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Abstract
Understanding the mortality dynamics and forecasting its future evolution is crucial for
insurance companies and governments facing the risk that individuals might live longer than
expected (the so-called longevity risk). This paper introduces a neural network model that
allows an accurate modelling and forecasting of the mortality rates of many populations.
The neural network model we propose is designed to present a fully explainable structure,
allowing for understandinghowpredictions are formulated. Furthermore, themodel addresses
the problem of measuring and managing the divergence of the long-term forecasts of the
mortality rates arising when one decides to model the mortality of two or more populations
simultaneously. Indeed, formanymodels available in the literature, this divergencegrowsover
time, resulting in an ever-increasing trend in the gap in life expectancy among countries that
appear unrealistic and biologically unreasonable. The proposedmodel allows the construction
of analytical bounds for this divergence and illustrates that these bounds can be exploited
to analyse and measure the dissimilarities between two or more populations and identify
opportunities for longevity risk diversification. Numerical experiments performed using all
the data from theHumanMortalityDatabase data show that ourmodel producesmore accurate
mortality forecasts with respect to some well-known stochastic mortality models and allows
us to obtain valuable insights about the mortality pattern of the population considered.

Keywords Multi-population Neural mortality modelling · Neural networks · Coherence
mortality forecasting · Human Mortality Database

1 Introduction

The mortality rates of most countries worldwide are considerably decreasing in the last
few decades, mainly due to the improvements in medical technologies, hygiene, lifestyle
changes, and government regulation (Oeppen & Vaupel, 2002). Although these longevity
improvements are generally perceived as a benefit for society, they can also represent a
risk for insurance companies issuing life annuities and other products providing longevity
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insurance, and governments with social security pension obligations (Barrieu et al., 2012;
Devolder et al., 2021). Numerous stochastic mortality models have been developed in recent
years for capturing the longevity improvements. Among them, the Lee-Carter (LC) model
proposed in Lee and Carter (1992) is the most popular one. It is an extrapolative method that
describes the logarithm of the mortality rate as the sum of an age-specific base level and the
product of a time-varying index (period effect) and an age-modulating parameter (age effect).
This seminar paper estimates the parameters using the Singular Value Decomposition for the
model calibration. Projections of the future mortality rates are obtained by keeping constant
the age-specific parameters and extrapolating future values of the time index using ARIMA
models. Many variants and alternatives to the LC model have appeared in the literature.
Brouhns et al. (2002) embeds the LC model in a Poisson regression framework and suggests
a maximum likelihood estimator to overcome the heteroskedasticity issues associated with
theOLS estimator. Other authors identified a cohort effect inmortality data and recommended
enhancing the LC model by introducing an additional term to effectively capture and model
this phenomenon, as proposed in Renshaw and Haberman (2006). This effect pertains to
the impact of shared experiences or characteristics among individuals born in the same
year. However, introducing this term improves the forecasting performance only for some
populations. Koissi and Shapiro (2006) introduces an extension based on the fuzzy logic that
allows for the representation of uncertainty and imprecision in the observed data. We refer to
(Basellini et al., 2022) for a detailed and recent review of the topic. One of the main criticisms
of the LC model concerns the biological reasonableness of mortality forecasts when applied
to multiple populations simultaneously. Tuljapurkar et al. (2000) shows that applying the LC
method separately to the G7 countries produces divergent forecasts that highlight an ever-
increasing trend in the gap in life expectancy among these countries that appear unrealistic.
In this regard, Li and Lee (2005) proposes a multi-population extension of the LC model that
ensures long-term not-divergent forecasts among the populations. This property is generally
called coherence of the mortality forecasts, and it has been investigated in the literature,
see (Hyndman et al., 2013; Shi, 2023). However, this assumption could be suitable only for
specific groups of populations and over limited time windows and is generally perceived as
too restrictive when one needs to model jointly the mortality of a large number of populations
with different mortality patterns.

Recently, neural networks (NN) have been successfully applied to numerous fields, such
as computer vision (Madhav et al., 2023), natural language processing (Ahmed et al., 2022),
and operation research (Gupta et al., 2022). They have obtained notable results also in the
context of mortality modelling and forecasting. Their ability to analyse large amounts of data
and learn complex functional relationships make NNs promising tools, especially when a
large number of populations are considered simultaneously with complex mortality patterns.
Hainaut (2018) were pioneers in utilising neural networks for mortality forecasting. Since
then, the literature on this topic has expanded rapidly. Subsequent studies such as Nigri
et al. (2019, 2021) and Lindholm and Palmborg (2022) have further explored and refined
the application of NN in the single population framework. Some years later, Richman and
Wüthrich (2021), Perla et al. (2021), Scognamiglio (2022), Schnürch and Korn (2022) have
extended the approach by to encompassing a broader array of populationswith notable results.

While all these contributions show that neural networks generally outperform the other
statistical models in the forecasting tasks, little attention has be paid to the divergence of the
mortality forecasts and its measurement.

The contribution of this paper to the mortality modelling field is two-fold. First, we use
NN to improve the model flexibility and produce accurate mortality forecasts for a large
number of populations. Furthermore, the model allows to derive some bounds that measure
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and control the divergence of the mortality forecasts among the population considered. We
show that these bounds can also be used to measure the similarities of the mortality dynamics
of different countries. In this way, we can identify longevity risk diversification opportunities.
Themodel also presents an intuitive interpretation and allows to explain how theNNcomputes
the predictions. This aspect is relevant to encourage the application of NNs in actuarial
applications.
The agenda of the paper is the following: Sect. 2 two of the most popular mortality models,
Sect. 3 describes the neural network building blocks, Sect. 4 presents the proposed mortality
model and the NN architecture used for its calibration, Sect. 5 illustrates some numerical
experiments, and Sect. 6 concludes.

2 Stochastic mortality models

Let X = {x0, x1, . . . , xω} be the set of (integer) ages, T = {t0, t1, . . . , tn} be the set of
calendar years, and I = {pop1,pop2, . . . ,popI} be the set of the populations considered.
m(i)

x,t indicates the mortality rate at age x ∈ X at time t ∈ T related to the population i ∈ I.

Wediscuss themodels also in terms of coherence of themortality forecasts. Coherencemeans
that the ratio of the long-term predictions formulated at time t0 of the mortality rates of two
different populations maintains a constant ratio over time:

lim
H→+∞

m(i1)
x,t0+H

m(i2)
x,t0+H

= c, c ∈ R

for each age x ∈ X and two populations i1, i2 ∈ I.

2.1 No-coherence: independent Lee-Carter models

The simplest approach for modelling the mortality of multiple populations consists of apply-
ing independent single-population mortality models to each populations. In the case of the
LC model, the logarithm of the central death rate logm(i)

x,t ∈ R is defined as

logm(i)
x,t = a(i)

x + b(i)
x k(i)

t + e(i)
x,t , wi th i .i .d, e(i)

x,t ∼ N

(
0,

(
σ (i)
e

)2)

where a(i)
x ∈ R is the average age- and population-specific pattern of mortality, b(i)

x ∈
R represents the age- and population-specific sensitivity of the logarithm of the force of
mortality at age x to variations in the time index k(i)

t ; k(i)
t ∈ R is the population-specific time

index summarising mortality trend and e(i)
x,t ∈ R is the error term. The application of the LC

model requires a two-step procedure. First, the parameters are estimated according to the
OLS estimator by solving the optimisation problem:

argmin
(a(i)

x )x ,(b
(i)
x )x ,(k

(i)
t )t

∑
x∈X

∑
t∈T

(
logm(i)

x,t − a(i)
x − b(i)

x k(i)
t

)2

∀i ∈ I.

The authors propose a procedure based on the Singular Value Decomposition and suggest to
apply the following contraints to avoid identifiability issues:∑

x∈X
b(i)
x = 1

∑
t∈T

k(i)
t = 0.
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Second, to derive the forecasts of the mortality rates in a future year tn + H , H ∈ N, the LC
model assumes that the parameters (a(i)

x )x and (b(i)
x )x are constant over time, while the time

indices k(i)
t are modelled as Random Walk with Drift (RWD):

k(i)
t = k(i)

t−1 + θ(i) + ε
(i)
t wi th i .i .d, ε

(i)
t ∼ N

(
0,

(
σ (i)

ε

)2)

where θ(i) ∈ R is the population-specific drift term.Once themodel parameters are estimated,
mortality forecasts are obtained as:

log m̂(i)
x,tn+H = â(i)

x + b̂(i)
x

(
k̂(i)
tn + H θ̂ (i)

)
.

The difference at time tn+H between themortality rates at age x , i related to two populations
i1, i2 ∈ I is:

log
m

(i1)

x,tn+H

m
(i2)

x,tn+H

= [
a(i1)
x + b(i1)

x

(
k(i1)
tn + Hθ(i1)

) ] − [
a(i2)
x + b(i2)

x

(
k(i2)
tn + Hθ(i2)

) ]
,

= [
a(i1)
x − a(i2)

x

] + [
b(i1)
x k(i1)

tn − b(i2)
x k(i2)

tn

] + H
[
b(i1)
x θ(i1) − b(i2)

x θ(i2)
]
.

We note that the divergence can be decomposed in two terms: the term
[
ax,i1 − ax,i2

] +[
bx,i1ktn ,i1 − bx,i2ktn ,i2

]
is fixed, while the quantity H

[
bx,i1θi1 − bx,i2θi2

]
depends on H .

Then, this divergence increases indefintively over time and this result persists also when we
consider the male and female populations living in the same countries are considered.

2.2 Full coherence: the Li-Leemodel

Li and Lee (LL) (Li & Lee, 2005) proposed a multi-population extension of the LC model
where all the populations share the same age and period effects (b(i)

x = Bx ∈ R and k(i)
t =

Kt ∈ R,∀i ∈ I):

logm(i)
x,t = a(i)

x + Bx Kt + ν
(i)
x,t , wi th i .i .d ν

(i)
x,t ∼ N

(
0,

(
σ (i)

ν

)2)
. (1)

In this case, a(i)
x are estimated for each population individually, while Bx and Kt are obtained

by applying the ordinary LCmethod to the aggregate mortality rates of the whole group. Also
in this case, a two-step procedure is required to obtain forecasts, and the authors assume that
the dynamics of Kt is described with a RWD. Despite many other multi-population mortality
models are available in the literature (Dong et al., 2020; Schnürch et al., 2021; Cardillo et al.,
2022), we focus on the LL model since it requires the coherence of the mortality forecasts.
The authors also provide an extension of the model that includes an additional bilinear term
with population-specific parameters. In that case, the full model reads:

logm(i)
x,t = α(i)

x + Bx Kt + b(i)
x k(i)

t + ζ
(i)
x,t , wi th i .i .d ζ

(i)
x,t ∼ N

(
0,

(
σ

(i)
ζ

)2)
, (2)

where the parameters b(i)
x and k(i)

t are estimated by performing the first-order SVD to the
residuals matrix of the model for the different populations. The additional time-components
k(i)
t is a stationary processes modelled with a first-order autoregressive AR(1) model:

k(i)
t = ψ

(i)
0 + ψ

(i)
1 k(i)

t−1 + o(i)
t wi th i .i .d o(i)

t ∼ N

(
0,

(
σ (i)
o

)2)
,
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whereψ
(i)
0 , ψ

(i)
1 ∈ R,∀i ∈ I are the population-specific coefficients.Weuse the abbreviation

LL to refer themodel in (2). In the case of the LLmodel, the difference at time tn+H between
the mortality rates at age x , related to two populations i1, i2 ∈ I has the following asymptotic
behavior:

lim
H→∞ log

m(i1)
x,tn+H

m(i2)
x,tn+H

= [
a(i1)
x − a(i2)

x

] + [
b(i1)
x ψ

(i1)
0 − b(i2)

x ψ
(i2)
0 ]

that doesn’t depends on H .

3 Neural networks

NNs consist of interconnected computational units, called neurons in theNN jargon, arranged
on different layers that learn from data using training algorithms. To illustrate the mechanism
behind the NNs, let u = (

u1, u2, . . . , uq0
) ∈ R

q0 denote the vector of the input features. A
Fully-Connected Network (FCN) layer with q1 ∈ N units is a function that maps u to in a
q1-dimensional real-valued space:

z(1) : Rq0 → R
q1 , u �→ z(1)(u) =

(
z(1)1 (u), z(1)2 (u), . . . , z(1)q1 (u)

)′
.

The output of each unit can be interpreted as a new feature z(1)j (u) depending in a non-linear
fashion on u:

z(1)j (u) = φ

(
w

(1)
j,0 +

q0∑
l=1

w
(1)
j,l xl

)
j = 1, 2, ..., q1,

where φ : R �→ R, and w
(1)
j,l ∈ R represent the network weights. We also denote as W (1) =

(w
(1)
j,l )1≤ j≤q1,0≤l≤q0 ∈ R

q1×q0 the full matrix of weights related to this layer1.
Shallow neural networks present a single hidden layer and directly use the features for

computing the quantity of interest y ∈ Y . In the case of Y ⊆ R, the output of shallow NN is
determined as:

y = g−1
(

β0 +
q1∑
k=0

βk z
(1)
k (u)

)

where βk ∈ R, (k = 0, . . . , q1) are the coefficients of the output layer, and g : R → R is a
fixed strictly monotone and smooth link function.

If the network is deep, the vector z(1)(u) is utilised as input in the subsequent layer to
compute new features, and this holds true for the subsequent layers as well. Let h ∈ N be
the number of hidden layers (depth of network), and qk ∈ N, for 1 ≤ k ≤ h, be a sequence
of integers that indicates the dimension of each FCN layer (widths of layers). A deep FCN
can be described as follows:

u �→ z(h:1)(u) =
(
z(h) ◦ · · · ◦ z(1)

)
(u) ∈ R

qh ,

where the functions z(k) : R
qk−1 → R

qk share the same structure Although they present
different networkweightsW (k) ∈ R

qk×qk−1 , for 1 ≤ k ≤ h. In the case of deepNN, the output
layer uses the features extracted by the last hidden layer z(h:1)(u) instead of those z(1)(u).
The NN coefficients have to be calibrated according to a chosen loss function. The gradient

1 The superscript (1) underscores our reference to the first hidden layer.
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descent algorithm or any of its extension is generally used for finding an approximation of
the solution. See (Goodfellow et al., 2016) for more details.

Mortality data typically include categorical features, such as the country or gender of the
populations under consideration. One-hot encoding and dummy encoding procedures are
standard for dealing with categorical data. However, in the case of which the data presents
many categorical features, or one of them presents a high cardinality, these coding schemes
produce high-dimensional sparse vectors,which often leads to computational issues. Categor-
ical embedding layers represent an interesting alternative to these coding schemes. They have
been introduced in the contexts of Natural Language Processing; see for example (Bengio et
al., 2003).

An Embedding Network (EN) layer learns a low-dimensional representation of the levels
of a categorical variable. Let qL ∈ N denote the hyperparameter that defines the size of
the embedding. The levels of the categorical variable are mapped into a real-valued R

qL -
dimensional space. The coordinates of the level in the new space are parameters of the NN
that have to be trained (Guo & Berkhahn, 2016). The distance of the levels in the new learned
space reflects the similarity of levels concerning the target variable: similar levels will have
a small euclidean distance, whereas very different categories will have a large one.

Formally, let L = {l1, l2, . . . , lnL} be the set of categories of the qualitative variable and
nL be its cardinality. An embedding layer is a mapping

zL : L → R
qL .

The number of embedding weights that must be learned during training is nLqL, and the
embedding size typically satisfies qL � nL.

The network’s performance hinges on the calibration of weights across different layers,
denoted as w

(k)
l, j . In the context of FCN layers, these weights take the form of matrices

W (k) and a bias term w
(k)
0 for k = 1, . . . , h. Meanwhile, for EN layers, the weights are

represented by the coordinates of levels in the new embedding space, denoted as zl(l) for
all l ∈ L. The training process involves unconstrained optimisation, wherein a suitable loss
function L(w

(k)
l, j , ·) is chosen, and its minimum is sought. NN training employs the Back-

Propagation algorithm, updating weights based on the gradient of the loss function. The
goal is to iteratively adjust the weights to minimize errors between the network outputs and
reference values. The complexity of training escalates with the increasing number of layers
and units per layer in the network architecture. For an in-depth exploration of neural networks
and back-propagation, we refer to (Goodfellow et al., 2016).

4 A neural networkmortality model with divergence bounds

A fully coherent modelling of the mortality rates prevents diverging long-term forecasts,
which do not seem biologically reasonable. However, the constraints of full coherence may
be considered overly stringent and are not always substantiated by empirical observations.
The issue is especially relevant when populations with very different mortality patterns are
modelled simultaneously. In this regard, we introduce a novel NN-basedmortality model that
relaxes this constraint, allowing divergences of the forecasts within some bounds analytically
measured. We call this model as Multi-Population Neural Network model with Divegence
Bounds (MPNNDB).
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4.1 Mortality model formulation

Let R = {reg1, . . .regR} be the set of geographical regions, and G = {male,female}
be the set of sexes. We consider a set of populations that differ among them for the region
and sexes, such that I = R × G. We assume the existence of a small set of latent factors
κ t = (κ

(1)
t , κ

(2)
t , . . . , κ

(S)
t )′ ∈ R

S, S � |I|2 describing the mortality dynamics of all the
populations considered. The idea consists of expressing the time index driving themortality of
each country as a convex combination of the latent factor kt with coefficients depending on the
country r . These coefficients, denoted as γ (r) = (γ

(r)
1 , γ

(r)
2 , . . . , γ

(r)
S ) ∈ (0, 1)S , represent

points lying in a standard simplex. In such a case, the time-index can be expressed as:

k(i)
t = γ

(r)
1 κ

(1)
t + γ

(r)
2 κ

(2)
t + · · · + γ

(r)
S κ

(S)
t =

〈
γ (r), κ t

〉
,

where 〈·, ·〉 denotes the scalar product in R
S , and the time-index is the same for the male

and female populations living in the same country (k(i)
t = k(r ,male)

t = k(r ,female)
t ). We then

define the following model:

logm(i)
x,t = a(i)

x + Bx

S∑
s=1

γ
(r)
l κ

(l)
t + ξ

(i)
x,t wi th i .i .d ξ

(i)
x,t ∼ N (0, (σ (i)

ξ )2).

where a(i)
x is the age and population-specific level of mortality; Bx is a global age-specific

parameter expressing the sensitivity of the mortality rates at each age to variations of the
time-index; κ

(s)
t , s = 1, . . . , S are time-indexes driving the mortality evolution of all the

considered populations; γ
(r)
s , s = 1, . . . , S are coefficients representing the contribution of

each time-index to the region-specific time-index. The proposed model can be seen as an
advancement of the model proposed in Perla and Scognamiglio (2023). In that model, the
mortality dynamics of each region were hooked to a single latent factor. On the opposite, in
the proposed model, we assume that the mortality of each region depends on all the latent
factors through the coefficients γ

(r)
s . A higher value of this coefficient indicates that the s-th

latent factor contributes more than the others to drive the mortality of the r -th region.
The MPNNDB model also admits the following compact form:

logm(i)
t = a(i) + B ·

〈
γ (i), κ t

〉
+ ξ

(i)
t , ∀i ∈ I, (3)

where logm(i)
t = {logm(i)

x,t }x∈X , a(i) = {a(i)
x }x∈X , B = {Bx }x∈X . The parameters in (3)

can be expressed as functions of the data and can be replaced by some NNs specifically
designed to mimic the model parameters. Denoting as Mt = {logm(i)

t }i∈I ∈ R
|X |×|I| the

matrix containing the mortality rates for all the ages and population considered at time t . We
define the following functions:

αW (α) (i) : I → R
|X |

γ W (γ ) (i) : I → [0, 1]S
κW (κ) (Mt ) : R|X |×|I| → R

S

(4)

which depend on some NN pararameters, respectively denoted as W (α),W (γ ) and W (κ).
Replacing the mortality model parameters with these functions, the model can be written as:

2 We employ the notation |I| to represent the cardinality of the set I. Throughout the remainder of the paper,
we will consistently use this notation for other sets as well.
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logm(i)
t = αW (α) (i) + B · 〈

γ W (γ ) (i); κW (κ) (Mt )
〉 + ξ

(i)
t , ∀i ∈ I.

The OLS estimation of the model involves training all three networks simultaneously by
utilising theMeanSquaredError (MSE) as the loss function.LetW = (W (α),W (γ ),W (κ), B)

be the full set of network parameters, the calibration of the network arises the following
optimisation:

argmin
W

∑
i∈I

∑
x∈X

∑
t∈T

(
logm(i)

x,t − αW (α),x (i) − Bx · 〈
γ W (γ ) (i); κW (κ) (Mt )

〉 )2

.

4.2 Network architecture

αW (α) (i) depends on two categorical features, and we learn it by using an NN consisting
of two embedding layers and a fully-connected layer with size equal to the number of age
categories considered (|X |). More specifically, the two embeddings, denoted by z(α)

R and z(α)
G ,

process region and gender respectively. Then, an FCN layer, indicated as f (α), is applied to
their output. Let q(α)

R , q(α)
G ∈ N be hyper-parameters defining the size of the two EN layers,

which can be formalised as two mappings:

z(α)
R : R → R

q(α)

R , r �→ z(α)
R (r) =

(
z(α)
R,1(r), z

(α)
R,2(r), . . . , z

(α)

R,q(α)

R
(r)

)�
,

z(α)
G : G → R

q(α)

G , g �→ z(α)
G (g) =

(
z(α)
G,1(g), z

(α)
G,2(g), . . . , z

(α)
G,qG (g)

)�
.

(5)

Denoting as z(α)
I = z(α)

I (r , g) = ((
z(α)
R (r)

)�
,
(
z(α)
G (g)

)�)� ∈ R
q(α)

I , the vector obtained
concatenating the output of these two EN layers, it is further processed by a FCN layer which
provides as many units as the age considered. This layer maps zI in a new |X |-dimensional
real-valued space

f (α) : Rq(α)
I → R

|X |, zI �→ f
(
z(α)

I

)
=

(
f (α)
x0

(
z(α)

I

)
, f (α)

x1

(
z(α)

I

)
, . . . , f (α)

xω

(
z(α)

I

))�
.

Each new feature f (α)
x (z(α)

I ) is a age-specific function of the vector z(α)
I

z(α)
I �→ f (α)

x (z(α)
I ) = φ(α)

(
w

(α)
x,0 +

q(α)

I∑
l=1

w
(α)
x,l z

(α)
I,l

)
= φ(α)

(
w

(α)
x,0 +

〈
w(α)

x , z(α)
I

〉)
, x ∈ X ,

where φ(α) : R → R is a (non-linear) activation function, and w
(α)
x,l ∈ R are the network

parameters. In matrix form, the output of the layer can be written as:

αW (α) (i) = f
(
z(α)
I

)
= φ(α)

(
w

(α)
0 + W (α)z(α)

I

)
.

The subnets κW (κ) (Mt ) is a two-layered network which extracts the latent factors from the
matrix Mt . The first layer is a one-dimensional FCN layer applied to each matrix column
individually. It compresses the information of the log-mortality curves arranged in the column
of Mt in single real-valued numbers. It can be written as the following mapping:

z(κ1) : R|X | → R, logm(i)
t �→ z(κ1)

(
logm(i)

t
)
.

The output of the layer can be formalised as follows:

logm(i)
t �→ z(κ1)

(
logm(i)

t
) = φ(κ1)

(
w

(κ1)
0 +

〈
w(κ1), logm(i)

t

〉)
,
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where w
(κ1)
0 ∈ R,w(κ1) ∈ R

|X |, and φ(κ1) : R �→ R. The vector collecting the output of

the layer of each population is denoted as z(κ1)(Mt ) = {z(κ1)( logm(i)
t

)}i∈I ∈ R
|I| contains

the information related to the mortality trend of all the populations considered at time t . It is
further processed with a S-dimensional FCN layer that maps:

z(κ2) : R|I| → R
S, z(κ1)

(
Mt

) �→ z(κ2)
(
z(κ1)(Mt )

)
.

Each unit of this layer extracts a latent factor from z(κ1):

z(κ1) �→ z(κ2)s

(
z(κ1)κ (Mt )

) = φ(κ2)
(
w

(κ2)
s,0 +

〈
w(κ2)
s , z(κ1)(Mt )

〉)
, l = 1, . . . , S,

where w
(κ2)
0,s ∈ R,w

(κ2)
s ∈ R

|I|, and φ(κ2) : R �→ R. The output of the network is obtained

as κ(Mt ) = z(κ2)
(
z(κ1)(Mt )

)
.

γ (r) aims to determine the optimal contributions of the S latent factors to the population-
specific time-indexes. We assume it depends only on the region to guarantee the coherence
of the forecasts for male and female populations living in the same country. The network
output is a vector containing a set of values that sum 1 and express the contribution of each
latent factor to the creation of the region-specific time index. This network consists of an EN
and a FCN layer. The embedding is mapping with the same structure in eq. (5):

z(γ1)R : R → R
q

(γ1)

R , r �→ z(γ1)R (r) =
(
z(γ1)R,1(r), z

(γ1)
R,2(r), . . . , z

(γ1)

R,q
(γ1)

R
(r)

)�
.

The output of this layer is further processed with a S-dimensional FCN layer that can be
formalised as:

z(γ2) : Rq
(γ1)

R → (0, 1)S, z(γ1)R �→ z(γ2)(z(γ1)R ) =
(
z(γ2)1 (z(γ1)R ), . . . , z(γ2)S (z(γ1)R )

)�
.

Each component is obtained as

z(γ2)s
(
z(γ1)R

) =
exp

(
w

(γ2)
s,0 +

〈
w

(γ2)
s , z(γ1)R

〉)

∑L
l=1 exp

(
w

(γ2)

l,0 +
〈
w

(γ2)

l , z(γ1)R

〉) s = 1, . . . , S.

where w
(γ2)
s,0 ∈ R,w

(γ2)
s ∈ R

q
(γ1)

R . The output of this subnet is obtained as γ (r) =
z(γ2)

(
z(γ1)(r)

)
.

4.3 Forecasting and divergence bounds

Once the training is completed and the estimate of the optimal weights Ŵ is obtained, the
mortality model’s parameters can be computed via Forward Propagation:

â(i)
NN = αW (α) (i), i ∈ I

γ̂
(r)
NN = γ W (γ ) (r) r ∈ R

κ̂
(i)
t,NN = κW (κ) (M (i)

t ), t ∈ T , i ∈ I.

We remark that the ouput of the networks can be interpreted as NN estimates of the mortality
model’s parameters in eq. (4.1). Since B is constant along the populations and it concideswith
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the NN parameters, an estimate can be directly obtained from the solution of the optimisation
in eq. (4.1). Similar to the other mortality models, we apply the following constraints:∑

x∈X
Bx = 1,

∑
t∈T

κ
(s)
t = 0, s = 1, . . . , S.

Similarly to the other stochastic models, mortality projections are obtained by keeping the
age-specific parameters constant over time, and extrapolating future values of the time indexes
the κ

(l)
t using univariate ARIMA(0,1,0) models:

κ
(s)
t = θ(s) + κ

(s)
t−1 + υ

(s)
t , wi th i .i .d υ

(s)
t ∼ N

(
0,

(
σ (s)

υ

)2)

with θ(s) ∈ R. The time index related to the population i is obtained through a linear
combination of by combining with coefficients γ (r). More specifically, mortality forecasts
related to the population i = (r , g) are obtained as:

logm(i)
x,tn+H = a(i)

x + Bx

S∑
s=1

γs(r) ·
(
κ

(s)
tn + Hθ(s)

)

Since we model γ as function of r only, our model ensures no-divergent mortality forecasts
for male and female populations living in the same countries. Furthermore, the divergence
in the mortality forecasts related to the age x , at time time tn + H between two populations
i1 = (r1, g1), i2 = (r2, g2) ∈ I is:

log
m

(i1)

x,tn+H

m
(i2)

x,tn+H

= [
a(i1)
x + Bx

S∑
s=1

γ (r1)s ·
(
κ

(s)
tn + Hθ(s)

) ] − [
a(i2)
x + Bx

S∑
s=1

γs(r2) ·
(
κ

(s)
tn + Hθ(s)

) ]
,

=
[
a(i1)
x − a(i2)

x

]
+ Bx

[ L∑
s=1

γs(r1) · κ
(s)
tn −

L∑
s=1

γs(r2) · κ
(s)
tn

]
+

HBx

[ L∑
l=1

γs(r1) · θ(s) −
L∑

l=1

γs(r2) · θ(s)
]

=
[
a(i1)
x − a(i2)

x + Bx

L∑
s=1

κ
(s)
tn (γs(r1) − γs(r2))

]
+ H

L∑
s=1

θ(s)(γs(r1) − γs(r2)).

Also in this case, the following decomposition can be done: the term

[
a(i1)
x − a(i2)

x +

Bx
∑L

s=1 κ
(s)
tn (γs(r1) − γs(r2))

]
doesn’t change over time, while H

∑L
s=1 θ(s)(γs(r1) −

γs(r2)) increases linearly in H . However, since γs(r) ∈ (0, 1), s = 1, . . . , S, r ∈ R, we
can derive the following bounds

−Bx

S∑
s=1

| θ(s) |< Bx

S∑
s=1

θ(s)(γ (r1)s − γ (r2)s) < Bx

S∑
s=1

| θ(s) |,

which depend on the global age-specific parameter Bx , and the sum the drift terms of the
ARIMA(0,1,0) models used for the time-indexes κ(s). After estimating the parameters of
the MPNNDB model, the model allows for the analytical derivation of the upper and lower
bounds for the spread between mortality rates at the same age and time in two populations.
If the value

∑S
s=1 | θ(s) | is sufficiently small, we can ensure that the divergence between

the mortality rates of all the population considered is relatively small.
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5 Numerical experiments

This sectionpresents somenumerical experiments performedusing real data for validatingour
MPNNDBmodel. We investigate the results in terms of forecasting accuracy, the divergence
of themortality forecasts andmodel explainability.We consider the data from all the countries
available in the Human Mortality Database (HMD) (Wilmoth & Shkolnikov, 2021),it is
the most popular open-access data source collecting high-quality mortality data. We take
into account the set of ages X = {x ∈ N : 0 ≤ x < 100}, the set of calendar years
T = {t ∈ N : 1960 ≤ t < 2020}, and the set of populations I containing themale and female
populations of all the countries for which the HMD reports the data from 1960 onwards. We
preprocessed the dataset following the procedure suggested in Perla et al. (2021). The NN
training is performed using the ADAptive Moment estimation (ADAM) algorithm Kingma
and Ba (2014) which is an extension of the SGD algorithm Goodfellow et al. (2016).

We compare the results of the MPNNDB model against the LC model (no coherence) the
LL model (full coherence). We assess the out-of-sample accuracy of the different models
using the Mean Squared Error (MSE) and the Mean Absolute Error (MAE). Let m̂(i, j)

x,t be the
estimate of the j-th model j ∈ {MPNNDB, LC, LL}), they are respectively defined as:

MSE j = 1

n

∑
i∈I

∑
t∈T

∑
x∈X

(m(i)
x,t − m̂(i, j)

x,t )2,

MAE j = 1

n

∑
i∈I

∑
t∈T

∑
x∈X

| m(i)
x,t − m̂(i, j)

x,t | .

We remark that the MSE is the l2-norm of the residuals and penalises more larger deviation
from the actual values, while the MAE is the l1-norm of the residuals (Giacalone et al.,
2018).

5.1 Out-of-sample accuracy

We conduct a backtesting exercise to assess the out-of-sample accuracy of the proposed
model. For a chosen observation period T ∈ T , the data is split into two parts. The first
part, T1, includes mortality data from calendar years preceding T and serves for model
calibration. The second part, T2, comprises mortality rates from calendar years equal to or
following T and is used to evaluate the accuracy of predictions. In this set of experiments,
T is fixed at 2000. The use of the MPNNDB model requires to choose the number of latent
factors S driving the mortality of the different populations. Since there is no golden rule
in choosing this hyperparameter, we start the discussion by analysing the sensitivity of the
model performance with respect to S. In particular, we fit the MPNNDB model for different
values of S = 1, 2, . . . , 5 and measure the out-of-sample accuracy. Table 1 reports the out-
of-sample performance in terms of MSE andMAE and the number of parameters to optimise
for each model.

As expected, we note that the forecasting performance of the MPNNDB model improves
as S grows. A larger number of latent factors increases the flexibility of the model and allows
to better describes the heterogeneity of the mortality pattern of the analysed populations.
More specifically, when S = 1, the model presents the same functional form of the LL
model (in eq. (1)). We observe that it overperforms the LC but is less accurate than the
full LL model augumented with the additional population-specific period and time effects.
This result emphasizes that a single factor is insufficient to describe well the mortality of

123



Annals of Operations Research

Table 1 Out-of-sample MSE and
MAE, and number of network
parameters to optimise of the LC,
LL and MPNNDB with
S = 1, 2, . . . , 5

Model MSE MAE # parameters

LC 4.8221 71.5219 17.280

LL 3.5398 60.6907 17.420

MPNNDB (S =1) 4.0633 71.4386 1.933

MPNNDB (S =2) 3.3687 64.5398 2.016

MPNNDB (S =3) 3.0182 58.8131 2.099

MPNNDB (S =4) 2.9880 58.1529 2.182

MPNNDB (S =5) 3.0170 58.9195 2.265

Fig. 1 Forecasting MSE (on log-scale) for the LC, the LL, and the MPNNDB models for the different popu-
lations

all 72 populations and that a certain heterogeneity is present. The results notably improve
when S = 2, 3, where we observe that the MPNNDB model oveperforms in terms of both
MSE and MAE. The performance improves further when the number of factors increase to
S = 4, while no-improvements are registered for S = 5. For this reason, we consider the
MPNNDB model with S = 4 for further comparisons. Furthermore, for all the considered
cases, the number of parameters remain much lower than the number of parameters required
by the independent LC models and the LL model. A more detailed comparison among the
models considered is presented in Fig. 1 which reports the MSE and the MAE obtained in
each population.

Looking at the female populations, we observe that there is not a clear winner. On the other
side, we observe that the MPNNDB model oveperforms LC and LL on the most of the male
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Fig. 2 Forecasting MSE (on log-scale) for the LC, the LL, and the MPNNDB models different ages distin-
guished by sex

populations. One plausible explanation for this observation is that the mortality dynamics of
males tend to show greater stability and less complexity compared to those among females.
This can be attributed to the fact that the female population demonstrates more heterogeneity
across countries, influenced by sociological factors such as the degree of emancipation, the
availability of social security benefits like maternity leave, and their active participation in
the labour market. These aspects contribute to amore intricate and varied landscape in female
mortality dynamics, distinguishing it from the comparatively more stable patterns observed
in the male populations.

In summary, our model produces the best MSE (MAE) results on 27/36 (25/36) popula-
tions, the LC on 3/36 (2/36), while the LL on 6/36 (9/36). Fig. 2 depicts the out-of-sample
Mean Squared Error (MSE) generated by the different models. In this instance, a logarithmic
scale is employed to enhance readability. Once again, concerning females, all three mod-
els exhibit comparable performance, with no discernible method demonstrating significant
outperformance over the others. Conversely, in the case of males, it is evident that for ages
ranging from 25 to 60, the LL model overperforms the others, while the MPNNDB models
producemore accurate results for older ages, which is especially relevant from the perspective
of longevity risk.

5.2 Parameter estimates

Figure3 shows the estimates related to the age-specific parameters, while Figure 4 graphically
illustrates the estimates related to the four latent factors and their contribution to the country-
specific time indexes.
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Fig. 3 Estimates of (a(i)
x )x∈X , i ∈ I (left); (Bx )x∈X (right)

Fig. 4 Estimates and forecasts of (κ
(s)
t )t∈T , s = 1, . . . , 4 (left); estimates of γ (r), r ∈ R (right)

More specifically, Figure 3 (left) shows the (ax )x∈X for the different populations. The
curves related to the male populations are in blue, while those related to the female ones are
in red. As expected, we observe that all the blue curves lie above to the red ones since the
mortality rates of the male populations are generally higher the female ones. Furthermore, we
note that the curves are rather smooth over the age dimension compared to other mortality
models such as the LC and theLL. Indeed, especiallywhenwe consider small populations, the
mortality data are noisy due to the presence of sampling error, affecting also the estimates
of the parameters. Conversely, our model is estimated using an NN that simultaneously
processes all the mortality data and presents some cross-population parameters that allow
for information sharing among the different populations. These elements permit to mitigate
the impact of the noise on the estimates and improve the robustness of the model. In Fig. 3
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Table 2 Parameters for the
ARIMA(0,1,0) models
corresponding to the four time
indices

Time-index θ(s) σ 2

1 0.0032 0.0030

2 −0.0201 0.0023

3 −0.0306 0.0009

4 −0.0037 0.0012

(right), we present the (Bx )x∈X estimates that are the same for all the populations considered.
Also, in this case, we obtain a quite smooth curve due to the huge amount of data used for
the model calibration. Figure4 (left) presents the estimates related to the fourth time indexes
and the projections related to the years in T2. We also report the drift and standard deviation
of the individual ARIMA(0,1,0) models used to describe these indexes’ evolution over time
in Table 2.

We note that three of the four indexes present declining trends, highlighting that the
mortality rates of most of the 72 populations considered are decreasing over time. The 3rd
time-index presents the largest (in absolute value) drift and the steepest death rate decline.
Looking at Fig. 4, we note that the index especially contributes to drive the mortality with
notable longevity improvements. Indeed, the countries presenting the largest γ (3) values are
JPN (0.9749),ITA (0.7287), FIN (0.6959), ESP (0.6570) that are recognise as countries
with high life expectancy.

Only one time-index has an increasing trend and looking at Table 2, one can also note
that it presents the largest standard deviation. This index especially contributes to describing
the mortality of most countries of Eastern Europe such as Russia (RUS), Belarus (BLR),
Lithuania (LTU), Estonia (EST), Latvia (LVA),Ukraine (UKR). This result suggests that there
is more uncertainty on the future mortality of those countries. It is unsurprising that these
countries exhibit a similar mortality pattern due to their shared cultural background. The
political instabilities witnessed in these nations over the past 30 years can be traced back
to the dissolution of the USSR. This historical event has undoubtedly left a lasting impact
on their political landscapes, contributing significantly to the fluctuations observed in the
mortality rates of the populations in these countries.

5.3 Mortality divergences

In this subsection, we analyse the divergences in the mortality forecasts produced by the
considered models. Figure5 illustrates the difference logm(i1)

x,t+H − logm(i2)
x,t+H at age x = 65

for two different couples of populations over a forecasting horizon H = 1, . . . , 200.
Figure5 (left) shows the difference between the Italian male and female populations. As

expected, the LC model produces divergences that increase indefinitely over time, while the
LL model presents a short-term divergence that converges to its asymptotic value when H
increases. In this case, theMPNNDBmodel presents a small fixed divergence since it requires
that the coherence property holds between male and female populations living in the same
country. Figure5 (right) shows the divergence between the Russian male and Italian Male
populations (right). Also in this case, we note that the LCmodel divergence explodes, and the
LL converges to fixed values when H increases. Conversely, the MPNNDB model presents
a divergence that increases slowly over time, avoiding non-reasonable differences in the life
expectancy between the two populations. Indeed, even considering the case H = 200, the
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Fig. 5 Divergence in the forecasted mortality rates at age x = 65 over the forecasting horizon H = 0, . . . , 200
produced by the different models between Italian males and females (left) and between Russian males and
Italian males (right)

divergence produced by the MPNNDB model is very similar to that produced by the LL
model.

As discussed in the previous section, the MPNNDB model allows to derive bounds for
the divergence in the mortality forecasts between populations. The width of these bounds for
two countries r1, r2 ∈ R, depends on the difference | γ (r1) − γ (r2) |. In this setting, we
define the following index:

D(r1, r2) = ‖γ (r1) − γ (r2)‖2
that summarises the divergence of the mortality forecasts between the two countries r1 and
r2. It can be also seen as a measure of the dissimilarity of the mortality patterns. Figure6
reports the D(r1, r2) values for all the countries considered.

We note some horizontal and vertical marked lines corresponding to the Eastern Europe
countries, see RUS, BLR and UKR for instance. These lines emphasise that a notable dis-
similarity between the mortality pattern on these countries and the other ones. On the other
side, we observe that the distance between the Eastern Europe countries is quite small high-
lighiting that, despite these countries have similar mortality pattern among them. The largest
distance is obtained registrered between Japan (JPN) and Russia (RUS), while the smallest
one is between France (FRATNP) and Belgium (BEL).

6 Conclusion

This paper introduces a new multi-population mortality model that allows us to describe
the mortality of a large number of populations simultaneously. The calibration of the model
is carried out using neural networks since they allow to process large amounts of data and
learn the non-linearities that could affect the evolution of the mortality rates over time. The
network architecture is specifically designed to keep a straightforward model interpretation
that is crucial for the safe introduction of deep learning models in high-regulated sectors
such as the financial and insurance ones. The model also allows us to measure the divergence
of the mortality forecasts it produces. Indeed, some differences between the mortality rates
of the two populations are constrained within two bounds that could be analytically derived
after the parameter estimations. We show that the proposed model can be used to measure
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Fig. 6 D(r1, r2) values for all the countries considered

the similarity between the mortality patterns of two populations, making the proposed model
an interesting tool for identifying longevity risk diversification opportunities. A large set
of numerical experiments performed using all the available data in the Human Mortality
Database validate the proposed model. It produces more accurate forecasts than some well-
known stochasticmodels, such as theLee-Carter and theLi-Leemodels, in terms of bothmean
squared error and mean absolute error. In addition, the MPNNDB model allows to obtain a
massive reduction in the number of parameters to estimate. This feature reduces the model
complexity and the risk of overfitting the population-specific data, which could be the case for
the single-population mortality models. Furthermore, the analysis of the similarities among
the countries considered shows some heterogeneity derived from geographical, cultural, and
historical factors.

Future research will be devoted to analyse sub-national data such as the United States
Mortality Database. It could be useful to detect differences in the mortality pattern of pop-
ulations living in different geographical areas of the same countries. Furthermore, we want
to study the use of modern deep learning models based on self-attention-based mechanisms
(Vaswani et al., 2017) to further improve the forecasting accuracy of the proposed model.
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