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Abstract
Machine configuration is a crucial strategic decision in designing a flow shop system (FSS)
and directly affects its performance. This involves selecting device suppliers and determining
the number of machines to be configured. This study addresses a bi-objective optimization
problem for an FSS that considers repair actions and aims to determine the most suitable
machine configuration that balances the production reliability and purchase cost. A nondom-
inated sorting genetic algorithm II (NSGA-II) is used to determine all the Pareto solutions.
The technique for order preference by similarity to an ideal solution is then used to identify
a compromise alternative. It is necessary to assess the production reliability of any machine
configuration identified by the NSGA-II. The FSS under the machine configuration is mod-
eled as a multistate flow shop network, and Absorbing Markov Chain and Recursive Sum of
Disjoint Products are integrated into the NSGA-II for reliability evaluation. The experimen-
tal results of solar cell manufacturing demonstrate the applicability of the proposed hybrid
method and validate the efficiency of the NSGA-II compared with an improved strength
Pareto evolutionary algorithm.
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1 Introduction

Aflowshop system (FSS) is amanufacturing system that usually includesmultiple production
lines to share the order demand for a single product (Brammer et al., 2022; Dios et al., 2018;
Dolgui et al., 2021). Several workstations implement different processes in a production line,
and each workstation comprises several identical machines (Yu et al., 2018). Because each
machine may operate to provide a capacity or fail with a probability, the production capacity
of each workstation hasmultiple states that follow a binomial probability distribution. Hence,
the FSS can be modeled as a multistate flow network (Lin &Chang, 2012; Lin &Chen, 2022;
Nguyen, 2022), namely, themultistate flow shop network (MFSN). In some industries, such as
the printed wire-board and automobile manufacturing industries, defective work-in-process
(WIP)/productions may be produced in specific workstations because of yield rates; they are
then mostly repaired from the indicated workstations as much as possible to reduce the waste
of being scraped (Hadjinicola, 2010; Sarker et al., 2008). Accordingly, Lin and Chang (2015)
proposed the production reliability, which is defined as the probability that d units of order
demand can be manufactured by an MFSN with repair actions.

The design of an FSS involves the manufacturing system configuration. The concept of
manufacturing system configuration is multifaceted and encompasses various aspects, such
as the physical arrangement of machines, machine selection, and task assignment (Saxena &
Jain, 2012). In particular, machine configuration is a significant consideration in manufac-
turing system design, and traditionally, it involves decisions regarding appropriate machine
types/suppliers and configuration of the number of machines (Chan et al., 2005; Chehade
et al., 2012). Bukchin and Tzur (2000) developed an exact branch-and-bound algorithm and
heuristic procedure to address the problem of machine selection and task assignment in a
flexible assembly line to minimize the total machine cost. Bukchin and Rubinovitz (2003)
extended their study to address the machine configurations in the FSSs, including the parallel
workstation configurations. They proposed an integer linear programmingmodel and branch-
and-bound algorithm to minimize the number of workstations and total cost. Li et al. (2011)
introduced the hierarchical compositional properties of components assembled in repetitive
patterns during the automotiveLi-ion battery packmanufacturing. They developed a recursive
algorithm to generate processing sequence planning and machine configurations, minimize
machine investment costs, and potentially increase the system throughput.Hossain andSarker
(2016) considered a multistage manufacturing system with an inspection station at the end
of the production line to make decisions regarding defective products. They formulated a
fractional mixed-integer nonlinear programming problem to minimize the unit cost of pro-
duction by determining the optimal number and locations of offline rework stations. Oesterle
et al. (2019) addressed the machine configuration problem by considering product design
alternatives and assembly-line balancing. They proposed a detailed mathematical cost model
to quantify the complex and interconnected consequences of product design, manufacturing
technology, and process choices in a single-cost metric. Several metaheuristic algorithms,
including the evolutionary algorithms, ant colony optimization, and artificial bee colonies,
have been compared to solve this problem. Niroomand (2021) discussed the machine config-
uration problem while considering assembly line balancing to minimize the costs of station
setup andmachine purchase. This study aims to determine the optimal machine configuration
decision and employs a combination of an artificial electric field algorithm and simulated
annealing to solve this problem.Overall, studies related to themachine configurations assume
that the machine states are deterministic. In addition, no study has simultaneously considered
the decisions regarding machine types/suppliers and number of configured machines.
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Because machine states are stochastic (Lin & Chang, 2012; Lin & Chen, 2022; Nguyen,
2022), designing a reliable FSS considering the machine configuration is a critical challenge.
Thus, it is necessary to maximize the production reliability of the FSS. Yeh et al. (2023)
utilized a genetic algorithm to solve a reliability-orientedmachine configuration problem for a
manufacturing system. However, assigning machines to workstations incurs high purchasing
costs (Bajestani et al., 2009). Thus, the tradeoff between reliability maximization and cost
minimization must be considered. Although Lin et al. (2019) discussed an issue related to the
reliability and cost of a bi-objective machine configuration problem, they assumed that the
manufacturing system had no repair actions. Accordingly, our study addresses the machine
configuration problem of production reliability and total purchase cost optimization for an
FSS with repair actions.

This problem involves the evaluation of the production reliability of an MFSN and
determination of the optimal machine configuration. When searching for a machine con-
figuration, it is necessary to evaluate production reliability. Lin et al. (1995) stated that the
multistate flow network reliability evaluation problem is NP-hard. The production reliabil-
ity evaluation problem is a typical multistate flow network reliability evaluation problem;
therefore, it is NP-hard (Lin & Chang, 2015). Zhang and Bard (2006) and Jahromi and
Tavakkoli-Moghaddam (2012) indicated that the machine configuration optimization prob-
lem for manufacturing systems is NP-hard. Therefore, the problem to be addressed must
be NP-hard. Lin et al. (2017) and Yeh et al. (2017) evaluated production reliability through
the analysis of minimal-consumed capacity patterns for demand d (d-MCCPs), which are
derived from the raw material/WIP/product flow into each workstation by integrating a path
decomposition method of Lin and Chang (2015). Subsequently, the recursive sum of disjoint
products (RSDP) calculates the union probability of the d-MCCPs to obtain the production
reliability. The path decompositionmethod separates a production line into normal and repair
paths to determine the flow processed by each workstation. If z repair actions exist, the path
decomposition method generates 2z paths, including one normal path and 2z − 1 repair paths
for a production line (Lin & Chang, 2015). The computation of the flow traveling through
each workstation is time-consuming, with more workstations and repair actions in each pro-
duction line. Instead, by referring to Bowling et al. (2004) and Pillai and Chandrasekharan
(2008), we adopt the AbsorptiveMarkov Chain (AMC) to determine the flow transition status
between a pair of workstations to obtain the input flow of each workstation in the MFSN
without enumerating all the regular and repair paths.

However, because the addressed machine configuration problem is NP-hard, it must be
solved in a reasonable time using metaheuristic algorithms, such as the genetic algorithms,
particle swarm optimization, and simulated annealing (Juan et al., 2015). Our problem is also
bi-objective. For different types of bi-objective optimization problems, the Nondominated
Sorting Genetic Algorithm II (NSGA-II) has usually presented better efficiency than that of
the several well-known multi-objective metaheuristic algorithms, such as the multi-objective
evolutionary algorithm based on the decomposition and improved strength Pareto evolution-
ary algorithm (SPEA2) (Lin et al., 2019; Liu et al., 2020; Silva et al., 2022; Yeh, 2020). Ma
et al. (2023) highlighted the advantages of the NSGA-II: (1) it maintains the spread of the
solutions, and (2) converges to the exact nondominated solutions well. Although Deb and
Jain (2014) extended the NSGA-II to propose NSGA-III, it is more suitable for handling
multi-objective (having four or more objectives) problems. Thus, the NSGA-II is used to
search for the Pareto solutions to the addressed bi-objective problem. However, the output
from the NSGA-II is a nondominated/Pareto set, and system administrators always need to
select an alternative from the set (Lin & Yeh, 2012). Our study uses the technique for order
preference by similarity to an ideal solution (TOPSIS) (Hwang et al., 1993) to determine a
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compromise alternative. TOPSIS is widely used in multi-criteria decision-making because
of its well-founded logical structure, simultaneous consideration of ideal and non-ideal solu-
tions, and ease of calculation. Unlike other methods, TOPSIS provides a comprehensive view
of alternatives by assigning individual values to each, thereby enabling a better understanding
of the differences between the alternatives and varying criteria (Durak et al., 2022).

To address the problem of FSS with repair actions, this study proposes a novel method
that combines the AMC, RSDP, NSGA-II, and TOPSIS. The subsequent sections present
the network model and optimization formulation (Sect. 2), production reliability evaluation
based on AMC and RSDP (Sect. 3), NSGA-II procedure (Sect. 4), and TOPSIS approach for
selecting a compromise alternative (Sect. 5). To demonstrate the effectiveness of our hybrid
method, we apply it to a practical case of solar cell manufacturing (Sect. 6) and compare the
efficiencies of NSGA-II and SPEA2. Finally, we summarize our conclusions in Sect. 7.

2 Bi-objective machine configuration optimizationmodeling for FSS

The FSS can be described as a network (N, A) with w production lines, L1, L2, …, Lm to
produce the same product, and n workstation in each production line, in which N = {nj,i | j
= 1, 2, …, w, i = 1, 2, …, m} represents a set of m workstations/nodes and A represents the
set of arcs/transport devices. The workstation nj,i signifies the process i in production line
Lj. Let Ij and Oj denote the raw material input and product output of Lj for j = 1, 2, …, m,
respectively. In each production line Lj, there are z repair workstations,n j,β1 , n j,β2 , …, n j,βz ,
with βe ∈ {1, 2, …, m}. If defect product flow is detected at the repair workstation n j,βe , it
will be repaired from a pointed workstation n j,αe to the workstation n j,βe for e = 1, 2, …,
z, where n j,αe is the initial node of the repair node n j,βe with αe ∈ {1, 2, …, βe}. Figure 1
illustrates a general FSS network with two production lines to process raw material inputs
of I1 and I2 and then generate the product outputs of O1 and O2. Each production line has
two black nodes denoting the repair workstations.

For each process i, qi device suppliers supply the machines. Each machine has four
features: purchase cost cu,i, machine reliability ru,i, production capacity hu,i, and yield rate
pu,i for u = 1, 2, …, qi and i = 1, 2, …, m. Let X = (x1,1, x2,1, …, x1,m, x2,1, x2,2, …,
x2,m, …, xw,1, xw,2, …, xw,m) be a supplier selection with xj,i ∈ {1, 2, …, qi} signifying the
index of the selected supplier for the workstation nj,i. Then, let Y = (y1,1, y2,1, …, y1,m, y2,1,
y2,2, …, y2,m, …, yw,1, yw,2, …, yw,m) denote a machine amount pattern with yj,i ∈ {1, 2,
…, M

x j,i
i } representing the number of machines provided by the supplier xj,i, where M

x j,i
i

expresses the available quantity of machines supplied by the supplier xj,i. The pair (X, Y)
is represented as a machine configuration. We denote C(X, Y) as the total purchase cost of

Fig. 1 A general FSS network with two repair workstations
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machine configuration (X, Y) and formulate it as:

C(X,Y) =
∑w

j=1

∑m

i=1
cx j,i y j,i , (1)

where cx j,i y j,i indicates the purchase cost of nj,i.
Associated with the machine configuration (X, Y), each workstation with several identical

machines hasmultiple capacity states. Therefore, FSS network (N,A) is viewed as anMFSN.
Let S = (s1,1, x2,1, …, s1,m, s2,1, s2,2, …, s2,m, …, sw,1, sw,2, …, sw,m) be the current capacity
vector of (N,A), where sj,i is the production capacity ofworkstation nj,i andmay be 0, hx j,i ,i , 2
hx j,i ,i ,…, or y j,i hx j,i ,i . The following equation defines the probability of production capacity
sj,i.

Pr
(
s j,i = τhx j,i ,i

) =
(

y j,i

τ

)(
rx j,i ,i

)τ (1 − rx j,i ,i
)y j,i −τ

, (2)

where τ ∈ {0, 1, 2, …, yj,i} indicates the number of regular machines in nj,i. Let S denote
the set of all the capacity states of (N, A) successfully manufacturing order demands d
associated with machine configuration (X, Y). The production reliability of configuration
(X, Y) is defined as:

R(d, (X,Y)) =
∑

S∈S(X,Y),d
Pr(S), (3)

where Pr(S) = Pr(s1,1) × Pr(s1,2) × … × Pr(sw,m), and Pr(sj,i) is calculated using Eq. (2).
According to the network model described earlier, the following mathematical model is

built to describe the bi-objective problem:

Maximize R(d, (X,Y)) =
∑

S∈S(X,Y),d
Pr(S), (4)

Minimize C(X,Y) =
∑w

j=1

∑m

i=1
cx j,i ,i y j,i (5)

Subject to
∑

j :x j,i =u
y j,i ≤ M

x j,i
i for u = 1, 2, . . . , qi and i = 1, 2, . . . , m,

(6)

x j,i ∈ {1, 2, . . . , qi } for j = 1, 2, . . . , w and i = 1, 2, . . . , m, and (7)

y j,i ∈
{
1, 2, . . . , M

x j,i
i

}
for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (8)

Equations (4) and (5) are the objective functions of production reliability and purchase
cost. Constraint (6) expresses that the number of machines supplied by each supplier cannot
exceed the available quantity. Constraints (7) and (8) limit the domains of decision variables
xj,i and yj,i, respectively.

Assumptions

(1) Each transport device is perfectly reliable.
(2) The defective product flow from the repair workstation n j,βe must be repaired from the

pointedworkstation n j,αe and can only be repaired once. This implies that such defective
flow is repaired until a usable state is reached. If the defective flow after reworking is
still defective, it is non-reparable and is scrapped (Lin & Chang, 2013).

(3) The machines configured to workstation nj,i must be from the same supplier to ensure
consistency in product quality.

(4) The states of the different workstations under machine configuration (X, Y) are statis-
tically independent.
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Fig. 2 The framework of the
hybrid method

(5) Owing to the distributed nature of production lines, the movement of products within
one production line cannot be transferred to other production lines.

Figure 2 illustrates the framework of the proposed hybrid method. The NSGA-II searches
for the optimal machine configuration, as described in Sect. 4. The AMC and RSDP calculate
the production reliability for each machine configuration generated by the NSGA-II, which
is discussed in Sect. 3.

3 Production reliability evaluation using AMC and RSDP

Calculating the production reliability R(d, (X, Y)) = ∑
S∈S(X,Y),d

Pr(S) may be time-
consuming or result in an out-of-memory error because it requires enumerating all S ∈ S.
Lin and Chang (2015) and Yeh et al. (2017) hence recommended searching for all d-MCCPs
and then expressing the production reliability as a union probability of all d-MCCPs, where
each d-MCCPs is the minimum vector in S. This section proposes an AMC-based approach
integrated with the RSDP to compute the production reliability for a machine configuration
(X, Y). An AMC-based approach is used to enumerate all d-MCCPs. The union probability
of all d-MCCPs is driven by the RSDP.

3.1 AMC-based approach to determine d-MCCPs

Let� j,e = {n j,αe , n j,αe+1,…, n j,βe−1, n j,βe} be a set of sequentialworkstations for the repair
process from n j,αe to n j,βe . An AMC transition matrix of production line Lj, denoted by Bj,
comprises four elements: the transient-to-transient status matrix Uj , transient-to-absorbing
status matrix Vj, zero matrix 0, and identity matrix I, which is represented as:

B j =
[
U j V j

0 I

]
, for j = 1, 2, . . . , w. (9)

The AMC transition matrix owns m + ∑z
e

∣∣� j,e
∣∣ + 2 statuses. The transient-to-transient

status matrix Uj is m + ∑z
e

∣∣� j,e
∣∣-by-m + ∑z

e

∣∣� j,e
∣∣. Each element in Uj represents the

transition probability of an ordered pair of transient statuses (workstations). There are m
transient statuses in the normal process of the production line Lj. The transient-to-absorbing
status matrix Vj is m + ∑z

e

∣∣� j,e
∣∣-by-2, where “2” means both absorbing statuses: the flow

is scrapped, or the product is successfully produced. All transition probabilities in Uj and Vj

are assigned according to the yield rates of machine configuration (X, Y). Each element inVj

represents the transition probability from a transient status to an absorbing status. The zero
matrix 0 is 2-by-m + ∑z

e

∣∣� j,e
∣∣, and I is a 2-by-2 identity matrix. Based on the definition of
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the AMC transition matrix, each production line consists of m + ∑z
e

∣∣� j,e
∣∣ + two statuses

for j = 1, 2, …, w.
The expected value matrix of production line Lj is denoted by Tj and is expressed as:

T j = [
I − U j

]−1
, for j = 1, 2, . . . , w. (10)

Each element in the first row and ηth column of Tj, denoted by t j
1,η, is the expected value

of one unit of product flow arriving at the ηth transient status from the first transient status.
Subsequently, the absorption probability matrix denoted by Ej is expressed as:

E j = T jV j , for j = 1, 2, . . . , w. (11)

Elements E j
1,1 and E j

1,2 in the first row of Ej signify the probability of scrap flow and
successful production of a finished product, respectively.

Let Î = (I1, I2, …, Iw) be an input raw material vector and F = (f 1,1, f 1,2, …, f 1,m, f 2,1,
f 2,2, …, f w,m) be a flow vector, where f j,i is the product flow processed by the workstation
nj,i. Because there are w production lines to share the demand d, the following constraint
must be satisfied:

d =
∑w

j=1
d j , (12)

where dj is the amount shared by the production line Lj. Let d = (d1, d2, …, dm) be the
demand vector satisfying Constraint (12). It is necessary to determine the required input
vector Î and flow vector F to obtain all d-MCCPs based on the yield rates. Considering
probability E j

1,2, the necessary raw material input Ij of production line Lj to manufacture dj

is computed as:

I j = d j/E j
1,2 for j = 1, 2, . . . , w. (13)

Assuming the statuses of production line Lj as 1, 2, …, and m + ∑z
e

∣∣� j,e
∣∣ + 2. Let �j,i

be a set of the statuses related to workstation nj,i. Each product flow f j,i can be determined
as:

f j,i = I j

∑
η∈Φ j,i

t j
1,η, for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (14)

Under the machine configuration (X, Y), flow vector F generated by Eq. (14) should fulfill
the following maximal production capacity constraint:

f j,i ≤ y j,i hx j,i ,i , for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (15)

Any F that does not satisfy Constraint (15) implies that the FSS network (N, A) cannot
fulfill the corresponding demand vector d = (d1, d2, …, dm). For convenience, let F = {F|F
fulfilling Constraint (15)}. Any production capacity vector S transformed from a flow vector
F ∈ F via Eq. (16) is regarded as a d-MCCP (Lin & Chang, 2015).

s j,i = ωhx j,i ,i if (ω − 1)hx j,i ,i < f j,i ≤ ωhx j,i ,i with ω ∈ {0, 1, 2, . . . , y j .i }
for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (16)

The following solution procedure based on the AMC methodology is used to determine
all the d-MCCPs.

AMC-based approach

Input: (1) Order demand d.
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(2) FSS network (N, A): (i) production lines L1, L2, …, Lm, (ii) repair workstations n j,β1 ,
n j,β2 , …, n j,βz , and (iii) initial workstations n j,α1 , n j,α2 , …, n j,αz .
(3) Machine configuration (X, Y) with each configured machine’s production capacity hx j,i ,i

and yield rate px j,i ,i .

Step 1. Use Eq. (17) to compute the probability of each workstation state under the machine
configuration (X, Y).

Pr(s j,i = τht j,i ,i ) =
(

y j,i

τ

)
(rx j,i ,i )

τ (1 − rx j,i ,i )
y j,i −τ for t = 0, 1, 2, . . . , y j,i ,

j = 1, 2, . . . , w, and i = 1, 2, . . . , m. (17)

Step 2. Calculate the probability of each status for all the production lines.

1.1. Build the AMC transition matrix Bj for each production line.

B j =
[
U j V j

0 I

]
, for j = 1, 2, . . . , w. (18)

1.2. Calculate the expected value matrix Tj for each production line.

T j = [
I − U j

]−1
, for j = 1, 2, . . . , w. (19)

1.3. Calculate the absorbing probability matrix Ej for each production line.

E j = T jV j , for j = 1, 2, . . . , w.

The element E j
1,2 in Ej represents the probability of successfully producing a

finished product using production line Lj.

Step 3. Find all demand patterns d = (d1, d2, …, dw) that satisfy the following constraints.

d =
∑w

j=1
d j . (20)

Step 4. Compute the required raw material input vector Î and product flow vector F for
each feasible demand pattern d obtained in Step 3 using the following equations:

I j = d j/E j
1,2 for j = 1, 2, . . . , w. (21)

f j,i = I j

∑
η∈Φ j,i

t j
1,η, for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (22)

Step 5. Reserve the feasible flow vectors satisfying the following constraint.

f j,i ≤ y j,i hx j,i ,i , for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (23)

Step 6. Use Eq. (24) to transform F ∈ F into a d-MCCPs

s j,i = ωhx j,i ,i if (ω − 1)hx j,i ,i < f j,i ≤ ωhx j,i ,i with ω ∈ {
0, 1, 2, . . . , y j,i

}

for j = 1, 2, . . . , w and i = 1, 2, . . . , m. (24)

Output: All d-MCCPs.
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3.2 RSDP for production reliability computation

Let � = {S1, S1, …, Sκ}be the set of all d-MCCPs for configuration (X, Y). The production
reliability is reformulated using Eq. (25).

R(d, (X , Y )) = Pr
{⋃κ

i=1
{S|S ≥ Si }

}
, (25)

Such aunionprobability canbe computedusing the inclusion–exclusionprinciple (Hudson
& Kapur, 1985; Lin et al., 1995), disjoint-event method (Hudson & Kapur, 1985; Yarlagadda
& Hershey, 1991), state-space decomposition (Alexopoulos, 1995; Aven, 1985), and RSDP
(Bai et al., 2015; Zuo et al., 2007). The RSDP is proposed based on the sum of disjoint
products and has been validated as being more efficient than the other techniques for larger
networks (Zuo et al., 2007). Bai et al. (2015) later proposed ordering heuristics to improve the
efficiency. Hence, our study applies the improved RSDP to calculate the union probability by
inputting the d-MCCPs generated by the AMC-based approach, machine reliability rx j,i ,i ,
and production capacity hx j,i ,i . Details of the RSDP procedure can be found in Bai et al.
(2015).

4 NSGA-II to search for Pareto solutions

In the case of multiple conflicting objectives, a single solution may not exist with the optimal
objectives. Therefore, a tradeoff solution is required. The NSGA-II is proposed by Deb et al.
(2002) and is appropriate for bi-objective optimization (Chambari et al., 2021; Lin et al.,
2019). The NSGA-II uses a nondominated sorting method and crowding distance to rank the
chromosomes in the population, and then adopts the evolution process to obtain a Pareto set.

The following procedure illustrates the implementation of the NSGA-II to solve the prob-
lem, followed by subsections explaining its modules.

NSGA-II

Step 1. Generate an initial population, in which the representation of machine configuration
(X, Y) is extended to express a chromosome (see Sect. 4.1).

Step 2. For each chromosome (X, Y), evaluate R(d, (X, Y)) using the AMC-based
approach and RSDP (see Sects. 3.1 and 3.2, respectively), and compute C(X, Y) =∑w

j=1
∑m

i=1 cx j,i ,i y j,i .
Step 3. Rank the chromosomes in the population.

3.1. The nondominated sorting method is used to rank the chromosomes in the
population (see Sect. 4.2).

3.2. The crowding distance of each chromosome is calculated to represent its den-
sity (see Sect. 4.3).

Step 4. Implement the evolution process (see Sect. 4.4).

4.1. Parents selection.
4.2. Parents crossover.
4.3. Offspring mutation.
4.4. Repeat Steps 4.1–4.3 to generate enough offspring.

Step 5. Update population (see Sect. 4.5).
Step 6. Go to Step 4 if the terminal condition is not met; otherwise, output the Pareto set.
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4.1 Population initiation

The generation of a chromosome generates a pair consisting T and O. According to the
setting of the population size (Psize), the following equations must be repeated Psize times to
initialize the population:

x j,i = Rand(1, qi ) for j = 1, 2, . . . , w and i = 1, 2, . . . , m, and (26)

y j,i =
{

Rand(1, M
x j,i
i ) if j = 1

Rand
(
1, M

x j,i
i − ∑ j−1

a=1 ya,i

)
if j > 1

for j = 1, 2, . . . , w and i = 1, 2, . . . , m,

(27)

Rand(·) is a random function for selecting a random integer between the given intervals.
Equation (26) randomly selects a supplier for each workstation. In addition, according to
Eqs. (26), (27) then determines the number of configured machines limited to the remaining
quantity of each selected supplier.

4.2 Nondominated sorting

The nondominated sorting method ranks all the chromosomes in a population based on non-
domination. Let � = {1, 2, …, Psize} be a set of chromosome indices. For convenience,
R(λ) and C(λ) represent the production reliability and total purchase cost of chromosome λ,
respectively. The nondominated sorting method is described by the following pseudocode:
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Nondominated sorting method
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The four if–then rules within the second for-loop ensure that the chromosome with R(λ)
= 0 has a worse rank than that of the feasible ones, and all the infeasible chromosomes
are ranked according to the total purchase cost. After comparing all the chromosomes, the
chromosomes dominated by fewer chromosomes are assigned better ranks. The output of the
procedure is the rank of all the chromosomes.

4.3 Density evaluation

The crowding distance measures the density relationship between the chromosomes of same
rank. Identically ranked chromosomes are sorted according to the bth objective for b = 1 and
2. Subsequently, the crowding distance of the λth chromosome, denoted by CDλ is evaluated
as:

C Dλ =
∑2

b=1

λ,b, (28)

where 
λ,b is the distance of the λth chromosome with respect to bth objective, and is
calculated as:


λ,b =
{ Kλ+1,b−Kλ−1,b

Kmax
b −Kmin

b
if Kλ,b �= Kmax

b or Kλ,b �= Kmin
b ;

∞ otherwise.
(29)

where Kλ,b is the bth objective value of the λth chromosome, and Kλ+1,b and Kλ-1,b represent
the neighbors’ bth objective values of the λth chromosome. Themaximal andminimal values
of the bth objective in the chromosomes are denoted by Kmax

b and Kmin
b , respectively.

4.4 Evolution process

For selection, the NSGA-II randomly selects two chromosomes, λ and θ . Subsequently, the
following crowded comparison rule is employed to select the best chromosome according to
the rank and crowded distance attributes:

Crowded comparison rule Chromosome λ performs better than Chromosome θ if (Rankλ

= Rankθ and CDλ > CDθ ) or (Rankλ < Rankθ ).
Rankλ indicates the rank of the λth chromosome in the population. This selection process

maintains the species diversity.
The selection operator is repeated to select two chromosomes as parents. Based on the

crossover probability Cprob, parents may generate offspring with a uniform crossover, which
is a commonly used and well-convergent operator (Lim et al., 2017). Bortolini et al. (2022)
demonstrated that a uniform crossover can perform well in a manufacturing reconfiguration
problem. Figure 3 shows an example of implementing a uniform crossover. It generates a
w × m binary mask first, and then the gene sequences of the parents’ X and Y are reversed
according to the positions of the elements, with a value of 1 in the mask. If Constraint (6) is
not fulfilled, the offspring must be repaired to be noteworthy. For instance, workstations n1,4
and n2,4 choose the third supplier in offspring B. Then, the quantity of the third supplier in
the fourth process is five (i.e., q3 = 5). Because y1,4 = y2,4 = 6 > 5, y2,4 must be changed to
an arbitrary integer in the interval [1, 5 − y1,4].

The mutation operator may further mutate the offspring based on the mutation probability
Mprob. Figure 4 shows an example of this mutation. It also generates a w × m binary mask. If
a gene in the mask equals 1, the corresponding gene in X is mutated by randomly reselecting
another supplier. The corresponding position’s gene in Y is then randomly assigned a value
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Fig. 3 Crossover representation

Fig. 4 Mutation representation

that satisfies the available quantity of the supplier. The evolution process continues until a
total of Psize new chromosomes are produced. Step 2 is then used to compute the production
reliability and purchase cost of the new chromosomes.

4.5 Population update

After generating the new chromosomes, combining them with the current population results
in 2 × Psize chromosomes in the pool. Before updating the population to consist of Psize

chromosomes, Step 3 is adopted to evaluate the rank and crowded distance of the 2 ×
Psize chromosomes. Then, Psize chromosomes are selected from the pool according to their
ranks. However, suppose that the number of selected chromosomes exceeds Psize, then the
chromosomes with the worst rank and lower crowded distance are eliminated, such that the
number of selected chromosomes, which comprise the next population, is Psize.
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5 TOPSIS to determine the best compromise alternative

TOPSIS is a popularmethod for determining a compromise from a set of alternatives based on
multiple criteria (Tzeng&Huang, 2011). It defines the positive and negative ideal alternatives.
A positive ideal alternative can be identified as the combination of the highest maximal
production reliability and lowest purchase cost. Conversely, the negative ideal alternative
can be identified as a combination of the smallest production reliability and largest purchase
cost. The best compromise alternative has the shortest geometric distance from the positive
ideal alternative and longest distance from the negative ideal alternative. That is, TOPSIS can
rank nondominated solutions based on their geometric distances. The following procedure
uses TOPSIS to settle on a compromise alternative.

TOPSIS

Step 1. Construct a decision matrix G = [[g1,1, g1,2], [g2,1, g2,2], …, [gπ ,1, gπ ,2]], where π

is the number of Pareto solutions and gλ,1 and gλ,2 represent the production reliability and
purchase cost of the λth Pareto solution, respectively.
Step 2. Use the following equation to obtained a standardized decision matrix Ĝ = [[ĝ1,1,
ĝ1,2], [ĝ2,1, ĝ2,2], …, [ĝπ ,1, ĝπ ,2]].

ĝλ,b = gλ,b√∑π
i=1 g2

i,b

for l = 1, 2, . . . , p and b = 1, 2. (30)

Step 3. Use the following equation to create a weighted decision matrix G = [[g1,1, g1,2],
[g2,1, g2,2], …, [gπ,1, gπ,2]].

gλ,b = ĝλ,b × ŵb for λ = 1, 2, . . . , π and b = 1, 2, (31)

where ŵb is the weight of the bth objective. These weights can be determined either sub-
jectively or objectively. Analytic Hierarchy Process and information entropy are popular
objective weighting methods (Chen et al., 2020a; Yu et al., 2020).
Step 4. Determine the positive ideal alternative (g+

1 , g+
2 ) and negative ideal alternative (g−

1 ,
g−
2 ) as:

(
g+
1 , g+

2

) = (
max

(
g1,1, g2,1, . . . , gπ,1

)
,min

(
g1,2, g2,2, . . . , gπ,2

))
, and (32)

(
g−
1 , g−

2

) = (
min

(
g1,1, g2,1, . . . , gπ,1

)
,max

(
g1,2, g2,2, . . . , gπ,2

))
. (33)

Step 5. Calculate the geometric distance of each alternative to the positive ideal alternative
(g+

1 , g+
2 ) using Eq. (34).

G D+
λ =

√∑2

b=1

(
gλ,b − g+

b

)2
for λ = 1, 2, . . . , π. (34)

Step 6. Calculate the geometric distance of each alternative to the negative ideal alternative
(g−

1 , g−
2 ) using Eq. (35).

G D−
λ =

√∑2

b=1

(
gλ,b − g−

b

)2
for λ = 1, 2, . . . , π. (35)

Step 7. Calculate the relative proximity 
λ of each alternative using Eq. (36).


l = G D−
λ

G D+
λ − G D−

λ

for λ = 1, 2, . . . , π. (36)
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Step 8. Choose the alternative with maximum relative proximity as the compromise alterna-
tive.

6 Numerical experiments of solar cell manufacturing

Solar cell manufacturing typically follows a flow shopmodel with multiple parallel machines
at eachworkstation performing the same process (Chen et al., 2020b). The production line for
solar cell manufacturing involves eight steps: texturing, diffusion, phosphorus glass etching,
anti-reflective coating, screen printing, fast firing, edge isolation, and testing. In addition, the
production line includes three repair workstations for the second, third, and fourth processes.
If defectiveWIPflows are produced at theseworkstations, they are returned to the first process
for further processing (Raval & Reddy, 2019; Song & Lin, 2018). Figure 5 illustrates the FSS
network for solar cell manufacturing, which comprises two production lines. Table 1 presents
the technical specifications of the machines used in the process, which are sourced from the
solar cell device suppliers. These parameters are based on historical usage experience, or can
be obtained by requesting product information from the suppliers.

In this section, the applicability and efficiency of integrating the NSGA-II, AMC, RSDP,
and TOPSIS are demonstrated using a solar cell manufacturing case. All algorithms are
programmed in Python and executed on Windows 11, Intel Core i7-9700, CPU 3.00 GHz,
and 16 GB RAM.

6.1 Pareto set determination andmeasurement

This study considers three demand scenarios: d = 4,000, d = 5,000, and d = 6,000. For each
scenario, we perform ten trials using the NSGA-II and generate a reference set that includes
all the nondominated solutions in the 10 Pareto sets. Based on parameter recommendations
from bi-objective component assignment studies (Lin & Yeh, 2012; Lin et al., 2019; Yeh
et al., 2023), we set the NSGA-II parameters to (Psize, Cprob, Mprob) = (100, 0.6, 0.025).
During each trial, we run the NSGA-II for 1500 s.

To evaluate the quality of the obtained Pareto set, we employ three different metrics: the
number of solutions in the reference set (NSR), ratio of nondominated individuals (RNI),
and generational distance (GD) (Yeh, 2019; Yen & He, 2013). Let Pset be a nondominated

Fig. 5 The network model of the solar cell manufacturing system

123



Annals of Operations Research

Table 1 The machine data of the solar cell device suppliers

Workstation Supplier # Capacity
(pcs/per
hour)

Yield
rate

Operation
probability

Machine
cost
(10,000
NTD)

Machine
quantity

n1,1/n2,1 1 2000 0.983 0.9854 122 5

2 5000 0.978 0.9890 280 2

3 3600 0.974 0.9872 200 4

4 2200 0.985 0.9853 183 5

5 2400 0.979 0.9820 186 6

n1,2/n2,2 1 1600 0.974 0.9884 153 7

2 2000 0.978 0.9795 165 7

3 2000 0.969 0.9910 180 5

4 1000 0.975 0.9921 125 8

n1,3/n2,3 1 4000 0.968 0.9852 182 3

2 3600 0.973 0.9830 176 3

3 4000 0.976 0.9862 202 3

n1,4/n2,4 1 3600 0.977 0.9923 92 4

2 4800 0.979 0.9894 126 3

n1,5/n2,5 1 3000 0.994 0.9915 107 3

2 2800 0.998 0.9796 103 5

3 1400 0.993 0.9890 81 6

4 600 0.989 0.9920 62 10

5 990 0.988 0.9888 65 8

n1,6/n2,6 1 5300 0.986 0.9784 144 2

2 3000 0.988 0.9835 113 4

3 2100 0.984 0.9822 106 4

n1,7/n2,7 1 3600 0.986 0.9654 131 3

2 900 0.984 0.9788 75 7

3 1500 0.98 0.9817 112 6

n1,8/n2,8 1 1500 0.998 0.9863 67 7

2 2500 0.992 0.9830 92 5

3 1000 0.995 0.9745 61 8

4 3000 0.993 0.9780 106 6

set and Rset be a reference set, where all εi ∈ Pset and γ j ∈Rset are the normalized elements.
These three metrics are defined as:

NSR = |Pareto set ∩ reference set|, (37)

RNI = |Pareto set ∩ reference set|
|Pareto set| , and (38)

GD =
∑Psi ze

i=1

∑Rsi ze

i=1

(
εi − γ j

)2
. (39)
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A smaller GD, higher NSR, and higher RNI indicate a superior Pareto set. If all solutions
in the nondominated set are members of the reference set, GD is equal to 0 and RNI is equal
to 1.

Table 2 lists the result of each demand scenario with the three metrics. For each scenario,
the best trail, whose Pareto set has a lower GD, higher RNI, and NSR, has been marked bold.
In particular, these best trails have significantly better GA and RNI than those of the average
GD and RNI. Therefore, they can be used for further decision-making.

6.2 Compromise alternative selection

The TOPSIS can determine a compromise alternative from a set of solutions. Because the
compromise alternative involves two criteria–production reliability and total purchase cost,
it is necessary to set weights for both the criteria before executing TOPSIS. Suppose a system
administrator subjectively considers three weight settings: (ŵ1, ŵ2) = (0.8, 0.2) (reliability
preference), (ŵ1, ŵ2)= (0.2, 0.8) (cost preference), and (ŵ1, ŵ2)= (0.5, 0.5) (no preference).
According to the reference set for each demand scenario, as described in Sect. 6.1, we use
the TOPSIS to determine the compromise solution for each weight setting. The compromise
alternatives and corresponding machine configurations are listed in Table 3. Figures 6, 7
and 8 show the scatter plots of all the points in the three reference sets and highlight the
compromise alternatives for all the weight settings. This information can support the system
administrators’ decision-making. For example, if the system administrator expects that the
solar cell FSS has a production reliability of more than 0.98 and approximate budget of 4,
000 NTD (unit: ten thousand NTD), the machine configuration (X, Y) = ((1, 3, 1, 1, 1, 2,
2, 2, 1, 3, 2, 1, 2, 1, 1, 1), (1, 1, 1, 1, 1, 1, 3, 1, 4, 3, 2, 2, 3, 2, 3, 5)) can be considered
for the FSS design. In addition, as shown in Fig. 6, the compromise alternatives are more
inclined to lower costs under the three weight settings because each alternative has a higher
production reliability and less difference in production reliability. System administrators can
make decisions by focusing on purchase cost criteria.

6.3 Efficiency validation for NSGA-II

This subsection focuses on validating the efficiency of the NSGA-II. SPEA2 is an efficient
multi-objective genetic algorithm (GA) for optimization problems (Zitzler et al., 2001). The
SPEA2 is also a population-based multi-objective GA, similar to the NSGA-II, which adapts
significantly to our crossover and mutation operators (Biswas & Pal, 2021). In addition, the
SEAP2 has a domination-based framework similar to that of the NSGA-II, and thus can
maintain a great spread of solutions and converge well to the exact Pareto optimal front (Ma
et al., 2023). Thus, it is considered comparable to the NSGA-II. Under the same parameter
setting (Pisze, Cprob, Mprob) = (100, 0.6, 0.025) and terminal condition of 1500-s runtime,
the SPEA2 is also performed for ten trials for the three scenarios given in Sect. 6.1. For each
scenario, the Pareto set of the best NSGA-II trail is combined with one of the best SPEA2
trail to form a reference set. Then both methods’ GD, RNI, and NSR are calculated according
to the reference set and Eq. (37)–(39). Table 4 lists the reference set and three metrics for
both the methods. The SPEA2 can determine more nondominated solutions, such that it has a
better NSR. However, the NSGA-II performs better in terms of both the GD and NRI. Under
the same terminal conditions, the nondominated solutions from the NSGA-II usually belong
to the reference set. Therefore, the Pareto set from the NSGA-II is more informative in this
case.
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Table 2 The experimental results from the NSGA-II

Demand d = 4000 d = 5000 d = 6000

Analysis of 10 trials Size of reference set 28 19 30

Average GD 0.095634434 0.055931389 0.046817421

Average RNI 0.258739316 0.243981019 0.369102564

Trial 1 Size of Pareto set 10 11 6

GD 0.007512 0.036493 0.045215

NRS 7 1 3

RNI 0.7 0.090909 0.5

Trial 2 Size of Pareto set 9 7 9

GD 0.146881 0.062899 0.009053

NRS 0 2 6

RNI 0 0.285714 0.666667

Trial 3 Size of Pareto set 7 6 8

GD 0.10754 0.064532 0.027664

NRS 0 0 6

RNI 0 0 0.75

Trial 4 Size of Pareto set 10 9 13

GD 0.047459 0.13795 0.053374

NRS 1 0 4

RNI 0.1 0 0.307692

Trial 5 Size of Pareto set 9 7 8

GD 0.125693 0.111476 0.048443

NRS 3 0 1

RNI 0.333333 0 0.125

Trial 6 Size of Pareto set 12 8 11

GD 0.053699 0.03084 0.083051

NRS 4 2 0

RNI 0.333333 0.25 0

Trial 7 Size of Pareto set 8 7 15

GD 0.145574 0.027073 0.052101

NRS 4 3 2

RNI 0.125 0.428571 0.133333

Trial 8 Size of Pareto set 13 6 8

GD 0.125198 0 0.077082

NRS 5 6 3

RNI 0.384615 1 0.375

Trial 9 Size of Pareto set 9 8 6

GD 0.060851 0.05253 0.00342

NRS 1 0 5
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Table 2 (continued)

Demand d = 4000 d = 5000 d = 6000

RNI 0.111111 0 0.833333

Trial 10 Size of Pareto set 12 13 7

GD 0.135937 0.035521 0.06877

NRS 6 5 0

RNI 0.5 0.384615 0

*Numbers in bold indicate the best trial for the corresponding scenario

Table 3 The compromise alternatives determined by TOPSIS

Demand Weight Compromise alternative Corresponding machine
configuration

Production
reliability

Total purchase
cost

d = 4000 (0.2, 0.8) 0.979044345 3420 X= (1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1)
Y =
(3,4,2,2,2,2,3,4,1,1,1,1,1,2,1,1)

(0.5, 0.5) 0.979044345 3420 X= (1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1)
Y =
(3,4,2,2,2,2,3,4,1,1,1,1,1,2,1,1)

(0.8, 0.2) 0.98650787 3583 X= (1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,1)
Y =
(3,3,2,2,2,2,3,4,1,1,1,1,1,2,1,1)

d = 5000 (0.2, 0.8) 0.853830563 3478 X= (1,3,2,1,1,2,1,2,1,3,1,1,1,2,1,4)
Y =
(3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

(0.5, 0.5) 0.951245016 3705 X= (1,3,1,1,1,2,1,4,3,3,1,1,1,2,1,2)
Y =
(3,3,2,2,2,2,2,3,4,2,1,1,1,2,2,2)

(0.8, 0.2) 0.990810732 4002 X= (1,3,1,1,1,2,2,2,1,3,2,1,2,1,1,1)
Y =
(1,1,1,1,1,1,3,1,4,3,2,2,3,2,3,5)

d = 6000 (0.2, 0.8) 0.919476822 3919 X= (2,2,2,1,1,1,1,2,1,1,1,1,1,3,3,1)
Y =
(1,3,2,2,2,2,2,3,2,2,1,1,1,2,2,3)

(0.5, 0.5) 0.934157673 4014 X= (2,3,2,1,2,1,3,2,2,1,1,1,5,3,2,1)
Y =
(1,3,2,2,3,2,3,3,1,2,1,1,3,2,2,3)

(0.8, 0.2) 0.973047234 4296 X= (2,3,1,1,1,1,1,2,3,1,1,1,1,2,1,1)
Y =
(1,4,2,2,3,2,2,4,1,2,1,1,1,2,2,2)
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Fig. 6 The compromise alternative selection for d = 4000

Fig. 7 The compromise alternative selection for d = 5000

7 Conclusions

This study proposes a hybrid method that integrates the NSGA-II, AMC, RSDP, and TOP-
SIS to determine the reliability-cost-oriented machine configuration for an FSS with repair
actions. The problem addressed involves the evaluation of production reliability. The AMC-
based approach uses a transition matrix to calculate the required raw material input and
product flow traveling through each workstation according to the order demand d without
enumerating all the processing paths, as in the path decomposition method proposed by Lin
and Chang (2015). Subsequently, using this approach the d-MCCPs in terms of these flows
are determined. The RSDP then calculates the union probability of the d-MCCPs to acquire
the production reliability.
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Fig. 8 The compromise alternative selection for d = 6000

Table 4 Comparisons of the NSGA-II and the SPEA2

Demand d = 4000 d = 5000 d = 6000

NSGA-II SPEA2 NSGA-II SPEA2 NSGA-II SPEA2

Size of reference set 27 13 15

Size of Pareto set 10 22 6 11 6 14

GD 0.004331 0.016985 0 0.022563 0.016999 0.041453

NRS 9 18 6 7 5 10

RNI 0.9 0.818182 1 0.636364 0.833333 0.714286

The proposed method adopts NSGA-II to identify the Pareto solutions that balance the
production reliability and total purchase cost. To achieve this, we integrate the AMC and
RSDP into the NSGA-II for production reliability calculation. TOPSIS is then employed
to select a compromise alternative based on the given weights. In Sect. 6, we elaborate
the applicability of integrating the NSGA-II and TOPSIS. The information derived from
the hybrid method could support decision making regarding FSS design. Additionally, our
experimental results demonstrate that the NSGA-II is computationally more efficient than
the SPEA2, especially under the terminal condition of a 1500-s runtime. Overall, this study
makes the following contributions:

(1) The tradeoff between the production reliability and purchase cost in the machine con-
figuration of an FSS with repair actions is considered.

(2) A mathematical model of the addressed bi-objective problem is built, in which the FSS
with repair actions is modeled as a typical multistate flow network.

(3) An alternate way is proposed to evaluate production reliability by combining the AMC
with RSDP.

(4) A hybrid method that integrates the AMC, RSDP, NSGA-II, and TOPSIS to solve this
problem is built.
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(5) The applicability of our hybrid method using the solar cell FSS is illustrated.
(6) The superiority of NSGA-II over SPEA2 is demonstrated by comparing their efficiency.

In certain FSSs, the product flow can undergo multiple repairs in different production
lines. However, the proposed AMC-based approach is only applicable when the product flow
can be repaired at the same workstation. Future research could expand on this problem by
considering scenarioswhere the product flowcan undergomultiple repairs at other production
lines and then explore the impact of this situation on the production reliability.
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Appendix

A.1. Abbreviations

FSS Flow shop system

MFSN Multistate flow shop network

d-MCCP Minimal-consumed capacity patterns for demand d

WIP Work-in-process

RSDP Recursive Sum of Disjoint Products

AMC Absorptive markov chain

NSGA-II Nondominated sorting genetic algorithm ii

SPEA2 Improved Strength Pareto Evolutionary Algorithm

TOPSIS Technique for Order Preference by Similarity to an Ideal
Solution

NSR Number of solutions in the reference set

RNI Ratio of nondominated individuals

GD Generational distance
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A.2. Notations

w Number of production lines

m Number of workstations (processes) in each production line

Lj Production line #j

nj,i ith workstation in production line Lj

N {n j,i | j = 1, 2, ..., w, i = 1, 2, ..., m}: set of m nodes
(workstations), where v1 represents a source station and vm

represents a sink station

A Set of arcs (transport devices)

(N, A) FSS network

z Number of repairing workstations in each production line

Ij Raw material input of production line Lj

Oj Product output of production line Lj

Î (I1, I2, …, Iw): input raw material vector

βe Index of the eth repairing workstation in a production line, where e ∈
{1, 2, …., z}

n j,βe eth repairing workstation in production line Lj

αe Index of the initial workstation corresponding to the repairing
workstation n j,βe

n j,αe Initial workstation corresponding to the repairing workstation n j,βe

qi Number of equipment suppliers for the ith process

cu,i Assignment cost of the uth supplier for the ith process

ru,i Machine reliability of the uth supplier for the ith process

hu,i Production capacity of the uth supplier for the ith process

pu,i Yield rate of the uth supplier for the ith process

xj,i Index of the selected supplier for the workstation nj,i

X (x1,1, x2,1, …, x1,m, x2,1, x2,2, …, x2,m, …, xw,1, xw,2, …, xw,m):

yj,i Number of machines provided by the supplier xj,i

Y (y1,1, y2,1, …, y1,m, y2,1, y2,2, …, y2,m, …, yw,1, yw,2, …, yw,m)

(X, Y) Machine assignment (chromosome)

M
x j,i
i Number of machines provided by the supplier xj,i

C(X, Y) Total cost of machine assignment

sj,i Current production capacity of workstation

S Current production capacity vector

S(X, Y), d Set of production vectors meeting demand d under machine
assignment (X, Y)
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R(d, (X, Y)) Production reliability

Bj AMC transition matrix of production line Lj

Uj Transient-to-transient status matrix of production line Lj

Vj Transient-to-absorbing status matrix of production line Lj

0 Zero matrix

I Identity matrix

� j,e {n j,αe , n j,αe+1, …, n j,βe−1, n j,βe}: set of sequential workstations for
the repairing process from n j,αe to n j,βe

Tj Expected value matrix of production line Lj

Ej Absorbing probability matrix of production line Lj

f j,i Product flow processed by the workstation nj,i

F (f 1,1, f 1,2, …, f 1,m, f 2,1, f 2,2, …, f w,m): flow vector

dj Demand amount assigned to production line Lj

d (d1, d2, …, dm): order demand vector

�j,i Set of the statuses related to workstation nj,i

F(X, Y), d Set of feasible flow vectors satisfying the maximal capacity under
demand d and machine assignment (X, Y)

�(X, Y) Set of all d-mccps associated with (X, Y)

Psize Population size

� Set of chromosome indices in order

R(λ) Production reliability of chromosome λ, λ ∈ �

C(λ) Total assignment cost of chromosome λ, λ ∈ �

Dλ Index set of the chromosomes dominated by chromosome λ, λ ∈ �

Nλ Number of the chromosomes dominating chromosome λ, λ ∈ �

Ψ ρ Set of the chromosomes with rink ρ

CDλ Crowded distance of chromosome λ, λ ∈ �

Rankλ Rank of chromosome λ, λ ∈ �


λ,b Distance of chromosome λ regarding to the bth objective

Cprob Crossover probability

Mprob Mutation probability

kλ,1 Production reliability of the λth Pareto solution

kλ,2 Assignment cost of the λth Pareto solution

π Number of Pareto solutions

G Decision matrix

Ĝ Standardized decision matrix

G Weighted decision matrix
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ŵb Weight of the bth objective

(g+
1 , g+

2 ) Positive ideal alternative

(g−
1 , g−

2 ) Negative ideal alternative

G D+
λ Geometric distance of alternative λ to the positive ideal alternative

G D−
λ Geometric distance of alternative λ to the negative ideal alternative


λ Relative proximity of alternative λ
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