
Annals of Operations Research
https://doi.org/10.1007/s10479-023-05788-3

ORIG INAL RESEARCH

Generation schemes for the resource-constrained project
scheduling problemwith partially renewable resources
and generalized precedence constraints

Mareike Karnebogen1 · Jürgen Zimmermann1

Received: 7 December 2022 / Accepted: 11 December 2023
© The Author(s) 2024

Abstract
In recent years, new resource types have been established in project scheduling. These include
so-called partially renewable resources, whose total capacity applies only to a subset of
periods in the planning horizon. In this paper, we consider the extension of the resource-
constrained project scheduling problem with those partially renewable resources as well as
generalized precedence constraints with the objective of minimizing the project duration
(RCPSP/max-π). For this problem it is known that already the determination of a feasible
solution is NP-hard in the strong sense. Hence, we present two different generation schemes
that are able to find good feasible solutions in short time formost tested instances. The first one
is a construction-based heuristic wherein the activities of the project are scheduled iteratively
time- and resource-feasibly. The second one is a relaxation-based generation scheme, in
which—starting from the schedule consisting of the earliest start times—resource conflicts
are identified and resolved by inserting additional resource constraints.

Keywords Project scheduling · Generalized precedence constraints · RCPSP/max ·
Partially renewable resources · Generation schemes

1 Introduction

Due to new requirements in the field of project planning, such as the increasingly necessary
flexibilization of production or higher expectations of employees on their working times,
renewable resources are often coming up to their limits. Therefore, more and more resource
types have been established in the literature in recent years. One of them are so-called partially
renewable resources, which are a generalization of renewable and non-renewable resources
and also include discrete cumulative resources (Watermeyer, 2021). Partially renewable

B Mareike Karnebogen
mareike.karnebogen@tu-clausthal.de

Jürgen Zimmermann
juergen.zimmermann@tu-clausthal.de

1 Institute of Management and Economics, Clausthal University of Technology, Julius-Albert-Str. 2,
D-38678 Clausthal-Zellerfeld, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05788-3&domain=pdf
http://orcid.org/0000-0003-0147-5908

Annals of Operations Research

resources are characterized by the fact that their total capacity is limited for a subset of
periods in the planning horizon. However, for the complementary set of periods, the resource
is assumed to be available in sufficient quantity. Partially renewable resources thus open up
the possibility of modeling new types of conditions in the field of project scheduling, e.g.,
special working hour models such as particular weekend arrangements or certain production
constraints like planning dependent downtimes or setup times.

In this paper, the resource-constrained project scheduling problemwith partially renewable
resources and generalized precedence constraints (RCPSP/max-π) is considered, which was
first addressed by Watermeyer and Zimmermann (2020). Even though the problem is based
on the well studied RCPSP/max, the solution procedures cannot be simply transferred - due
to the differently behaving resources and the associated changed problem characteristics.
Since real-world projects often involve many activities as well as resources that have to be
considered, exact solutionmethods for realistic instance sizes are usually not able to determine
exact solutions to the problem within an acceptable amount of time. Therefore, this paper
is devoted to the development of problem-specific heuristics for the RCPSP/max-π . We
present two different generation schemes that generate feasible solutions for the considered
problem. In Sect. 2 the problem is described and amixed-integer linear formulation (MILP) is
introduced, followed by an overviewof the relevant literature on partially renewable resources
in the context of project scheduling in Sect. 3. Then, in Sect. 4 first a construction-based
generation scheme and afterwards a relaxation-based generation scheme is presented. Finally,
Sect. 5 provides the results of a performance analysis comparing the results of both generation
schemes to the results of the presented MILP model solved by IBM ILOG CPLEX and the
best performing branch-and-bound procedure of Watermeyer (2021).

2 Problem description

The RCPSP/max-π is based on the well-known project scheduling problem with generalized
precedence constraints (PSP/max). Thereby, a set of activities V = {0, 1, ..., n + 1} is given,
consisting of the fictitious project start 0, n real activities and the fictitious project completion
n + 1. Each activity i ∈ V has a deterministic processing time pi ∈ Z≥0 during which the
activity cannot be interrupted. For both fictitious activities, p0 = pn+1 = 0 applies. Between
the activities of the project generalized precedence constraints have to be observed, which
can be both minimal and maximal timelags. Due to deterministic activity durations, all
precedence constraints can be converted into minimal start-start-timelags. A time constraint
δi j ≥ 0 indicates that more than δi j periods must have elapsed between the start of activity
i ∈ V and the start of activity j ∈ V \ {i}. A time constraint δi j < 0 states that the start
of activity i ∈ V must not be more than −δi j periods after the start of activity j ∈ V \ {i}.
Furthermore, a maximal project duration d is given in which the project must be completed
modeled as a maximal timelag between project start and end.

The PSP/max as introduced before can be visualized by an activity-on-node network.
The nodes V = {0, 1, ..., n + 1} correspond to the activities of the project whereas the arcs
〈i, j〉 ∈ E weighted with δi j ∈ Z represent the temporal constraints. The maximal project
duration can be displayed by an arc from n+ 1 to 0 weighted with −d . As common practice,
let di j be the length of a longest path from node i ∈ V to node j ∈ V in the project network,
which can be determined using the Floyd-Warshall Algorithm by Floyd (1962). Then, d0i
corresponds to the earliest start time ESi and −di0 to the latest start time LSi of activity
i ∈ V . Based on that, for each activity i ∈ V a set Wi = {ESi , ESi + 1, ..., LSi } containing
all time-feasible integer start times between its earliest and latest start time can be initialized.

123

Annals of Operations Research

Fig. 1 Project network

Fig. 2 Relevant cumulative resource consumption of activity 1

The PSP/max can be extended to the RCPSP/max-π by additionally considering a set of
partially renewable resources R = {1, ...,m}. While an activity i ∈ V is in execution, it
consumes rik ∈ Z≥0 units of resource k ∈ R per period. The resource requirements of the
fictitious activities are assumed to be zero. For each partially renewable resource k ∈ R a
resource capacity Rk is given, which is only related to a subset �k ⊆ {1, 2, ..., d} of not
necessarily connected time periods of the planning horizon. All activities executed in this
restricted periods of resource k are not allowed to in total consumemore than Rk units within.
However, for all periods not contained in �k , it is assumed that the resource availability is
unlimited. In the activity-on-node network for each resource k ∈ R the resource demand per
period rik of an activity i ∈ V is noted below the corresponding node. An exemplary network
for a project with n = 4 real activities and m = 1 partially renewable resource is shown in
Fig. 1.

According toWatermeyer and Zimmermann (2020) the relevant cumulative resource con-
sumption of an activity i ∈ V of a resource k ∈ R is based on its start time Si and can be
calculated as rcik(Si) = | {Si + 1, Si + 2, . . . , Si + pi } ∩ �k | · rik . Assuming one resource
k = 1 with �1 = {2, 3, 4, 7, 8} for the project visualised in Fig. 1, for activity i = 1 the
function for the cumulative resource consumption as shown in Fig. 2 results.

The objective of the problem is to find a time- and resource-feasible schedule S =
(S0, S1, . . . , Sn+1) minimizing the project duration Sn+1. A schedule is called time-feasible,
if S j − Si ≥ δi j applies to all 〈i, j〉 ∈ E , meaning that all temporal constraints are observed.

123

Annals of Operations Research

A schedule is resource-feasible, if the accumulated resource consumption within all capaci-
tated periods not exceeds the given capacity Rk for any partially renewable resource k ∈ R.
To ensure this, for each resource k ∈ R the start time dependent cumulative resource con-
sumption rcik(Si) is summed up over all activities i ∈ V and limited by Rk . Formally, the
RCPSP/max-π described above can be formulated as follows:

Minimize f (S) = Sn+1

subject to S j − Si ≥ δi j (〈i, j〉 ∈ E)

S0 = 0
∑

i∈Vr
c
ik(Si) ≤ Rk (k ∈ R)

Si ∈ Z≥0 (i ∈ V)

As is common practice in resource-constrained project scheduling, the RCPSP/max-π
can also be formulated with binary time-indexed variables xit for each activity i ∈ V and
each start time point t ∈ Wi . If activity i starts at t (Si = t) or at an earlier point in time, the
corresponding binary variable xit takes the value 1, otherwise xit has the value 0. This type of
binary decision variables are also called step variables, because the variables xit jump from
value 0 to value 1, i.e. one step up, exactly once over time for each activity i ∈ V . Hence,
the decision variable Si can be replaced by the term

∑
t∈Wi \{0}(xit − xi,t−1). If we define

sets Qit := {t − pi + 1, . . . , t} containing all points in time an activity i ∈ V could start
so that it would be in execution at point in time t , the cumulative resource consumption can
be expressed dependent on the binary decision variables xit . For this, for each time-feasible
start time t ∈ Wi of an activity i ∈ V , the number of capacitated periods in which i would be
active if started at t is determined. The discrete-time formulation based on step start variables
can then be given according to Watermeyer and Zimmermann (2020) as follows:

Min.
∑

t∈Wn+1

t · (xn+1,t − xn+1,t−1)

s.t.
∑

t∈W j \{0}
t · (x jt − x j,t−1)

−
∑

t∈Wi\{0}
t · (xit − xi,t−1) ≥ δi j (〈i, j〉 ∈ E)

∑

i∈V
rik

∑

τ∈�k

∑

t∈Qi,(τ−1)∩Wi

(xit − xi,t−pi) ≤ Rk (k ∈ R)

xi,t−1 ≤ xit (i ∈ V, t ∈ Wi \ {0})
xit = 0 (i ∈ V, t ∈ {0, ..., ESi − 1})
xit = 1 (i ∈ V, t ∈ {LSi , ..., d})
xit ∈ {0, 1} (i ∈ V, t ∈ Wi)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(RCPSP/

max-π)

In order to motivate the relevance of partially renewable resources, an example is given
where partially renewable resources are utilized to model all existing resource constraints.
Suppose a company plans a two-week project on a daily basis. For this, two identicalmachines
are available.Normally, the daily capacity of themachines ismodeled by renewable resources,
but partially renewable resources can be used instead. Therefore, for each period of the
planning horizon a new partially renewable resource with a capacity of two is defined, i.e.

123

Annals of Operations Research

Fig. 3 Example for partially renewable resources

�k = {k} and Rk = 2 for k ∈ {1, ..., 14}. In addition, each 5-day workweek one of the
two machines has to be cleaned and maintained, leading to a downtime of a whole day. A
restriction like this can be modeled with renewable resources and dummy activities or - quite
easy - with partially renewable resources. For that, a resource k = 15 is defined restricted to
the periods 1 to 5 (�15 = {1, ..., 5}) to a capacity of 2 · 5 − 1 = 9 (R15 = 9). Similarly, for
the second week a resource k = 16 with �16 = {8, ..., 12} and R16 = 9 is introduced. As a
further limitation, each machine may not run for more than two days on both weekends due
to higher operating costs on saturday and sunday. To map this restriction, another partially
renewable resource k = 17 is defined with �17 = {6, 7, 13, 14} and R17 = 4.

The resource restrictions as introduced before are shown in a resource profile in Fig. 3.
The dashed line represents the 14 partial renewable resources limiting the machine capacity
per day. The maintenance restrictions are depicted by broad striped areas, while the weekend
restriction is displayed by narrow striped areas.

Resource constraints such as in the given example show the relevance of the concept
of partially renewable resources, because they enable to model new restrictions as flexible
working time models or special weekend arrangements.

3 Literature review

Partially renewable resources embedded in the context of project scheduling were first men-
tioned by Drexl et al. (1993) as well as Drexl and Salewski (1997) for modeling an academic
course scheduling problem. Over the next few years, several papers were published dealing
with the problem of RCPSP/π and problem specific solution methods. Böttcher et al. (1999)
adapt a branch-and-bound procedure of Talbot and Patterson (1978), so that the RCPSP/π
can be solved to optimality. In addition, they developed a serial scheduling scheme to con-
struct feasible solutions for the RCPSP/π . Schirmer (1999) also present constructionmethods
for project scheduling with partially-renewable resources. Furthermore, he developed local
search procedures, e.g. a tabu search heuristic. Alvarez-Valdés et al. (2006) present a scatter
search heuristic for the RCPSP/π . Two years later, they also introduced a GRASP (Alvarez-
Valdés et al., 2008). A summary and overview of the literature can be found inAlvarez-Valdés
et al. (2015).

The resource-constrained project scheduling problem with partially renewable resources
and generalized precedence constraintswasfirst considered byWatermeyer andZimmermann
(2020). They present a branch-and-bound procedure which is based on the resource relax-
ation.As part of their further research they also developed a partition-based branch-and-bound
procedure (Watermeyer & Zimmermann, 2022) as well as a constructive branch-and-bound

123

Annals of Operations Research

procedure (Watermeyer & Zimmermann, 2023). To the best knowledge of the authors, apart
from the schedule-generation scheme ofWatermeyer and Zimmermann (2023) there exist no
appropriate heuristic solution methods for the RCPSP/max-π so far.

4 Generation schemes

Due to the lack of heuristic solution methods for the RCPSP/max-π , in the following
we present two different generation schemes to get feasible solutions. The first one is a
construction-based heuristic presented at the 17th International Conference on Project Man-
agement and Scheduling (Karnebogen & Zimmermann, 2021) and will be described in
Sect. 4.1. The other one is a relaxation-based heuristic first introduced at the 18th Inter-
national Conference on Project Management and Scheduling (Karnebogen & Zimmermann,
2022) that will be explained in Sect. 4.2.

4.1 Construction-based generation scheme

The construction-based generation scheme is characterized by iteratively scheduling the
activities of a project until a time- and resource-feasible schedule is built. The general concept
of the heuristic is based on the well-known generation scheme for the RCPSP/max developed
by Franck et al. (2001). However, due to the partially renewable resources, it is - in contrast
to the RCPSP/max - not sufficient to restrict the construction to the set of active schedules,
i.e. generally select the earliest time- and resource-feasible start time in the course of the
construction phase. Accordingly, the unscheduling phase must also be changed, since a
rightward shift as in Franck et al. (2001) is not appropriate. Moreover, the reasons for the
necessity of an unscheduling step are more diverse. In addition to binding time restrictions
that prevent an activity from being scheduled, one or more resources may also no longer be
available in sufficient quantity due to previous scheduling steps.

Algorithm 1 shows the procedure of our construction-based generation scheme. In the
beginning, an initialization process is done (line 1–7), in which the fictitious project start 0
is scheduled at point in time zero (S0 = 0) and included in the set C of activities that have
already been scheduled. Furthermore, a counter u = 0 is initialized to count the number
of unscheduling steps done in the recurring main step of the generation scheme as well
as an empty tabu-list �i for each activity i ∈ V to manage tabu-set start times. Since the
total resource requirement rcik(Si) of an activity i ∈ V \ {0} in the restricted periods of a
partially renewable resource k ∈ R only depends on its own start time Si and not on those
of other activities, it can be calculated in advance for all possible start times t ∈ Wi =
{ESi , ESi + 1, ..., LSi } between its earliest and latest start time.

In the main step of the generation scheme, which is iterated until all activities are feasibly
scheduled, for each partially renewable resource k ∈ R and each activity i ∈ V\{C} the
minimal cumulative demand rmin

ik and the maximal cumulative demand rmax
ik are determined.

Since an activity i ∈ V cannot have less than its minimal cumulative resource demand rmin
ik

for each resource k ∈ R in any feasible schedule, this demand is already deducted from
the total capacity RCk as well as the demand of already scheduled activities. In the next
step, the eligible set E is established containing all activities i ∈ V \ C whose immediate
predecessors regarding the distance order ≺D are already scheduled. An activity h ∈ V \ {i}
is a predecessor of activity i regarding the distance order ≺D , if either dhi > 0 or dhi = 0
and dih < 0 applies (Neumann et al., 2003). Then, based on a predefined priority rule, for all

123

Annals of Operations Research

eligible activities i ∈ E priority values are calculated and the activity j∗ ∈ E with the highest
priority is selected. For activity j∗ a set Z j∗ containing all points in time t ∈ [ESj∗ , LSj∗],
which are resource-feasible and dominant, is determined. A point in time t ∈ [ESi , LSi]
is called dominant for an activity i ∈ V , if the resource demand rcik(t) is smaller for at
least one resource k ∈ R compared to all points in time τ ∈ Z j∗ | τ < t . The restriction
to dominant points in time is motivated by the fact that, due to the aim of minimizing the
project duration, an activity should generally be scheduled as early as possible and therefore
a later start time is only accepted if it leads to a saving for at least one resource compared
to all previous dominant as well as time- and resource-feasible points in time. This is not a
limitation for the generation scheme, because dominated points in time can become dominant
due to the unscheduling step in the further course of the heuristic, and thus are not necessarily
unselectable. If Z j∗ is empty, i.e. no time- and resource-feasible start time exists for activity
j∗, an unscheduling step is performed and the counter u is increased by one. Otherwise,
based on priority values calculated according to a given priority rule, the earliest point in
time t∗ ∈ Z j∗ with highest priority is selected and set as start time of j∗ (S j∗ = t∗). As
this causes the activity to be scheduled, j∗ is added to C. If all activities are scheduled,
the procedure terminates. Otherwise, since the scheduling of the activity may have reduced
the time windows of other activities, the earliest and latest start times of all activities not
scheduled so far are updated and the procedure is repeated.

Algorithm 2 shows the unscheduling step which is performed if no time- and resource-
feasible point in time for the start of activity j∗ can be found. In case u is higher than a
maximal number of unscheduling steps û the algorithm aborts and no feasible schedule can

Algorithm 1 Construction-based generation scheme
Input: RCPSP/max-π instance

1: Determine longest path lengths di j for all i, j ∈ V
2: Determine Pred≺D (i) for all i ∈ V
3: Set ESi = d0i , LSi = −di0 for all i ∈ V
4: Set C := {0}, S0 := 0, u := 0, �i := ∅ for all i ∈ V
5: Determine rcik (t) for all i ∈ V \ {0} and k ∈ R and t ∈ Wi

6: for all i ∈ V \ {0} do
7: if ESi = LSi then Si = ESi , C := C ∪ {i}
8: while C
= V do
9: rmin

ik := mint∈Wi
rcik (t) for all i ∈ V \ C and k ∈ R

10: rmax
ik := maxt∈Wi

rcik (t) for all i ∈ V \ C and k ∈ R
11: RCk := Rk − ∑

i∈V\C rmin
ik − ∑

i∈C rcik (Si) for all k ∈ R
12: E := {i ∈ V \ C | Pred≺D (i) ⊆ C}
13: priority based choice of activity j∗ ∈ E to be scheduled next
14: Z j∗ := {t ∈ W j∗ \ � j∗ | rcj∗k (t) − rmin

j∗k ≤ RCk for all k ∈ R and

mink∈R{rcj∗k (t) − rcj∗k (τ)} < 0 for all τ ∈ W j∗ \ � j∗ | τ < t}
15: if Z j∗ = ∅ then u := u + 1 and Unschedule
16: else
17: priority based choice of point in time t∗ ∈ Z j∗ as start time of j∗
18: S j∗ := t∗, C := C ∪ { j∗}
19: for all h ∈ V \ C do
20: ESh := max(ESh , S j∗ + d j∗h)

21: LSh := min(LSh , S j∗ − dhj∗)

22: Wh := {ESh , ...,LSh}
23: if ESh = LSh then Sh = ESh , C := C ∪ {h}
24: return S

123

Annals of Operations Research

Algorithm 2 Unschedule
Input: C, Si and �i for all i ∈ V , j∗, rcik (Si) for all i ∈ V and k ∈ R

1: if u ≥ û then terminate
2: if ES j∗
= d0 j∗ then U := {i ∈ C |ES j∗ = Si + di j∗ }
3: if LS j∗
= −d j∗0 then U := U ∪ {i ∈ C |LS j∗ = Si − d j∗i }
4: if U := ∅ then U := {i ∈ C | min {rik (Si), r j∗k } > 0 for at least one k ∈ R}
5: for all i ∈ U do
6: C := C \ {i}
7: �i = �i ∪ {Si }
8: � j∗ := ∅
9: for all i ∈ C with Si > minh∈U Sh do
10: C := C \ {i}
11: for all h ∈ V \ C do
12: ESh := d0h
13: LSh := −dh0
14: for all i ∈ C do
15: ESh := max(ESh , Si + dih)

16: LSh := min(LSh , Si − dhi)
17: return C, ESi and LSi for all i ∈ V \ C, �i for all i ∈ V

be returned. Otherwise, all activities i ∈ C that cause j∗ to be unfeasibly scheduled are
identified and stored in set U . For this, we first examine if one or more activities i ∈ C restrict
the time window of the chosen activity j∗ i.e. increases ESj∗ or decreases LSj∗ . If this is
not the case for any of the scheduled activities, we determine all activities i ∈ C that require
one or more resource k ∈ R that activity j∗ also needs to be executed, but whose capacity
is insufficient. Because at least one activity i ∈ U has to be rescheduled in order to obtain a
feasible schedule, all activities i ∈ U are unscheduled and removed from the set C. Moreover,
the current start point Si is forbidden by storing it in the tabu-list �i whereas � j∗ is cleared.
Points in time t ∈ �i can no longer be chosen as start time of activity i in the scheduling
phase of the generation scheme until they are removed from the tabu-list. In addition, all
activities i ∈ C with Si > minh∈U Sh are also unscheduled, because they could start earlier
in time due to the unscheduling of activities and potentially increasing remaining resource
availabilities. Finally, for all activities i ∈ V\C the earliest and latest start times ESi and LSi
are recalculated.

In addition to the approach presented above, only scarce resources are considered to further
improve the heuristic. If the remaining capacity for a resource k ∈ R is higher than the sum
of the maximal resource demands rmax

ik of all activities that remain to be scheduled, the
resource is no longer critical and consequently can be removed from the set of resourcesR to
be observed. Since this can change again later in the procedure due to deallocation, resources
that are used by unscheduled activities but have been removed from R are checked whether
a resumption is necessary. Moreover, to improve the generation scheme and to prevent it
to getting stuck, we extended the activity selection to consider strong components of the
network. A strong component of a network denotes a maximum set of activities for which
each activity is reachable from every other activity (without using 〈n+1, 0〉) (Neumann et al.,
2003). Once an activity of a strong component has been scheduled, the remaining activities
of this component are prioritized during the activity selection in the following iterations.

For the activity selection, we used the priority rules LSTd ("latest start time first -
dynamic") and TFd ("smallest total float first - dynamic"), since resource-based priority
rules have shown worse performance in pre-tests. For the start time selection the priority

123

Annals of Operations Research

rules Tmin ("earliest start time"), RD ("minimal total resource demand"), and RL ("resource
leveling") are applied.

If a stochastic priority rule is used for the activity selection, all possible scheduling
sequences regarding the distance order can be achieved. Furthermore, due to the tabooing
and de-tabooing of possible start times, all time-feasible points in time can be selected as start
time for each activity in the course of the procedure, if a stochastic priority rule is used for
selecting the start time. Thus, the generation scheme is complete, i.e. there is a sequence of
scheduling and unscheduling steps to determine an optimal solution for the RCPSP/max-π .
For this, the restriction to dominant points in time is not a limitation. Assume that a schedule
was constructed with an arbitrary scheduling sequence in which at least one operation j ∈ V
does not start at a dominant point in time. In this case, j could be moved forward in time
to a permissible point in time t < S j that dominates the current start time S j . Such a left
shift would result in a non-increasing resource requirement of activity j for each resource k.
Since the project duration is non-increasing in the start times of the activities with constant
resource requirements, the resulting schedule is not worse than the original schedule with
respect to the pursued objective function. It can be concluded that the set of optimal solutions
must contain at least one schedule in which all operations start at a dominant point in time.
Consequently, the procedure is complete, despite the restriction to the scheduling-dependent
feasible and dominant points in time.

The generation scheme can be easily converted into a multistart approach by using the
priority rules stochastically instead of deterministically. This can be realized, for example, by
a roulette wheel selection based on selection probabilities calculated according to the chosen
priority rule. To improve the multistart generation scheme, each run the maximal project
duration d is set to Sn+1−1 of the best known schedule and setsWi are updated accordingly.

The construction-based generation scheme has a time complexity of
O(max (|V|3, |V| |R| d̄2)), if there does not occur any unscheduling step. The unschedul-
ing step has a time complexity of O(max(|V|2, |V| |R|)). Assuming, we have scheduled n
activities untilwe performanunscheduling step and that themaximal number of unscheduling
steps equals |V|, we in total obtain a time complexity of O(|V|2 max (|V|3, |V| |R| d̄2)).

In order to illustrate the procedure of our first generation scheme, it is conducted exemplary
for the project from Fig. 1 with a capacity of Rk = 4 and�k = {2, 3, 4, 7, 8} for the partially-
renewable resource k. For the sake of simplicity, no selection probabilities are calculated,
instead the priority rules are applied deterministically. For the choice of activity j∗ the priority
rule "smallest total float first - dynamic" (TFd) is used, meaning the activity i ∈ E with the
currently smallest total float T Fi := LSi − ESi is scheduled next, whereas for the start time
t∗ the earliest feasible start time t ∈ Z j∗ is chosen, which corresponds to the priority rule
Tmin.

In the course of the initialization step, the project start is scheduled at point in time zero.
Futhermore, for each activity i ∈ V\{0} the start time dependent resource consumption
is calculated for each possible start time t ∈ Wi just like shown in Fig. 2 for activity 1.
Afterwards, the construction phase of the generation scheme starts. In the first iteration,
activity 1 and 2 can be scheduled, i.e. E = {1, 2} applies. Because activity 1 has a smaller
slack time (LS1 − ES1 = 6) than activity 2 (LS2 − ES2 = 9), j∗ = 1 is selected. Since
no real activity has been scheduled so far, the tabu list of activity 1 is empty. The minimal
resource requirement of the remaining activities equals one, so each point in time t between
ES1 and LS1 is resource-feasible. However, within this time window only the points in time
t = 0 and t = 3 are dominant, i.e. Z1 = {0, 3}. According to the given rule, we select the
earliest possible start time S1 = 0, add activity 1 to set C and perform an ES-LS-update
for all activities i ∈ V\C. This results in changes for the following values: LS2 = 7 and

123

Annals of Operations Research

Fig. 4 Construction based generation scheme

LS3 = 3. Accordingly, the sets of time-feasible start times Wi for i = 2 and i = 3 are
updated to W 2 = {3, ..., 7} and W 3 = {0, ..., 3}. The current resource profile is shown in
the upper part of Fig. 4. In the next iteration, E = {2, 3} applies. Due to its smaller slack
time, activity j∗ = 3 is selected. However, since activity 2 requires at least one unit of the
resource (rmin21 = 1) and two units are already taken by activity 1, there exists no time- and
resource-feasible start time for activity 3. Therefore, an unscheduling step is performed. The
result of this step is that activity 1 is unscheduled and its previous start time S1 = 0 is added
to its tabu-list (�1 = {0}). Furthermore, the latest start times of activity 2 and 3 are reset
to nine. Afterwards, in iteration three, activity j∗ = 1 is scheduled to the earliest dominant
time- and resource-feasible point in time not being tabued, i.e. S1 = 1. The ES-LS-update
leads to ES2 = 4, LS2 = 8, LS3 = 4 and ES5 = 7. Consequently, the sets of time-feasible
start timesWi are updated as well. Now, the resource profile as shown in the middle of Fig. 4
results. In the fourth iteration, activity j∗ = 3 can be scheduled feasibly at S3 = 4 and, in
the fifth iteration, the start time of activity j∗ = 2 is set to point in time four too. In the next
iteration only activity 4 can be scheduled. Because of S3 = 4 the value ES4 was updated to 6.
Since all units of the partially renewable resource are already in use, activity 4 can be feasibly
scheduled earliest at point in time 8, thus results in S4 = 8 and consequently ES5 = 9. The
procedure ends with the scheduling of project end i = 5 at t = 9. The result of the procedure
is the time- and resource-feasible schedule S = (0, 1, 4, 4, 8, 9) as shown in the last resource
profile in Fig. 4.

123

Annals of Operations Research

4.2 Relaxation-based generation scheme

In this section a relaxation-based generation scheme is presented, which is based on the
branch-and-bound procedure of Watermeyer and Zimmermann (2020). The generation
scheme starts with an optimal solution of the resource relaxation of the RCPSP/max-π , e.g.
the ES-schedule. If this schedule is not resource-feasible, we gradually reduce the resource
consumption of conflict resources until we obtain a time- and resource-feasible schedule.
This is achieved by iteratively adding resource constraints for the activities of a project,
which are then converted into start time restrictions and added to the resource relaxation.

According to Watermeyer and Zimmermann (2020), the resource relaxation of the
RCPSP/max-π can be formulated as follows:

Minimize f (S) = Sn+1

subject to S j − Si ≥ δi j (〈i, j〉 ∈ E)

Si ∈ Wi (i ∈ V)

⎫
⎪⎬

⎪⎭
(RCPSP/max-πrelax)

Vector W = (Wi)i∈V is further on called start time restrictions of the activities i ∈V with
Wi ⊆ {0, 1, ..., d̄} for all i ∈ V\0 and W0 = {0}. If Wi := {ESi , ..., LSi } for all i ∈ V
applies, the resource relaxation is equal to the PSP/max. In the following, ST (W) describes
the feasible area of problem RCPSP/max-πrelax , i.e. the n+1-dimensional space containing
all schedules that observe the given start time restrictions. The unique minimal point of this
space, which exists unless ST (W)=∅, is called ES(W) and can be determined by an adapted
Label Correcting Algorithm in O(|V| |E |(B + 1)) with B as number of start time breaks in
W (Watermeyer & Zimmermann, 2020).

In the following, the detailed procedure of our relaxation-based generation scheme is
presented, which is also shown in Algorithm 3. In the initialization process, analogous to
the construction-based generation scheme, for each activity i ∈ V , the cumulative resource
consumption rcik(t) for each point in time t ∈ Wi and each partially renewable resource k ∈ R
is calculated as well as the minimal possible resource demand rmin

ik over time. Afterwards,
for each activity i ∈ V a set Wi of all potential start times is established containing all
points in time t ∈ Wi excluding those who are certainly known to be resource-infeasible.
Based on Wi , the maximal cumulative resource demand rmax

ik is computed for each activity
i ∈ V and resource k ∈ R. Furthermore, a lower bound rLBik := rminik and an upper bound
rUBik := rmaxik for the resource consumption allowed for activity i ∈ V are initialized, which
at first correspond to the minimal and maximal possible resource usage, respectively. The
initialization step concludes with the set up of a counter u, which is set to zero, and an empty
tabu list �k for each resource k ∈ R.

In the main step, which is only performed if a time-feasible schedule exists, i.e. ST
= ∅,
and if the minimum possible resource requirement rmin

ik of all activities i ∈ V in total does not
exceed the given capacity Rk for any resource k ∈ R, the unique minimal point S = ES(W)

of the feasible area of the RCPSP/max-πrelax is determined. For the resulting schedule all
resources for which the total resource consumption of all activities exceeds the given capacity
in the restricted periods are identified and stored in setRconflict. If this is not the case for any
partially renewable resource, i.e. the set Rconflict is empty, schedule S is time- and resource-
feasible and the generation scheme terminates. In this case, due to the pursued objective of
minimizing the project duration, the minimum point ES(W) is optimal. Otherwise, based
on a given priority rule, a resource k∗ ∈ Rconflict is selected. In the following, for at least
one activity using resource k∗ in the current schedule in the capacitated periods, the resource
usage in those periods should be decreased. For this, a set Vpot of all activities i ∈ V , whose

123

Annals of Operations Research

Algorithm 3 Relaxation-based generation Scheme
Input: RCPSP/max-π instance

1: Determine longest path lengths di j for all i, j ∈ V
2: Set ESi = d0i , LSi = −di0 for all i ∈ V
3: Determine rcik (t) for all i ∈ V \ {0}, k ∈ R and t ∈ Wi

4: rminik := mint∈Wi
rcik (t) for all i ∈ V and k ∈ R

5: Wi := {t ∈ Wi | rcik (t) ≤ Rk − ∑
j∈V\{i} rminik for all k ∈ R} for all i ∈ V

6: rmaxik := maxt∈Wi
rcik∗ (t) for all i ∈ V and k ∈ R

7: rLBik := rminik , rUBik := rmaxik for all k ∈ R} for all i ∈ V
8: u := 0, �k = ∅ for all k ∈ R, feas=false
9: if ST (W) = ∅ then terminate
10: while feas=false do
11: S := ES(W)

12: Rconflict := {k ∈ R | ∑
i∈V rcik∗ (Si) > Rk }

13: if Rconflict = ∅ then feas=true
14: else
15: priority based choice of resource k∗ ∈ Rconflict

16: Vpot := {i ∈ V | rcik∗ (Si) > 0 ∧ rcik∗ (Si) − rLBik∗ > 0 ∧ i /∈ �k∗ }
17: if Vpot = ∅ then u := u + 1 and Reverse Step
18: else
19: priority based choice of activity i∗ ∈ Vpot

20: rUBi∗k∗ := rci∗k∗ (Si∗) − ri∗k∗
21: for t ∈ Wi do
22: if rci∗k∗ (t) > rUBi∗k∗ then Wi := Wi \ {t}
23: if ST (W) = ∅ then
24: rUBi∗k∗ := rci∗k∗ (Si∗)

25: �k∗ := �k∗ ∪ {i∗}
26: else
27: update Wi , r

min
ik and rmaxik for all i ∈ V and k ∈ R

28: return S

relevant cumulative resource consumption of resource k∗ can be reduced, is determined.
If Vpot is empty, a so-called reverse step is done. Otherwise, based on a certain priority
rule, an activity i∗ ∈ Vpot is selected. For the chosen activity i∗ the maximal cumulative
resource consumption rmax

i∗k∗ is set to rci∗k∗(Si∗) − ri∗k∗ . Afterwards, this new restriction for
the resource consumption of activity i∗ is converted into a start time restriction, i.e. all points
in time t ∈ Wi∗ leading in a higher resource requirement than rmaxi∗k∗ are removed from the
setWi∗ . If this results in an empty feasible area of the corresponding RCPSP/max-π relax, the
additional start time restriction is undone and activity i∗ is added to the tabu list of resource
k∗. Otherwise, Wi , rminik and rmaxik are updated for all i ∈ V and k ∈ R. The main step as just
described is executed until a time- and resource-feasible schedule is found or a termination
criterion, e.g. a maximum number of reverse steps, is reached.

The reverse step is executed if there is no feasible possibility to reduce the resource
consumption for the selected conflict resource k∗. To count the number of reverse steps
already performed, the counter u is used. If u is higher than a given maximal number of
reverse steps û, the generation scheme aborts without finding a feasible schedule. Otherwise,
counter u is increased by one. Aim of the reverse step is to undo start time restrictions added
in previous iterations that result in conflict resources or that cause the resource requirements
of currently existing conflict resources to be irreducible. Since these disrupting start time
restrictions cannot be easily identified, four different reverse step strategies were investigated.

123

Annals of Operations Research

The first strategy (σ = 1) simply reverses a random number of recently added start time
restrictions. If the second strategy (σ = 2) is chosen, we always return to the initial state
(Wi = {ESi , ..., LSi } for all i ∈ V). The third strategy (σ = 3) resets the start time restrictions
for activities i ∈ V that actually use the conflict resource k∗ whose resource consumption
in the capacitated periods could not be reduced and whose demand could in general be
decreased, i.e. rcik∗(Si) − rLBik∗ > 0. Finally, the fourth strategy (σ = 4) tries to find out the
reasons why the heuristic is stuck. For this purpose, quite similar to the unscheduling step of
the construction-based generation scheme it is determined whether binding time restrictions
or resource constraints are the reason that the resource consumption of k∗ cannot be reduced
in order to specifically reset them. Finishing one iteration, regardless of the selected reverse
step strategy, the tabu list �k∗ is cleared and finally, Wi , rminik and rmaxik are updated for all
activities i ∈ V and resources k ∈ R.

For the choice of resource k∗ the priority rules RDd ("maximal total Resource Demand
dynamic first") and ROd ("maximal resource capacity overrun first - dynamic") were tested.
For the activity selection the rules TFd (in contrast to our first generation scheme, the activity
with the largest total float is prioritized here), GRDd ("greatest resource demand first -
dynamic") and GRDTd ("greatest resource demand per time unit first - dynamic") were used.
Analogous to the first generation scheme, the relaxation-based generation scheme can be
easily converted into a multistart procedure by calculating selection probabilities according
to the chosen priority rules and performing roulette wheel selections for instance.

The relaxation-based generation scheme has a time complexity ofO(|V| |R| d̄ s), if there
does not occur any reverse step, since atmost s = ∑

i∈V
∑

k∈R rmaxik /rik resource constraints
can be inserted. The time complexity of the reverse step depends on the chosen reverse strategy
and can at worst be O(max(|V|2, |V| |R|)).

The relaxation-based generation scheme is demonstrated for the example shown in Fig. 1.
First, the initialization process is executed including the set up of the start time restrictions
Wi for each activity i ∈ V . In this example resulting in W0 = {0}, W1 = {0, ..., 6}, W2 =
{3, ..., 9}, W3 = {0, ..., 9}, W4 = {2, ..., 11} and W5 = {6, ..., 12}. In the main step, S =
ES(W) is calculated. The resulting schedule S = (0, 0, 3, 0, 2, 6) drawn in the first resource
profile in Fig. 4 is not resource-feasible because the resource usage in the capacitated periods
exceeds the capacity R1 (

∑
i∈V rci1(Si) = 8 > R1 = 4). To reduce the resource consumption,

the resource requirements of the activities Vpot = {1, 2, 3, 4} can be reduced. Since activity 4
uses themost resources in the current schedule, it is selected and itsmaximal allowed resource
usage is set to rUB41 := rc41(S4) − r41 = 3 − 3 = 0. This results in W4 = {4, 5, 8, ..., 11}
whereas all other start time restrictions remain unchanged. Based on this, the second iteration
results in Schedule S = ES(W) = (0, 0, 3, 0, 4, 6), which is still not resource-feasible. Since
the resource consumption of activities 1 and 2 are identical, the activity with the smallest
index, i.e. activity j∗ = 1, is selected here and its maximal allowed resource usage is
restricted to rUB11 := rc11(S1) − r11 = 2 − 1 = 1. Based on this, the start time restrictions
are updated as follows: W1 = {3, 4}, W2 = {6, 7, 8, 9} and W5 = {9, ..., 12}. In the third
iteration, the schedule S = ES(W) = (0, 3, 6, 0, 4, 9) is obtained. We chose activity j∗ = 2
from the set Vpot = {1, 2, 3} and restrict its resource consumption to rUB21 := 2 − 1 = 1.
Thus, W2 = {7, 8, 9} and W5 = {10, ..., 12} applies. Finally, in the forth iteration, schedule
S = ES(W) = (0, 3, 7, 0, 4, 10) drawn in the last resource profile in Fig. 4 is time- and
resource-feasible and the generation scheme terminates.

123

Annals of Operations Research

Fig. 5 Relaxation based generation scheme

123

Annals of Operations Research

5 Results

This section provides the results of an experimental performance analysis of the two gen-
eration schemes. All combinations of different priority rules and reverse step strategies as
introduced before were tested. For each combination the generation schemes were executed
as multistart procedure with one deterministic and 100 stochastic runs. The maximal number
of unscheduling or reverse steps per run were limited to the instance dependent number of
activities n.

Within the experimental performance analysis, we used test instances for the RCPSP/max-
π generated by Watermeyer and Zimmermann (2020), which are based on the well-known
benchmarkUBO-instances for theRCPSP/max developed and described bySchwindt (1998).
We used the test sets UBO50π , UBO100π , and UBO200π with n ∈ {50, 100, 200} real
activities and m = 30 partially renewable resources. Each of these test sets consists of 243
instances with different specifications. For better comparability, analogous to Watermeyer
the maximum project duration d is calculated by d = ∑

i∈V max{pi ,max〈i, j〉)∈E δi j }. Note,
that for the RCPSP/max-π in contrast to the RCPSP/max this value does not represent an
upper bound for the project duration and consequently no feasible solution may exist. All
instances that are known to be either trivial or infeasible assuming d as introduced before are
excluded. Consequently, a total of 502 instances of testset UBO50π , 479 instances of testset
UBO100π , and 466 instances of testset UBO200π remain.

In order to better benchmark the results of our generation schemes, they are compared to
those of the presentedMIP formulation as well as to those of the best-performing branch-and-
bound procedure of Watermeyer and Zimmermann (2022). All solution methods are coded
in C++. To solve the MIP we used the ILOG IBMCPLEX 12.0 solver with a runtime limit of
3600s, whereas Watermeyer and Zimmermann (2022) specifies a time limit of 300s for the
UBO50π and UBO100π test sets and 600s for the UBO200π test set, which was adopted for
our generation schemes. All runs were done on an Intel Core i7-7700K CPU with 4.2 GHz
and 64 GB RAM under Windows 10 on a single thread.

Since the feasibility problemof theRCPSP/max-π isNP-complete in the strong sense (cf.
Watermeyer, 2021, p.34), both heuristic generation schemes do not necessarily find a feasible
solution for an instance of the RCPSP/max-π even if a feasible solution exists. Therefore, in
a first step in Tabel 1 the percentage of instances for which a feasible solution could be found
(%feas)was evaluated for both generation schemes and compared to those obtained by the time
indexed formulation solved by the solver ILOG IBM CPLEX (MIP) and the partitioning-
based branch-and-bound procedure (B&B) of Watermeyer and Zimmermann (2022).

The results show that both generation schemes are able to find feasible solutions for a high
percentage of the tested instances (at worst 91.04%), especially using the resource-based pri-
ority rules. However, for the instances with 50 or 100 real activities, the construction-based
method using the priority rule RD for the start time selection outperforms the relaxations-
based generation scheme for all tested combinations of priority rules and reverse step
strategies. For the instances with 200 real activities, both generation schemes are able to
find feasible solutions for almost all tested instances regardless of the selected priority rules
and reverse step strategies (at worst 99.36%). For both generation schemes as well as for
the branch-and-bound procedure, it can be observed that the proportion of feasibly solved
instances rises with increasing instance size, whereas for the MIP the percentage decreases
significantly. This indicates that due to the planning horizon, which increases with growing
instance size, and the overall available resource capacity, there is more flexibility for planning
the activities, which is exploited especially in the problem-specific solution methods.

123

Annals of Operations Research

Table 1 Performance regarding the percentage of feasibility

UBO50π UBO100π UBO200π

Tmin 96.81 98.07 99.36

LSTd RD 97.21 98.20 99.57

constr. GS RL 97.21 98.07 99.36

Tmin 96.41 98.07 99.36

T Fd RD 97.21 98.20 99.57

RL 97.21 98.07 99.36

σ = 1 91.04 95.82 99.36

T Fd σ = 2 92.23 96.24 99.36

σ = 3 93.23 96.45 99.36

σ = 4 93.63 96.66 99.57

GRDd σ = 1 91.63 96.03 99.36

RDd σ = 2 92.43 96.45 99.36

σ = 3 93.22 96.87 99.57

σ = 4 94.02 97.29 99.57

GRDTd σ = 1 91.63 96.03 99.36

σ = 2 92.63 97.08 99.57

σ = 3 93.82 97.29 99.57

relax. GS σ = 4 94.22 97.70 99.57

σ = 1 91.63 96.03 99.36

T Fd σ = 2 92.63 96.66 99.36

σ = 3 93.43 97.08 99.57

σ = 4 93.83 97.08 99.57

GRDd σ = 1 92.03 92.63 99.36

ROd σ = 2 93.22 97.08 99.36

σ = 3 94.02 97.29 99.57

σ = 4 94.44 97.29 99.57

σ = 1 92.03 97.70 99.57

GRDTd σ = 2 93.43 97.49 99.57

σ = 3 94.22 97.70 99.57

σ = 4 94.44 97.91 99.57

MIP 96.81 63.26 25.11

B&B 98.80 98.96 100.00

Beside the percentage of feasibly solved instances, for each tested generation scheme
specification, the number of instances for which it finds the best solution over both generation
schemes (#best) was counted and also the average percentage deviation (∅gap) from this best
solution over all feasibly solved instances was determined. The results are shown in Table 2.

For some instances the different specifications come to the same objective function value,
so the sum of #best per instance size is greater than the number of instances contained in the
instance set. But for a part of the instances, there are also strong variations between the best
solutions of the tested specifications of both generation methods. For the construction-based
generation scheme, the quality of the solutions generated with the priority rules LSTd and
T Fd are quite similar. However, regarding the average gap both are outperformed by the

123

Annals of Operations Research

Table 2 Performance of the generation schemes

UBO50π UBO100π UBO200π

#best ∅
gap #best ∅

gap #best ∅
gap

Tmin 177 2.83 85 4.65 92 4.27

LSTd RD 221 3.46 147 6.21 152 5.35

constr. GS RL 259 4.20 206 6.06 224 5.28

Tmin 141 3.04 64 5.99 78 4.53

T Fd RD 202 3.76 134 7.35 143 5.42

RL 242 3.59 170 7.32 179 5.33

σ = 1 105 4.00 47 4.48 60 4.60

T Fd σ = 2 120 2.62 65 2.95 73 2.83

σ = 3 123 2.83 53 3.86 64 3.59

σ = 4 124 2.84 59 4.05 64 4.10

GRDd σ = 1 99 4.24 44 4.68 57 4.98

RDd σ = 2 114 2.84 62 3.11 66 3.03

σ = 3 110 3.16 50 4.27 59 3.79

σ = 4 109 3.22 57 4.30 62 4.37

GRDTd σ = 1 93 4.16 47 4.45 58 4.74

σ = 2 122 2.82 69 2.92 73 2.84

σ = 3 119 3.12 53 3.80 61 3.66

relax. GS σ = 4 116 3.19 57 4.02 63 4.22

σ = 1 103 3.96 48 4.41 60 4.44

T Fd σ = 2 132 2.38 72 2.42 77 2.41

σ = 3 123 2.54 54 4.23 62 3.34

σ = 4 124 2.63 59 3.75 66 3.73

GRDd σ = 1 97 4.23 43 4.55 62 4.92

ROd σ = 2 110 2.80 63 3.07 71 3.00

σ = 3 110 3.12 48 4.24 60 3.74

σ = 4 106 3.17 58 4.25 65 2.30

σ = 1 104 4.11 48 4.39 60 4.71

GRDTd σ = 2 123 2.75 69 2.87 74 2.80

σ = 3 120 3.12 54 3.72 63 3.59

σ = 4 120 3.13 59 4.00 66 4.22

time-based rule Tmin for the smaller as well as the larger instances, even if they provide the
best solutions over all tested specifications for a higher number of instances. This can be
explained by the fact that – although they generate very good results for many instances –
they perform comparatively poor for some of the instances, resulting in a higher average gap.
The results also show that for the relaxation-based generation scheme, the combination of
the resource selection rule ROd and reverse strategy σ = 2 performs best.

Now, the results of the best performing combinations of priority rules and strategies for
both generation schemes are compared to those obtained by the time indexed formulation
solved by the solver ILOG IBMCPLEX (MIP). For all solutionmethods, the average percent-
age deviation∅

gap from the best found solution over all feasibly solved instance and the aver-
age computation time ∅

time in seconds were examined. The results are displayed in Table 3.

123

Annals of Operations Research

Table 3 Performance of the generation schemes in comparison

UBO50π UBO100π UBO200π

∅
gap

∅
time

∅
gap

∅
time

∅
gap

∅
time

constr. GS 7.43 24.48 9.45 89.94 6.48 262.23

relax. GS 6.89 59.24 8.58 172.71 5.25 332.62

MIP 0.37 2175.01 22.58 2985.09 25.31 3198.26

For the MIP, in general, it can be observed, that the larger the instance, the higher the
achieved gap and the required computation time. To improve the performance of the MIP,
higher time limits of up to eight hours were tested. However, it can be observed that several
of the tested instances, especially the larger ones, still cannot be solved with a small gap or
even optimally. Therefore, solving the instances using a solver is not expedient even with an
extended solution time. For the generation schemes, the gap first rises, but then falls again
for the instances with 200 real activities. For the UBO50π instances, the MIP outperforms
the heuristics. With increasing instance size, the generation schemes are not only able to
solve more instances feasibly than the MIP, but also the constructed schedules are better
for UBO100π and significantly better for UBO200π compared to the MIP. Regarding the
average computation time, it can be observed, that the relaxation-based generation scheme
takes more time than the construction-based generation scheme. In particular, returning to
the initial state as reverse step strategy causes a high time overhead compared to the other
reverse step strategies. For all tested instance sizes, the average computation time solving
the MIP is drastically higher than for both generation schemes. Overall, the relaxation-based
generation scheme generates a marginal smaller gap than the construction-based, but also
takes more time.

6 Conclusion

In this paper we presented two generation schemes for the resource-constrained project
scheduling problem with partially renewable resources and generalized precedence con-
straints (RCPSP/max-π). In the first one, a successive scheduling of the activities is done to
finally construct a feasible solution. In the second, starting from the ES-Schedule, which in
general is resource-unfeasible, resource conflicts are solved until a feasible solution has been
found. The results of a comprehensive experimental performance analysis show, that both
generation schemes are able to generate feasible solutions for nearly all tested instances in a
short time and that the relaxation-based generation schemes finds marginal better solutions
while requiring slightly more time.

In order to improve the solutions obtained in this way, further research should address the
development of improvement heuristics, such as a genetic algorithm or a fix-and-optimize
heuristic. Also, machine learning approaches seem promising. For example, our generation
schemes could be extended to include a learning component that, from run to run, gives higher
weight to promising scheduling sequences or resource conflict solutions in the selection
process and, in contrast, gives less preference to steps that have led to unscheduling or
reverse steps. In addition, projects with renewable and partially renewable resources should
be considered, since in practice both resource types usually occur together.

Funding Open Access funding enabled and organized by Projekt DEAL. No funding was received to assist
with the preparation of this article.

123

Annals of Operations Research

Declarations

Conflict of interest There are no interests to declare.

Ethical approval This article does not contain any studies with human participants or animals performed by
any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alvarez-Valdés, R., Crespo, E., Tamarit, J., &Villa, F. (2006). A scatter search algorithm for project scheduling
under partially renewable resources. Journal of Heuristics, 12(1), 95–113.

Alvarez-Valdés, R., Crespo, E., Tamarit, J., & Villa, F. (2008). Grasp and path relinking for project scheduling
under partially renewable resources. European Journal of Operational Research, 189, 1153–1170.

Alvarez-Valdés, R., Tamarit, J., & Villa, F. (2015). Partially renewable resources. In C. Schwindt & J. Zim-
mermann (Eds.), Handbook on Project Management and Scheduling (Vol. 1, pp. 203–227). Springer.

Böttcher, J., Drexl, A., Kolisch, R., & Salewski, F. (1999). Project scheduling under partially renewable
resource constraints. Management Science, 45(4), 543–559.

Drexl, A., Juretzka, J., & Salewski, F. (1993). Academic course scheduling under workload and changeover
constraints. Working paper of the University of Kiel No. 337.

Drexl, A., & Salewski, F. (1997). Distribution requirements and compactness constraints in school timetabling.
European Journal of Operational Research, 102(1), 193–214.

Floyd, R. W. (1962). Algorithm 97: Shortest path. Communications of the ACM, 5(6), 345.
Franck, B., Neumann, K., & Schwindt, C. (2001). Truncated branch-and-bound, schedule-construction, and

schedule-improvement procedures for resource-constrained project scheduling. OR-Spektrum, 23, 297–
324.

Karnebogen,M.,&Zimmermann, J. (2021).A generation scheme for the resource-constrained project schedul-
ing problem with partially renewable resources and time windows. In: Book of Extended Abstracts of
17th International Conference on Project Management and Scheduling, Toulouse. pp. 195–198.

Karnebogen, M., & Zimmermann, J. (2022). A relaxation-based generation scheme for the RCPSP/max,π . In:
Book of Extended Abstracts of 18th International Conference on Project Management and Scheduling,
Ghent. pp. 72–75.

Neumann, K., Schwindt, C., & Zimmermann, J. (2003). Project scheduling with time windows and scarce
resources. Springer.

Talbot, F. B. & J. H. Patterson. (1978). An efficient integer programming algorithm with network cuts for
solving resource-constrained scheduling problems. Management Science, 24(11), 1163–117.

Schirmer, A. (1999). Project scheduling with scarce resources: Models, methods and applications. Springer.
Schwindt, C. (1998). Generation of resource-constrained project scheduling problems subject to temporal

constraints. Technical Report WIOR-543, University of Karlsruhe.
Watermeyer, K. (2021). Projektplanung mit partiell erneuerbaren Ressourcen. Düren: Shaker.
Watermeyer, K., & Zimmermann, J. (2020). A branch-and-bound procedure for the resource-constrained

project scheduling problem with partially renewable resources and general temporal constraints. OR
Spectrum, 42(2), 427–460.

Watermeyer, K., & Zimmermann, J. (2022). A partition-based branch-and-bound algorithm for the project
duration problem with partially renewable resources and general temporal constraints. OR Spectrum,
44(2), 575–602.

Watermeyer,K.,&Zimmermann, J. (2023).Aconstructive branch-and-boundalgorithm for theproject duration
problem with partially renewable resources and general temporal constraints. Journal of Scheduling, 26,
95–111.

123

http://creativecommons.org/licenses/by/4.0/

Annals of Operations Research

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Generation schemes for the resource-constrained project scheduling problem with partially renewable resources and generalized precedence constraints
	Abstract
	1 Introduction
	2 Problem description
	3 Literature review
	4 Generation schemes
	4.1 Construction-based generation scheme
	4.2 Relaxation-based generation scheme

	5 Results
	6 Conclusion
	References

