.3 Partitioning left-justified algorithm

The partitioning left-justified algorithm is a modification of the left-justified algorithm from
the research of Boskamp et al. (2011). The left-justified algorithm iterates for each adver-
tisement through all the places in the banner, until there is a free location found in which the
advertisement fits. The algorithm starts scanning in the left top of the banner and checks all
rows before scanning the next column.

The pseudo-code of the partitioning left-justified algorithm is displayed in Algorithm 5.
In the partitioning left-justified algorithm the same approach as in the original left-justified
algorithm is used, however, the algorithm starts at the left top of the best (least discounted)
rectangle of the banner. So we sort the parts of the banner rectangles ascending with respect
to the discount factor, breaking ties by choosing the largest one first (not all parts have to be
a square). Figure3 gives an example of such an ordering.

After that, the set advertisements A is sorted in the same way as in the initialization of
the heuristics by Boskamp et al. (2011), where the authors use 6 different sorting criteria
(ascending and descending): the maximum price per pixel (mp) and the width (w), height
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Algorithm 4 Pseudo-code of the reactive GRASP algorithm
1: function reactive_grasp(A, B, discount,max I ter , options)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H ,W ), which represents the empty banner; all elements are equal to zero
Require: discount = Matrix of size (H ,W ), which represents the discount for each pixel of the banner
Require: max I ter = Maximum number of iterations in the reactive GRASP
Require: options = Set of options according to which to sort L, select the ad, place the ad and improve the solution.
2: %% initialisation %%
3: D = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9];
4: Sbest = 0;
5: Sworst = inf;
6: nd = 0; sumSd = 0; pd = 1/|D| ∀d ∈ D;
7: i ter = 0;
8: while i ter < max I ter do
9: %% initialisation of an iteration %%
10: Choose d∗ from D, with probability pd∗ %% d∗ is the current d %%
11: nd∗ = nd∗ + 1;
12: L = B;
13: C = [ ];
14: S1 = 0;
15: [Anew, Bnew,Cnew, Lnew, S1] = construction_phase(A, B, d∗, L,C, S1);
16: [B2, S2, f illed, alloc_count] = improvement_phase(Anew, Bnew,Cnew, S1, L);
17: if S2 > Sbest then
18: Sbest = S2;
19: bannerbest = B2;
20: f illrate = f illed/si ze(B);
21: alloc_countbest = alloc_count ;
22: end if
23: if S2 < Sworst then
24: Sworst = S2;
25: end if
26: sumSd∗ = sumSd∗ + S2;
27: if mod(i ter ,max I ter /5) == 0 then
28: meand = sumSd/nd ∀d ∈ D;
29: mean_temp = sum(sumSd )/i ter ;
30: for all d ∈ |D| do
31: if isnan(meand ) then %% if d is not used before %%
32: meand = mean_temp;
33: end if
34: end for
35: meanppd = meand/si ze(B) ∀d ∈ D;
36: Sworstpp = Sworst/si ze(B);
37: Sbestpp = Sbest/si ze(B);
38: evald = (meanppd − Sworstpp)/(Sbestpp − Sworstpp) ∀d ∈ D;
39: eval2d = pd + evald/sum(evald ) ∀d ∈ D;
40: pd = eval2d/sum(eval2d ) ∀d ∈ D;
41: end if
42: end while
43: return: bannerbest, Sbest, f illrate, alloc_countbest ;
44: end function

(h), si ze (w × h), f latness (w/h) and proportionali t y (|log(w/h)|) of an ad. As in the
reactive GRASP algorithm, we add a seventh sorting criteria: the maximum total price of
the ad (w × h × mp). We want to choose 2 sorting criteria from a set of 14 (all 7 criteria
ascending and descending). The number of different orderings can be defined as P14

2 , i.e.,
2-permutations of 14. However, we do not use the permutations where the first and second
criteria are the same but ascending and descending. The number of such permutations is 14
(for each of the 7 sorting criteria twice). This gives a total number of 14!

12! −14 = 168 different
orderings of A in the partitioning left-justified algorithm.

If the rectangles of the banner are sorted, the algorithm checks for each ad if it can be
placed on a location of the banner, starting at the pixel in the left top of the first rectangle in
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Algorithm 5 Pseudo-code of the partitioning left-justified algorithm
1: function left- _justified_partitioning(A, B, discount)
Require: A = Set of advertisements to allocate and their properties
Require: B = Matrix of size (H ,W ), which represents the empty banner; all elements are equal to zero
Require: discount = Matrix of size (H ,W ), which represents the discount for each pixel of the banner
2: Order parts of the banner rectangles; Order set of advertisements A;
3: S = 0; f illed = 0; alloc_count = 0;
4: for all ai ∈ A do
5: j = 1;
6: f inished = false; %% Boolean which indicates whether checking ai is

finished %%
7: f inished_rectangle = false; %% Boolean which indicates whether

checking rectangle j is finished %%
8: while ( j ≤ |rectangles|) && ( f inished == false) do
9: row = upper_row(rectangle j ); %% start at left top of rectangle %%
10: col = le f t_col(rectangle j );
11: while ( f inished_rectangle == false) && ( f inished == false) do
12: if B is empty on (row, col) then
13: if ai fits on B on (row, col) then
14: Allocate ai on (row, col)
15: alloc_count = alloc_count + 1;
16: f illed = f illed + si ze(ai );
17: S = S + price;
18: f inished = true; %% check next ad %%
19: else if no space for ai on (row, col) (not out of bounds) then

%% ad would fit in the empty banner on this location%%
20: if there is a next row in rectangle j then
21: row = row+1;
22: else
23: if there is a next column in rectangle j then
24: row = upper_row(rectangle j );
25: col = col+1;
26: else
27: f inished_rectangle = true;
28: end if
29: end if
30: else if ai goes vertically out of bounds then
31: if row == upper_row(rectangle j ) then
32: f inished_rectangle = true;
33: else
34: if there is a next column in rectangle j then
35: row = upper_row(rectangle j );
36: col = col+1;
37: else
38: f inished_rectangle = true;
39: end if
40: end if
41: else if ai goes horizontally out of bounds then
42: f inished_rectangle = true;
43: end if
44: else %% B is not empty on (row, col) (line 13) %%
45: if there is a next row in rectangle j then
46: row = row+1;
47: else
48: if there is a next column in rectangle j then
49: row = upper_row(rectangle j );
50: col = col+1;
51: else
52: f inished_rectangle = true;
53: end if
54: end if
55: end if
56: if f inished_rectangle == true then
57: j = j+1; %% check next rectangle %%
58: end if
59: end while
60: end while
61: end for
62: f illrate = f illed/si ze(B);
63: return: B, Sbest, f illrate, alloc_count ;
64: end function
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Fig. 3 Example of ordering the parts in the banner for the partitioning left-justified algorithm

the ordered set rectangles. Each column in each rectangle is checked from top to bottom.
This is done for all locations in the banner until the ad is placed, or all rectangles are checked.

5 Simulations

In this section, we present a realistic location-based price model for the advertisements.
Moreover, the set-up of the different types of simulations we run is also described. The
experiments regarding the exact algorithm are implemented in Java SE 8 using CPLEX
Optimization Studio v12.8 (without modifying any default option), and all other experiments
are implemented in MATLAB R2017a. All experiments are run on an Intel(R) Core (TM)
i7-6500U CPU at 2.50 GHz with 12 GB RAM. The results of the simulations are analyzed
frommultiple perspectives. Last, we mention some concluding remarks regarding the results
of the experiments.

5.1 Price model

One part of the location-based price model is already presented in Sect. 3, where we defined
the price of an advertisement i on location (p, q) in Eq. (1). We did not yet specify how to
calculate discountrs , the discount an advertiser gets if the ad fills location (r , s) on the banner.
To calculate the discount percentages on the banner, we use Eq. (17). With this equation, we
compute the discount for a block of 100 by 100 pixels. The value of perci j for a block, is the
percentage of viewing time of people on an average Web page, according to the eye-tracking
research works (Nielsen, 2010a, b). These articles present the results from researches about
the horizontal and vertical distribution of attention of people on an average Web page per
strips of 100 pixels. From these results, it is possible to make a heatmap with respect to the
attention of people on a Web page per blocks of 100 by 100 pixels, as shown in Fig. 4.

The value of the discount of a block is assigned to each pixel in the block. The values
used for max(perc) and min(perc) are the highest and lowest percentages inside the banner.
This results in a 0% discount on the maximum price per pixel in the block which is viewed
the most inside the banner, and a 20% discount on the maximum price per pixel in the block
which is viewed the least. The pixels in the other blocks have a discount between 0 and 20%.

disc_per_100i j = 0.2 · max(perc) − perci j
max(perc) − min(perc)

(17)
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Fig. 4 Heatmap of an average Web page, with the percentage of viewing time of blocks of 100 by 100 pixels

5.2 Experiment set-up

We test the algorithms using the two experiment set-ups described by Boskamp et al. (2011).
The first one compares the heuristics to the exact algorithm for a small-sized problem. The
second one solves a more realistic problem using the existing and newly proposed heuristics.
Existing heuristics are taken from Boskamp et al. (2011): the orthogonal algorithm, the
left-justified algorithm, and the greedy stripping algorithm.

5.2.1 Experiment set-up with a small number of instances

In the first part of the first experiment, two banners need to be filled. Banner B1 has a height
H = 4 and a widthW = 4, and banner B2 has a height H = 4 and a widthW = 5. There are
two sets of advertisements that can be allocated to these banners: A1 and A2. The width wi ,
height hi and maximum price per pixelmppi of all ai contained in these sets are displayed in
Tables 3 and 4. To calculate the percentages of discount, we use the percentages of viewing
time, as shown in Fig. 4. We assume that the left top of the banner starts at position (100, 100)
and we use the percentages per block of 100 by 100 pixels for each location in the banner.
These percentages are displayed in Tables 5 and 7. Using Eq. (17), we calculate the discount
matrices. The resulting discount matrices for both banners are displayed in Tables 6 and
8. The instances we used can be accessed through https://github.com/VladyslavMatsiiako/
PMAWB.

As mentioned before in Sect. 4.1, the computation time of the exact algorithm increases
exponentially as the size of the problem increases. In order to examine the behaviour of the
exact algorithm and see where its limits are, in the second part of the first experiment, we try
to solve the MAALP-problem for five types of standard banners (leader board, half banner,
square button, skyscraper and large rectangle) of increasing size, using the exact algorithm.
For each banner, a set of advertisements together with their properties is simulated 100

123

https://github.com/VladyslavMatsiiako/PMAWB
https://github.com/VladyslavMatsiiako/PMAWB


Annals of Operations Research

Table 3 Properties of ads in A1 i wi hi mppi

1 1 1 9.1

2 2 3 9.3

3 1 2 9.5

4 1 1 9.7

5 3 2 9.9

6 2 1 10.1

7 1 1 10.3

8 2 2 10.5

9 3 1 10.7

10 1 3 10.9

Table 4 Properties of ads in A2 i wi hi mppi

1 1 1 9.1

2 2 3 9.3

3 1 2 9.5

4 1 1 9.7

5 3 2 9.9

6 2 1 10.1

7 1 1 10.3

8 2 2 10.5

9 3 1 10.7

10 1 3 10.9

11 1 1 11.0

Table 5 Percentages from Fig. 4
of B1

1.43 1.65 1.71 1.54

2.02 2.33 2.40 2.17

1.76 2.03 2.09 1.89

1.43 1.65 1.71 1.54

times. The number of ads in the set is determined such that the sum of the sizes of the ads
is approximately twice as large as the size of the banner. The width and height of an ad are
obtained by applying Eq. (18). The random number rand in this equation is drawn from the
standard normal distribution.

wi , hi = max(1,min(min(W , H), 	(min(W , H)/4 × |rand|
)) (18)

The maximum price per pixel an advertiser needs to pay, can differ because of bargaining
between the advertiser and the owner of the banner. This maximum price is determined by
picking a number from a uniform distribution between 9.0 and 11.0, with a step of 0.1. The
real price per pixel an advertiser needs to pay is calculated by subtracting the discount of the
pixel from the maximum price.
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Table 6 Discount matrix of B1 0.20 0.15 0.14 0.18

0.08 0.02 0.00 0.05

0.13 0.08 0.06 0.11

0.20 0.15 0.14 0.18

Table 7 Percentages from Fig. 4
of B2

1.43 1.65 1.71 1.54 1.05

2.02 2.33 2.40 2.17 1.47

1.76 2.03 2.09 1.89 1.28

1.43 1.65 1.71 1.54 1.05

Table 8 Discount matrix of B2 0.14 0.11 0.10 0.13 0.20

0.06 0.01 0.00 0.03 0.14

0.10 0.06 0.05 0.08 0.17

0.14 0.11 0.10 0.13 0.20

Table 9 Standard banners and
their sizes

Name W H

Leader board 728 90

Half banner 234 60

Square button 125 125

Skyscraper 120 600

Large rectangle 336 280

5.2.2 Experiment set-up with a large number of instances

The second experiment consists of rather large problems. The banners which need to be filled
are standard banners. Their names and sizes are shown in Table 9. In this manner, we have
a total of 5 banners. Once more, we assume that the left top of the banner is placed 100
pixels from the top and 100 pixels from the left side of the homepage so we can construct the
discount matrix using the price model outlined in Sect. 5.1. We conduct a sensitivity analysis
about the trade-off between effectiveness and efficiency with regard to the reactive GRASP
algorithm, obtained by varying the maximum number of iterations. Based on this analysis,
we determine the maximum number of iterations.

For each type of banner, a set of advertisements together with their properties is simulated
10 times, in the samemanner as in the second part of the first experiment. The only difference
with the second part of the first experiment is that the width and height (measured in pixels)
of an ad are obtained by applying Eq. (19) instead of Eq. (18). The random number rand in
Eq. (19) is also drawn from the standard normal distribution. According to Boskamp et al.
(2011), the distribution of the width and height of the advertisements on the Million Dollar
Homepagewas approximately normally distributed, with aminimum of 10 pixels. The values
generated by Eq. (19) are multiples of 10, but cannot be larger than the banner dimensions.
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Moreover, the obtained values are also approximately normally distributed.

wi , hi = max(10,min(min(W , H), 	(min(W , H)/40 × |rand|
 × 10)) (19)

The maximum price per pixel an advertiser needs to pay is determined the same as in
the second part of the first experiment. The results in Sect. 5.3.2 are averages over the 10
simulations for each banner type. Again, the instances that were used for each banner can be
found at https://github.com/VladyslavMatsiiako/PMAWB.

5.3 Results

Each problem instance in the first experiment is solved by the exact algorithm, and all
different versions by the newlypresented and existing heuristics. The results of all the different
versions of the algorithms are analyzed in the next sections from different perspectives. The
effectiveness of an algorithm depends on the price of the banner, whereas the efficiency of
an algorithm is measured by the computation time. The fill rate, the percentage of the banner
filled by advertisements, is a good indication of the effectiveness. However, the different
prices per pixel for ads and the location-based discount influence the total price of the banner
as well.

5.3.1 Experiment with a small number of instances

In Table 10, for the first part of the first experiment, the best results (with respect to the price)
for each problem instance are presented. We show for each algorithm the sorting criteria for
which the solution is obtained with the highest price of the banner. For the reactive GRASP,
algorithm we also present the options that lead to this best result (how is the set of rectangles
sorted, in which way is the ad to place selected). This is done by presenting numbers that refer
to the possibilities in Tables 1 and 2. Next to that, the computation time in seconds to find the
solution (Comp. time (s)), the total price of the solution (Price banner), and the percentage
of the banner which is filled in the solution (Fillrate) are presented for each algorithm.

The best solution per problem instance provided by the exact algorithm is displayed in
Fig. 5. We observe in Table 10 that the only heuristic which finds the optimal solution for
all 4 instances is the reactive GRASP algorithm. So for each instance, the reactive GRASP
algorithm is the most effective algorithm. We see that the solutions rendered by the parti-
tioning left-justified algorithm are for all instances more effective than the greedy stripping
algorithm, but approximately evenly effective as the left-justified and orthogonal algorithm.
The greedy stripping algorithm performs the worst with respect to effectiveness. It is the only
algorithm which creates banners that are not fully allocated.

On the other hand, ifwe compare the algorithmswith respect to efficiency, the performance
of the left-justified algorithm is the best formost instances. For the reactiveGRASP algorithm
it even takes more time to find the solution than for the exact algorithm.

From this first part of the experiment with a small number of instances, we can conclude
that for small problem instances the reactive GRASP algorithm is the most effective, but
also the least efficient algorithm. The greedy stripping algorithm is the least effective but a
relatively efficient algorithm. The sizes of the problem instances are too small to draw general
conclusions about the quality of the algorithms. Nevertheless, the experiment gives a useful
indication of the quality of the results, compared to the optimal solutions.

In Table 11, for the second part of the first experiment, the average computation times
over 100 simulations of the exact algorithm are presented for five types of standard banners.
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Fig. 5 The exact solutions for the 4 different problem instances

Table 11 Average computation
times in seconds over 100
simulations of the exact algorithm
for different banner sizes

Size Comp. time (s)

Square button 9 × 9 16.701

(125 × 125) 10 × 10 75.612

Leader board 56 × 7 22.521

(728 × 90) 64 × 8 60.396

Half banner 28 × 7 5.848

(234 × 60) 32 × 8 45.011

Skyscraper 9 × 45 21.127

(120 × 600) 10 × 50 48.928

Large rectangle 6 × 5 0.089

(336 × 280) 12 × 10 185.531

Here, we observe that the largest sizes for which the exact algorithm can solve the MAALP-
problem in less than 30s are 9 × 9 pixels, 56 × 7 pixels, 28 × 7 pixels, 9 × 45 pixels, and 6
× 5 pixels for the square button, leader board, half banner, skyscraper, and large rectangle,
respectively. These results illustrate the need for heuristics to solve realistic instances (recall
that because of the use on the Web, the computation time of an algorithm is desired to be less
than 30s).

5.3.2 Experiment with a large number of instances

We analyze the results of the experiment with a large number of instances from more
perspectives than the experiment with a small number of instances, because the larger prob-
lems are more similar to real-time MAALP-problems than the smaller problems in the
first experiment. To be able to compare the different sized banners, we analyze the prop-
erties per pixel of the banner, instead of the properties of the whole banner. In this way,
the results do not depend on the size of the banner. To do this, we define the price per
pixel of the banner as Price pp = Price banner

W×H and the computation time per pixel as

Comp. time pp = Comp. time
W×H .

We first conduct a sensitivity analysis about the trade-off between effectiveness and effi-
ciency with regard to the reactive GRASP algorithm, obtained by varying the maximum
number of iterations. This analysis is done regardless of the sorting criteria and type of
banner. We do not make a distinction between the different options of the reactive GRASP
algorithm either. In fact, for every value of the maximum number of iterations, we aggregate
all different versions of the algorithm. For each of these values of the maximum number of
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Fig. 6 The trade-off between effectiveness and efficiency with regard to the reactive GRASP algorithm

iterations we compute the mean of Price pp and the mean ofComp. time pp. These results
are displayed in Fig. 6.

There is a sudden increase in the mean of Comp. time pp between a maximum number
of iterations of 40 and 50. Also, as we reach a maximum number of iterations of 40, the
mean of Price pp is growing relatively slow as themaximum number of iterations increases.
Therefore, we set themaximum number of iterations for the reactive GRASP algorithm to 40.
This means that for the largest banner we consider (large rectangle), the total computation
time is 3.221s on average, which is below 30s, as desired. Note that there is no optimal
choice for the maximum number of iterations, as one may want to have higher effectiveness
(efficiency) at the expense of lower efficiency (effectiveness).

As in the first analysis, the second analysis is done regardless of the sorting criteria and type
of banner. For the reactive GRASP algorithm, we again do not make a distinction between
the different options. Here, we aggregate all different versions of the algorithm and compare
their properties by using the five-number summary and the mean. The five-number summary
is a descriptive statistic that consists of the five most important percentiles of a data-set: the
minimum, the first quartile, the median, the third quartile, and the maximum. The values of
these descriptive statistics for the price and the computation time per pixel are displayed in
Tables 12 and 13.

On almost every point in Table 12, the reactive GRASP algorithm performs the best. The
least effective results are generated by the greedy stripping algorithm and the partitioning left-
justified algorithm.However, the highestmaximumvalue of the price per pixel is generated by
the partitioning left-justified algorithm. Apparently, if the partitioning left-justified algorithm
is used on the right banner with the right sorting criteria, it generates a very good solution.

According to the numbers in Table 13, the greedy stripping algorithm is the most efficient
algorithm. The least efficient algorithm is the reactive GRASP algorithm. From this we can
conclude there is a trade-off between the effectiveness and efficiency of the algorithms: in
general, the more efficient an algorithm is, the less effective its results are.

In the previous analysis, there was no distinction made between the different types of
the banners or the sorting criteria. We now do distinguish the different sorting criteria and
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Table 12 The five-number summary and the mean of the Price pp

Algorithm Minimum Q1 Median Q3 Maximum Mean

Reactive GRASP 7.5840 8.5588 9.0301 9.2296 9.6577 8.8566

Left just 5.7739 7.6332 8.5688 8.8846 9.6839 8.2275

Orthogonal 5.7606 7.6434 8.5888 8.8821 9.6839 8.2272

Part. left just 5.9451 7.3669 8.0585 8.7750 9.6850 7.9985

Greedy str 5.2074 7.3541 8.2605 8.6633 9.5463 7.9901

Table 13 The five-number summary and the mean of the Comp. time pp in seconds

Algorithm Minimum Q1 Median Q3 Maximum Mean

Greedy str 1.554E−08 4.266E−08 5.867E-08 8.848E−08 3.780E−07 6.529E−08

Left just 5.874E−07 2.445E−06 3.924E−06 8.038E−06 3.661E−05 5.905E−06

Orthogonal 1.099E−06 3.206E−06 6.851E−06 1.014E−05 2.099E−05 7.459E−06

Part. left just 1.157E−06 3.201E−06 5.551E−06 1.539E−05 3.780E−05 1.094E−05

Reactive GRASP 5.040E−06 2.002E−05 3.123E−05 4.781E−05 0.0029 3.374E−05

Table 14 Best results leader board (728x90)

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Part. left just maxpp. desc price desc 4.48260E−06 9.6850 0.9890

Left just maxpp. desc price desc 3.8466E−06 9.6839 0.9890

Orthogonal maxpp. desc price desc 6.6666E−06 9.6839 0.9890

Reactive GRASP maxpp. desc price desc 6.9035E−05 9.6577 0.9890 (1, 2, 2, 1, 15)

Greedy str maxpp. desc size asc 7.5998E−08 9.5463 0.9774

compare the best results per banner for each algorithm. These results are displayed in Tables
14, 15, 16, 17, 18. In 4 of the 5 banner types, the reactive GRASP algorithm creates a solution
with the highest fillrate. Except for the leader board and the skyscraper, the reactive GRASP
algorithmgenerates solutionswith the highest price per pixel for all other cases. The drawback
of this algorithm is that the computation time per pixel is for almost each banner the highest.
For each type of banner, the most efficient algorithm is the greedy stripping algorithm.

We considered all different versions of the reactive GRASP algorithm. In Tables 14, 15,
16, 17, 18, we show the best options. As in the results of the experiment with a small number
of instances, the options are represented by the numbers stated in Tables 1 and 2. It is notable
that in almost each best solution the algorithm selects the ad from the 100(1−d)% ‘best’ ads
(Option 2.2) and places the selected ad in the corner of the rectangle which yields the highest
price for the ad (Option 3.2). The choice about which rectangle to fill in the construction
phase (Option 1) and the choice about which ads to remove in the improvement phase (Option
improve), do not seem to influence the effectiveness. The different options of the reactive
GRASP algorithm are further analyzed in the next paragraphs.

To analyze the different options of the reactive GRASP algorithm, we aggregate the
results for the different sorting criteria and different banners. This is done by averaging the
computation time and the price per pixel over all different versions of a specific combination
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Table 15 Best results half banner (234x60)

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Reactive GRASP maxpp. desc size desc 5.3945E−05 9.3071 0.9829 (2, 2, 2, 1, 10)

Part. left just maxpp. desc price desc 1.7150E−06 9.2798 0.9829

Orthogonal maxpp. desc price desc 2.7342E−06 9.2389 0.9829

Left just maxpp. desc price desc 1.1059E−06 9.2392 0.9829

Greedy str maxpp. desc flatn. asc 1.0701E−07 9.1547 0.9779

Table 16 Best results square button (125x125)

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Reactive GRASP price desc height desc 2.0486E−05 8.0132 1 (2, 2, 2, 1, 10)

Part. left just price desc maxpp. desc 2.1729E−06 7.6966 0.9158

Left just price desc maxpp. desc 2.4424E−06 7.6909 0.9158

Orthogonal price desc maxpp. desc 2.7942E−06 7.6698 0.9171

Greedy str width desc maxpp. desc 5.0799E−08 7.4864 0.8960

Table 17 Best results skyscraper (120x600)

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Orthogonal maxpp. desc prop. asc 7.1995E−06 9.3057 0.9997

Reactive GRASP maxpp. desc size desc 3.3084E−05 9.2689 0.9992 (1, 2, 2, 2, 15)

Left just maxpp. desc price desc 3.0352E−06 9.2364 0.9968

Greedy str maxpp. desc width desc 4.7787E−08 8.9760 0.9671

Part. left just maxpp. desc prop. desc 5.2536E−06 8.4226 0.8903

Table 18 Best results large rectangle (336x280)

Algorithm Prim. sort Sec. sort Comp. time pp (s) Price pp Fillrate Options

Reactive GRASP price desc flatn. desc 5.7904E−06 9.1036 0.9778 (3, 1, 2, 1, 10)

Left just price desc maxpp. desc 2.8398E−06 8.9557 0.9727

Orthogonal price desc maxpp. desc 3.8659E−06 8.9546 0.9731

Part left just price desc height desc 2.7337E−05 8.7751 0.9582

Greedy str height desc price desc 1.9339E−08 8.3776 0.9229

of options. The ten best and worst results are presented in Tables 19 and 20. In Table 19, the
combinations of options are ordered descending with respect to the mean computation time,
and in Table 20 they are sorted descending with respect to the mean price per pixel.

We see that most of the versions of the reactive GRASP algorithm which have the highest
computation time, use the improvement phasewhere the last addedβ%of the ads are removed
(Option improve.1). The higher this value for β, the higher the computation time is. This is
because a larger number of ads are removed when β increases, and thus partially filled
banner can be filled with more ads, which takes longer. As can be seen in Table 20, this
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Table 19 The average results of
the reactive GRASP algorithm
sorted descending on the mean
computation time (efficiency)

Options Mean Comp. Mean
time price pp

(2, 2, 1, 1, 15) 3.4089 8.8135

(1, 1, 2, 1, 15) 2.8074 8.8553

(1, 2, 1, 1, 15) 2.2127 8.9224

(3, 2, 1, 1, 15) 2.0902 8.8943

(1, 2, 2, 1, 15) 2.0775 8.9412

(2, 2, 2, 1, 15) 2.0569 8.9300

(1, 1, 1, 1, 15) 1.9221 8.8408

(3, 2, 2, 1, 15) 1.9036 8.9251

(3, 1, 1, 1, 15) 1.8225 8.8050

(2, 1, 2, 1, 15) 1.7833 8.8448

…

(1, 1, 2, 1, 5) 1.2649 8.8501

(2, 1, 1, 2, 5) 1.2616 8.7188

(2, 1, 1, 1, 5) 1.2480 8.7239

(2, 1, 2, 1, 5) 1.2464 8.8359

(1, 1, 1, 2, 5) 1.2454 8.8282

(3, 1, 1, 2, 5) 1.2406 8.7962

(1, 1, 2, 2, 5) 1.2296 8.8502

(2, 1, 2, 2, 5) 1.2132 8.8373

(3, 1, 2, 1, 5) 1.1756 8.8275

(3, 1, 2, 2, 5) 1.1644 8.8213

increase in computation time does not necessarily lead to more effective results. However, it
is observable that a combination of selecting an ad from the 100(1− d)% ‘best’ ads (Option
2.2) and placing the selected ad in the corner which yields the highest price (Option 3.2)
leads to effective results, whereas the combination of selecting an ad from the set of ads with
a value which deviates at most d% from the best value (Option 2.1) and placing the selected
ad in the corner which is nearest to a corner of the banner (Option 3.1) leads to the least
effective results.

Option 2 determines the number of ads from which one is selected. The set of the 100(1−
d)% ‘best’ ads is apparently better to choose from. This can be explained by the fact that
relatively more ‘best’ ads are contained in this set, than in the set of ads with a value that
deviates at most 100(1−d)% from the best value. So a ‘better’ ad (an ad that generates more
revenue) will be chosen. The difference in the results caused by the placement strategy can
be explained by the following. Placing ads in the corner of the rectangle which is nearest to a
corner of the banner should lead to larger empty rectangles in the middle of the banner which
should be easier to fill. Placing an ad in the corner which yields the highest price, will scatter
the ads more over the banner, leading to smaller empty rectangles. According to the results,
a higher price for an ad is more important than larger empty rectangles. How to choose the
rectangle in which an ad will be placed, seems to influence neither the effectiveness, nor the
efficiency of an algorithm.
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Table 20 The average results of
the reactive GRASP algorithm
sorted descending on the mean
price per pixel (effectiveness)

Options Mean Comp. Mean
time price pp

(1, 2, 2, 2, 15) 1.5814 8.9416

(1, 2, 2, 1, 15) 2.0775 8.9412

(1, 2, 2, 1, 10) 1.6667 8.9403

(1, 2, 2, 2, 10) 1.4672 8.9390

(1, 2, 2, 1, 5) 1.3886 8.9359

(1, 2, 2, 2, 5) 1.3454 8.9316

(2, 2, 2, 2, 15) 1.5677 8.9309

(2, 2, 2, 1, 15) 2.0569 8.9300

(2, 2, 2, 2, 10) 1.4473 8.9269

(2, 2, 2, 1, 10) 1.6666 8.9263

…

(3, 1, 1, 2, 15) 1.5544 8.8013

(3, 1, 1, 2, 10) 1.3920 8.7995

(3, 1, 1, 1, 5) 1.2653 8.7970

(3, 1, 1, 2, 5) 1.2406 8.7962

(2, 1, 1, 1, 15) 1.5260 8.7278

(2, 1, 1, 1, 10) 1.3840 8.7273

(2, 1, 1, 1, 5) 1.2480 8.7239

(2, 1, 1, 2, 10) 1.3937 8.7231

(2, 1, 1, 2, 15) 1.5120 8.7220

(2, 1, 1, 2, 5) 1.2616 8.7188

6 Conclusion and future work

In this paper we addressed the MAALP-problem, an extension of the multiple advertisement
allocation problem where a pixel-price model is used to determine the price of an advertise-
ment on a banner. In Sect. 3, we presented a formal definition of the problem and gave two
0–1 integer programming formulations that specify the problem.

Using simulation experiments, we found that for each type of banner, the greedy stripping
algorithm is the most efficient algorithm. The most effective algorithms with their properties
are displayed in Table 21 for each type of banner. The newly proposed reactive GRASP
algorithm is the most effective algorithm for three of the five banners. Overall, the newly
proposed partitioning left-justified algorithm performs worse than the existing left-justified
algorithmandorthogonal algorithmqua effectiveness, but for some specificproblem instances
it does perform better.

A natural phenomenon that is visible in the experiments is the trade-off between effi-
ciency and effectiveness of an algorithm. The algorithms compared in this paper all render
an acceptable solution in a reasonable time span. Which algorithm to choose, depends on
one’s preferences with respect to efficiency and effectiveness. If one cares more about the
effectiveness of a solution than about the efficiency, it is possible to improve the solution of
the reactive GRASP algorithm even further. We defined the maximum number of iterations
as 40, but by increasing this number, the algorithm will render more solutions and is possible
to find an even better solution. The disadvantage of this is the increase in computation time.
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Table 21 The most effective algorithms and their properties for each type of banner

Banner Algorithm Prim. sort Sec. sort Options

Leader board Part. left just maxpp. desc price desc

(728 × 90)

Half banner Reactive GRASP maxpp. desc size desc (2, 2, 2, 1, 10)

(234 × 60)

Square button Reactive GRASP price desc height desc (2, 2, 2, 1, 10)

(125 × 125)

Skyscraper Orthogonal maxpp. desc prop. asc

(120 × 600)

Large rectangle Reactive GRASP price desc flatn. desc (3, 1, 2, 1, 10)

(336 × 280)

Overall, the adaptation of the multiple advertisement allocation problem to account for the
location differences is making this problem more real and useful for industry practitioners.
The newly presented algorithms (reactive GRASP and partitioning left-justified algorithm)
are able to find solutions with better price per pixel outcomes under similar time constraints,
when compared to the orthogonal algorithm, the left-justified algorithm, and the greedy
stripping algorithm. This would be quite beneficial for companies like Google, Facebook,
Snapchat, etc. Here, on the one side are the advertising companies and their ads with cor-
responding bids. On the other side are the advertisers that need to select which ads to show
and how to allocate them optimally. The goal is that both the revenues are optimised and
the customers are satisfied with the ad performance. Our work can be used in existing rev-
enue management models (Roels & Fridgeirsdottir, 2009) by taking pixel advertisement into
account.

Despite the extension of the multiple advertisement allocation problem we discussed in
this paper, there are still unexplored directions which are interesting to investigate. One of
these could be adding a time component to the problem. A simplified variant of this is the ad
placement problem. In this problem, a banner needs to be filled with multiple advertisements
for different time slots. The banner can have a different allocation in each time slot, but
it is also possible to allocate ads in more than one time slot. The simplifying factor is the
assumption that each advertisement has the same height as the banner, which makes it a
one-dimensional knapsack problem. In the existing literature, there are several algorithms
that solve this problem, for example via column generation (Valério de Carvalho, 1999)
and Lagrangian decomposition (Menon & Amiri, 2004) or with a hybrid genetic approach
(Kumar et al., 2006). It would be interesting to extend these algorithms or even create new
ones to solve the ad placement problem in the two-dimensional case, as there is no known
literature about it thus far.

Another limitation of our paper is that in the real world, theremay be cases of adswith non-
rectangular shapes. In fact, every such advertisement consists of pixels which are essentially
squares. Considering the rectangles together to combine them into certain shapes is another
point for possible further research.

Themethods in our problems can also be improved. The pricemodel we use is based on the
eye-tracking research done by Nielsen (2010a, b). These researches focus on the gazing time
of people on an average website. This is the most useful data now available on where people
spendmost attention on aWeb page. However, the researchers do not mention anything about
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advertisement banners. To obtain a more realistic price model for the MAALP-problem, it
should be investigated where people pay attention to with respect to banners specifically.
Moreover, the improvement phase used in the reactive GRASP algorithm could be refined.
We remove a couple of ads from the banner and use the deterministic construction phase to
place new ads. In this construction phase, the ‘best’ advertisement which fits, according to
the sorting criteria, is placed. If multiple placement strategies are considered (so not only
placing the ‘best’ ads) and the best solution with the highest price of the banner is saved, the
improvement can be higher. However, this can lead to an increase in computation time.
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