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Abstract
Cleft lip and/or cleft palate (CL/P) are the common birth defects that result when facial
structures developing in an unborn baby do not close completely. To design for treatment
schedule, some constraints including hospital eligibility constraints, capacity limitations,
treatment age limitations, multi-hospital assignment, and multidisciplinary care team assign-
ment should be determined. However, efficient treatment scheduling is difficult owing to the
complicated conditions of specific treatment. This paper presents a multi-objective mathe-
matical model of the CL/P patient treatment scheduling problem in order to minimize the
makespan, travel distance, and total least preference assignment score. Since the problem is
NP-hard, a solution method is developed based on differential evolution (DE) with particular
encoding and decoding schemes for solving the CL/P patient treatment scheduling problem.
The performance of DE is evaluated and compared the results with those obtained from the
modified particle swarm optimization. The results show that DE is capable of finding high-
quality solutions with fast convergence. To apply the proposed approach for a case study, the
CL/P patient treatment scheduling program is formulated. The program can be a decision
support system in helping the administrators to schedule the patients in order to identify
a list of selected treatments, assign each operation of patients to the selected hospital, and
intelligently identify the period of the selected treatments.
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1 Introduction

Cleft lip and/or cleft palate (CL/P) are the common birth defects that result when facial
structures developing in an unborn baby do not close completely. These defects usually
occur as isolated birth defects but are also related to many inherited genetic conditions,
syndromes, and environmental factors. The CL/P can be treated with a multidisciplinary
care team comprising plastic surgeons, neurosurgeons, otolaryngologists, ophthalmologists,
anesthesiologists, orthodontists, and nurses. The protocol of surgeries is able to restore normal
function and reach a more normal appearance. From the statistic of the birth prevalence of the
CL/P, approximately one in every 700 children is born with a cleft lip only (CLO) or a cleft
palate only (CPO); some children have both a cleft lip and a cleft palate (CLP) (Panamonta
et al., 2015; Operation Smile Thailand, 2020). Many countries have established centers for
CL/P care to provide treatment services.

As the CL/P treatments take a long time, starting from the womb until adulthood to allow
the patient to have a good quality of life at any age, a suitable treatment scheduling should be
designed in providing prompt health services to patients under patients’ needs and doctors’
preferences such as minimax completion time (Makespan) and minimum travel distance of
patients to hospitals.Nevertheless, the determination of effective treatment scheduling is quite
difficult since it must be provided based on several conditions such as hospital eligibility,
capacity, age limit, procedure complexity, multi-hospital assignment, and multidisciplinary
care team assignment.

This research is motivated by a northern Thailand hospital case study, which faces treat-
ment scheduling problems. The case study was established for servicing CL/P patients in the
eight provinces of upper northern Thailand. The network of the case study is decentralized
to many hospitals in these eight provinces in order to provide the treatment service. Among
the hospitals in northern Thailand, only five hospitals can provide CL/P treatment, and some
hospitals have some limitations of this treatment service. Nowadays, the treatment schedule
is planned by the administrators using the administrator’s experience without any decision
support systems. Based on the lack of decision support tools, the administrator is not able to
reach an effective treatment schedule for scheduling a list of patients who are supposed to
undergo different kinds of treatments in a particular time horizon. Owing to using the admin-
istrator’s experience, this is able to generate errors in scheduling the treatments. Furthermore,
some patients may be forced to the hospital with long travel distances.

Kapamara et al. (2006), Marynissen and Demeulemeester (2019), Marynissen and
Demeulemeester (2016), Cissé et al. (2017), Gupta and Denton (2008), Di Mascolo et al.
(2021), Abdalkareem et al. (2021), and Cardoen et al. (2010) provided comprehensive
overview and guidelines for successful implementation of treatment and patient schedul-
ing. Operations research (OR) models have been applied to treatment scheduling problems.
However, each model proposes different aspects of health care service including objective
functions and conditions. The majority of previous work normally focuses on cost (Ceschia
& Schaerf, 2011; Silva & Souza, 2019), time (Conforti et al., 2008), deviation (Rezaeiahari &
Khasawneh, 2020), utilization (Souki & Rebai, 2009), makespan (Wisittipanich et al., 2021),
tardiness (Vali-Siar et al., 2018), satisfaction (Ala et al., 2021; Lan et al., 2019), and the
number of patients (Burke et al., 2011) with the single-objective function, while few studies
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consider these factors with multi-objective function. Most conditions for treatment or patient
scheduling generally consider capacity (room and resource) (Range et al., 2014), hospital
policies (Chen et al., 2016), medical staff’s preference (Chen et al., 2016), patient assignment
(Vali-Siar et al., 2018), operating duration (Vali-Siar et al., 2018), resource limitation (Chern
et al., 2008), surgery priority (Belkhamsa, 2018), consecutive days (Bolaji et al., 2018),
length of stay (Bolaji et al., 2018), machine assignment (Zhao et al., 2018), precedence
process (Zhao et al., 2018), processing time (Chandra et al., 2014), and completion time
(Chandra et al., 2014). However, the majority of the OR models for treatment scheduling do
not consider age limitations, multiple hospitals assignment, and multidisciplinary care team
assignments. As the complicated conditions of specific treatment in CL/P, there are a few
papers that have studied on the CL/P patient treatment scheduling problems (CL/PTSPs).
Wisittipanich et al. (2021) proposed a mathematical programming model to solve the surgi-
cal scheduling problem. Two objectives of makespan and total least preference score were
proposed under the consideration of hospital eligibility, capacity, age limit, procedure com-
plexity, multi-hospital assignment, and multidisciplinary care team assignment. However,
Wisittipanich et al. (2021) does not consider the doctor assignment constraint and the travel
distance between the location of patient and hospital, resulting in solutions that may affect
the patients’ needs and doctor assignment.

Since the treatment scheduling problem is NP-hard, a heuristic algorithm and a meta-
heuristic algorithm are suggested (Chern et al., 2008; Lin & Chou, 2019). Several heuristic
algorithms and metaheuristic algorithms have been applied in treatment scheduling prob-
lems, including genetic algorithm (Lin et al., 2019), greedy algorithm (Chern et al., 2008),
constructive heuristic algorithm (Kamran et al., 2019), hill-climbing algorithm (Bolaji et al.,
2018), sine cosine algorithm (Lan et al., 2019), tabu search algorithm (Rezaeiahari & Kha-
sawneh, 2020), NSGA-II algorithm (Ala et al., 2021), distributed optimization algorithm
(Euchi et al., 2021) and simulated annealing algorithm (Rezaeiahari & Khasawneh, 2020).
However, there is no literature that has presented the heuristic algorithms or metaheuristic
algorithms for CL/PTSPs. To solve the CL/PTSPs, the existing heuristic algorithms or meta-
heuristic algorithms can be applied.Differential Evolution (DE) has been successfully applied
in several areas including scheduling problems due to its effectiveness and simplicity (Cinar
et al., 2021; Shahnazari-Shahrezaei et al., 2012; Yu et al., 2013). Shahnazari-Shahrezaei et al.
(2012) confirm that the DE outperforms other algorithms, and also show that the DE is capa-
ble of improving the quality of acquired solutions for nurse or patient scheduling problems.
Based on the well performance of DE, this study aims to apply the DE to find the solution
for CL/PTSPs based on proposed particular encoding and decoding schemes.

As the researchgaps, the considerationof doctor assignment constraint and three objectives
ofmakespan, travel distance, and total least preference assignment score is lacking.Moreover,
there is no literature that has applied the solution algorithm with differential evolution (DE)
for CL/PTSP. Hence, this paper aims to propose a treatment scheduling method by using
DE for CL/P patients. The highlights of this paper are to (1) propose a multi-objective
mixed-integer linear programming model for CL/PTSP based on the three objectives of
makespan, travel distance, total least preference assignment score; (2) propose a solution
method based on differential evolution (DE) with particular encoding and decoding schemes;
and (3) propose a decision support system based on the proposed solution algorithm for the
northern Thailand hospital case study. The remainder of this paper is organized as follows:
Sect. 2 presents an overview of the existing literature. Section 3 presents a mathematical
model for CL/PTSP. Section 4 presents a solution algorithm usingDE for CL/PTSP. Section 5
presents a computational experiment. Section 6 proposes a CL/P patient scheduling program
for a real-world case study in northern Thailand. Finally, a conclusion is given in Sect. 7.
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2 Literature review

This section presents an overview of the relevant literature. The CL/PTSP is a common treat-
ment scheduling problem, for which comprehensive reviews have been proposed. Several
perspective issues related to treatment scheduling problems have been reviewed: Kapamara
et al. (2006) proposed an extensive literature review of scheduling problems in radiotherapy;
Marynissen and Demeulemeester (2019) and Gupta and Denton (2008) presented a literature
review on appointment scheduling problems in hospitals; Marynissen and Demeulemeester
(2016) presented a review on integrated hospital scheduling problems; Cissé et al. (2017) pro-
posed an extensive literature review on scheduling problems related to home health care; Di
Mascolo et al. (2021) presented a synthesis of the literature dealing on routing and scheduling
in home health care context; and Abdalkareem et al. (2021) presented a summary of health-
care scheduling problem including patients’ admission scheduling problem, nurse scheduling
problem, operation room scheduling problem, surgery scheduling problem and other health-
care scheduling problems. Treatment scheduling is one of the most important roles in the
managerial aspect of health care service by providing prompt health services to patients
(Cardoen et al., 2010). The treatment scheduling problem is a complex problem for many
operating administrators. In general, this problem consists of selecting treatment processes
assigned to sectors or hospitals, specified treatment periods, and the required resources (Silva
& Souza, 2019). Therefore, treatment scheduling is a solution to support decision-makers
when the hospital’s management has certain objectives for improving their current systems
(Drupsteen et al., 2013). Operations research (OR) models have been applied to treatment
scheduling problems in several previous papers. However, each model proposes different
aspects of health care service including objective functions and conditions as shown in Table
10 (See Appendix A).

An objective function is one of the most important components of the OR model. The
objective function model is able to be separated into two types: the single-objective function
model and the multi-objective function model. Several aspects of the objective function are
formulated in order to reach the goals of the solution. Normally, the objective function of
the treatment scheduling problem consists of minimizing cost (Ceschia & Schaerf, 2011),
minimizing time (Conforti et al., 2008), minimizing deviation (Rezaeiahari & Khasawneh,
2020), maximizing utilization (Souki & Rebai, 2009), minimizing the makespan (Wisitti-
panich et al., 2021), minimizing tardiness (Vali-Siar et al., 2018), maximizing satisfaction
(Lan et al., 2019), minimizing dissatisfaction (Ala et al., 2021), minimizing and maximizing
the number of patients (Burke et al., 2011). Granja et al. (2014) proposed an optimization
based on the simulation approach to the patient admission scheduling problem using a lin-
ear programming algorithm. The objective function of this paper aims to minimize the total
completion time and total waiting time. Castro and Petrovic (2012) presented an optimiza-
tion model with multiple objectives for a radiotherapy pre-treatment scheduling problem,
in which the objective functions were composed of the minimization of the percentage of
the weighted number of patients exceeding the waiting time targets, the minimization of
the sum of weighted lateness, and the minimization of the maximum of lateness. Huang
et al. (2018) presented a dynamic configuration scheduling problem for stochastic medical
resources under consideration of the limitations of the surgical operating room, the nurse
anesthetist and anesthesiologist, and the dynamic nature of the arriving calls. This study
aims to maximize the utilization rate of anesthesiologists, thus reducing the increase in per-
sonnel allocation and idle time caused by surgery delays or cancellations. To point out the
CL/PTSPs, only Wisittipanich et al. (2021) are found. Wisittipanich et al. (2021) proposed
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two objective functions of makespan and total least preference score for scheduling surgery
of CL/PTSPs. However, when the multi-hospital assignment for the treatment is determined,
the travel distance between the location of patient and hospital has become the essential
factor, resulting in solutions that may affect the patients’ needs and doctor assignment.

Another important component is the constraints. Each treatment scheduling problem is
different, so the constraints are also different. From the previous literature review, most of
papers related to treatment scheduling problems or health care service generally consider
capacity (room and resource) (Range et al., 2014), hospital policies (Chen et al., 2016),
medical staff’s preference (Chen et al., 2016), patient assignment (Vali-Siar et al., 2018),
operating duration (Vali-Siar et al., 2018), resource limitation (Chern et al., 2008), surgery
priority (Durán et al., 2017; Belkhamsa, 2018), consecutive days (Bolaji et al., 2018), length
of stay (Bolaji et al., 2018),machine assignment (Zhao et al., 2018), precedence process (Zhao
et al., 2018), processing time (Chandra et al., 2014), and completion time (Chandra et al.,
2014). Acar and Butt (2016) proposed a methodology for the construction of balanced nurse-
patient workload assignments under consideration of several constraints such as a limited
amount of time, a limitation of the maximum assigned sum of acuity scores, a limitation of
the maximum assigned distance score. Vali-Siar et al. (2018) proposed a multi-period and
multi-resource operating room scheduling solution under uncertainty. Many conditions such
as patient assignment, resource capacity, resource assignment, and operating duration were
determined on this paper in order to minimize tardiness, idle time, and overtime. To focus
on CL/PTSPs, Wisittipanich et al. (2021) proposed a mathematical programming model to
solve the surgical scheduling problem for CL/PTSPs. The constraints of hospital eligibility,
capacity, age limit, procedure complexity, multi-hospital assignment, and multidisciplinary
care team assignmentwere considered in this study.However, some constraints such as doctor
assignments are lacking. To solve CL/PTSPs in a realistic situation, the lacking constraints
should be determined.

To solve the OR model related to treatment scheduling problems and health care services,
many researchers have generally employed exact algorithms for finding optimal solutions.
Nevertheless, the exact algorithm is still having limitations since it cannot solve larger prob-
lemswith limited time. Furthermore,when the number of variables is increased or the problem
is formulated as nonlinear programming, the exact algorithm cannot find the solution within
limited time. To solve larger problems with limited time, increasing variables, and nonlin-
ear programming, a heuristic algorithm and a metaheuristic algorithm have been applied to
solve treatment scheduling problems and health care services. Several heuristic algorithms
and metaheuristic algorithms have been applied, including genetic algorithm (Lin et al.,
2019), greedy algorithm (Chern et al, 2008), constructive heuristic algorithm (Kamran et al.,
2019), hill-climbing algorithm (Bolaji et al., 2018), sine cosine algorithm (Lan et al., 2019),
tabu search algorithm (Rezaeiahari & Khasawneh, 2020), NSGA-II algorithm (Ala et al,
2021), distributed optimization algorithm (Euchi et al., 2021) and simulated annealing algo-
rithm (Rezaeiahari & Khasawneh, 2020). The most popular in the metaheuristic algorithm is
Genetic Algorithm (GA). For instance, Belkhamsa et al. (2018), proposed twometaheuristics
for solving no-wait operating room surgery scheduling problems under various resource con-
straints. GA is one of the proposed algorithms for solving the surgery scheduling problem;
this algorithm aims to minimize access time (makespan) and total idle time in the operation
room. Based on the results, the proposed algorithms outperformed the current state-of-the-
art algorithm. Not only the GA but also Tabu Search (TS) and Simulated Annealing (SA)
have been applied to the treatment scheduling problem. Rezaeiahari and Khasawneh (2020)
proposed a simulation–optimization approach for scheduling medical tourists who travel to
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destination medical centers (DMCs). This aims to minimize deviations from a patient’s pre-
ferred start day and to minimize the flow time of patients at the DMC by using the tabu search
and simulated annealing algorithms. The results indicated that the total cost of the proposed
model is significantly less than that of the problemwithout any admission planning or patient
sequencing. Cinar et al. (2021) optimized a routing and scheduling problem for home visits
of patients by a single nurse using a developed metaheuristic and an adaptive large neigh-
borhood search heuristic. According to the above literature, several heuristic algorithms or
metaheuristic algorithms can be applied for the treatment scheduling. DE has been success-
fully applied in several areas due to its effectiveness and simplicity (Shahnazari-Shahrezaei
et al., 2012). Shahnazari-Shahrezaei et al. (2012) applied the DE for a nurse scheduling
problem. This paper confirms that the DE outperforms other algorithms, and also shows that
the DE is capable of improving the quality of acquired solutions for nurse scheduling prob-
lems. Not only the DE but also Particle Swarm Optimization (PSO) also have been applied
for patient scheduling problems. Yu et al. (2013) proposed PSO on the surgery scheduling
problem for elective-patients in multiple operating theatres. This paper found that the PSO
works very well and PSO reached the same level of the exact algorithm while the compu-
tational time of PSO is far less than the exact algorithm. Based on the well performance of
DE and PSO, this study aims to apply the DE to find the solution for CL/PTSPs based on
proposed particular encoding and decoding schemes while the PSO is used to compare to
DE for showing the performance. Moreover, to the best of our knowledge, no DE algorithm
has been developed to solve CL/PTSPs as well.

According to the overview of the relevant literature, some objective functions, some con-
straints, and some metaheuristic algorithms are lacking for the consideration of CL/P patient
scheduling; therefore, this paper aims to present a CL/P patient scheduling method under
the consideration of hospital eligibility constraints, capacity limitations, treatment age limi-
tations, multi-hospital assignment, multidisciplinary care team assignment, and multiperiod.
The multi-objective function is generated based on the patient’s needs, including minimizing
makespan, minimizing the travel distance of patient to the hospital, and minimizing the total
least preference assignment score. A solution is proposed via the DE algorithm based on the
proposed particular encoding and decoding schemes since the DE is capable of improving the
quality of acquired solutions for scheduling problems. Moreover, the PSO is used to compare
to DE for showing the performance of solution finding. Finally, the proposed algorithm is
used to create the CL/P patient treatment scheduling program for the hospital case study.

3 Proposedmathematical model

As mentioned earlier, for the CL/PTSP, this study aims to schedule a list of patients who
are supposed to undergo different kinds of treatments in a particular time horizon. Different
operations for each patient can be served at any hospital selected from a set of eligible
hospitals in the network. For each period, different hospitals have different limited capacities
to perform a treatment. Therefore, the CL/P patient treatment schedules are planned for
each hospital on multiple periods over a particular time horizon. In this section, a mixed-
integer linear programming (MILP)model is proposed to represent theCL/PTSP; themodel is
developed from a flexible job shop scheduling problem. The decisions in this problem include
(1) identifying a list of selected treatments, (2) assigning each operation for patients to the
selected hospital, (3) assigning the doctor for treatment in each operation, and (4) identifying
the period of the selected treatment. The model considers three objectives: minimization
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of makespan, minimization of travel distance, and minimization of total least preference
assignment score.

The main assumptions of the model are summarized as follows.

• Each patient has different symptoms. Therefore, each patient has different kinds of oper-
ation requirements.

• Some operations can be performed at specific hospitals only.
• Time for operation treatment is a deterministic variable.
• Time for transferring patients between hospitals is not considered.
• There are no preemptions in scheduling.
• All patients have equal priority.
• The age of all patients starts a 0-year-olds.
• There is no priority in the doctor assignment.
• The capacity of a doctor can be known in advance in each period.

In order to formulate a mathematical model for multi-objective CL/PTSPs, the notations
for indices, parameters, and decision variables are defined as follows.

Indices

i Patient (i � 1, …, I).
j, p Operation (j, p � 1, …, J).
k Hospital (k � 1,…,K).
t Time period (t � 1,…,T ).
d Doctor (d � 1,…,D).

Decision variable

Xi jdkt �
⎧
⎨

⎩

1 if patient i is assigned to hospital k with doctor d for operation j
in period t

0 otherwise
cki j Treatment completion time of patient i operation j
Cmax Maximum completion time of all patients.

Parameters

Ei jk �
{
1 if hospital k can treat patient i operation j
0 otherwise

(Hospital eligibility restrictions)

asi j �
{
1 if patient i need to treat an operation j
0 otherwise

yi jp �
{
1 if patient i is assigned to treat an operation p after operation j
0 otherwise

dadk �
{
1 if doctor d is assigned towork at hospital k
0 otherwise

et jp Minimum time gap between operation j and p before starting the operation j.
lt j p Maximum time gap between operation j and p before starting the operation j.
RTj Ready time for starting operation j.
DD j Due date of completing operation j.
wpik Least preference score of patient i being treated at hospital k.
wlik Travel distance between location of patient i and hospital k.
T pt Time period t.
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mcd Maximum capacity of doctor d that can treat the patient in each period.
oc jd Maximum capacity of doctor d that can treat the patient in operation j.
B A positive big number.

Objective function

Z1 �
∑

i∈P

∑

j∈O

∑

d∈D

∑

k∈H

∑

t∈T

xi jdktwlik (1)

Z2 �
∑

i∈P

∑

j∈O

∑

d∈D

∑

k∈H

∑

t∈T

xi jdktwpik (2)

Z3 � max
i

(
xi jdkt T pt

)
(3)

Constraints

∑

i∈P

∑

j∈O

xi jdkt ≤ mcd ; ∀d , k, t (4)

∑

i∈P

xi jdkt ≤ oc jd ; ∀ j , d , k, t (5)

xi jdkt ≤ dadk ; ∀i , j , d , k, t (6)
∑

d∈D

∑

k∈H

∑

t∈T

xi jdkt � asi j ; ∀i , ∀ j (7)

xi jdkt ≤ ei jk ; ∀i , d , j , k, t (8)

−B
(
yi jp − 1

)
+ ckip − cki j ≥ 1; ∀i , j , p (9)

cki j ≥ RTj ; ∀i , j (10)

cki j ≤ DD j ; ∀i , j (11)

ckip − cki j ≥ et jp; ∀i , j , p (12)

ckip − cki j ≤ lt j p; ∀i , j , p (13)

cki j asi j �
∑

d∈D

∑

k∈H

∑

t∈T

xi jdkt T pt ; ∀i , j (14)

xi jdkt ∈ {0, 1} (15)

cki j · integer (16)

The objective functions of the proposed model are shown in Eqs. (1–3). Equation (1)
aims to minimize the total travel distance between the location of the patient and hospital,
while Eqs. (2) and (3) aim to minimize the total least preference score and minimize the total
maximum completion time of all patients (makespan), respectively. The constraints of the
proposed model are presented in Eqs. (4)–(16). Equation (4) presents the maximum capacity
of the doctor in each period. Equation (5) ensures that the doctor can treat the patients in each
operation in each period with their maximum capacity. Equation (6) states that the patient
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must be treated by a doctor who works at those hospitals only. Equation (7) ensures that a
patient must be treated for each operation by only one hospital for one period (ai j �1) and
there is no need to assign patients to other hospitals in any period if patient i is not required
to be treated with an operation j (ai j �0). Equation (8) specifies that each patient can be
assigned to any eligible hospital to be treated with each of the operations. Equation (9) is a
precedence constraint to ensure that the completion time of any operation must be greater
than or equal to its ready time plus its processing time. Equations (10) and (11) state that
the completion time of patient i operation j at hospital k must be between the patient’s ready
time of that operation and the maximum specified age of a patient to perform that operation.
Equations (12) and (13) explain the time gap limitation between operation j and p before
starting the operation j. Equation (14) explains the completion time of patient i operation j.
Equations (15) and (16) specify that decision variables are binary and integers, respectively.

Considering a multi-objective problem is more difficult to solve than a single-objective
optimization problem. Normally, there is no single global solution, and it is necessary to
determine a set of points that fit a predetermined definition for an optimum solution. The
most common approach to multi-objective optimization is the weighted sum method. There-
fore, this proposed mathematical model applied the weighted sum method to combine three
objectives into a single objective. To assign the same magnitude to each objective function,
all objective functions after normalization will be bounded as Eq. (17), in which Z ′ is the
normalized objective function, Zmin is the minimum value of the objective function, and
Zmax is the maximum value of the objective function.

Z ′ � Z − Zmin

Zmax − Zmin
(17)

According to the weighted sum method, the multi-objective problem can be formulated
as the single-objective optimization problem following Eq. (18), in whichwa is the weighted
value of ath objective function and Z ′

a is the normalized value of ath objective function:

MinZ � w1Z ′
1 + w2Z ′

2 + w3Z ′
3 (18)

Subject to

Z1′ � Z1 − Z1min

Z1max − Z1min
(19)

Z2′ � Z2 − Z2min

Z2max − Z2min
(20)

Z3′ � Z3 − Z3min

Z3max − Z3min
(21)

And Eqs. (1)–(16)
The proposed mathematical model could pave the way to Artificial Intelligence (AI) and

sustainability for smart decisions of CL/PTSP in hospitals and help improving performance
opportunities for this challenging problem. Nevertheless, due to the limitations of the com-
petence of an exact solution method for such a large problem (Boonmee et al., 2018) and
the reduction of the investment cost of optimization software, this paper aims to propose the
solution algorithm using DE for the CL/PTSP.
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4 Solution algorithm

As mentioned in the introduction, this paper was motivated by the limitations of the exact
method in solving CL/PTSP. Hence, this research study has focused on DE to plan CL/P
patient scheduling. The details of DE, encoding and decoding scheme, and solution method
are represented as follows.

4.1 Differential evolution (DE)

The Differential Evolution (DE) algorithmwas originated by Storn and Price in 1995. Nowa-
days, DE is a high-performance tool for solving many combinatorial NP-hard problems since
it can performwell in its searchability and convergencewith less effort of computational times
by using a few control variables. DE is a population-based random search approach that is like
other Evolutionary Algorithms (EAs). The method of DE starts with a randomly generated
initial population of size N . The population is represented by d dimensional vector and each
variable value in the d dimensional space is represented by a real number. There are two key
ideas that differentiate DE from other EAs is its mechanism for generating a new solution
by particular mutation and crossover operations. At the initialization stage (g � 0), the jth
value of the ith vector is generated according to the following Eq. (22).

x0i , j � u(bU − bL ) + bL (22)

The upper bound (bU,) and lower bound (bL) for the value in each dimension jth (j � 1,
2, 3, …, d) have to be specified, where u is uniformly random in the range from 0 to 1. The
concept of the mutation operation of DE is reached by combining randomly selected vectors
in order to produce a mutant vector. For each target vector (X g

i ) at generation g, the mutant
vector (V g

i ) is generated as Eq. (23):

Vi , j � X g
r1 + F(X g

r2 + X g
r3) (23)

where Xr1, Xr2, Xr3 are vectors randomly selected from the current population. They are
mutually exclusive and different from the target vector (X g

i ). F is a scale factor that controls
the scale of the differences of the vectors between Xr2 andXr3. The DE applies a crossover
operator on X g

i and V g
i to produce the trial vector (Z g

i ). In this study, the binomial crossover
is applied, in which the trial vector is formulated by the following Eq. (24):

Z g
i , j �

{
v

g
i , j , i f u j ≤ C j or j � ju

X g
i , j , otherwish

(24)

whereCr is the crossover probability in the interval [0,1]. and ju is a randomly chosen index (ju

∈ {1, 2,…,D}). TheCr value controls the probability of selecting the value in each dimension
from a mutant vector over its corresponding target vector. Next, the replacement or selection
of an individual occurs only if the trial vector outperforms its corresponding vector. As a
result, all individuals in the next generation are as good as or better than their counterparts
in the current generation. The evolution procedure of the DE population continues through
repeat cycles of the three key operations, which consist of mutation, crossover, and selection
until certain stopping criteria are found. See more details in (Kachitvichyanukul & Nguyen,
2010; Nguyen et al., 2013). The evolution procedures of DE are illustrated in Fig. 1.
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Fig. 1 The evolution procedures of DE (Kachitvichyanukul & Nguyen, 2010)

4.2 Encoding and decoding scheme for CL/PTSP

The encoding procedures used in this study start by providing a range of dimensions to be
equal to twice the total number of total operations of all patients. To understand more easily,
this considers an example with three patients in which each patient is treated with three
different operations as shown in Table 1. For this example, the number of dimensions is
equal to 18. A random key representation is employed to encode the scheme for CL/PTSP
as shown in Fig. 2, in which the encoding scheme is separated into two sections that consist
of the encoding scheme of the sequence and the α-value (the α-value is the coefficient for
calculating the hospital score). Each value in a dimension is randomly generated with a
uniform random number (RN) between 0 and 1. The encoding scheme of the sequence for
scheduling is firstly determined. The m-repetition of operations permutation and a sorting list
rule are applied to assign the sequence of scheduling for patients. To decode these dimension
values to a solution, the patient no.1 is first allocated to the dimension with the sorted value of
the random number, then patient no.2 and patient no.3 are allocated, respectively, as shown
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Table 1 The procedure of the treatment plan of each patient

Patient Age (weeks) Operation

1 2 3

1 12 O1 O2 O3

2 20 O3 O4 O5

3 12 O1 O3 O4

Fig. 2 An encoding scheme for CL/PPSP

in Fig. 3b. When the number of dimensions is sorted by ascending value again, the sequence
of the scheduling of all patients is presented. The operations of each patient are assigned
to the associated procedure of the treatment plan. These procedures result in a completed
assignment for CL/PTSP as shown in Fig. 3c. To assign the parameter (α-value) for generating
the hospital score for the assignment of each operation to each hospital, the encoding scheme
of the α-value is directly employed to each operation of each patient. From Fig. 2, the RN in
dimension no. 10–18 is assigned to dovetail with the decoding scheme of the sequence for
scheduling as shown in Fig. 3c. Finally, the decoding scheme of CL/PTSP is completed as
shown in Fig. 3d.

Fig. 3 A decoding scheme for CL/PPSP: a the sorted value of the RN, b the allocation of patients to the
dimensions, c the sorted value of the number of dimensions and the assignment of operation to the patient,
and d the completed decoding scheme of CL/PPSP
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4.3 CL/PTSP solution

After the decisions on the sequence for CL/PTSP is made, the method of scheduling of
the CL/P treatment is proposed. The pseudo-code to determine the CL/PTSP is presented
in Fig. 4. Initially, the algorithm is started with inputting all necessary data including the
ready time for starting operation, the due date of completing an operation, the capacity of
hospitals, hospital eligibility, least preference score, treatment requirement, theminimum and
maximum time gap between each operation, and the assignment of sequence for CL/PTSP
based on the decoding scheme in Sect. 4.2. The first sequence from the decoding scheme is
firstly started. The ready time for the treatment of patient i in operation j is set as the first
period for finding the suitable period, then that period t is checked based on the consideration
of the previous operation (p < j), the minimum time gap (etjp), and the maximum time gap
(ltjp) between operation j and p before starting the operation j. If any operations before
operation j are treated in that time or the condition of time gap between each operation is not
correctly following the protocol, the operation j of patient i is determined for the treatment in
the next period. Once a suitable period is found, the hospital selection is generated. To select
the suitable hospital for each operation in each patient following the objective functions of
travel distance (Z1) and the least preference score (Z2), the score of each hospital is calculated
via using the α-value from the decoding scheme following the equation in step III in Fig. 4.
Then the hospital that obtained the least score is firstly considered for treating the operation j
of patient i. To confirm hospital k is able to treat the patient i in operation j, the eligibility of
hospital k is checked. If that hospital is not able to treat the patient i in operation j, the next
hospital that obtained the next higher score is considered. Furthermore, if all hospitals in that
period k cannot treat the patienti in operation j, this patient is determined in the next period
again. Once the hospital can pass the condition of eligibility, the doctor is determined. The
doctor must work at that hospital and can treat the patienti in operation j at period t within
her/his limited capacity. Finally, the age limitation of the operation j is checked based on the
consideration of the ready time of staring operation j (RTj) and the due date of completing
operation j (DDj). When all conditions are corrected, the patient i in operation j is scheduled
in the appointment table.

Fig. 4 Pseudo code for CL/PTSP
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5 Computational experiments

5.1 Test problems and parameter setting

To test the proposed mathematical model and the proposed algorithm, a numerical case is
given to illustrate the solutionmethods of the proposedCL/PTSPmodel. Tomake the problem
practical, the computational experiments are executed using the simulated data according to
the real treatments of CL/P patients. Four main parameters—number a number of patients,
a list of operations, a number of hospitals, and a number of doctors—are generated along
with other parameters such as hospital eligibility for different operations, hospital capacity,
and hospital preference for patients. Each operation is scheduled on a weekly basis over a
planning horizon. Fifteen numerical problems are generated as shown in Table 2 based on
the real data of Table 3, 4, 5 and 6.

All problems were solved by an exact method using LINGO optimization solver version
14.0 for evaluation of the proposed mathematical model, while the metaheuristic method was
evaluated using the C# language of Microsoft Visual Studio 2019. All tests were carried out
on a personal computer with an Intel (R) Core (TM) i7-6700 CPU (3.40 GHz) and 16 GB
of RAM. In this study, two metaheuristic approaches are proposed to solve the CL/PTSP:
Differential Evolution (DE) and the Particle Swarm Optimization with combined gbest,
lbest and nbest social structures (GLNPSO), which considers multiple social learning terms.
In both algorithms, the function evaluations are set as a fixed value of 100,000 so that
sufficient function evaluations are allowed in order to find the best solution. To determine
the appropriate parameters of GLNPSO and DE, firstly, the preliminary experiments are
conducted with four different values of each parameter. Then, for each parameter, while the
values of the other parameters are fixed, the outstanding parameter values out of all other

Table 2 Test problems for CL/PPSP

NO Patients (P) Operations (O) Hospitals (H) Doctor (D)

CLO CPO CLP

1 2 2 1 5 3 6

2 5 5 5 5 3 6

3 7 7 6 7 3 6

4 10 10 10 7 3 6

5 15 15 10 7 3 6

6 20 20 10 7 3 10

7 20 20 10 13 5 10

8 15 15 10 19 7 15

9 30 30 5 13 5 10

10 30 30 5 16 7 15

11 40 40 20 13 5 10

12 30 30 20 19 7 15

13 45 55 20 13 5 10

14 40 40 20 19 7 15

15 45 45 30 19 7 15
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Table 3 The treatment protocol of
a CL/P patient Operation

no.
Operation name Treatment

protocol (Week)

Ready
time

Due
date

O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12
O13
O14
O15
O16
O17
O18
O19

Evaluation
Nam/Pre-op Nanoform
Obturator
Nam & Obturator
CL Repair 1
Post op CL #37
Nasal Adjustor
Post op CL #38
Follow up Dental Care #1
Screening for OME
Post op CL #39
Follow up Dental Care #2
CP Repair
Post op#1 (After CP repair)
Post op#2 (After CP repair)
Post op CL #40
Follow up Dental Care #3
Consult speech clinic
Follow up Dental Care #4

1
1
1
1
13
14
14
18
18
26
38
38
39
40
43
64
64
65
115

18
18
18
18
26
28
24
30
32
39
63
74
78
80
84
116
99
103
150

Table 4 The time gap condition
between operations Operation no. The related operation Time gap (Week)

At least At most

O6
O7
O8
O9
O11
O12
O14
O15
O16
O17
O19

O5
O5
O5
O5
O5
O5
O13
O13
O5
O13
O5

1
1
4
4
25
25
1
4
51
51
102

2
2
6
6
*
*
2
6
*
*
*

*No limited time gap at the upper bound

Table 5 The treatment protocol for each type of CL/P

Type of patient The treatment protocol

Cleft lip only (CLO) O1 O2 O5 O6 O8 O11 O16

Cleft palate only (CPO) O1 O3 O10 O13 O4 O15 O17

Cleft lip and cleft palate
(CLP)

O1 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19

*Only main types are selected for testing in this research
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Table 6 The treatment eligibility of hospitals

Operation no. Hospital no.

1 2 3 4 5 6 7

O1 1 1 0 0 0 1 0

O2 1 0 0 1 0 1 0

O3 1 1 1 0 0 1 0

O4 1 1 1 0 0 1 0

O5 1 0 1 0 0 1 0

O6 1 1 0 0 0 1 0

O7 1 0 1 1 1 1 1

O8 1 1 0 0 0 1 0

O9 0 0 0 1 1 0 1

O10 1 0 0 1 0 1 0

O11 1 1 0 0 0 1 0

O12 0 0 0 1 1 0 1

O13 1 0 1 0 0 1 0

O14 1 1 1 0 0 1 0

O15 1 1 1 0 0 1 0

O16 1 1 0 0 0 1 1

O17 0 0 0 1 1 0 1

O18 1 0 0 0 0 0 1

O19 0 0 0 1 1 0 1

Table 7 The full factorial design
for parameters setting in DE and
GLNPSO

DE GLNPSO

Population size: 50, 200, Swarm size: 50, 200,

F: [0.2, 0.5], [0.6, 0.9], W: [0.2, 0.5], [0.6, 0.9],

Cr: [0.1, 0.5], [0.4, 0.7] Cp: 1, 2, Cg: 1, 2, Cl: 1, 2, Cn: 1, 2

parameter values are identified according to the fitness value obtained from the algorithm.
The following combinations of the parameter’s suitable values are further tested for each
size of the specified instance. A full factorial design is conducted to determine the best
parameter setting, as shown in Table 7. The Minitab software was employed to identify
suitable parameters based on six replications. After the response optimizer is generated, the
results indicate that the best solution quality is obtained from the parameter setting as is
shown in Table 8 and Fig. 5. Hence, this method will be used in the following computational
study.

5.2 Experimental results

The numerical results obtained from the DE are compared with those obtained from the
GLNPSO under the same conditions, which are encoding and decoding schemes. Table 9
shows the results of the CL/PTSP such as the optimal (feasible) solution; the best, average
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Table 8 The suitable parameters
setting DE GLNPSO

Population size: 50 Swarm size: 200

Iteration: 2000 Iteration: 500

F: [0.2, 0.5] W: [0.2, 0.5]

Cr: [0.1, 0.5] Cp: 2, Cg: 2, Cl: 2, Cn: 1

Fig. 5 The output of optimal parameters from the Minitab software

and standard deviations of the fitness value from ten runs of each algorithm for each case; the
objective functions; run time; Relative Improvement (RI) of the best and average solutions
obtained from the GLNPSO and DE (Evaluation from Eq. 25); and p-value of a two-sample
t-test for comparing the results of two algorithms at a 95% confidence level.

RI � (SolGLNPSO− SolDE)/ SolDE) × 100 (25)

where RI:The relative improvement (%) between SolGLNPSO and SolDE.
The results of the proposed mathematical model and the proposed algorithm suggest that

the solutions of identifying a list of selected treatments, assigning each operation of patients
to the selected hospital, and identifying the period of the selected treatment are correct and
reasonable. For problemNO. 1, the result from the LINGO software found that the maximum
completion time of all patients is equal to 13 weeks, while the total least preference score is
equal to 17 and the total travel distance is equal to 236. The solution of CL/PTSP for problem
NO. 1 was illustrated in Fig. 6. The solution of problem NO. 1 obtained from the DE and
GLNPSO also presented the same solution to the exact method. For not only problem NO. 1
but also problem NO. 2 and problem NO. 3, both algorithms could reach the optimal solution
the same as the exact method. However, when problem NO. 4 is tested, the exact method
could not seek the solution within a reasonable computing time (10 h.). On the other hand,
as the problem size increases, the DE and GLNPSO showed their potential in solving the
larger problems (problem NO. 4–15) without difficulties.

To compare the degree of performance ofDE andGLNPSO, the results of the RI are shown
in Fig. 7. According to the results from Table 9 and Fig. 7, most of the best solutions obtained
from the DE algorithm were better than those obtained from GLNPSO, with relatively faster
computing times, while there were just problems NO. 9 and 11 for which the best value
displayed a higher performance than DE. Nevertheless, when the average solutions were
focused, only problem NO. 11, the GLNPSO generally yields outstanding results to the DE.
Furthermore, the statistical t-test could indicate that most of the average solutions obtained
from the DE algorithm were significantly less than the average solutions obtained from
GLNPSO (except for problem NO. 11), in which the p-value was less than 0.05. The average
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Fig. 6 The solution of CL/PTSP for the numerical problem NO. 1

Fig. 7 The RI of each solution between DE and GLNPSO

convergence graphs were also observed using the average fitness value versus the number of
iterations, as shown in Fig. 8. Figure 8 shows that the convergence behavior of DE is faster
than the GLNPSO; this means that the DE could seek equal or better solutions using a fewer
number of function evaluations.

6 Real-world application

The proposed decision support system is proposed to apply to the local hospital in Northern
Thailand. The case study was founded for servicing the CL/P patients in the eight provinces
of upper northern Thailand (Chiang Rai, Chiang Mai, Nan, Phayao, Phrae, Mae Hong Son,
Lampang, and Lamphun). To treat CL/P patients, a multidisciplinary team is established that
comprises plastic surgeons, neurosurgeons, otolaryngologists, ophthalmologists, anesthesi-
ologists, orthodontists, and nurses. The network of the case study is decentralized to many
hospitals in eight provinces in order to service the patients. The case study is the main center
of the network. Only four hospitals in northern Thailand can provide the CL/P treatments.
Nowadays, the number of CL/P patients in northern Thailand has been increasing. The case
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Fig. 8 Comparison of convergence behavior between DE and GLNPSO

study must support about 1,744 patients. This center plays a role in providing treatment ser-
vices for CL/P patients from the womb and while growing up to allow the patient to have a
good quality of life at any age until normally living and working with other people (Suwi-
wattana et al., 2020). The standard treatment protocol (0–2 years) for patients is presented
in Table 3. At each age, specific treatments are assigned to treat the patients by multidisci-
plinary teams in multiple periods over a particular time horizon. Any delay occurring within
the treatment plan affects the treatment effectiveness and time plan.

Due to the complicated processes, the increasing number of patients, and limitation of
resources including capacity and eligibility, the scheduling issue has been becoming a major
problem at the present to manage these patients. To aid the case study and the patients, the
best schedule of each patient should be determined under the minimization of makespan,
minimization of travel distance, and minimization of total least preference assignment score.
Three objective functions are the main issue of a patient’s needs in this case study. Nowa-
days, the treatment schedule of the case study is planned by the administrators using the
administrator’s experience without any decision support systems. Therefore, administrators
cannot reach an effective treatment schedule. Additionally, there are sometimes some errors
in scheduling the treatments.

To create a smart decision support system for helping the administrators’ and patients’
needs, this paper proposed a CL/P scheduling program for this case study via the proposed
algorithm in Sect. 4. The proposed algorithm is applied in this program for identifying a
list of selected treatments, assigning each operation of patients to the selected hospital, and
identifying the period of the selected treatment. The feature design of the proposed program
is illustrated in Fig. 9. From Fig. 9, eight functions are formulated for monitoring each piece
of data; the functions are the main page, patient data, appointment scheduling, hospital data,
doctor data, operation data, setting data, and scheduling. To input the input data, the staff can
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Fig. 9 The feature design of the CL/P scheduling program

input the data in five functions: patient data function, hospital data function, doctor data func-
tion, operation data function, and setting data function. Each of these functions can remove
or add the data before scheduling via the proposed algorithm. After the proposed algorithm
solves CL/PTSP under those data, the solutions were represented in the appointment sched-
ule function. The solution showed the guideline for making the appointment in each period
under multi-hospitals as shown in Fig. 9. Each operation of patients is represented in each
box. Once the administrators agree to make the appointment, the staff will click the button
and then select the date of appointment in that period as shown in Fig. 10. After the appoint-
ment is achieved, the status of that patient is recorded to schedule the appointment. When an
emergency case or preemptive case occurs, the staff can postpone the treatment in the next
period by clicking on the button (postponement) and changing the date. When that operation
is servicing for treatment in each hospital, the status of the patient is changed to “in progress”.
Finally, when the operation is done, the status of the patient is changed to “completed”.

To employ the CL/P scheduling program in this case study, the steps of scheduling are
illustrated in Fig. 11. Firstly, the data is input into the program such as patient data, doctor

Fig. 10 The feature design of the appointment function
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Fig. 11 The procedure for using the CL/P scheduling program

data, hospital data, distance data, and operation data. Then, the DE parameter is set for
generating the schedule. However, this paper recommends using the proposed parameters.
Next, all data is run via the proposed algorithm. After the scheduling guideline is proposed,
the administrators need to make the appointment. If an emergency case is found, a new
appointment can be made. Finally, the progress treatment and completion treatment are
determined respectively. As preemptive cases come, the staff can make an appointment
immediately under consideration of the capacity in each period. The treatment of new patients
with an emergency case is based on the decision of doctors. In this case, the system is
rescheduled every year for updating the information.

The CL/P scheduling program can be a decision support system in helping the staff for
scheduling the patients under patients’ needs including the minimization of makespan time
and minimization of least preference score based on the travel distance between the patient’s
location and hospital’s location for reducing the travel cost or travel distance. The case study
can manage the resources easily including doctors from the multidisciplinary, surgery room,
etc. Every staff can schedule without deep experience and knowledge. Moreover, this pro-
gram is also able to reduce the error from the nurses or staff for appointment scheduling.

123



586 Annals of Operations Research (2024) 335:563–595

Based on the existing method, only one staff at each sub-hospital can make the schedule and
the staff takes 5–10min per patient for scheduling. However, when this problem is employed,
120 patients with 19 operations can be scheduled within 5–10 min. This problem can reduce
not only the time of scheduling but also the number of procedures for scheduling as well.
To verify and validate the developed programing, 10 staff were trained for using this pro-
gram. Finally, the evaluation form of the developed program was surveyed. The results show
that most of the staff satisfy with the proposed program. However, the developed program
might be difficult in some special cases such as additional surgery, additional procedure, or
reprocessing of treatment. Nowadays, the Technology Licensing Office/University Business
Incubator warrants the proposed program at TRL 4 of the technology readiness scale.

7 Conclusion

This paper proposes a treatment schedulingmethod for CL/PTSPs using a DE algorithm. The
goal is to identify a list of selected treatments, assign each operation of patients to the selected
hospital, and identify the period of the selected treatment under different eligible hospitals,
capacity limitations, treatment age limitations, multi-hospital assignment, multidisciplinary
care team assignment, and multi-period. Not only the multiple objective mixed-integer linear
programming model but also the solution algorithm using DE are formulated for CL/PTSPs
under three objective functions: the minimization of makespan, travel distance, and total
least preference assignment score. Finally, a smart decision support system is proposed to
employ in the northern Thailand hospital case study by applying the proposed algorithm
using DE. The results show that the program can be a smart decision support system in
helping the administrators for scheduling the CL/P patients. Moreover, this smart decision
support system is also able to reduce the errors from the nurses or staff for the appointment
scheduling significantly.

Nevertheless, CL/PTSP is usually discussed under the assumption that all parameters are
deterministic variables, and only non-preemptive cases are considered. In practice, some of
these assumptions are unrealistic. The hospital may be subjected to unpredictable conditions
of its capacity and treatment durations. Hence, to solve the real-world problem, further
research should consider preemption and priority. Furthermore, the arrival of emergency
or urgent treatment may occur and result in preemptions in the scheduling. Hence, further
research should be focused on stochastic modeling (Bazirha et al., 2021; Pervin et al., 2018;
Temoçin & Weber, 2014), robust modeling (Golpîra & Tirkolaee, 2019; Tirkolaee et al.,
2020a, 2020b) or fuzzy modeling (Das et al., 2020; Goli et al., 2021; Tirkolaee et al., 2021)
for handling uncertainty in real-world practices. To find a better solution with the short
running time, the new meta, modified, or hybrid heuristic should be developed for CL/PTSP.
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Cissé, M., Yalçındağ, S., Kergosien, Y., Şahin, E., Lenté, C., &Matta, A. (2017). OR problems related to home
health care: A review of relevant routing and scheduling problems. Operations Research for Health Care,
13, 1–22. https://doi.org/10.1016/j.orhc.2017.06.001

Conforti, D., Guerriero, F., & Guido, R. (2008). Optimization models for radiotherapy patient scheduling.
4OR, 6(3), 263–278.

Das, S. K., Roy, S. K., & Weber, G. W. (2020). Application of type-2 fuzzy logic to a multiobjective green
solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: Fuzzy
versus nonfuzzy techniques. IEEE Transactions on Fuzzy Systems, 28(11), 2711–2725. https://doi.org/
10.1109/TFUZZ.2020.3011745

Di Mascolo, M., Martinez, C., & Espinouse, M. L. (2021). Routing and scheduling in home health care: A
literature survey and bibliometric analysis. Computers & Operations Research, 158, 107255. https://doi.
org/10.1016/j.cie.2021.107255

Drupsteen, J., Vaart, T. V. D., & Donk, D. P. V. (2013). Integrative practices in hospitals and their impact on
patient flow. International Journal of Operations & Production Management, 33(7), 912–933. https://
doi.org/10.1108/IJOPM-12-2011-0487

123

https://doi.org/10.1007/s12553-021-00547-5
https://doi.org/10.1016/j.jbi.2016.10.006
https://doi.org/10.1038/s41598-021-98851-7
https://doi.org/10.1007/s10479-021-04222-w
https://doi.org/10.1016/j.cie.2018.10.017
https://doi.org/10.1016/j.knosys.2018.01.017
https://doi.org/10.1016/j.ijdrr.2018.07.003
http://arxiv.org/abs/1103.3391
https://doi.org/10.1016/j.ejor.2009.04.011
https://doi.org/10.1007/s10951-011-0239-8
https://doi.org/10.1016/j.cor.2011.01.007
https://doi.org/10.1016/j.omega.2013.02.005
https://doi.org/10.1016/j.cie.2016.07.018
https://doi.org/10.1016/j.ejor.2007.02.029
https://doi.org/10.1016/j.ejor.2019.07.009
https://doi.org/10.1016/j.orhc.2017.06.001
https://doi.org/10.1109/TFUZZ.2020.3011745
https://doi.org/10.1016/j.cie.2021.107255
https://doi.org/10.1108/IJOPM-12-2011-0487


594 Annals of Operations Research (2024) 335:563–595

Durán, G., Rey, P. A., & Wolff, P. (2017). Solving the operating room scheduling problem with prioritized
lists of patients. Annals of Operations Research, 258(2), 395–414. https://doi.org/10.1007/s10479-016-
2172-x

Euchi, J., Zidi, S., & Laouamer, L. (2021). A new distributed optimization approach for home healthcare
routing and scheduling problem. Decision Science Letters, 10(3), 217–230. https://doi.org/10.5267/j.dsl.
2021.4.003

Goli, A., Tirkolaee, E. B., & Aydın, N. S. (2021). Fuzzy integrated cell formation and production scheduling
considering automated guided vehicles and human factors. IEEE Transactions on Fuzzy Systems, 29(12),
3686–3695. https://doi.org/10.1109/TFUZZ.2021.3053838

Golpîra, H.,&Tirkolaee, E. B. (2019). Stablemaintenance tasks scheduling:A bi-objective robust optimization
model. Computers & Operations Research, 137, 106007. https://doi.org/10.1016/j.cie.2019.106007

Granja, C., Almada-Lobo, B., Janela, F., Seabra, J., &Mendes, A. (2014). An optimization based on simulation
approach to the patient admission scheduling problem using a linear programing algorithm. Journal of
Biomedical Informatics, 52, 427–437. https://doi.org/10.1016/j.jbi.2014.08.007

Gupta, D., & Denton, B. (2008). Appointment scheduling in health care: Challenges and opportunities. IIE
Transactions, 40(9), 800–819. https://doi.org/10.1080/07408170802165880

Huang, W. T., Chen, P. S., Liu, J. J., Chen, Y. R., & Chen, Y. H. (2018). Dynamic configuration scheduling
problem for stochastic medical resources. Journal of Biomedical Informatics, 80, 96–105. https://doi.
org/10.1016/j.jbi.2018.03.005

Kachitvichyanukul, V., & Nguyen, S. (2010). User’s Manual: Object Library for Evolutionary Techniques
(ET-Lib).

Kamran, M. A., Karimi, B., Dellaert, N., & Demeulemeester, E. (2019). Adaptive operating rooms planning
and scheduling: A rolling horizon approach. Operations Research for Health Care, 22, 100200. https://
doi.org/10.1016/j.orhc.2019.100200

Kapamara, T., Sheibani, K., Haas, O. C., Reeves, C. R., &Petrovic, D. (2006). A review of scheduling problems
in radiotherapy. In: Proceedings of the Eighteenth International Conference on Systems Engineering
(ICSE2006), Coventry University, UK (pp. 201–207).

Lan, S., Fan, W., Liu, T., & Yang, S. (2019). A hybrid SCA–VNS meta-heuristic based on Iterated Hungarian
algorithm for physicians andmedical staff scheduling problem in outpatient department of large hospitals
withmultiple branches.Applied Soft Computing, 85, 105813. https://doi.org/10.1016/j.asoc.2019.105813

Lin, Y. K., & Chou, Y. Y. (2019). A hybrid genetic algorithm for operating room scheduling. Health Care
Management Science. https://doi.org/10.1007/s10729-019-09481-5

Marynissen, J., & Demeulemeester, E. (2016). Literature review on integrated hospital scheduling problems.
KU Leuven, Faculty of Economics and Business, KBI_1627. https://doi.org/10.2139/ssrn.2873413

Marynissen, J., & Demeulemeester, E. (2019). Literature review on multi-appointment scheduling problems
in hospitals. European Journal of Operational Research, 272(2), 407–419. https://doi.org/10.1016/j.ejor.
2018.03.001

Nguyen, S., Kachitvichyanukul, V., & Wisittipanich, W. (2013). ET LibUser’s Guide Volume 2 Differential
Evolution. Asian Institute of Technology, Thailand.

Operation Smile Thailand. (2020) Cleft lip and cleft palate: An untold condition in Thailand, Retrieved April
22, 2020, from https://operationsmile.or.th.

Panamonta, V., Pradubwong, S., Panamonta,M.,&Chowchuen, B. (2015). Global birth prevalence of orofacial
clefts: A systematic review. Journal of the Medical Association of Thailand, 98(Suppl 7), S11-21.

Pervin, M., Roy, S. K., & Weber, G. W. (2018). Analysis of inventory control model with shortage under
time-dependent demand and time-varying holding cost including stochastic deterioration. Annals of
Operations Research, 260(1), 437–460. https://doi.org/10.1007/s10479-016-2355-5

Range, T. M., Lusby, R. M., & Larsen, J. (2014). A column generation approach for solving the patient
admission scheduling problem. European Journal of Operational Research, 235(1), 252–264. https://
doi.org/10.1016/j.ejor.2013.10.050

Rezaeiahari, M., & Khasawneh, M. T. (2020). Simulation optimization approach for patient scheduling at
destination medical centers. Expert Systems with Applications, 140, 112881. https://doi.org/10.1016/j.
eswa.2019.112881

Shahnazari-Shahrezaei, P., Tavakkoli-Moghaddam,R., Azarkish,M.,&Sadeghnejad-Barkousaraie, A. (2012).
A differential evolution algorithm developed for a nurse scheduling problem. South African Journal of
Industrial Engineering, 23(3), 68–90.

Silva, T. A., & de Souza, M. C. (2019). Surgical scheduling under uncertainty by approximate dynamic
programming. Omega. https://doi.org/10.1016/j.omega.2019.05.002

Souki, M., & Rebai, A. (2009). Memetic differential evolution algorithm for operating room scheduling. In:
2009 International Conference on Computers & Operations Research (pp. 845–850). IEEE. https://doi.
org/10.1109/ICCIE.2009.5223835

123

https://doi.org/10.1007/s10479-016-2172-x
https://doi.org/10.5267/j.dsl.2021.4.003
https://doi.org/10.1109/TFUZZ.2021.3053838
https://doi.org/10.1016/j.cie.2019.106007
https://doi.org/10.1016/j.jbi.2014.08.007
https://doi.org/10.1080/07408170802165880
https://doi.org/10.1016/j.jbi.2018.03.005
https://doi.org/10.1016/j.orhc.2019.100200
https://doi.org/10.1016/j.asoc.2019.105813
https://doi.org/10.1007/s10729-019-09481-5
https://doi.org/10.2139/ssrn.2873413
https://doi.org/10.1016/j.ejor.2018.03.001
https://operationsmile.or.th
https://doi.org/10.1007/s10479-016-2355-5
https://doi.org/10.1016/j.ejor.2013.10.050
https://doi.org/10.1016/j.eswa.2019.112881
https://doi.org/10.1016/j.omega.2019.05.002
https://doi.org/10.1109/ICCIE.2009.5223835


Annals of Operations Research (2024) 335:563–595 595

Suwiwattana, S., Kasemset, C., & Khwanngern, K. (2020). Healthcare service network analysis: Northern
region’s healthcare service network of cleft lip and cleft palate. Current Applied Science and Technology,
198–207.

Temoçin, B. Z., &Weber, G. W. (2014). Optimal control of stochastic hybrid system with jumps: A numerical
approximation. Journal of Computational and Applied Mathematics, 259, 443–451. https://doi.org/10.
1016/j.cam.2013.10.021

Tirkolaee, E. B., Abbasian, P., & Weber, G. W. (2021). Sustainable fuzzy multi-trip location-routing problem
for medical waste management during the COVID-19 outbreak. Science of the Total Environment, 756,
143607. https://doi.org/10.1016/j.scitotenv.2020.143607

Tirkolaee, E. B., Mahdavi, I., Esfahani, M. M. S., &Weber, G. W. (2020a). A robust green location-allocation-
inventory problem to design an urban waste management system under uncertainty. Waste Management,
102, 340–350. https://doi.org/10.1016/j.wasman.2019.10.038

Tirkolaee, E. B., Mardani, A., Dashtian, Z., Soltani, M., &Weber, G.W. (2020b). A novel hybrid method using
fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in
two-echelon supply chain design. Journal of Cleaner Production, 250, 119517. https://doi.org/10.1016/
j.jclepro.2019.119517

Vali-Siar, M. M., Gholami, S., & Ramezanian, R. (2018). Multi-period and multi-resource operating room
scheduling under uncertainty: A case study. Computers & Operations Research, 126, 549–568. https://
doi.org/10.1016/j.cie.2018.10.014

Wisittipanich,W., Boonmee, C., Khwanngern, K., Chattinnawat,W., &Woschank,M. (2021). Amathematical
model for multi-period surgical scheduling with capacity constraint. Journal of Advanced Manufacturing
Technology, 15(2).

Yu, W., Yunhui, M., Huabo, Z., & Jiafu, T. (2013). A particle swarm optimization algorithm on the surgery
scheduling problem with downstream process. In: 2013 25th Chinese Control and Decision Conference
(CCDC) (pp. 850–855). IEEE. https://doi.org/10.1109/CCDC.2013.6561041

Zhao, L., Chien, C. F., & Gen, M. (2018). A bi-objective genetic algorithm for intelligent rehabilitation
scheduling considering therapy precedence constraints. Journal of Intelligent Manufacturing, 29(5),
973–988. https://doi.org/10.1007/s10845-015-1149-y

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1016/j.cam.2013.10.021
https://doi.org/10.1016/j.scitotenv.2020.143607
https://doi.org/10.1016/j.wasman.2019.10.038
https://doi.org/10.1016/j.jclepro.2019.119517
https://doi.org/10.1016/j.cie.2018.10.014
https://doi.org/10.1109/CCDC.2013.6561041
https://doi.org/10.1007/s10845-015-1149-y

	Differential evolution for cleft lip and/or cleft palate patient treatment scheduling problems: a northern Thailand hospital case study
	Abstract
	1 Introduction
	2 Literature review
	3 Proposed mathematical model
	4 Solution algorithm
	4.1 Differential evolution (DE)
	4.2 Encoding and decoding scheme for CL/PTSP
	4.3 CL/PTSP solution

	5 Computational experiments
	5.1 Test problems and parameter setting
	5.2 Experimental results

	6 Real-world application
	7 Conclusion
	Acknowledgements
	Appendix A
	References




