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Abstract
Operating on electricity markets requires accurately identifying, quantifying, and measuring
risk coupled with their corresponding return: this appears as a crucial point, particularly dur-
ing and after the COVID-19 pandemic. The aim of the present paper is twofold. First, we
propose a novel econometric approach to identifying relevant market factors that capture sev-
eral elements of the risk transmission mechanism inherent in energy systems. The proposed
model extends Bayesian graphical models with change points to a multiple-layer set-up.
Multilayer graphs encompass the two relevant channels of shock transmission: volatility and
price contagion effects. The choice of these two layers seems natural because electricity
prices and their spiky nature, coupled with inherent volatility, constitute essential influential
elements for market players to maximize their profits. The change-point specification allows
for detecting relevant changes in the electricitymarket. Second,we apply the proposed econo-
metric framework to the Italian zonal markets analyzing the effects of returns and volatility
contagion in several periods detected by the model. The last time intervals identified by the
change-point methodology overlap the COVID-19 pandemic period. The model captures
relevant abrupt changes in prices and volatility in the zonal electricity market and provides
new evidence of interconnections in the zones of the Italian market related to the risk alone,
price process alone, and risk versus price process relationship and their interactions.
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1 Introduction

The global economic system has endured extraordinarily turbulent periods that have major
repercussions on lives and livelihoods because of the novel COVID-19, which has unleashed
a crisis of exceptional ferocity on the global front, with severe impact worldwide. This is
manifested in extensive financial burden and cost (Amankwah-Amoah et al., 2021; Zheng &
Zhang, 2021). Siddique et al. (2021) mentioned that the viral wave of COVID-19 could set
a pace for a crisis in the energy sector. In other words, the COVID-19 pandemic has caused
more disruption to the energy sector in comparison with any other event in recent history,
leaving impacts that will be felt for years to come (Fezzi & Fanghella, 2020). The sudden
emergence of COVID-19 has brought to focus a tremendous near-term uncertainty about
the future of energy. There is a critical need to accelerate clean energy transitions putting
emissions on a structural downward trend (Zeppini & Van Den Bergh, 2020).

Change-point analysis presents a unique tool to detect relevant changes in the market
structure. It is particularly useful in market distress periods and during events, such as the
recent prolonged pandemics, that can cause lasting damage to various economic prospects.
For instance, lower energy demand will put downward pressure on oil and gas prices, with
the likelihood of corresponding falls in investment offers and market volatility increases.

Understanding volatility spill-over effects and profitability linkages among energy mar-
kets is essential because transmission and distribution entail losses that increasewith distance.
Network analysis provides effective tools for investigating the market connectivity structure,
particularly when markets are organized through interconnected areas/zones. This is a sit-
uation of network externality from the viewpoint of David (1987) in relation to technical
inter-relatedness and economies of system scale, the so-called network integration benefits.
Therefore, a combination of technical and policy innovation should be designed to realize
the full potential of renewable energy sources (RES). The innovation should accommodate
the specific features of RES and maintain the overall grid stability, even with high RES
penetration.

In this paper, we propose a novel statistical framework based on Vector Autoregres-
sion (VAR) for detecting change points, extracting network structures, and measuring the
impact of RES, particularly during the COVID-19 pandemic, with an application to the
Italian zonal electricity market. We contribute to various strands of literature. Since the
ground-breaking seminal works of Sims (1980) and Blanchard andWatson (2007), VAR and
Structural VAR (SVAR) models have gained attention in the economic literature. The SVAR
approach accounts for the partially overlapping directions and the identification of the influ-
ence of the various policies (Amisano & Giannini, 2012). It provides an instantaneous basis
for the correlation among variables, normally buried in the variance-covariance matrix of
the innovation terms. Bayesian SVAR analysis has proven successful over the years because
data is combined with prior beliefs, which constitute an additional source of information. The
simple Bayesian VAR model has been extended to account for non-linear and non-Gaussian
effects, as in Bayesian non-parametric VARs (Bassetti et al., 2014; Kalli, 2018; Billio et
al., 2019), for instabilities, as in change-point VARs (Koop & Potter, 2007) and Markov-
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switching VARs (Sims & Sha, 2006, Casarin et al., 2018, e.g., see), for over parametrization
issues, as in high-dimensional VARs (e.g., see Gefang, 2008; George et al., 2014; Koop et
al.,2019), and for multiple observation units, as expressed in panel VARs (e.g., see Canova
and Ciccarelli, 2004, 2009; Korobilis, 2016) and Markov-switching panel VARs (e.g., see
Billio et al., 2016; Casarin et al., 2018). This paper focuses on Graphical VAR extensions,
as discussed in the subsequent sections.

Building on the literature on Gaussian graphical models (e.g., see Carvalho & West,
2007; Dawid & Lauritzen, 1993; Gruber & West, 2017; Jones et al., 2005; Jones & West,
2005; Lauritzen, 1996; Wang, 2010; Wang et al., 2011; Wang & West, 2009; Whittaker,
2009) SVARmodels have been extended to Graphical SVAR (G-SVAR) where unobservable
graphs encode the lagged and contemporaneous dependence structures (e.g., see Ahelegbey
et al., 2016a, 2016b; Casarin et al., 2020; Corander & Villani, 2006; Paci & Consonni,
2020). The Bayesian G-SVAR (BG-SVAR) of Ahelegbey et al. (2016a, b) has been extended
in different directions. Fianu et al. (2022) and Ahelegbey et al. (2021) proposed Bayesian
Graphical Panel SVAR (BG-PSVAR) to account for multiple observation units. Casarin et
al. (2020) introduced Bayesian SVARs with Multilayer Graphs (BMG-SVAR) to account for
different groups of variables in the dependence structure. In this paper, we extend Fianu et
al. (2022) and Ahelegbey et al. (2021) in two directions. Multiple layers are introduced to
account for different types of variables in the panel, and change points account for breaks in
the dependence structure. The multilayer network introduces a variable selection mechanism
to overcome the over-parameterization issue of panel VAR modeling. The network change
points identify the structural breaks in SVAR models.

Our novel modeling approach consists of a Bayesian Multilayer Graphical Panel SVAR
withChange Points (CP-BMG-PSVAR). It helps to investigate two relevant channels of shock
transmission among electricity market zones: volatility and price. This choice of the network
layers seems natural because electricity prices and their spiky nature coupled with inherent
volatility constitute essential elements for market players to maximize their profits (Imani et
al., 2021). Accounting for equation-specific and overall change points, we detect sub-periods
of the initial time domain. The detected time intervals are explored in light of economic
events that have influenced the Italian electricity market and its zonal structure. Congestion
events are accounted for, and an analysis of congestion costs allows us to characterize the
transmission of risks among the macro-zones of the market. The two-layer contagion model
allows for disentangling connections among themarket zones in terms of returns and volatility
transmission. Among other events, the impact of COVID-19 on the Italian zonal market is
carefully analyzed.

The rest of the paper is organized as follows. Section2 reviews the literature on layer
propagation and interconnections in the Italian zonal markets and provides an overview of
congestion events responsible for major changes in the market risk. Section3 introduces
an original multiple-layer graphical framework for analyzing market interconnections. The
empirical results are presented and discussed in Sect. 4. We conclude the paper in Sect. 5 by
presenting some remarks related to the impact of COVID-19.

2 The Italian zonal electricity market

2.1 Literature review

The interconnections among transmission networks play an essential role in terms of risk and
return for market participants. Given this, Fang and Hill (2003), for instance, mentioned that
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it is essential to develop a transmission network capable of handling future generation and
load patterns in a deregulated, unbundled, and competitive electricity market. Joskow (2006)
highlighted that evidence from theUS and some other countries reveal that organizedmarkets
for electrical energy and operating reserves do not provide adequate incentives to stimulate
the proper quantity ormix of generating capacitywithmandatory reliability; a concernmostly
occurring because of full utilization of the generating capacity. In effect, Joskow (2006), for
instance, designed a policy program to improve the efficiency of the spot wholesale electricity
markets. Because of different regulatory and structural transformations in the energymarkets,
all firms now compete to provide generation services at the market price. Electricity firms
are now significantly exposed to higher risks, and the need for suitable, actionable decision
support models has increased (Ventosa et al., 2005). This implies a paradigm shift from
the traditional supply and demand approach that requires energy to be supplied only when
demand occurs. The new paradigm, however, places high value on efficient supply, reliability
as well security of energy supply. Therefore, reliable operations of energy systems require
a real-time balance between demand and supply, which is not easily attainable (Joskow &
Tirole, 2005). Papaioannou et al. (2015) exploit the notions of co-evolution of co-movement
to study the Italian and Greek electricity markets, focusing on wholesale day-ahead prices
and a time-frequency domain. In financial economics, co-movement is generally linked to
market integration, and it is ideal for exploring these occurrences in the electricity market.
A key understanding in this framework is that markets are integrated if the reward for risks
is identical across markets.

Recently, there has been much penetration of RES in the electricity markets, which has
led to various regulatory transformations across the globe in energy markets. Some of these
transformations exhibit structural effects. Ritzenhofen et al. (2016) highlighted that the RES
growth has been tremendous across the globe, deriving benefits from various support schemes
such as renewable portfolio standards (RPS), feed-in tariffs (FITs), and market premia (MP).
These authors found that each support scheme increases RES penetration, curbing carbon
dioxide emissions. Hirth (2013) provides a detailed analysis of the market value of variable
renewable energy and shows that (i) the variability of solar andwindpower affects theirmarket
value, and (ii) the market value of variable renewables falls with higher penetration rates.

The analysis of structural changes in energy markets is a crucial issue for both market
participants and policymakers (e.g., see Ali et al., 2020). Among the potential sources of
structural changes, COVID-19 has been considered by many authors to investigate transitory
and permanent effects on the energy market (Bento et al., 2021; Lazo et al., 2022; Norouzi,
2022; Norouzi et al., 2021). For the Italian market, there is strong evidence of multiple struc-
tural changes motivated by crisis periods coupled with other developmental, regulatory, and
transitional changes in the evolution of COVID-19 and its influence on the energy sector.1

Bigerna et al. (2022) found that the Italian electricity market was characterized by a remark-
able decrease in demand during the COVID-19 lockdown. The impact of the penetration of
RES is explored in a similar spirit by Amusat et al. (2018), Matos et al. (2019), Zeppini and
Van Den Bergh (2020), Amankwah-Amoah et al. (2021), Zheng and Zhang (2021), among
others. Compared to other global pandemics, the novel coronavirus outbreak has various sig-
nificant impacts on energy markets and other sectors across the globe. Queiroz et al. (2020)
provide a systematic literature review and the details of operation framework and supply chain
management during the COVID-19 pandemic, encompassing six perspectives: adaptation,
digitalization, preparedness, recovery, ripple effect, and sustainability. Ivanov (2020) focused
on the viability of the supply chain and considered three viewpoints: agility, resilience, and

1 See Terna (2021) for an overview.
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sustainability. The author pointed out that the principal ideas of the viable supply chain are
adaptable designs for supply–demand allocations and provide a useful framework for ecosys-
tem dynamic analysis. Since the energy sector represents an evolving complex system, these
notions can be readily applied. We contribute to this literature with a new dynamic modeling
framework that allows for automatically detecting periods of significant changes in market
activity and structure. We investigate the absorption of negative disturbances, recovery, and
resilience to short-term disruptions and long-term global shocks.

The complexity of the energymarket structure calls naturally for multilayer graphmodels,
which can provide insight into the analysis of such systems (Kurant & Thiran, 2006). While
most studies assume observable interaction layers among complex systems, Valles-Catala et
al. (2016) address the issue of uncovering latent interaction layers from aggregate data. Yu
et al. (2020) show that information spreading on multilayer networks exhibits a crossover
phenomenon between the information outbreak size and the transmission probability. Fianu
et al. (2022) develop and estimate graphical models to uncover the connectivity structure of
the Italian electricity market. They explore risk transmission in the zonal markets, thereby
identifying the most influential zones in terms of hub and authority centrality. This paper
extends Fianu et al. (2022) to a multiple-layer and nonlinear setup. Two layers of shock
transmission will help to explore further the various pathways relevant to policy design
mechanisms and policy decisions. Change points introduce nonlinearities in the model and
help to detect abrupt changes in the interconnections of the risk (volatility) alone, return
alone, and risk-return relationship.

2.2 Structure and congestion analysis

The Italian electricity market has experienced a new paradigm shift among European coun-
tries. Since January 2021, the map of the Italian electricity market zones has gone through
some transformation, which aims at improving the functioning of the zonalmarket (see Terna,
2021 for an overview).

A brief insight into the changes that have taken place in the zonal configuration of the Ital-
ian power market shows that there are currently seven market zones. Starting from ten market
zones, four production hubs have been eliminated (Priolo, Foggia, Brindisi, and Rossano),
and a new geographical zone has been incorporated, which reflects the renewable generation
on power flows. On the other hand, the Umbria region has beenmoved from the Center-North
zone to the Centre-South zone to reflect better the impact of negotiations within this region
on grid congestions. All in all, the new physical zones in this new horizon, since January
2021, include North, Center-North, Centre-South, South, Calabria, Sicily, and Sardinia, dis-
parate from the old configuration by the addition of the Calabria region. Figure1 provides an
overview of the changes that have taken place in the electricity market. Hence, the sample
data used in our analysis is limited to 2020 because it is not possible to compare data from
2021 onward with past data for some zones (e.g., South, Centre-South and Centre-North).

The goal of the old physical zones was only geared toward ensuring grid security. Like
almost every other liberalized wholesale electricity market, there is an allowance for sig-
nificantly improved efficiency through enhanced pricing of customers connected to the
distribution network. The physical interconnections between the Italian zonal market and the
neighboring European countries include the following: the North relates to France, Switzer-
land, Austria, and Slovenia, the Centre-North and Sardinia have a connection with Corsica,
the Center-South with Montenegro, the South with Greece, Sicily with Malta. These inter-
connections are essential to maximizing the efficiency of the electricity markets. It is always
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Fig. 1 Map of the Italian electricity zonal market in force up to 31 December 2020 (with the production hub
of Rossano in the province of Catanzaro), on the left, and the new zonal configuration, on the right. Source:
Authors’ preprocessing of figure from Terna (2021)

crucial that the power flows among the physical zones follow the demand and supply condi-
tions in the grid transmission that are compatible with the security of the national electrical
system. The new configuration will likely reveal the grids’ uniqueness so operators can opti-
mize and improve negotiations. In this vein, grid security problems are eradicated, and there
is more stability and uniformity, which will give rise to lower prices as this will reflect cases
of scarcity and excess in the electricity supply. The objective of the restructuring is to give
a correct interpretation of the trends observed on the electricity flows among geographical
zones accounting for the supply and demand conditions which can be described as “bottle-
necks” in the grid transmission, compatible with the security of the national electrical system
(Bigerna et al., 2016). The Italian energy market is organized in several sessions: the day-
ahead market (in Italian, Mercato del Giorno Prima, MGP) and the intra-day market (ID).
They are the main segments where producers, wholesalers, and end customers buy and sell
wholesale quantities of electricity that must be delivered the next day. Although injection
and withdrawal schedules accepted in the MGP account for interconnection capacity among
physical zones, they do not consider intra-zonal congestion or any other network security
constraint, which could make physical energy delivery unfeasible. When congestions hap-
pen, the national area is split into market zones where auctions provide different prices. The
general rule is that prices are higher in zones with lower supply.

Table 1 shows, for each year and for the whole time horizon, the average price, the
standard deviation, and the percentages of hours for each market configuration. In case of no
congestion in the grid, the one-market case occurs. The grid’s security has improved in the
observed period: the percentage of one-market hours (no congestions) has increased from
8.2% in 2014 to 44.1% in 2020. Congestion events create several market zones from two
to six. It is worth noticing that the two-market case is the most frequent, and the extreme
six-market case never happens. Table 2 analyzes some of the most interesting two- and three-
market configurations. Due to supply imbalances, Sicily is the physical zone most frequently
separated from the others. In 22,932h, Sicily has a price different from the common price
observed in the remaining zones, and in 5284h (4414 + 870), it is separated within the three-
market configuration. This fact is confirmed by the average zonal price observed in Sicily,
which is on average higher than that observed in the remaining geographical zones.2

2 For a previous similar analysis of the congestion events in the Italian electricity market, see Fianu et al.
(2022).
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Table 1 IPEX market configurations (Mkts) from 2014 to 2020 (different columns)

Mkts Year 2014 2015 2016 2017 2018 2019 2020 Tot

One M 47.30 47.69 41.88 47.75 55.25 47.24 32.49 44.92

SD 16.07 13.22 12.83 15.18 13.34 11.74 12.49 15.43

F 716 978 1740 2577 3354 3024 3871 16,260

% 8.2% 11.2% 19.8% 29.4% 38.3% 34.5% 44.1% 26.5%

2014 2015 2016 2017 2018 2019 2020 Tot

Two M 54.81 52.36 42.53 55.01 65.29 56.16 44.34 52.89

SD 23.76 13.91 13.60 16.60 17.72 18.22 16.61 18.85

F 5148 5222 4769 4318 4028 4176 3570 31,231

% 58.8% 59.6% 54.3% 49.3% 46.0% 47.7% 40.6% 50.9%

2014 2015 2016 2017 2018 2019 2020 Tot

Three M 57.42 53.94 44.03 58.90 70.15 59.05 50.59 55.56

SD 28.45 15.63 14.09 20.25 20.33 19.82 19.56 21.80

F 2595 2161 2022 1676 1195 1409 1199 12,257

% 29.6% 24.7% 23.0% 19.1% 13.6% 16.1% 13.6% 20.0%

2014 2015 2016 2017 2018 2019 2020 Tot

Four M 52.04 51.13 42.19 57.89 62.04 55.60 50.11 52.27

SD 28.97 14.44 14.68 23.23 19.51 18.22 21.98 21.34

F 299 378 240 174 178 151 141 1561

% 3.4% 4.3% 2.7% 2.0% 2.0% 1.7% 1.6% 2.5%

2014 2015 2016 2017 2018 2019 2020 Tot

Five M 56.70 47.55 42.52 62.76 65.97 – 23.86 50.63

SD 33.81 15.13 16.96 23.50 16.42 – 18.43 21.39

F 2 22 14 13 6 0 3 60

% 0.0% 0.3% 0.2% 0.1% 0.1% 0.0% 0.0% 0.1%

Total 100% 100% 100% 100% 100% 100% 100% 100%

For each market configuration, in the rows: price Mean (M) and Standard Deviation (SD), hour counts (F),
and Percentages of total hours per year (%)

3 A change-point graphical vector autoregression

This section introduces the three main components of our Change Points Bayesian Multi-
layer Graphical Panel SVAR (CP-BMG-PSVAR): change points, the multilayer graph, and
exogenous variables. The CP-BMG-PSVAR model is presented both in expanded and com-
pact forms. The inference procedure used for the electricity market analysis is then briefly
described.

3.1 A change-point panel SVAR

Let Y jt ∈ R
m and Z jt ∈ R

q , j = 1, . . . , N be two sequences of endogenous and exogenous
variables, respectively, observed for the N units of a panel. In our application, there are N = 6
units (regions) and two endogenous variables for each unit, i.e., Y jt = (R jt , Vjt )

′ ∈ R
2,

where R jt denotes the returns on energy prices andVjt the daily changes in log-price volatility
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Table 2 Summary statistics of prices during 2014–2020 for market zones (rows) and different market config-
urations (panels)

ZM F M SD Min Max

(a) Two markets

Zone 1 (CNOR, CSUD, NORD, SICI, SUD) 340 38.61 19.92 1.02 99.49

Zone 2 SARD 22.35 25.34 0.00 109.13

Zone 1 (CNOR, CSUD, NORD, SARD, SUD) 22, 932 50.66 14.06 3.80 163.06

Zone 2 SICI 72.75 27.12 0.00 259.03

Zone 1 (CNOR, CSUD, SARD, SICI, SUD) 2457 45.01 16.11 0.00 170.99

Zone 2 NORD 44.91 17.77 5.00 170.00

(b) Three markets

Zone 1 (CNOR, CSUD, NORD, SUD) 870 46.95 10.75 21.15 104.71

Zone 2 SARD 77.26 40.31 0.00 276.16

Zone 3 SICI 93.16 32.63 2.00 180.00

Zone 1 (CNOR, CSUD, SARD, SUD) 4414 49.81 18.46 0.00 145.03

Zone 2 NORD 48.08 15.08 4.22 143.02

Zone 3 SICI 70.32 27.99 0.00 180.00

In the columns: Zonemembers (ZM), hour counts (F), and priceMean (M), StandardDeviation (SD),minimum
value (Min) and maximum value (Max)

for the region j at time t . The vector of regional-specific exogenous variables Z jt ∈ R
2

includes the electricity demand forecast and the wind generation forecast.
Assume there exist K change points and let TK = (τ1, τ2, . . . , τK ) be the vector of change

times, such that 1 = τ0 < τ1 < · · · < τK+1 = T . The change points are common to all
units of the panel. They indicate the dates of possible changes in the parameter values, which
include changes in the dependence structure between variables. Within each time interval
(τk−1, τk] we assume Y jt , j = 1, . . . , N satisfy a panel BG-SVAR with p lags:

Y jt =
p∑

�=1

B(k)
j j�Y jt−� +

∑

i �= j

p∑

�=1

B(k)
i j�Yit−� + C (k)

j Z jt +U (k)
j t , (1)

U (k)
j t = B(k)

j j0U
(k)
j t +

∑

i �= j

B(k)
i j0U

(k)
i t + ε

(k)
j t , ε

(k)
j t ∼ N (0, �(k)

j ) (2)

for t ∈ (τk−1, τk], where the structural error terms ε
(k)
j t are i.i.d. with covariance matrix �

(k)
j j

and such that the cross-unit covariance is null, i.e. Cov(ε
(k)
i t , ε

(k′)
js ) = �

(k)
i j i �= j , if s = t

and k = k′, and null otherwise. The (m × m)-dimensional matrices B(k)
j� , � = 1, . . . , p

contain the autoregressive coefficients, and the (q ×q)-dimensional matrix C (k)
j contains the

coefficients of the exogenous variables. The matrix B(k)
j j0 is full (non-symmetric) with zeroes

on the main diagonal and records the contemporaneous dependence between the endogenous
variables of the j th unit. The matrices B(k)

i j0 with i �= j are full (non-symmetric) and record
the contemporaneous dependence between the endogenous variables of the i th unit and the
other units. We define the CP-BMG-PSVAR as the collection of BG-PSVAR over the K
time intervals. In the next section, we provide the multiple-layer graph interpretation of our
CP-BMG-PSVAR.
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3.2 Amultilayer graphical SVAR

Graphs and graphical models are a convenient framework to represent the independence
structure in stochasticmodels. In the following, we definemultilayer graphs and introduce the
graphical components of theCP-BMG-PSVARgiven inEqs. (1) and (2). For each endogenous
variable h ∈ {1, . . . ,m}, lag � ∈ {1, . . . , p} and period k ∈ {1, . . . , K }, we introduce the
sequence of graphs G(k)

hh′,� = (V , E (k)
hh′,�), h

′ = 1, . . . ,m where a graph is defined as an

ordered pair of sets: the node set V = {1, . . . , N } and the edge set E (k)
hh′,� ⊂ V × V . The

elements of V are the graph nodes and represent the panel units. The elements of E (k)
hh′,�

are the edges (i.e., pair of nodes) that describe a statistical relationship between units in the
panel. The graph subscript index (h, h′) indicates a type of relationship between nodes, that
is, the statistical relationship between the hth and h′th endogenous variables.

Let A = {1, . . . ,m} be a collection of node features that is a set of endogenous variables
in our application. The sequence of graphs G(k)

� = {G(k)
hh′,�, (h, h′) ∈ A × A} is called a

multilayer graph, where G(k)
hh,� encodes the intra-layer connectivity, i.e., the statistical rela-

tionship between the same type of variable across panel units, and G(k)
hh′,�, h �= h′ encodes the

inter-layer connectivity, that is the relationship between different types of variables across
panel units.

Equations (1) and (2) can be operationalized as a model with an underlying multilayer
graphical structure, that is, a graphical model where the zero (non-zero) elements of B(k)

j�
indicate the absence (presence) of a statistical relationship between pairs of variables. This
paper relies on conditional linear dependence between pairs of variables. Let Yih,t and Y jh′,t
be the hth and h′th element of the vectors of endogenous variables Yi,t and Y j,t , respectively.
We say thatY jh,t−� �→ Yih′,t ifY jh does not influenceYih′ at lag � �= 0 and thatY jh,t �→ Yih′,t
whenYih andY jh′ are independent. IfY jh,t−� → Yih′,t then there is an edge between the nodes

i in the layer h and the node j in the layer h′, that is (i, j) ∈ E (k)
hh′� and if Y jh,t−� �→ Yih′,t

then there is not an edge that is (i, j) /∈ E (k)
hh′�.

The graphical structure can be encoded into a set of binary variables g(k)
hh′,i j,� ∈ {0, 1}

such that g(k)
hh′,i j,� = 1 if Y jh,t−� → Yih′,t and g(k)

hh′,i j,� = 0 if Y jh,t−� �→ Yih′,t . In our

CP-BMG-PSVAR model the (h, h′)th element b(k)
hh′,i j,� of the coefficient matrix B(k)

i j� is set
to zero if the two units i and j are not connected in the (h, h′) layer, that is:

b(k)
hh′,i j,� =

{
0 if g(k)

hh′,i j,� = 0

β
(k)
hh′,i j,� ∈ R if g(k)

hh′,i j,� = 1
(3)

for k = 1, . . . , K .
Our general multilayer graph model can provide information on inter-layer connectivity

and connectivity dynamics at different lags. In this paper, we do not investigate these aspects
further. We focus on intra-layer connectivity and collapse the lag dimension in a weighted
multilayer graph. Following the coefficient restrictions in (3), we define the null-diagonal
matrices W (k)

h ∈ R
N×N and A(k)

h ∈ {0, 1}mN×mN , whose (i, j)th elements are given by:

w
(k)
h,i j =

{
0, if i = j∑p

�=0 g
(k)
hh,i j,�, otherwise

, a(k)
h,i j =

{
0, if w

(k)
h,i j = 0

1, otherwise
, (4)
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where a(k)
h,i j specifies that Yhj → Yhi if there is either a contemporaneous or a directed edge

from j to i in the layer h at least in one of the lags. w
(k)
h,i j specifies the weights of such a

relationship obtained as a sum of the contemporaneous and lagged coefficients.

3.3 Model estimation

The CP-BMG-PSVAR model defined in Eqs. (1) and (2) can be written in a more com-
pact form stacking all unit variables in a vector. Define the mN × 1 and qN × 1 vectors
Yt = vec(Y1t , . . . , YNt ) and Zt = vec(Z1t , . . . , ZNt ), the (mpN + qN ) × 1 vector Xt =
vec(Yt−1, . . . , Yt−p, Zt ), the mN × mpN coefficient matrices B(k)′

� = (B(k)′
1� , . . . , B(k)′

N� ),

� = 0, 1, . . . , p with B(k)
j� = (B(k)

j1�, . . . , B
(k)
j N�), and the covariance matrix (�(k))′ =

(�
(k)
1 , . . . , �

(k)
N ) with �

(k)
j = (�

(k)
j1 , . . . , �

(k)
j N ). The definition of the binary matrices G(k)

+
and G(k)

0 follow similar arguments. The panel SVAR model can be written as

Yt = B(k)
+ Xt + (I − B(k)

0 )−1ε
(k)
t , ε

(k)
t ∼ N (0, �(k)) (5)

where B(k)
+ =(B(k)

1 , . . . , B(k)
p ,C (k)) ismN×(mpN+qN ).Defineϒ(k) =vec(ϒ(k)

1 , . . . , ϒ
(k)
N )

with elements ϒ
(k)
j = (ϒ

(k)
j1 , . . . , ϒ

(k)
j N ) and U (k)

t = vec(U (k)
1t , . . . ,U (k)

Nt ). It can be shown

that the relationship between the variance of the error termsU (k)
j t ,Var(U

(k)
t ) = ϒ(k) and the

structural coefficients B(k)
0 is given by ϒ(k) = (I − B(k)

0 )−1�(k)(I − B(k)
0 )−1′. The matrix

(I − B(k)
0 )−1 records the (in)direct contemporaneous effect of ε

(k)
t on Yt . A shock to Y jt can

only affect Yit if there is a contemporaneous link from Ykt to Yit .
Following theBayesian paradigmofAhelegbey et al. (2021), we estimate the change-point

VAR model via a collapsed Gibbs and approximate the posterior distribution by sampling
sequentially from the following conditional distributions:

[K , Vτ,K | Y ], [ G(k)
+ ,G(k)

0 | Y , K , Vτ,K , G(−k)
+ ,G(−k)

0 ],
[ B(k)

+ , B(k)
0 , �(k), �(k)

u | Y , K , Vτ,K ,G(k)
+ ],

where Vτ,K = (τ1, . . . , τK ) is the collection of change points. We sample the number of
change-points and their locations {K , Vτ,K } following the results in Ruggieri and Antonellis
(2016) and G(k)

0 , G(k)
+ , B(k)

0 , B(k)
+ , �(k), ϒ(k) following Ahelegbey et al. (2021). A detailed

description of the posterior approximation and the sampling methods is available in Aheleg-
bey et al. (2021).

4 Empirical results

4.1 Data description

In this study, we employ hourly prices observed on the Italian electricity market collected
from the managing body of the market (Gestore dei Mercati Elettrici, GME).3 The data spans
the period from March 2014 to December 2020. In addition, forecast electricity demand and

3 Data source: https://www.mercatoelettrico.org/en/Default.aspx.
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wind generation in the Italian zonal electricity market, obtained from the TSO Terna,4 have
been utilized in the framework of exogenous factors. Hourly data have been aggregated daily.
In this paper, following a widespread practice (see, for instance, Gianfreda & Grossi, 2012),
daily prices have been computed as a simple average of the 24h settlement prices resulting
from the day-ahead auctions. As it is well known, a simple average gives the same weight
to all hours of the day. The choice is motivated by adopting a neutral approach in estimating
the change points. Indeed, the smoothing effect of a daily average allows moving the scale
of the change detection to a large enough period while reducing the impact of intra-day
movements. The choice of a different approach, such as themedian orweighted average price,
could introduce some noise in the data, preventing the method from detecting true change
points. The focus of our analysis is on the six major physical zones, which comprise North
(NORD), Centre-North (CNOR), Centre-South (CSUD), South (SUD), Sardinia (SARD) and
Sicily (SICI) geographical zones. These zones are illustrated in Fig. 1. A corresponding time
plot of the different zonal electricity markets in terms of the average daily price evolution
and the volatility movements are displayed in Fig. 2a, b respectively. A glimpse at these
figures reveals some co-movements among the prices as well as the daily log-volatilities.
Furthermore, some sharp spikes can be observed during the period March 2015–March 2016
and along the second half of 2017. The period before March 2020 exhibits a downward trend
until some point in July of the same year, when we see an upward trend again. Similar up
and downward swings in the Italian zonal electricity market are prevalent in the log-volatility
and average daily price evolution. In addition, Fig. 3a, b present the graphical display of the
corresponding external factors for the different zones in relation to the forecast wind demand
and the forecast electricity demand, respectively. The trend in both figures for the different
zones tends to mimic each other. There are various pronounced spikes in both forecast wind
demand and forecast demand, especially in the first half of 2015. Along the overall period,
mild spikes are observed, with amore pronounced spike occurring in the third quarter of 2017
and 2019, respectively. The lock-down period captured in the second quarter of 2020 shows
significant negative spikes in forecast electricity demand in all zones, particularly remarkable
in the North and Center-North.

Breaking down these occurrences from a granular viewpoint, the year 2014 reveals the
characteristics of long-term trends, which is shown by the drop in consumption and the
explosion of renewables and the effects generated by the new unconventional production
of crude oil and gas on the fuels market, with the collapse of coal, the undocking of gas
prices on oil, and their convergence. Nonetheless, the main change, as explained by Gestore
Mercati Energetici (2014), seems to come from the dramatic disruption of the balance in the
world market of crude oil, which occurred only in the last quarter of 2014 with a potential
impact on the power and gas markets, which saw a fall in the demand for energy by 9% in
power and by 27% for natural gas, respectively.5 It is worth noting that the purchase price of
electricity (PUN) in the Power Exchange saw steep declines in the previous 2years (16.6% in
2013; and 17.3% in 2014), which indicates a slight recovery compared to an all-time low of
2014 with a corresponding price level at 52.31e/MWh (+ 0.4%). Themonthly average levels
varied between 47 and 56 e/MWh; however, an exception was observed in July when the
price amounted to 67.77 e/MWh. In addition, the price dynamics also show an overall low
variability of the PUN, which is reportedly changing by periodic and volatile peaks, which
intensified in July because of the exceptional heat wave experienced in the summer of 2015,

4 Data source: https://www.terna.it.
5 See Gestore Mercati Energetici (2014) for an overview.
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Fig. 2 Daily time series of logarithmic mean and logarithmic standard deviation of the electricity prices, in
North (NORD), Centre-North (CNOR), Centre-South (CSUD), South (SUD), Sardinia (SARD), and Sicily
(SICI), between March 1, 2014, and December 31, 2020

and thus lowered consumption to record levels, and the PUN to a monthly value among the
highest in the last 3years, pegged at 70 e/MWh (Gestore Mercati Energetici, 2015).

Notably, 2016 experienced a further step toward a full integration of European energymar-
kets, which is increasingly characterized by common and more harmonized trends within a
shared framework of standards and principles. These dynamics clear the electricity markets,
depicting a unique scenario, which reflects in trends of fuels and locally shaped by regional
characterizations. On the other hand, the price movements are reflected in a transitional reg-
ulatory environment toward the definition of new national energy savings targets and the
approval of new guidelines for evaluating efficiency projects; the market showed this in the
last quarter of 2016. This resulted in an upward and highly volatile dynamic that, in the
long-run (Gestore Mercati Energetici, 2016). On the other hand, 2017 exhibited signs of a
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Fig. 3 Daily time series of wind generation forecast and electricity demand forecast in North (NORD), Centre-
North (CNOR), Centre-South (CSUD), South (SUD), Sardinia (SARD), and Sicily (SICI), between March 1,
2014, and December 31, 2020. Log-transformed values

recovery in the energy markets with a positive outlook and effects of the European inte-
gration process. It showed signs of maturity in the spot market. Also, the Italian electricity
markets fit well into the European Single market framework (Gestore Mercati Energetici,
2017). Furthermore, in 2018, the trends recorded in the energy markets are in line with the
recent past, indicating a consolidation of the increases that emerged during 2017 and, at
the same time, highlighting, on the electricity side, further steps forward in the process of
European integration. The electricity market experienced further integration geared towards
the single European electricity market, which saw the strengthening of the PUN, pegged at
61.31e/MWh (Gestore Mercati Energetici, 2018). In 2019 the day-ahead and intra-day elec-
tricity markets and the gas spot market was affected by the introduction of the mechanism for
the integratedmanagement of guarantees (netting). This is a tool used by theGME to promote
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containment of the costs incurred by operators in terms of the financial guarantees required.
In addition, it simplifies the operational and management processes linked to participation
in the markets (Gestore Mercati Energetici, 2019).

On a global scale, the energy markets have been impacted by the health emergency linked
to the Covid-19 pandemic in 2020. In the European markets, this unique economic situation
inevitably resulted in a convergence of European gas prices and the continental electricity
markets due to their highly integrated nature. Furthermore, these markets also experienced
advanced coordination mechanisms activated by market coupling. In a similar context, the
Italian electricity market showed a marked reduction in demand, and the cost of gas has
pushed the PUN (38.92e/MWh,−25.6%) and its differential with foreign countries to an all-
time low. However, the market contained this anomaly, possibly due to an effective coupling
mechanism,which partially supports national production (GestoreMercati Energetici, 2020).

4.2 Preliminary data analysis

Let Pi,l,t be the observed price for the i th zone at the lth hour of day t . We construct daily
standard deviations (σi,t ) as a measure of realized volatility by:

σi,t =
√√√√ 1

N − 1

N∑

l=1

(Pi,l,t − P̄i,t )2, (6)

where P̄i,t is the average of Pi on the day t , and N is the total number of observations in a
day, i.e., N = 24. This formula was used to compute standard deviations for prices.

Table 3 provides the descriptive statistics for each physical zone of the first differences
applied to the log transformation of daily summaries related to prices (P), volatility (V),
forecast demand (FD), forecast wind (FW). For example, the range of minimum log-prices
returns is (−2.04, −0.86), where the extremes are observed in (SICI) and (NOR, CNOR,
CSUD), respectively. On the other hand, SICI shows the highest maximum log-price return
(+ 2.04), whilst the lowest maximum log-price return is exhibited by CNOR (+ 0.75). As
expected, SICI shows the highest log-price return variation (SD = 0.20). All the zones are
characterized bypositive skewness except P.SICI,which shows anegative skewness of−0.02.
In addition, the distributions of log-price returns in all the zones are leptokurtic, implying
a deep interest in exploring change points in the zonal market dynamics. The trends in log-
volatilities and log-returns are similar. However, the wind and demand forecast dynamics
differ somewhat from the log-returns and log-volatilities dynamics.

From the viewpoint of demand, the SUD zone exhibits the lowest (−1.00) and the highest
(+ 0.85) levels of change in the demand forecast for electricity. It is worth noticing that the
highest variation of the forecast demand is observed in the NORD zone (SD = 0.18). FD.SUD
and FD.SARD exhibit negative skewness, while in the remaining zones, skewness is positive.
All zones exhibit leptokurtic features, with SARD showing the highest excess kurtosis. The
forecast wind shows different characteristics from the rest, with high levels of variability in
the CSUD and SARD zones.

4.3 Change points in themarket

Table 4 lists the change point dates with their posterior probabilities and possible electricity
market events that characterize the identified dates. To achieve a better interpretation of the
change points, we compute the congestion cost per year and between consecutive change
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Table 3 Descriptive statistics of the first difference in log-prices, log-volatilities, log-forecast electricity
demand, and log-forecast wind generation for the North (NORD), Centre-North (CNOR), Centre-South
(CSUD), South (SUD), Sardinia (SARD) and Sicily (SICI)

Min Max Mean SD Skew Ex.Kurt

P.NORD − 0.86 0.82 6.57E−05 0.15 0.34 2.53

P.CNOR − 0.86 0.75 7.18E−05 0.15 0.20 2.89

P.CSUD − 0.86 0.85 7.21E−05 0.16 0.12 3.21

P.SUD − 0.97 1.29 6.10E−05 0.17 0.32 5.36

P.SARD − 1.29 1.31 7.21E−05 0.18 0.01 6.16

P.SIC − 2.04 2.04 −1.53E−05 0.20 − 0.02 10.48

V.NORD − 1.81 1.76 −5.90E−05 0.41 0.18 1.20

V.CNOR − 1.86 1.68 4.57E−05 0.43 0.02 1.26

V.CSUD − 1.85 1.63 4.53E−05 0.44 0.00 1.15

V.SUD − 2.29 1.94 3.57E−05 0.45 − 0.06 1.25

V.SARD − 2.46 2.18 4.53E−05 0.47 − 0.01 1.64

V.SIC − 4.00 2.99 −8.67E−05 0.51 − 0.21 7.41

FD.NORD − 0.46 0.54 −8.37E−05 0.18 0.56 0.16

FD.CNOR − 0.71 0.50 −3.43E−05 0.15 0.52 0.47

FD.CSUD − 0.65 0.54 −1.43E−05 0.10 0.43 1.07

FD.SUD − 1.00 0.85 −1.05E−05 0.10 − 0.18 8.14

FD.SARD − 0.67 0.60 4.64E−05 0.09 − 0.23 9.95

FD.SICI − 0.27 0.31 − 4.68E−06 0.07 0.08 0.48

FW.NORD − 4.75 4.64 −0.00014 0.82 0.16 1.21

FW.CNOR − 4.84 4.84 −0.00014 0.82 0.15 1.38

FW.CSUD − 11.78 11.85 0.000165 1.16 0.02 19.35

FW.SUD − 3.17 3.11 0.000211 0.71 − 0.02 0.38

FW.SARD − 10.47 10.13 −0.00015 1.03 0.06 13.32

FW.SICI − 6.47 5.50 2.54E−05 0.80 − 0.12 4.76

SD standard deviation, Skew skewness, Ex.Kurt excess kurtosis, R.* return, V.* volatility, FD.* forecast
demand, FW.* forecast wind generation in the * zone

points. The congestion cost is the difference between the zonal price and the National Unique
Price.6

Table 5 presents the average zonal congestion cost among the different geographical
zones. The congestion cost presents some interesting signals among the different zones. For
instance, CNOR, NORD, SARD, SUD show upward and downward trends. On the other
hand, a clear upward trend is observed in the SICI zonal market, at least from 2016 to 2019.
This is not surprising as the most frequent changes in structure were found between SICI and
SUD, whose interconnections were the most congested (see Table 2).7

All the change points identified in our modeling framework constitute periods where the
national average price was quite high in comparison with the majority of the zonal prices,

6 The National Unique Price, also called PUN (Prezzo Unico Nazionale), is the weighted average of the prices
observed in the physical zones.
7 https://www.mercatoelettrico.org/en/gme/biblioteca/RapportiAnnuali.aspx.
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Table 4 Change point dates with posterior probabilities and possible electricity market events

Dates Probability Energy market event

1 17/05/2014 0.909 RES explosion

2 06/10/2014 0.997 Crude oil market disruption

3 21/08/2016 0.565 Unavailability of French nuclear power and
European integration process

4 04/03/2019 1.000 Decrease in European oil and gas prices

5 14/03/2019 1.000 Further European integration process

6 04/06/2020 1.000 COVID 19 lockdown

7 14/06/2020 1.000 COVID 19 lockdown

Table 5 Average zonal cost of congestion per year (2014–2020)

NORD CNOR CSUD SUD SARD SICI

2014 − 1.8578 − 2.5045 − 3.2931 − 4.9210 0.5122 29.8527

2015 0.4018 − 0.8692 − 1.4619 − 2.8892 − 1.2502 5.2280

2016 − 0.1061 − 0.2234 − 1.1871 − 2.4065 − 1.1607 4.8464

2017 0.4592 0.1191 − 2.3426 − 4.1491 − 2.4793 6.8052

2018 − 0.5979 − 0.2458 − 0.3695 − 1.9345 − 0.6182 8.1768

2019 − 1.0760 − 0.0919 − 0.0483 − 1.4364 − 0.5290 10.4503

2020 − 1.1422 − 0.2286 0.7315 0.0741 0.0395 7.2503

Table 6 Average zonal congestion cost within change point windows (2014–2020)

Periods NORD CNOR CSUD SUD SARD SICI

02/03/2104–17/05/2014 0.8625 − 3.8041 − 4.4527 − 8.1313 − 4.1209 20.0892

18/05/2014–06/10/2014 − 2.9280 − 3.1968 − 4.5030 − 5.1344 3.3835 39.0872

07/10/2014–21/08/2016 − 0.4856 − 0.4271 − 0.7593 − 2.0390 − 0.6024 8.0473

22/08/2016–14/03/2019 0.1905 − 0.1751 − 1.6381 − 3.4825 − 1.7998 6.5648

15/03/2019–14/06/2020 − 1.1517 − 0.1636 0.4384 − 0.2543 − 0.2759 8.6532

15/06/2020–31/12/2020 − 1.4580 − 0.2353 0.6106 − 0.1309 0.1461 10.1116

therefore depicting a negative cost of congestion (Table 6).8 For example, CNOR, and SUD
always show negative congestion costs during the identified change points, while congestion
costs are negative in NORD, CSUD and SARD in four cases out of six. However, SICI shows
positive costs of congestion throughout. Making various deductions based on the trajectories
and the dynamics in the Italian zonal electricity market, the different change points identified
have possible economic interpretations.

The first change point (CP #1) constitutes the market’s explosion of RES. In this respect,
the GME has focused on compliance activities in relation to neutrality, transparency, objec-
tivity, and competition among the operators, coupled with activities aimed at adapting to the

8 In the calculation,we joined sample periods 4/3/2019–14/3/2019 and4/6/2020–14/6/2020with other periods,
since they have less than 30 observations, thus reducing the number of change points from7 to 5 and the number
of periods to 6.
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European single electricity market. This requires a change in market models, as well as the
harmonization of the current design of the Italian market with respect to the requirements for
implementing the EU Target Model. In particular, it was necessary to make several modifica-
tions to model the Italian electricity market to fit into the EU framework. For instance, it was
necessary to change the closing time of the MGP sessions and re-organize the sub-phases of
themarket that constitute theMPE. Furthermore, Terna, in her quest for the proper functioning
of the electricity market and the green certificates, made several regulatory transformations.9

All these amendments became effective on March 14, 2014.10

The rise in crude oil prices,which has been stable for years at around 110$/bbl, collapsed in
the last quarter of 2014 and attained a decreasing trend pegged at 50$/bbl at the start of 2015.
Indeed, this has a further ripple effect on other sectors of the economy and hence contributed
to the second change point (CP #2) identified by our statistical framework. A downward
trend in power prices was experienced in the Italian electricity market. For instance, in this
period, the PUN fell to the historical low of 52e/MWh in just 2years, with a decline of more
than 20 e/MWh. Other contributing factors include the compression of the costs of gas-fired
generation, whose impact at the zonal level was modulated locally by the different influences
of renewable supply and demand. Furthermore, 2016 highlights the adequacy of investments
in grids to accommodate future methods of transmitting and distributing electricity.

Alongside this, a reformof the input-basedmethodology has been implemented to promote
extensive possible regulation, which is results-oriented and has significant consumer benefits.
During the analyzed period, there was a high degree of integration in the European electricity
markets. For instance, in October 2016 and February 2017, the massive unavailability of the
French nuclear plants—has put the entire European electricity system under stress, causing
sudden spikes in prices everywhere, which could contribute to the turning point (CP #3) in
the Italian zonal market. In addition, comparing the Italian electricity demand in 2016 to the
one in 2014 seems to be relative with a −2.1 % reduction. Because of additional renewable
capacity, and the simultaneous investment in new (mainly renewable) production plants, a
drop in electricity consumption was observed. However, there was a reversal in this trend in
2016 and at the beginning of 2017 because of the French nuclear outages (combined with
high French demand), which led to a reduction in Italian imports, with a need for strong
domestic production.

The energy markets were characterized by strong and generalized bearish price dynamics
in 2019, which has been favored by a significant decrease in European oil and gas prices,
with subsequent large reductions in electricity prices. The Italian electricity markets saw the
PUN falling to levels of around 52 e/MWh. All these events and further integration of RES
contributed to the change points (CP #4) and (CP #5).

The final change points (CP #6) and (CP #7) detected relate to the COVID-19 pandemic,
whichput the global economy indisarray and inevitably resulted in a convergenceofEuropean
gas prices and the prices expressed by the continental electricity markets. There was amarked
demand reduction, and the cost of gas has pushed the PUN (38.92 e/MWh, −25.6%) and
its differential with foreign countries to an all-time low. In other words, Bigerna et al. (2022)

9 These regulations are aimed to standardize theprovisions in their disciplinarymeasures and apply to operators
on the electricity and green certificate markets who breach them.
10 This saw approval by the Decree of the Ministry for Economic Development of Economic Development
(hereinafter: MiSE) of August 6, 2014, setting forth “Amendments to the Integrated Text of the Integrated Text
of the Electricity Market Regulations”, having acquired the favorable opinion of the AEEGSI, expressed in
Resolution 350/2014/I/eel on “Opinion of the Authority for Electricity, Gas, andWater System to the Ministry
of Economic Development regarding amendments to the integrated text of the regulation of the electricity
market”.
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highlight that the Italian electricity market was characterized by a remarkable decrease in
demand during the COVID-19 lockdown, leading to negative peaks of over 50% and record
low prices of about 20 e/MWh.

4.4 Connectedness dynamics

A preliminary analysis of the Italian electricity market provides some evidence in favor of
variations and abrupt changes in market interdependence. More specifically, we measure
the connectedness by estimating our panel BG-SVAR on quarterly rolling windows of 90
days. We monitor the daily changes in connectedness by setting the increments between
successive rolling windows to 1day. Thus, we set the first window of our study from 2/3/2014
to 30/5/2014, followed by 3/3/2014 to 31/5/2014; the last window is from 3/10/2020 to
31/12/2020. In total, we consider 2,408 rollingwindows. To assess and compare networks, we
estimate the network density measure for each day of the sample period. The rolling-window
network density, the piecewise network density, and the change-point posterior probability
are given in Fig. 4.

As previously recalled, the number of change points has been reduced to 5 because we
merged windows with less than 30 observations with the previous ones.

The structures of themarket interconnection in the six periods are given in Fig. 5. Themul-
tilayer connectivity can be pictured as a block matrix interconnection of price and volatility.
In each matrix, the coefficient estimates measure the impact of prices and volatility at time t
(columns) on prices and volatility at time t + 1 (rows). Utilizing blocks of time series, zonal
market interconnection can result in four types of shock transmission pathways: price con-
nectedness effects in the upper-left block (log-transformed price � log-transformed price);
volatility connectedness, that is, volatility persistence and volatility spill-over effects in the
bottom-right block (volatility � volatility); leverage effects in the bottom-left block (log-
transformed price → volatility); inverse leverage effects in the upper-right block (volatility
→ log-transformed price).

We detected structural changes in the physical zones. Overall, different co-causality char-
acterizations can be observed between price and volatility. The transition from Fig.5a–f
indicates various structural changes experienced in the Italian electricity market in confor-

Fig. 4 Non-overlapping window (stepwise red, left axis) and rolling window estimation (solid green, left axis)
of the network density together with the posterior probability of a change point (solid gray, right axis) for each
day between 2/3/2014 and 31/12/2020. (Color figure online)
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Fig. 5 Sub-period Zonal Price and Volatility Interconnectedness in different periods. Dependent (explanatory)
variables are on the rows (columns). Elements in red (green) represent negative (positive) coefficients andwhite
elements for coefficients around zeros. (Color figure online)

mity with the change point windows. The changes in the macro-zones can be summarized as
follows.

• In the first and second periods (panels a and b), there is strong evidence of leverage
effect (log-transformed price → volatility) and some evidence of inverse leverage effect
(volatility → log-transformed price) with varying degrees of negative and positive asso-
ciations. There is also evidence of volatility spill-over effects, particularly in the first
period.

• In the third and fourth periods (panels c and d), there is strong evidence of leverage
effects with price changes at time t causing volatility at time t+1 and with high intensity
(red color), particularly in the fourth period. In the same periods, we find evidence of
volatility persistence and volatility spill-over effects among the markets. The inverse
leverage effect is no longer observed.

• In the fifth period (panel e), the structure of the linkages is similar to the one of the first
and second periods, with causal effects from price changes to volatility.

• In the sixth period (panel f), a block structure emerged, with strong inter-dependence
effects in the price layer and some volatility spill-over effects among some of the macro-
zones. Prices impact volatility only in a few zones (e.g., an increase in the NO returns
increases the volatility in the same zonal market and reduces volatility in the CN). There
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Fig. 6 Zoom of the plot in Fig. 4, February 2020–December 2020. The Stringency Index in the [0, 1] scale has
been added (blue line, right axis). The colors of the remaining series remain unchanged from Fig. 4. (Color
figure online)

is a fading of negative connectedness during COVID-19 compared to periods before
COVID-19, which could be due to more penetration of renewable geared towards net-
zero emissions and low electricity demand, as mentioned earlier.

To stress the final point of the above list, Fig. 6 shows an expanded elaborated (a zoom-
out) view of the last year of Fig. 4. In this plot, a new series is added representing the
dynamics of the “stringency index” (Mathieu et al., 2020).11 The restriction drop at the
end of May 2020 produces a decrease in market connectedness, detected in May by the
rolling-window network density and in June by the change-point network density. A simple
explanation could be as follows. Consider that in normal times, the six geographical zones of
the market are quite different in terms of electricity demand structure and prices, which are,
of course, influenced by the demand. Demand for electricity in the NORD zone is strongly
affected by the intense economic activity, while in the southern zone and islands, demand
from households is prevalent. Consequently, the connectedness among zones is quite low.
During the restrictions related to the first wave of COVID, the difference in demand structure
among zones has reduced because many firms were forced to close. Several papers pointed
out that during the first wave of restrictions, electricity demand dropped consistently in the
NORD zone and the CNOR, while it remained more or less stable in the remaining zones.
The reduction of demand in the NORD and CNOR has been reflected in prices too, which
have become more similar to those observed in the remaining zones. When the restrictions
have been relaxed, demand and prices have increased in NORD and CNOR. This reduced
the similarity with the other zones, as confirmed by the drop observed 1months later in the
connectedness index (red line) in Fig. 6.

4.5 Penetration of renewables and connectedness

The energy transition has gained momentum within the space of a few years and has there-
fore become a global phenomenon, which influences to a greater extent, the energy supply
structures across the globe. The energy sector is a major sector that plays a significant role
in this transition. For instance, the power sector is championing the transition with solar and

11 The stringency index is part of the Oxford COVID-19 Government Response Tracker (OxCGRT). This
dataset includes information on policy measures related to closure and containment, health, and economic
policy for more than 180 countries. Further details can be found in Hale et al. (2021).
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Fig. 7 Sup-period Impact of Renewable Penetration of zonal prices and volatility. (I) 2/3/2014–17/5/2014;
(II) 18/5/2014–6/10/2014; (III) 7/10/2014–21/8/2016; (IV) 22/8/2016–14/3/2019; (V) 15/3/2019–14/6/2020;
(VI) 15/6/2020–31/12/2020. Dependent (explanatory) variables are on the rows (columns). Elements in red
(green) represent negative (positive) coefficients and white elements for coefficients around zeros. (Color
figure online)

wind power, able to replace coal, natural gas, and nuclear energy as the world’s main energy
sources.

The results on shock propagation obtained with the multilayer analysis may reflect the
impact of the penetration of RES, various regulatory transformations accounting for the
further penetration of RES, and the impact of COVID-19 on the Italian electricity market. In
this section, we examine the role of renewables (Forecast Wind, FW) and Forecast Demand
(FD) in zonal market connectivity.

Figure 7 presents the graphical topological structures of these interconnections. The dif-
ferent windows of the change points accounted for are depicted in Fig. 7a–f. Panels (a) and
(b) in Fig. 7 maintain the persistence in volatility in the first and second change point window
identified in terms of the forecast demand and forecast wind with slight variations. However,
there was a dramatic change in persistence in the subsequent change-point windows. For
instance, Fig. 7c–f exhibit a mixed outcome.

The influence of RES (FW), shown in the second column of each panel, remains persistent
for the various windows of change points in varying degrees. In all periods, except period II
(panel b), we find strong evidence of the impact of renewable penetration on the zonal elec-
tricity prices and volatility (colored cells in Fig. 7). The forecast wind generation negatively
influences prices to varying degrees. This is expected as the increasing RES penetration in
the grid has a mitigating effect on prices: the price of wind is always set to zero and enters the
supply curve with a very lowmerit order. The effect was more pronounced during the last two
periods when the COVID spread reduced the demand and increased renewable penetration
in the grid. The further integration of RES in line with the single European electricity market
target model and the unavailability of French Nuclear Power, as discussed earlier in Sects. 4.1
and 4.3, resulted in negative influences on prices and partially on volatility. Indeed, it is worth
noticing that, during COVID, the increase in RES has a negative impact on volatility in sev-
eral zones, perhaps connected to the reduced influence of fossil fuel prices. The impact of
FW on volatility and prices in the remaining periods appears somewhat negligible.

The periods before COVID-19 and during COVID-19 detail a clear-cut reflection of fore-
cast demand on prices and volatility. For instance, while FW intensifies its negative impacts
on prices, FD continues to affect prices positively in all zonal markets with varying degrees of
intensity (green-colored cells). For instance, the periods duringCOVID incorporated the lock-
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down periods, where the markets were characterized by a remarkable decrease in demand
leading to low prices. However, the opposite case is observed in terms of volatility.

5 Conclusion

The COVID-19-related global crisis has heightened the importance of a reliable, cheap, and
secure electricity supply that can accommodate sudden changes in the behavior of the market
participants and in economic activity while continuing to support vital health and information
services. Efficient management ofmodern power systems requires accurate identification and
measuring of the risk factors in the energy market.

In this paper, we develop and apply a new econometric framework that relies on Bayesian
Graphical models with a two-layer network structure and a change point specification (called
the CP-BMG-PSVAR model) to achieve this goal. The model allows for two shock trans-
mission channels, log-price returns, and volatility contagion among the physical zones of the
Italian electricity market. The change-point specification accounts for abrupt changes in the
functioning of the market. Since our graphical model allows for identifying structural breaks
and extracting contagion, it is now possible to study the relationship between the dynamics
of the electricity demand and a COVID variable.

The application to the Italian zonal electricity market allows us to detect seven structural
breaks (change points) in the market and the shock transmission pathways. The breaks iden-
tify specific events, such as increased renewable penetration and disruption in the crude oil
markets (change points from 1 to 5), which greatly impact the congestion costs. During the
COVID-19 pandemic, the global energy market has suffered significantly from the impact
of the health emergency (change points 6 and 7).

If we focus on the period defined by the last change-point (06/14/2020), directly connected
to the removal of the constraints of the first lockdown, positive costs can be identified in the
CSUD, SARD, and SICI areas and negative costs in the remaining areas (see Table 6). Positive
costs imply an advantage for generators selling energy in those areas because the selling price
always equals the spot price higher than the PUN. As observed in Fig. 3, the lockdown led
to a particularly sharp reduction in electricity demand in the NOR and CNOR areas, where
demand from companies is very relevant. In this situation, congestion issues decreased with
a consequent leveling of zonal prices and extra-profit opportunities for generating plants in
areaswithmore transmission problems (especially SARDandSICI). Removing the lockdown
led to a recovery of electricity demand to pre-COVID levels in the NOR and CNOR areas,
where the economic activity resumed more strongly, with corresponding congestion costs
decreasing at the expense of CSUD, SARD, and SICI, where congestion costs changed sign
from negative to positive.

A further point that is worth analyzing regards the links of causation in the two-layer
analysis (prices-volatility) shown in Fig. 5. As mentioned, during the COVID period (first
and second half of 2020), the decrease in electricity demand has boosted the penetration of
RES, with low merit order, as marginal plants in creating equilibrium prices/quantities. One
of the effects has been the reduction of negative connectedness during COVID-19 compared
to periods before COVID-19 (see, Fig. 6).

Also, RES showed a persistent impact on prices and volatility, and these effects have
intensified during COVID-19. The approach is general and can find application in relation
to other markets, and thus provides a valuable tool for data-driven decision-support mecha-
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nisms, which are relevant for investors, regulators, and other market participants for policy,
regulatory changes, and investment decisions.

Future research could investigate the risk transmission mechanism underlying the recent
energy crisis caused by sudden increases in fossil fuel prices, partially related to the Russia-
Ukraine conflict. Themodel could be easily extended to analyze the risk transmission process
among national European electricity markets. This is somewhat relevant in view of the cre-
ation of a unique European electricity market. Finally, the change point model could be used
to study the pollution transmission among energymarkets starting from the analysis of carbon
emission time series at the European level.
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