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Abstract
The Analytic Hierarchy Process (AHP) is a much discussed method in ranking business
alternatives based on empirical and judgemental information. We focus here upon the key
component of deducing efficient vectors for a reciprocal matrix of pair-wise comparisons.
It has been shown that the entry-wise geometric mean of all columns is efficient for any
reciprocal matrix. Here, by combining some new basic observationswith some known theory,
we (1) give a method for inductively generating large collections of efficient vectors, and (2)
show that the entry-wise geometric mean of any collection of distinct columns of a reciprocal
matrix is efficient. We study numerically, using different measures, the performance of these
geometric means in approximating the reciprocal matrix by a consistent matrix. We conclude
that, as a general method to be chosen, independent of the data, the geometric mean of
all columns performs well when compared with the geometric mean of proper subsets of
columns.

Keywords Consistent matrix · Decision analysis · Efficient vector · Geometric mean ·
Reciprocal matrix

Mathematics Subject Classification 90B50 · 91B06 · 15A60 · 05C20

1 Introduction

A method used in decision-making and frequently discussed in the literature is the Analytic
Hierarchy Process (AHP), suggested by Saaty (1977, 1980). Several works since then have
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developed and discussed many aspects of the method. See the surveys (Choo & Wedley,
2004; Ishizaka & Labib, 2011; Zeleny, 1982). A key element of the method is the notion
of pair-wise comparison (PC) matrix. An n-by-n positive matrix A = [ai j ] is called a PC
matrix if, for all 1 ≤ i, j ≤ n,

a ji = 1

ai j
.

Each diagonal entry of a PC matrix is 1. We refer to the set of all such matrices as PCn .
Often, we refer to these matrices as reciprocal matrices, as do other authors.

The i, j entry of a reciprocal matrix is viewed as a pair-wise ratio comparison between
alternatives i and j, and the intent is to deduce an ordering of the alternatives from it. If
the reciprocal matrix is consistent (transitive): ai j a jk = aik, for all triples i, j, k, there is a
unique natural cardinal ordering, givenby the relativemagnitudes of the entries in any column.
However, in human judgements consistency is unlikely. Inconsistency can also be an inherent
feature of objective datasets (Bozóki et al. 2016; Chao et al. 2018; Csató 2013; Petróczy 2021;
Petróczy and Csató 2021). Then, there will be many vectors that might be deduced from a
reciprocal matrix A. Let w be a positive n-vector and w(−T ) the transpose of its component-
wise inverse. We may try to approximate A by the consistent matrix W = ww(−T ), i.e.,
we wish to choose w so that W − A is small in some sense. We say that w is efficient for
A if, for any other positive vector v and corresponding consistent matrix V = vv(−T ), the
entry-wise inequality |V − A| ≤ |W − A| implies that v and w are proportional. (It follows
from Lemma 5 that we give later that this definition is equivalent to that of other authors
for the notion of efficiency (Blanquero et al., 2006; Bozóki & Fülöp, 2018)). A historical
perspective of this concept can be found in Ehrgott (2012) and recent variations of it can
be seen, for example, in Bozóki (2014) and Bozóki and Fülöp (2018). Clearly, a consistent
approximation to a reciprocal matrix A should be based upon a vector efficient for A. If
A is not itself consistent, the set E(A) of efficient vectors for A will include many vectors
not proportional to each other. For simplicity, we projectively view proportional efficient
vectors as the same, as they produce the same consistent matrix. The set E(A) is, however,
at least connected (Blanquero et al., 2006), but, in general, an explicit characterization of
the entire set seems difficult to give. In Cruz et al. (2021) and Furtado (2023), the complete
description of the set of efficient vectors for reciprocalmatrices obtained from consistent ones
by modifying at most two entries above the main diagonal, and the corresponding reciprocal
entries, was given, which, in particular, gives the description of the efficient vectors for any
3-by-3 reciprocal matrix. Recently, in Szádoczki and Bozóki (2023), the authors have studied
the set E(A) from a geometric point of view, when A is of size 3 or 4. Several methods to
study when a vector is efficient were developed and algorithms to improve an inefficient
vector have been provided (see (Anholcer & Fülöp, 2019; Blanquero et al., 2006; Bozóki,
2014; Bozóki & Fülöp, 2018) and the references therein).

Despite some criticism (Dyer, 1990a, b; Johnson et al., 1979; Saaty, 2003), one of the
most used methods to approximate a reciprocal matrix A by a consistent matrix is the one
proposed by Saaty (1977, 1980), in which the consistent matrix is based upon the right Perron
eigenvector of A, a positive eigenvector associated with the spectral radius of A (Horn &
Johnson, 1985). The efficiency of the Perron eigenvector for certain classes of reciprocal
matrices has been shown (Ábele-Nagy & Bozóki, 2016; Ábele-Nagy et al., 2018; Fernandes
& Furtado, 2022), though examples of reciprocal matrices for which this vector is inefficient
are also known (Blanquero et al., 2006; Bozóki, 2014; Fernandes & Furtado, 2022), even
matrices with an arbitrarily small level of inconsistency (Bozóki, 2014). Another method to
approximate A by a consistent matrix, with a strong axiomatic background (Barzilai 1997;
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Csató 2018, 2019; Fichtner 1986; Lundy et al. 2017), is based upon the geometric mean of all
columns of A, which is known to be an efficient vector for A (Blanquero et al., 2006). Many
other proposals for approximating A by a consistent matrix have been made in the literature
(for comparisons of different methods see, for example, Anholcer et al. (2011), Bajwa et al.
(2008), Bozóki (2008), Choo andWedley (2004), Dijkstra (2013), citefichtner86 and Golany
and Kress (1993); Kułakowski et al. (2022)).

Our main contribution in this paper consists of providing new classes of efficient vectors
for a general reciprocal matrix A. One way we do this is by extending an efficient vector for
a principal submatrix of A to an efficient vector for A. Unless A is consistent, this extension
allows us to obtain infinitely many projectively distinct efficient vectors for A. We also show
that any of the 2n − 2 geometric means of proper subsets of the columns of A ∈ PCn is
efficient for A, extending the known result of the efficiency of the geometric mean of all
columns. Recently, motivated by the result in this paper and using more involved arguments,
we have shown that any weighted geometric mean of the columns of a reciprocal matrix is
efficient (Furtado & Johnson, 2024).

Before summarizing inmore detail whatwe do here,wemention some additional notations
and terminology. The Hadamard (or entry-wise) product of two vectors (of the same size)
or matrices (of the same dimension) is denoted by ◦. For example, if A, B ∈ PCn then
A ◦ B ∈ PCn , and, similarly, the n-by-n consistent matrices are closed under the Hadamard
product. We use superscripts in parentheses to denote an exponent applied to all entries of a
vector or a matrix. For example

(u1 ◦ u2 ◦ · · · ◦ uk)

( 1
k

)

is the (Hadamard) geometric mean of positive vectors u1, . . . , uk of the same size. This
column geometric mean is what is called the row geometric mean for instance in Blanquero
et al. (2006).

For an n-by-n matrix A = [ai j ], we partition A by columns as A = [a1, a2, . . . , an] .
The principal submatrix determined by deleting (by retaining) the rows and columns indexed
by a subset K ⊆ {1, . . . , n} is denoted by A(K ) (A[K ]); we abbreviate A({i}) as A(i). Note
that if A is reciprocal (consistent) then so is A(i).

In Sect. 2 we give some (mostly known) background that we will use and make some
related observations. In particular, we present the relationship between efficiency and strong
connectivity of a certain digraph and state the efficiency of the Hadamard geometric mean
of all columns of a reciprocal matrix. In Sect. 3 we give some (mostly new) additional
background that will also be helpful. In Sect. 4 we show explicitly how to extend efficient
vectors for A(i) to efficient vectors for the reciprocal matrix A. This leads to an algorithm
initiated by any A[{i, j}], i �= j, to produce a subset of E(A). This subset may not be all
of E(A) as truncation of an efficient vector for A may not give one for the corresponding
principal submatrix. And we may get different subsets by starting with different i, j . In
Sect. 5 we study the relationship between efficient vectors for a reciprocal matrix A and its
columns. As mentioned, any column of a consistent matrix generates that consistent matrix
and, so, is efficient for it. Similarly, any column of a reciprocal matrix is efficient for it
(Lemma 10), as is the geometric mean of any subset of the columns (Theorem 12). In Sect. 6,
we study numerically, using different measures, the performance of these efficient vectors in
approximating A by a consistent matrix and, in some cases, compare them, from this point
of view, with the Perron eigenvector. We will see that the geometric mean of all columns can
be outperformed by the geometric mean of other collections of columns, though, in general,
it seems to produce results relatively close to the best among the other geometric means.
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The geometric mean of all columns seems to have better performance for matrices with a
lower level of inconsistency. Also, in the simulations, it is the one that performs better with
higher frequency (at least according to one of our measures). Thus, as a general method to
be chosen in advance to derive priorities, we can conclude that the geometric mean of all
columns seems to be the best choice among all the geometric means of subsets of columns.
We also show by example that E(A) is not closed under geometric mean (Sect. 5). Finally,
in Sect. 7 we give some conclusions.

2 Technical background

We start with some known results that are relevant for this work. First, it is important to
know how E(A) changes when A is subjected to either a positive diagonal similarity or a
permutation similarity, or both (a monomial similarity).

Lemma 1 Cruz et al. (2021); Furtado (2023) Suppose that A ∈ PCn and w ∈ E(A). Then,
if D is a positive diagonal matrix (P is a permutation matrix), then DAD−1 ∈ PCn and
Dw ∈ E(DAD−1) (P APT ∈ PCn and Pw ∈ E(PAPT )).

Next we define a directed graph (digraph) associated with amatrix A ∈ PCn and a positive
n-vector w, which is helpful in studying the efficiency of w for A. For w = [

w1 · · · wn
]T

,
we denote by G(A, w) the directed graph (digraph) whose vertex set is {1, . . . , n} and whose
directed edge set is

{i → j : wi

w j
≥ ai j , i �= j}.

In Blanquero et al. (2006) the authors proved that the efficiency of w can be determined
from G(A, w).

Theorem 2 Blanquero et al. (2006) Let A ∈ PCn. A positive n-vector w is efficient for A if
and only if G(A, w) is a strongly connected digraph, that is, for all pairs of vertices i, j,
with i �= j, there is a directed path from i to j in G(A, w).

Recall (Horn & Johnson, 1985) that G(A, w) is strongly connected if and only if (In +
L)n−1 is positive. Here In is the identity matrix of order n and L = [li j ] is the adjacency
matrix of G(A, w), that is, li j = 1 if i → j is an edge in G(A, w), and li j = 0 otherwise.

In Blanquero et al. (2006), it was shown that the geometric mean of all columns of
a reciprocal matrix A is an efficient vector for A. This result comes from the fact that
the geometric mean minimizes the logarithmic least squares objective function (see also
(Crawford & Williams, 1985)).

Theorem 3 Blanquero et al. (2006) If A ∈ PCn, then

(a1 ◦ a2 ◦ · · · ◦ an)

( 1
n

)
∈ E(A).

In Cruz et al. (2021), all the efficient vectors for a simple perturbed consistent matrix, that
is, a reciprocal matrix obtained from a consistent one by modifying one entry above the main
diagonal and the corresponding reciprocal entry, were described. Let Zn(x), with x > 0,
be the simple perturbed consistent matrix in PCn with all entries equal to 1 except those in
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positions 1, n and n, 1, which are x and 1
x , respectively. For any simple perturbed consistent

matrix A ∈ PCn, there is a positive diagonal matrix D and a permutation matrix P such that

DPAP−1D−1 = Zn(x),

for some x > 0. Taking into account Lemma 1, an n-vector w is efficient for A if and only
if DPw is efficient for Zn(x). For this reason, we focused on the description of the efficient
vectors for Zn(x), as the efficient vectors for a general simple perturbed consistent matrix
can be obtained from them using Lemma 1.

Theorem 4 Cruz et al. (2021) Let n ≥ 3, x > 0 and w = [
w1 · · · wn−1 wn

]T
be a positive

vector. Then w is efficient for Zn(x) if and only if

wn ≤ wi ≤ w1 ≤ wnx, for i = 2, . . . , n − 1,

or

wn ≥ wi ≥ w1 ≥ wnx, for i = 2, . . . , n − 1.

Note that, if

A =
⎡
⎣

1 a12 a13
1
a12

1 a23
1
a13

1
a23

1

⎤
⎦ ∈ PC3,

then DAD−1 = Z3

(
a13

a12a23

)
, with

D =
⎡
⎣

1
a12

0 0
0 1 0
0 0 a23

⎤
⎦ .

In particular, any 3-by-3 reciprocal matrix is a simple perturbed consistent matrix, as this
property is invariant under diagonal similarity.

3 Additional facts on efficiency

From the following result we may conclude that the definition of efficient vector given in
Sect. 1 is equivalent to the one in Blanquero et al. (2006) and Bozóki and Fülöp (2018).

Here and throughout, if A ∈ PCn and w is a positive n-vector, we denote

D(A, w) := ww(−T ) − A.

By |D(A, w)| we mean the entry-wise absolute value of D(A, w).

Lemma 5 Let A ∈ PCn and v,w be positive n-vectors. Then, |D(A, w)| = |D(A, v)| if and
only if v and w are proportional.

Proof The “if” claim is trivial. Next we show the "only if" claim. Let w = [
w1 · · · wn

]T
and v = [

v1 · · · vn
]T

. Let i, j ∈ {1, . . . , n} with i �= j . Suppose that
∣∣∣∣ai j − wi

w j

∣∣∣∣ =
∣∣∣∣ai j − vi

v j

∣∣∣∣ and

∣∣∣∣
1

ai j
− w j

wi

∣∣∣∣ =
∣∣∣∣
1

ai j
− v j

vi

∣∣∣∣ . (1)
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If (
ai j − wi

w j

) (
ai j − vi

v j

)
≥ 0,

then (1) implies wi
w j

= vi
v j

. If

(
ai j − wi

w j

)(
ai j − vi

v j

)
< 0

then also (
1

ai j
− w j

wi

) (
1

ai j
− v j

vi

)
< 0,

implying, from (1),

ai j = 1

2

(
wi

w j
+ vi

v j

)
and

1

ai j
= 1

2

(
w j

wi
+ v j

vi

)
.

So

4 =
(

wi

w j
+ vi

v j

) (
w j

wi
+ v j

vi

)

⇔ 2 = wiv j

w jvi
+ w jvi

wiv j
⇔ wi

w j
= vi

v j
.

Condition wi
w j

= vi
v j

, for all i, j ∈ {1, . . . , n}, implies w and v proportional. 
�

Note from the proof of Lemma 5 that (1) holds for a pair i, j if and only if wi
w j

= vi
v j

.

We close this section with a topological property of E(A).

Theorem 6 For any A ∈ PCn,E(A) is a closed set (as a subset of the set of positive n-vectors).

Proof We verify this by showing that the inefficient vectors, in the complementary of E(A),

form an open set, by appealing to Theorem 2. Suppose that v /∈ E(A).Then the graphG(A, v)

is not strongly connected. Let ṽ be close enough to v (i.e. ṽ lies in an open ball about v,

whose radius is positive, but as small as we like). Then, if i → j is not an edge of G(A, v),

then it is not an edge of G(A, ṽ). Then G(A, ṽ) has no more edges (under inclusion) than
G(A, v). Since the latter was not strongly connected, the former also is not, so that ṽ /∈ E(A).


�
We also note that, if w ∈ E(A) and the matrix D(A, w) has no 0 off-diagonal entries,

then w̃ ∈ E(A) for any vector w̃ close enough to w, and w ∈ E( Ã) for any reciprocal matrix
Ã close enough to A.

4 Inductive construction of efficient vectors

Suppose that A ∈ PCn and that w ∈ E(A(n)). Then G(A(n), w) is strongly connected.
May w be extended to an efficient vector for A, and, if so, how? For a positive scalar x, the

vector wx :=
[

w

x

]
∈ E(A) if and only if G (A, wx ) is strongly connected. But, since the

subgraph induced by vertices 1, 2, . . . , n − 1 of G (A, wx ) is G(A(n), w) and the latter is
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strongly connected, G (A, wx ) is strongly connected if and only if there is at least one edge
from vertex n to vertices in G(A(n), w) and also at least one edge from the latter to n (see
Proposition 3 in Cruz et al. (2021) and its proof). Since the vector of the first n − 1 entries
of the last column of D (A, wx ) is 1

x w less the vector of the first n − 1 entries of an (the last
column of A), there are such edges if and only if this difference vector has a 0 entry or both
positive and negative entries. This means that among wi

x − ain, i = 1, . . . , n − 1, there are
both nonnegative and nonpositive numbers. We restate this as

Theorem 7 For A ∈ PCn and w ∈ E(A(n)), the vector
[

w

x

]
∈ E(A)

if and only if the scalar x satisfies

x ∈
[

min
1≤i≤n−1

wi

ain
, max

1≤i≤n−1

wi

ain

]
.

Of course, the above interval is nonempty. This leads to a natural algorithm to construct
a large subset of E(A) for A ∈ PCn .

Choose the upper left 2 × 2 principal submatrix A[{1, 2}] of A. It is consistent and, up
to a factor of scale, has only one efficient vector w[{1, 2}]. Now consider each extension,
allowed by the possibly infinitely many ways given in Theorem 7, to an efficient vector for
A[{1, 2, 3}]. This gives the set w[{1, 2, 3}] ⊆ E(A[{1, 2, 3}]). Now, continue extending each
vector in w[{1, 2, 3}] to an element of E(A[{1, 2, 3, 4}]) in the same way, and so on. This
terminates in a subset w[{1, 2, . . . , n}] ⊆ E(A).

We make two important observations. First, we may instead start with some other 2-by-2
principal submatrix A[{i, j}], i �= j, and proceed similarly, either by inserting the new entry
of the next efficient vector in the appropriate position, or by placing A[{i, j}] in the upper left
2-by-2 submatrix, via permutation similarity, and proceeding in exactly the same way. We
note that starting in two different positions may produce different terminal sets (Example 8),
and the union of all possible terminal sets is contained in E(A).

Second, w[{1, 2, . . . , n}] may be a proper subset of E(A), as truncation of a vector (dele-
tion of an entry) from an efficient vector for A may not give an efficient vector for the
corresponding principal submatrix (see Example 8).

Example 8 Let

A =
⎡
⎣
1 1 3

2
1 1 1
2
3 1 1

⎤
⎦ .

The efficient vectors for A[{1, 2}] are proportional to
[
1 1

]T
.

By Theorem 7, the vectors of the form
[
1 1 w3

]T

with

min

{
2

3
, 1

}
≤ w3 ≤ max

{
2

3
, 1

}
⇔ 2

3
≤ w3 ≤ 1
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are efficient for A (and, of course, all positive vectors proportional to them).
The efficient vectors for A[{1, 3}] are proportional to

[ 3
2 1

]T
.

By Theorem 7, the vectors of the form
[ 3
2 w2 1

]T

with

min

{
3

2
, 1

}
≤ w2 ≤ max

{
3

2
, 1

}
⇔ 1 ≤ w2 ≤ 3

2

are efficient for A.

The efficient vectors for A[{2, 3}] are proportional to
[
1 1

]T
.

By Theorem 7, the vectors of the form
[
w1 1 1

]T
,

with

min

{
1,

3

2

}
≤ w1 ≤ max

{
1,

3

2

}
⇔ 1 ≤ w1 ≤ 3

2
,

are efficient for A.

Note that, by Theorem 4,

E(A) =
{[

w1 w2 w3
]T : w3 ≤ w2 ≤ w1 ≤ 3

2
w3

}
.

For example, the vector
[ 4
3

7
6 1

]T
is efficient for A, though it does not belong to the set of

vectors determined above, as no vector obtained from it by deleting one entry is efficient for
the corresponding 2-by-2 principal submatrix.

There are cases in which we know all the efficient vectors for a larger submatrix and then
we can start our building process with this submatrix. In fact, taking into account Theorem 4,
all efficient vectors for a 3-by-3 reciprocal matrix are known, as such matrix is a simple
perturbed consistent matrix. Thus, it is always possible to start the process from a 3-by-3
principal submatrix.

Example 9 Consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 9 4 1
2

1 1 1 4 3
1
9 1 1 1 1

3
1
4

1
4 1 1 2

2 1
3 3 1

2 1

⎤
⎥⎥⎥⎥⎦

. (2)

By Theorem 4, the efficient vectors for A[{1, 2, 3}] are the vectors of the form
[
w1 w2 w3

]T
,
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with w3 ≤ w2 ≤ w1 ≤ 9w3. By Theorem 7, the vectors of the form
[
w1 w2 w3 w4

]T
,

with

min
{w1

4
,
w2

4
, w3

}
≤ w4 ≤ max

{w1

4
,
w2

4
, w3

}
⇔

min
{w2

4
, w3

}
≤ w4 ≤ max

{w1

4
, w3

}

are efficient for A[{1, 2, 3, 4}]. Again by Theorem 7, the vectors of the form
[
w1 w2 w3 w4 w5

]T

with

min
{
2w1,

w2

3
, 3w3,

w4

2

}
≤ w5 ≤ max

{
2w1,

w2

3
, 3w3,

w4

2

}
⇔

min
{w2

3
,
w4

2

}
≤ w5 ≤ max {2w1, 3w3} ,

are efficient for A. For instance, the vectors
[
3 2 1 3

4 w5
]T

with 3
8 ≤ w5 ≤ 6, are efficient for A. Moreover, these are the only obtained efficient vectors

with the given first four entries.

We observe that, if A ∈ PCn is an (inconsistent) simple perturbed consistent matrix, then
A has a principal 3-by-3 (inconsistent) simple perturbed consistent submatrix B. If we start
the inductive construction of efficient vectors for A with the submatrix B, for which E(B) is
known by Lemma 1 and Theorem 4, then we obtain E(A). This fact follows from Corollary
9 in Cruz et al. (2021), taking into account that, by Lemma 1, and Remark 4.6 in Furtado
(2023), we may focus on A = Zn(x), for some x > 0.

Similarly, if A ∈ PCn is a double perturbed consistent matrix (that is, A is obtained
from a consistent matrix by modifying two entries above the diagonal and the corresponding
reciprocal entries), in which no two perturbed entries lie in the same row or column, then
A has a principal 4-by-4 double perturbed consistent submatrix B of the same type and, by
Theorem 4.2 in Furtado (2023) and Lemma 1, E(B) is known. By Corollary 4.5 in Furtado
(2023), if we start the inductive construction of efficient vectors with B, then again we obtain
E(A).

Of course, in these simple and double perturbed consistent cases, all the efficient vectors
for A ∈ PCn are already known (Theorem 4, and Theorem 4.2 in Furtado (2023)).

5 Columns of a reciprocal matrix

Previously, it has been noted (Theorem 3) that the Hadamard geometric mean of all columns
of A ∈ PCn is efficient for A. Interestingly, each individual column of A is efficient.

Lemma 10 Let A ∈ PCn . Then any column of A lies in E(A).

Proof Leta j be the j-th columnof A.Then the j-th columnofD(A, a j )has entries
ai j
1 −ai j =

0. Hence, the edges i → j and j → i are in G(A, a j ), for any 1 ≤ i ≤ n, with i �= j , and,
therefore, G(A, a j ) is strongly connected, verifying that a j is efficient, by Theorem 2. 
�
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Further, the geometric mean of any subset of the columns of a reciprocal matrix A also
lies in E(A). To prove this result, we use the following lemma.

Lemma 11 Let A ∈ PCn, D = diag(d1, . . . , dn) be a positive diagonal matrix and 1 ≤
s ≤ n. If w is the geometric mean of s columns of A then Dw is a positive multiple of the
geometric mean of the corresponding s columns of DAD−1.

Proof By a possible permutation similarity and taking into account Lemma 1, suppose,
without loss of generality, that w is the geometric mean of the first s columns of A. (Note
that, if w is the geometric mean of a reciprocal matrix A then Pw is the geometric mean of

PAPT for a permutation matrix P.) The i-th entry of Dw is di�s
j=1a

1
s
i j . On the other hand,

the i-th entry of the geometric mean v of the first s columns of DAD−1 is �s
j=1

(
di ai j
d j

) 1
s =

di�s
j=1

(
ai j
d j

) 1
s
. Thus, the quotient of the i-th entries of Dw and v is �s

j=1(d j )
1
s , which

does not depend on i, implying the claim. 
�
Theorem 12 Let A ∈ PCn . Then the geometric mean of any collection of distinct columns
of A lies in E(A).

Proof Let 1 ≤ s ≤ n. We show that the geometric mean wA of s distinct columns of A
is efficient for A. The proof is by induction on n. For n = 2, the result is straightforward.
Suppose that n > 2. If s = 1 or s = n, the result follows from Lemma 10 or Theorem 3,
respectively. Suppose that 1 < s < n. By Lemmas 1 and 11, we may and do assume that the
s columns of A are the first ones, and the entries in the last column and in the last row of A
are all equal to 1, that is,

A =
[
B e
eT 1

]
,

where e is the (n − 1)-vector with all entries equal to 1 and B ∈ PCn−1. Let b1, . . . , bs be
the first s columns of B, so that, for j = 1, . . . , s,

a j =
[
b j

1

]
.

We have

D(A, wA) =
[

D(B, wB) wB − e
w

(−T )
B − eT 0

]
,

in which wB is the geometric mean of columns b1, . . . , bs . By the induction hypothesis, wB

is efficient for B so that, by Theorem 2, G(B, wB) is strongly connected. Thus, G(A, wA)

is strongly connected if and only if there is at least one edge from vertex n to vertices
in G(B, wB) and also at least one edge from the latter to n (see the observation before
Theorem 7). Then, G(A, wA) is strongly connected if and only if wB − e is neither strictly
positive nor negative. The product of the first s entries of wB is l

1
s , where l is the product

of the entries of B[{1, . . . , s}]. Since this matrix is reciprocal, then l = 1. Thus, the vector
formed by the first s entries of wB is neither strictly greater than e nor strictly less than e
(entry-wise), implying that G(A, wA) is strongly connected. 
�

We observe that we have 2n − 1 (nonempty) distinct subsets of columns of A ∈ PCn (not
necessarily corresponding to different geometric means).
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The sets of efficient vectors formatrices inPC2 (any 2-by-2 reciprocalmatrix is consistent)
and in PC3 (any 3-by-3 reciprocal matrix is a simple perturbed consistent matrix) are closed
under geometric means. In the latter case, this follows from Lemma 1 and the facts that a
matrix in PC3 is monomial similar to Z3(x), for some x > 0, and, by Theorem 4, the set
of efficient vectors for Z3(x) is closed under geometric mean. However, the set of efficient
vectors for matrices in PCn, with n > 3, may not be closed under geometric mean, as the
next example illustrates.

Example 13 Let A be the matrix in (2). Let

A′ = A(5) =

⎡
⎢⎢⎣

1 1 9 4
1 1 1 4
1
9 1 1 1
1
4

1
4 1 1

⎤
⎥⎥⎦ ,

the 4-by-4 principal submatrix of A obtained by deleting the 5-th row and column. Taking
into account Example 9, the vectors

w =

⎡
⎢⎢⎣
4.1
4.1
1
1

⎤
⎥⎥⎦ and v =

⎡
⎢⎢⎣
4.2
4
3
1

⎤
⎥⎥⎦

are efficient for A′. However the vector (w ◦ v)

(
1
2

)
is not efficient for A as the first three

entries of the last column of D(A′, (w ◦ v)

(
1
2

)
) are positive and, therefore,G(A′, (w◦v)

(
1
2

)
)

is not strongly connected.

6 Numerical experiments

We next give numerical examples to compare the geometric means of the vectors in different
proper subsets of columns of a reciprocal matrix A with the geometric mean of all columns
of A, denoted here by wC , a vector proposed by several authors to obtain a consistent
matrix approximating A. Recall from Sect. 5 that all these vectors are efficient for A. We
take ‖D(A, w)‖1 , the sum of all entries of |D(A, w)| , as a measure of effectiveness of
w ∈ E(A), as well as ‖D(A, w)‖2 , the Frobenius norm of D(A, w). Recall that, for an
n-by-n matrix B = [bi j ], we have

‖B‖2 =
⎛
⎝ ∑

i, j=1,...,n

(bi j )
2

⎞
⎠

1
2

.

Other measures (norms) are possible. For comparison, we also consider the case in which w

is the Perron eigenvector of A, denoted bywP , as it is one of themost used vectors to estimate
a consistent matrix close to A. Our experiments were done using the software Octave version
8.3.0.

We first make the comparisons for two given matrices, one of size 5-by-5 and another
one of size 8-by-8, and then consider an experiment in which a large number of 5-by-5
reciprocal matrices are randomly generated following a method that does not control the
level of inconsistency (Examples 14 and 15, and Experiment 16). In all these cases, it can
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be verified that the vector wC is not always the best choice among the geometric means
of subsets of columns, though in the simulations wC is the one that occurs with highest
frequency as the best, and seems to be close to the best in general.

Then, we consider matrices with a more controlled and lower level of inconsistency in
Experiments 17 and 18, and Example 19. In Experiments 17 and 18, we generate random
matrices of sizes 5-by-5 and 10-by-10, respectively, following the method suggested in
Szádoczki et al. (2023) (which is different from the one used in Experiment 16). Again,
wC is not always the best choice among the geometric means of subsets of columns of the
matrices, though in the simulations, when considering the Frobenius norm, it is the one that
occurs with highest frequency as the best (the frequency is larger than the corresponding
one in the simulations in which the level of inconsistency is not controlled). Regarding the
1-norm, close to consistency, it seems that the best results are attained if a single column is
considered.

6.1 Matrices with uncontrolled level of inconsistency

Example 14 Consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 9
5

6
5 12 6

5
9 1 4

5 100 5

5
6

5
4 1 17

10 6

1
12

1
100

10
17 1 3

1
6

1
5

1
6

1
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ PC5.

There are 31 nonempty distinct subsets of the set of columns of A. We identify each subset
with a sequence of five binary numbers, in which a 1 in position i means that the i-th column
of A belongs to the subset, while a 0means that it does not belong to the subset. The sequences
are in increasing (numerical) order and by Si we denote the subset of columns associated
with the i-th sequence. Note that S31 is the set of all columns of A. By wi we denote the
geometric mean of the vectors in Si .

In Table 1 we give the norms ‖D(A, wi )‖1 and ‖D(A, wi )‖2 , i = 1, . . . , 31. In Table 2
we emphasize the results obtained for the geometric mean wC of all columns, for the vectors
that produce the smallest and the largest values of ‖D(A, wi )‖1 and ‖D(A, wi )‖2 , and also
consider the case of the Perron eigenvector wP of A (which is efficient). Note that

maxi ‖D(A, wi )‖1
mini ‖D(A, wi )‖1

= 3.7048 and
maxi ‖D(A, wi )‖2
mini ‖D(A, wi )‖2

= 5.8235.

It can be observed that, according to the considered measures, there are proper subsets of
columns that produce better results than those for the Perron eigenvector and for the set
of all columns. In fact, from Table 2, the geometric mean of columns 2, 3, 5 (associated
with the sequence 01101 given by S13) is the one that performs better in terms of the 1-
norm, when compared with the Perron vector and the geometric mean of any other subset
of columns. However, the geometric means of the subsets of columns associated with Si ,
for i = 1, 5, 10, 13, 16, 17, 20, 21, 29, also perform better than wC and wP (see Table 1).
In addition, the geometric means of the subsets of columns associated with Si , for i =
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Table 1 1-norm and Frobenius norm of D(A, wi ), when wi is the geometric mean of the columns of A in the
subset Si , i = 1, . . . , 31 (Example 14)

i Si ‖D(A, wi )‖1 ‖D(A, wi )‖2 i Si ‖D(A, wi )‖1 ‖D(A, wi )‖2
1 00001 111.06 98.846 17 10001 111.86 96.992

2 00010 401.53 302.311 18 10010 127.49 79.599

3 00011 150.47 94.324 19 10011 123.22 90.829

4 00100 112.16 99.154 20 10100 111.92 97.300

5 00101 111.58 99.005 21 10101 111.90 97.910

6 00110 152.21 95.328 22 10110 123.95 91.500

7 00111 130.39 95.576 23 10111 120.39 94.442

8 01000 318.27 209.361 24 11000 154.93 88.719

9 01001 115.66 88.581 25 11001 113.28 90.595

10 01010 111.78 51.913 26 11010 119.47 64.637

11 01011 116.87 76.601 27 11011 112.64 82.586

12 01100 116.35 89.645 28 11100 113.69 91.184

13 01101 108.38 94.171 29 11101 108.57 94.052

14 01110 118.62 78.223 30 11110 113.54 83.474

15 01111 115.57 88.454 31 11111 111.96 89.539

16 10000 109.61 93.772

Table 2 Comparison of the performance of the geometric mean wC of all the columns of A, the Perron
eigenvector wP of A and the geometric means of the subsets of the columns of A with best and worst
behaviors (Example 14)

Si associated with w ‖D(A, w)‖1 ‖D(A, w)‖2
w st. mini ‖D(A, wi )‖1 = ‖D(A, w)‖1 S13 108.38 94.171

w st. maxi ‖D(A, wi )‖1 = ‖D(A, w)‖1 S2 401.53 302.311

w st. mini ‖D(A, wi )‖2 = ‖D(A, w)‖2 S10 111.78 51.913

w st. maxi ‖D(A, wi )‖2 = ‖D(A, w)‖2 S2 401.53 302.31

wC = w31 S31 111.96 89.539

wP 117.43 84.454

4, 9, 11, 12, 15, 25, 27, 28, 30, 31, also perform better than wP . For example, for i = 5,
we have that the geometric mean of columns 3, 5 (associated with the sequence 00101
given by S5) performs better in terms of the 1-norm, when compared with wC and wP .
Similarly, from Table 2, it follows that the geometric mean of columns 2, 4 (associated with
the sequence 01010 given by S10) is the one that performs better in terms of the Frobenius
norm, when compared with wP and the geometric mean of any other subset of columns.
For this norm, the geometric means of the subsets of columns associated with Si , for i =
10, 11, 14, 18, 26, 27, 30, performbetter thanwP andwC . Regarding the latter, the geometric
mean of the subsets of columns associated with Si , for i = 9, 15, 24, also perform better.

We summarize our results in Fig. 1, in which we give a graphic with a comparison of all
the results obtained. In the x axis we have the index i of each subset Si of columns. In the
y axis we have the values of ‖D(A, wi )‖1 and ‖D(A, wi )‖2 for the different vectors wi . A
line jointing the values of each of these norms for the different subsets of columns is plotted.
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Fig. 1 Comparison of the performance of the geometric means of the subsets of columns of A and the Perron
eigenvector wP of A (Example 14)

A horizontal line corresponding to each of the considered norms for the Perron eigenvector
also appears.

Example 15 Consider the matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 9
5

6
5 12 6 2 5 3

5
9 1 4

5
1
10 6 23

10
1
2

43
10

5
6

5
4 1 17

10 6 1
5 50 3

10

1
12 10 10

17 1 3 12 25 13
10

1
6

1
6

1
6

1
3 1 21

10 2 3

1
2

10
23 5 1

12
10
21 1 1 3

1
5 2 1

50
1
25

1
2 1 1 3

1
3

10
43

10
3

10
13

1
3

1
3

1
3 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ PC8.

Table 3 and Fig. 2 are the analogs of Table 2 and Fig. 1 for the 8-by-8 reciprocal matrix
considered here. Note that in this case we have 255 different subsets Si of the set of columns
of A. Again, a proper subset of the columns produces better results than either all columns
or the Perron vector (which is efficient for A). Note that

maxi ‖D(A, wi )‖1
mini ‖D(A, wi )‖1 = 5.0432 and

maxi ‖D(A, wi )‖2
mini ‖D(A, wi )‖2 = 10.890.

Experiment 16 We consider random reciprocal matrices A j ∈ PC5, j = 1, . . . , 10000, by
generating matrices Bj with entries from a uniform distribution in the interval (1, 10) and
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Table 3 Comparison of the performance of the geometric mean wC of all the columns of A, the Perron
eigenvector wP of A and the geometric means of the subsets of the columns of A with best and worst
behaviors (Example 15)

Si associated with w ‖D(A, w)‖1 ‖D(A, w)‖2
w st. mini ‖D(A, wi )‖1 = ‖D(A, w)‖1 S235 145.76 53.989

w st. maxi ‖D(A, wi )‖1 = ‖D(A, w)‖1 S16 735.07 351.62

w st. mini ‖D(A, wi )‖2 = ‖D(A, w)‖2 S34 152.39 32.289

w st. maxi ‖D(A, wi )‖2 = ‖D(A, w)‖2 S16 735.07 351.62

wC = w255 S255 151.16 53.620

wP 150.54 52.462

Fig. 2 Comparison of the performance of the geometric means of the subsets of the columns of A and the
Perron eigenvector wP of A (Example 15)

letting A j = Bj ◦ (B(−1)
j )T , where B(−1)

j denotes the entry-wise inverse of Bj and ◦ the
Hadamard product. These matrices may present a significant level of inconsistency (Csató
& Petróczy, 2021). For each i = 1, . . . , 31, we determine

p1(i) :=
10000∑
j=1

∥∥D(A j , wi j )
∥∥
1

mink
∥∥D(A j , wk j )

∥∥
1

and p2(i) :=
10000∑
j=1

∥∥D(A j , wi j )
∥∥
2

mink
∥∥D(A j , wk j )

∥∥
2

,

in which wi j is the geometric mean of the columns of A j in the subset Si . (We identify the
subsets Si with indices of columns, as introduced in Example 14.) We note that none of the
generated matrices A j is consistent, so that the denominators in each summand of p1(i) and
p2(i) are nonzero. Also, any such summand is at least 1, and is close to 1 when wi j behaves
close to the best among the geometric means of the columns of A j .

In Table 4 we display the values of p1(i), i = 1, . . . , 31 (rounded to integers). For each i,
we also display the number n1(i) of j’s for which min

∥∥D(A j , w)
∥∥
1, when w runs over all

the geometric means of the subsets of columns of A j , is attained by the subset Si . In Table 5
we display the corresponding data, p2(i) and n2(i), for the Frobenius norm.
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Table 4 Behavior of each subset
Si of columns, i = 1, . . . , 31,
with respect to the 1-norm of
D(A, wi ), in which wi is the
geometric mean of the columns
of A in the subset Si , in an
experiment with 10000 random
5-by-5 reciprocal matrices A with
uncontrolled level of
inconsistency. (Experiment 16)

i Si p1(i) n1(i) i Si p1(i) n1(i)

1 00001 16904 489 17 10001 13197 310

2 00010 17026 478 18 10010 13212 320

3 00011 13250 277 19 10011 11979 222

4 00100 16974 507 20 10100 13232 306

5 00101 13219 302 21 10101 11974 248

6 00110 13252 303 22 10110 11991 200

7 00111 11988 230 23 10111 11217 304

8 01000 16916 518 24 11000 13186 310

9 01001 13215 310 25 11001 11952 240

10 01010 13219 277 26 11010 11960 251

11 01011 11989 208 27 11011 11207 319

12 01100 13215 285 28 11100 11974 227

13 01101 11978 235 29 11101 11206 306

14 01110 11973 242 30 11110 11204 316

15 01111 11213 307 31 11111 10744 657

16 10000 16872 496

Table 5 Behavior of each subset
Si of columns, i = 1, . . . , 31,
with respect to the Frobenius
norm of D(A, wi ), in which wi is
the geometric mean of the
columns of A in the subset Si , in
an experiment with 10000
random 5-by-5 reciprocal
matrices A with uncontrolled
level of inconsistency.
(Experiment 16)

i Si p2(i) n2(i) i Si p2(i) n2(i)

1 00001 21064 12 17 10001 13225 70

2 00010 21201 23 18 10010 13213 75

3 00011 13269 78 19 10011 11559 389

4 00100 21153 21 20 10100 13199 92

5 00101 13212 70 21 10101 11541 354

6 00110 13251 98 22 10110 11557 346

7 00111 11562 354 23 10111 10890 729

8 01000 21056 20 24 11000 13219 63

9 01001 13221 84 25 11001 11551 353

10 01010 13219 84 26 11010 11559 334

11 01011 11570 331 27 11011 10901 745

12 01100 13192 91 28 11100 11535 349

13 01101 11534 372 29 11101 10878 767

14 01110 11547 364 30 11110 10890 747

15 01111 10889 716 31 11111 10554 1845

16 10000 21021 24

We can see that the minimum 1-norm and the minimum Frobenius norm of D(A j , w),

when w runs over the geometric means of the subsets of columns of A j , are, most of the
times, not attained by the geometric mean wC of all columns of A j . In fact, it is attained less
than 7% of the times when considering the 1-norm and less than 19% when considering the
Frobenius norm. However, in both cases, wC is the geometric mean that occurs with highest
frequency as the best. We also emphasize the good behavior regarding the 1-norm when just
one column is considered. We observe that the measures p1(31) and p2(31), associated with

123



Annals of Operations Research (2024) 332:743–764 759

Table 6 Behavior of each subset
Si of columns, i = 1, . . . , 31,
with respect to the 1-norm of
D(A, wi ), in which wi is the
geometric mean of the columns
of A in the subset Si , in an
experiment with 10000 random
5-by-5 reciprocal matrices A with
low level of inconsistency.
(Experiment 17)

i Si p1(i) n1(i) i Si p1(i) n1(i)

1 00001 16178 868 17 10001 14156 236

2 00010 16202 861 18 10010 14178 229

3 00011 14201 257 19 10011 12858 167

4 00100 16128 840 20 10100 14157 235

5 00101 14144 236 21 10101 12823 180

6 00110 14173 257 22 10110 12854 184

7 00111 12857 181 23 10111 11896 248

8 01000 16313 802 24 11000 14213 239

9 01001 14220 244 25 11001 12858 173

10 01010 14212 243 26 11010 12865 166

11 01011 12870 162 27 11011 11896 244

12 01100 14200 238 28 11100 12864 167

13 01101 12845 164 29 11101 11881 239

14 01110 12870 186 30 11110 11910 257

15 01111 11900 219 31 11111 11274 449

16 10000 16159 829

wC , are relatively close to 10000 and perform the best when compared to the corresponding
ones for the other subsets of columns. Thus, in general, the performance of wC is close to
the best.

6.2 Matrices with controlled level of inconsistency

Experiment 17 We reproduce Experiment 16 but now generate the matrices A j ∈ PC5,
j = 1, . . . , 10000, following the method proposed in Szádoczki et al. (2023). In each trial j ,
we generated a 5-vector v j with entries from a uniform distribution in (1, 9) and constructed

the reciprocal matrix Bj = [bk�] = v jv
(−T )
j . We also generated a 5-by-5 matrix Hj = [hk�]

with entries from a uniform distribution in (−1, 1).We then constructed the reciprocal matrix
A j = [ak�] as follows: for all k, � such that bk� > 1, or bk� = 1 and k > �, we let

ak� =
{
bk� + hk� if bk� + hk� ≥ 1

1
2−bk�−hk�

if bk� + hk� < 1

and then let a�k = ak�. According to Szádoczki et al. (2023), the matrices A j have a low
level of inconsistency. The obtained results are presented in Tables 6 and 7 regarding the
1-norm and the Frobenius norm, respectively (n1(i), n2(i), p1(i) and p2(i) are defined as
in Experiment 16).

We can see that the minimum norm of D(A j , w), when w runs over the geometric means
of the sets of columns of A j , is attained by the geometric mean wC of all columns of A j

less than 5% of the times when considering the 1-norm and less than 32% when considering
the Frobenius norm. In the latter case, wC is the geometric mean that occurs with highest
frequency as the best. An interesting additional finding is that the best behavior regarding
the 1-norm is attained when just one column is considered (followed by the case in which all
columns are considered). We also observe that the measures p1(31) and p2(31) associated
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Table 7 Behavior of each subset
Si of columns, i = 1, . . . , 31,
with respect to the Frobenius
norm of D(A, wi ), in which wi is
the geometric mean of the
columns of A in the subset Si , in
an experiment with 10000
random 5-by-5 reciprocal
matrices A with low level of
inconsistency. (Experiment 17)

i Si p2(i) n2(i) i Si p2(i) n2(i)

1 00001 19879 166 17 10001 14557 105

2 00010 19953 168 18 10010 14586 98

3 00011 14646 100 19 10011 12538 258

4 00100 19862 157 20 10100 14599 115

5 00101 14578 108 21 10101 12527 224

6 00110 14622 113 22 10110 12553 245

7 00111 12563 224 23 10111 11403 558

8 01000 20095 178 24 11000 14659 102

9 01001 14672 96 25 11001 12570 213

10 01010 14671 105 26 11010 12572 200

11 01011 12597 232 27 11011 11422 505

12 01100 14633 100 28 11100 12573 223

13 01101 12558 229 29 11101 11410 561

14 01110 12574 220 30 11110 11421 535

15 01111 11424 553 31 11111 10670 3168

16 10000 19848 141

with wC perform the best when compared to the corresponding ones for the other subsets of
columns, which means that wC generally behaves well.

Experiment 18 In this example, we generated 1000 reciprocal matrices A j , now of size 10,
following the samemethod as in Experiment 17, but in this case Hj has entries from a uniform
distribution in (−3/2, 3/2), implying a modest level of inconsistency of A j and also a larger
standard deviation of inconsistency with relation to Experiment 17 (see Figure 2 in [21]).
When compared with the other 210 − 2 geometric means of proper subsets of columns, the
geometric mean of all columns had the best performance only 0.8% of the times for the
1-norm of D(A j , w), and 3.7% of the times for the Frobenius norm. However, we obtained
p1(1023) = 1044 and p2(1023) = 1037 (as defined in Experiment 16), now with 1000
instead of 10000). This means that each summand of p1(1023) and p2(1023) is close to 1,
which shows that generally the geometric mean of all columns had a performance close to
the best one among the geometric means of all subsets of columns.

Example 19 Consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 + x y
1 1 1 − x 1 1
1 1

1−x 1 1 1 + x
1

1+x 1 1 1 1
1
y 1 1

1+x 1 1

⎤
⎥⎥⎥⎥⎦

∈ PC5,

for 0 < x < 1 and y > 0. Table 8 shows that, for y = 1 and small values of x (in which
case the matrix A is close to consistency), the geometric mean of all columns and the Perron
eigenvector perform well when compared with the geometric means wi , i = 1, . . . , 31, of
the 31 subsets of columns of A, with better results the smaller x is. For completeness, we
also consider a large value of y (A has a higher inconsistent level) and verify that in that case
the results are worse. Table 8 suggests that the relative positions of the geometric mean of all
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Table 8 Comparison of the performance of the geometric means of the subsets of columns of A and the Perron
eigenvector, for some values of x and y (Example 19)

y = 1 y = 1 y = 1 y = 1 y = 1 y = 100
x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9 x = 0.1

maxi‖D(A,wi )‖1
mini‖D(A,wi )‖1 1.7121 1.8112 1.9281 2.0645 2.3483 4.8983

maxi‖D(A,wi )‖2
mini‖D(A,wi )‖2 1.9125 1.9645 2.0152 2.1370 2.7637 7.5257

‖D(A,wC )‖1
mini‖D(A,wi )‖1 1.0136 1.0424 1.0732 1.0932 1.1125 1.7900

‖D(A,wC )‖2
mini‖D(A,wi )‖2 1 1 1 1.0521 1.3482 4.2317

‖D(A,wP )‖1
mini‖D(A,wi )‖1 1.0158 1.0460 1.0738 1.0860 1.2007 1.8225

‖D(A,wP )‖2
mini‖D(A,wi )‖2 1 0.9998 0.9984 1.0446 1.2952 3.9052

Table 9 Emphasis on the best behavior of v, when v is the first column or the third column of A (low
inconsistent), when comparedwith the geometricmean of all columns and the Perron eigenvector (Example 19)

y = 1 y = 1 y = 1 y = 1 y = 1
x = 0.1 x = 0.3 x = 0.5 x = 0.7 x = 0.9

maxi ‖D(A,v)‖1
mini‖D(A,wi )‖1 , 1 1.0012 1.0037 1 1

‖D(A,wC )‖1
mini‖D(A,wi )‖1 1.0136 1.0424 1.0732 1.0932 1.1125

‖D(A,wP )‖1
mini‖D(A,wi )‖1 1.0158 1.0460 1.0738 1.0860 1.2007

columns and of the Perron vector improve with the level of consistency. While for y = 1 and
x = 0.1, 0.3, 0.5, the best behavior, according to the Frobenius norm of D(A, w) is attained
for w = wC , Table 9 shows that, for the 1-norm, one column (columns 1 or 3) performs
better. We note that in all considered cases, the Perron vector is efficient.

7 Conclusions

In the context of the Analytic Hierarchic Process, pairwise comparison matrices (PC matri-
ces), also called reciprocal matrices, appear to rank different alternatives. In practice, the
obtained reciprocal matrices are usually inconsistent and a good consistent matrix approxi-
mating the reciprocal matrix should be obtained. A consistent matrix is uniquely determined
by a positive vector (the vector of priorities or weights). Many methods have been proposed
in the literature to obtain the vectors from which a consistent matrix approximating a given
reciprocal matrix is constructed. Some of the most used methods consist of the choice of
the Perron eigenvector of the reciprocal matrix or of the Hadamard geometric mean of all
its columns. An important property that should be satisfied by the vectors on which such a
consistent matrix is based is efficiency. It is known that the Hadamard geometric mean of all
columns of a reciprocal matrix is efficient, though the Perron eigenvector not always satisfies
this property.
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Here we give an algorithm to construct efficient vectors for a reciprocal matrix A from
efficient vectors for principal submatrices of A.We also show that the geometric mean of the
vectors in any nonempty subset of the columns of A is efficient for A. We give an example
that the geometric mean of two efficient vectors need not be efficient. An interesting open
question is: given two efficient vectors for a reciprocal matrix A, when is the Hadamard
geometric mean of the vectors efficient for A and, moreover, when is the set of efficient
vectors for A geometrically convex (recall that it is in the 2-by-2 and 3-by-3 cases, but not
generally).

Wegive numerical examples comparing the geometricmeans obtained fromproper subsets
of the columns of A with the geometric mean of all columns of A. We conclude that the
geometric mean of some proper subsets of columns may produce better results (also when
comparedwith thePerron eigenvector).However, the geometricmeanof all columnsperforms
well in the sense that, in general, its behavior is close to the best one among all the geometric
means of subsets of columns. Also, its behavior seems to improve with reducing the level of
inconsistency.

The extension result to construct efficient vectors provided in this paper seems to play
an important role in solving many questions concerning the study of efficient vectors for
reciprocalmatrices. For example, it should be helpful in the construction of classes of efficient
vectors for some block-perturbed consistent matrices (that is, reciprocal matrices obtained
from consistent matrices by modifying a principal block), extending the already studied case
of a block of size 2 (Cruz et al., 2021) and some cases of blocks of sizes 3 and 4 (Furtado,
2023). We also think this result will be helpful in the study of the existence of rank reversals
by addition of an alternative (Barzilai & Golany, 1994; Schenkerman, 1994; Wang & Luo,
2009).
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