
Annals of Operations Research (2024) 332:303–327
https://doi.org/10.1007/s10479-023-05703-w

ORIG INAL RESEARCH

Matchings under distance constraints II.

Péter Madarasi1,2

Received: 7 November 2022 / Accepted: 6 November 2023 / Published online: 7 December 2023
© The Author(s) 2023

Abstract
This paper introduces the d-distance b-matching problem, in which we are given a bipartite
graph G = (S, T ; E) with S = {s1, . . . , sn}, a weight function on the edges, an integer
d ∈ Z+ and a degree bound function b : S ∪ T → Z+. The goal is to find a maximum-
weight subset M ⊆ E of the edges satisfying the following two conditions: (1) the degree
of each node v ∈ S ∪ T is at most b(v) in M , (2) if si t, s j t ∈ M , then |i − j | ≥ d . In the
cyclic version of the problem, the nodes in S are considered to be in cyclic order. We get
back the (cyclic) d-distance matching problem when b(s) = 1 for s ∈ S and b(t) = ∞ for
t ∈ T . We prove that the d-distance matching problem is APX-hard, even in the unweighted
case. We show that 2 − 1

d is a tight upper bound on the integrality gap of the natural integer
programming model for the cyclic d-distance b-matching problem provided that (2d − 1)
divides the size of S. For the non-cyclic case, the integrality gap is shown to be at most
(2− 2

d). The proofs give approximation algorithms with guarantees matching these bounds,
and also improve the best known algorithms for the (cyclic) d-distance matching problem. In
a related problem, our goal is to find a permutation of S maximizing the weight of the optimal
d-distance b-matching. This problem can be solved in polynomial time for the (cyclic) d-
distance matching problem — even though the (cyclic) d-distance matching problem itself
is NP-hard and also hard to approximate arbitrarily. For (cyclic) d-distance b-matchings,
however, we prove that finding the best permutation is NP-hard, even if b ≡ 2 or d = 2, and
we give e-approximation algorithms.

Keywords Distance matching · Restricted b-matching · Constrained matching ·
Scheduling · Approximation algorithms · Integrality gap · Optimal permutation

1 Introduction

In this paper, we introduce a natural generalization of the d-distance matching problem
(Madarasi, 2021), where the degree upper bound function in S can be other than the all-
one function, and degree bounds can be posed on the nodes in T as well. Given a bipartite

B Péter Madarasi
madarasip@staff.elte.hu

1 Department of Operations Research, ELTE Eötvös Loránd University, Budapest, Hungary

2 HUN-REN-ELTE Egerváry Research Group on Combinatorial Optimization, Hungarian Research
Network (HUN-REN), Pázmány Péter sétány 1/C, 1117 Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-023-05703-w&domain=pdf
http://orcid.org/0000-0003-4574-337X

304 Annals of Operations Research (2024) 332:303–327

graph G = (S, T ; E) with S = {s1, . . . , sn}, a positive integer d ∈ N and a function
b : S ∪ T → Z+, an edge set M ⊆ E is called d-distance b-matching if 1) the degree of
each node v ∈ S ∪ T is at most b(v) in M and 2) if si t, s j t ∈ M for i 	= j , then |i − j | ≥ d .
A d-distance b-matching is called perfect if the degree of each node s ∈ S is exactly b(s).
In the cyclic version of the problem, the nodes in S are considered to be in a cyclic order,
and 2) is required cyclically, that is, if si t, s j t ∈ M for i 	= j , then both |i − j | ≥ d and
|i − j | ≤ n − d must hold.

In the (cyclic) d-distance b-matching problem, the goal is to find a maximum-weight
(cyclic) d-distance b-matching for a given weight function w : E → R. The special case
w ≡ 1 is referred to as the unweighted problem. Note that the special case when b(v) = 1
if v ∈ S and ∞ if v ∈ T is the d-distance matching problem, which was introduced in an
earlier article from the same author (Madarasi, 2021).

The (perfect) d-distance b-matching problem is not only a natural problem extending the
literature ofmatchings, but it also appears in several applications,which are natural extensions
of the situations in which the d-distance matching problem could be applied, see (Madarasi,
2021). For example, imagine n consecutive all-day events s1, . . . , sn , each of which must
be assigned b(si) of watchmen t1, . . . , tk . For each event si , a set of possible watchmen is
given — those who are qualified to be on guard at event si . Appoint exactly b(si) watchmen
to event si such that no watchman is assigned to more than one of any d consecutive events,
where d ∈ N is given, and each watchman t j is on guard at most b(t j) events. In the weighted
version of the problem, let wsi t j denote the level of safety of event si if watchman t j is on
watch, and the objective is to maximize the level of overall safety.

As another application of the above question, consider n items s1, . . . , sn one after another
on a conveyor belt, and k machines t1, . . . , tk . Each item si is to be processed on the conveyor
belt by b(si) of the qualified machines N (si) ⊆ {t1, . . . , tn} such that if a machine processes
item si , then it cannot process any of the next (d − 1) items — because the conveyor belt is
running.
Previous work In the special case d = |S|, one gets the classic b-matching problem in
bipartite graphs. For d = 1, the problem reduces to the b-matching problem in bipartite
graphs, and we will see that it is a special case of the circulation problem for d = 2.

A feasible d-distance b-matching M can be thought of as a b-matching that does not
contain the edge set {si t, s j t} for any t ∈ T and |i − j | ≤ d . A similar problem is the
K p,p-free p-matching problem (Makai, 2007). Here one is given an arbitrary family T of
the subgraphs of G isomorphic with K p,p , and the goal is to find a maximum-cardinality
b-matching which does not induce any subgraph in T , where b : S ∪ T → {0, . . . , p}. This
problem can be solved in polynomial time. Note that in the d-distance b-matching problem,
b is arbitrary and the type of the forbidden subgraphs is K2,1. Another similar problem is the
following. Given a partition E1, . . . , Ek of E and positive integers r1, . . . , rk , find a perfect
matching M for which |M ∩ Ei | ≤ ri . The problem is introduced and shown to be NP-
complete in Itai et al. (1978). Note that the side constraints in the distance matching problem
are similar, but the degree constraints are different and our edge sets do not form a partition
of E . Several other versions of the “restricted” (b-)matching problem have been introduced,
for example in Baste et al. (2019); Bérczi and Végh (2010); Fürst and Rautenbach (2019);
Pap (2005).

The perfect d-distance matching problem is a special case of the list-coloring problem
on interval graphs (Zeitlhofer & Wess, 2003) and also of the frequency assignment problem
(Aardal et al., 2007), as it was shown in Madarasi (2021).

The d-distance matching problemwas shown to be NP-hard and an FPT algorithm param-
eterized by d was given in Madarasi (2021). An efficient algorithm was also described for

123

Annals of Operations Research (2024) 332:303–327 305

the case when the size of T is a constant. A (2 − 1
2d−1)-approximation algorithm for the

weighted d-distance matching problem was given, which also implies that the integrality
gap of the natural IP model is at most this value. We also gave a (3/2 + ε)-approximation
algorithm for any constant ε > 0 in the unweighted case.
Our resultsWe investigate the integrality gap of the natural IPmodel and give approximation
algorithms for the (cyclic) d-distance b-matching problem in Sect. 2. In particular, we show
that (2 − 1

d) is a tight upper bound on the integrality gap in the cyclic case provided that
(2d − 1) divides the size of S. Concerning the non-cyclic case, the integrality gap is shown
to be at most (2 − 2

d) for d ≥ 2. In addition, the proofs provide approximation algorithms
with approximation factors matching the bounds above, further improving the algorithms for
the (cyclic) d-distance matching problem given in an earlier article (Madarasi, 2021). As a
special case, this further improves the bound on the integrality gap and the approximation
factor for the d-distance matching problem from (2 − 1

2d−1) to (2 − 2
d).

Answering an open question from Madarasi (2021), Sect. 3 proves that the (cyclic) d-
distance matching problem is APX-hard, even in the unweighted case.

In Sect. 4, motivated by the second application mentioned above, a different aspect of the
problem is considered, in which our goal is to find a permutation of S maximizing the weight
of the optimal d-distance b-matching. We prove that a permutation of S maximizing the
weight of the optimal d-distance matching can be found in polynomial time — even though
the (cyclic) d-distance matching problem itself is NP-hard and also hard to approximate
arbitrarily. For (cyclic) d-distance b-matchings, however, we prove that finding the best
permutation is NP-hard, even when b(s) = 2 for all s ∈ S or d = 2, and we give e-
approximation algorithms for both the cyclic and the non-cyclic cases.
NotationThroughout the paper, assume that G = (S, T ; E) is a bipartite graphwithout loops
or parallel edges, unless stated otherwise. LetΔ(v) and N (v) denote the set of edges incident
to node v and the neighbors of v, respectively. For a subset X ⊆ E of the edges, NX (v) denotes
the neighbors of v for edge set X . We use deg(v) to denote the degree of node v. Let Ld(si)

and Rd(si) denote the nodes in the interval of length (at most) d ending and starting at si ,
respectively, that is, Ld(si) = {smax(i−d+1,1), . . . , si } and Rd(si) = {si , . . . , smin(i+d−1,|S|)}.
In the cyclic case, Ld(si) = {si−d+1, . . . , si } and Rd(si) = {si , . . . , si+d−1}, where the
indices are taken modulo |S|. By definition, the minimum and the maximum of the empty
set are ∞ and −∞, respectively. Given a function f : A → B, both f (a) and fa denote
the value f assigns to a ∈ A, and let f (X) = ∑

a∈X f (a) for X ⊆ A. Let χZ denote the
characteristic vector of set Z , that is, χZ (y) = 1 if y ∈ Z , and 0 otherwise. Occasionally,
the braces around sets consisting of a single element are omitted, for example χe = χ{e} for
e ∈ E . Let N and Z+ denote the set of positive and non-negative integers, respectively.

2 Integrality gap and approximation algorithms

In this section, we prove that (2 − 1
d) is a tight upper bound on the integrality gap of the

natural IP model of the d-distance b-matching problem provided that the size of S is divisible
by (2d − 1). Then, we show that (2 − 2

d) is an upper bound on the integrality gap of the
non-cyclic version for d ≥ 2—without any restriction on the size of S. The proofs also give
two approximation algorithms with approximation factors matching the bounds above.

Consider the following LP-relaxation of the natural IP model for the weighted d-distance
b-matching problem.

123

306 Annals of Operations Research (2024) 332:303–327

max
∑

e∈E

wexe (LP1)

s.t.

x ∈ R
E+ (1a)

∑

e∈Δ(v)

xe ≤ b(v) ∀v ∈ S ∪ T (1b)

∑

st∈Δ(t)
s∈Rd (si)

xst ≤ 1 ∀t ∈ T ∀i ∈ {1, . . . , n − d}. (1c)

The LP model for the cyclic case consists of the same conditions but (1c) is required for all
t ∈ T and for all i ∈ {1, . . . , n}. This model will be denoted by (LP1’). When b(s) = 1
for all s ∈ S and b(t) = ∞ for all t ∈ T , the integer solutions to (LP1) correspond to the
feasible d-distance matchings, and we get back the linear program investigated in Madarasi
(2021).

The following theoremgives an upper bound on the integrality gap for the cyclic d-distance
b-matching problem.

Theorem 1 If (2d − 1) divides |S|, then the integrality gap of (LP1’) for the weighted cyclic
d-distance b-matching problem is at most (2 − 1

d), and this bound is tight. Furthermore,
there exists a polynomial-time approximation algorithm with the same guarantee.

Proof For every i ∈ {1, . . . , 2d − 1}, let Si ⊆ S denote the union of the sets Rd(si+q(2d−1))

for q ∈ {0, . . . , n
2d−1 − 1}. Since the size of S is divisible by (2d − 1), the nodes in Si form

intervals of length d in s1, . . . , sn and each of these intervals is followed by (d − 1) nodes
of S\Si cyclically. For each i ∈ {1, . . . , 2d − 1}, let Gi = (S, T ; Ei) be the subgraph of G
on the node set of G whose edge set Ei consists of the edges induced by Si and T .

First, we prove that the polytope given by (LP1’) for Gi is the convex hull of its integer
solutions. Observe that constraints (1c) need to be required only for those intervals that are
fully included in Si , because these immediately imply that the constraints hold for the rest
of the intervals. The matrix of this reduced linear program is the transpose of the incidence
matrices of two laminar families written under each other, which is a well-known network
matrix, and the right-hand side is integer, hence the polytope is integer (Frank 2011, pp 152).

Next, we prove the bound on the integrality gap. Let Mi denote a maximum-weight
cyclic d-distance b-matching in Gi , and let M be a maximum-weight solution among
M1, . . . , M2d−1. Let x ∈ R

E+ be an optimal LP solution for G and let M∗ be a maximum-
weight d-distance b-matching. It is easy to see that all edges of G appear in exactly d of the
graphs G1, . . . , G2d−1, which means that

wx =
∑

e∈E

wexe = 1

d

2d−1∑

i=1

∑

e∈Ei

wexe

holds. Restricting an optimal LP solution for G to the edge set of Gi , a feasible LP solution is
obtained for Gi , so the objective value of this restricted solution can be bounded from above
by the LP optimum for Gi , which is equal to the IP optimum w(Mi). From these, one gets
that

wx ≤ 1

d

2d−1∑

i=1

w(Mi) ≤ 2d − 1

d
w(M) ≤ 2d − 1

d
w(M∗), (2)

123

Annals of Operations Research (2024) 332:303–327 307

since M is a feasible integer solution for G. This means that the integrality gap is at most
(2 − 1

d), which was to be proven.
Next, we give a tight example for every d ∈ N. Let G = (S, T ; E) be a complete bipartite

graph, where S = {s1, . . . , s2d−1} and T = {t}. Let b(s) = 1 for all s ∈ S, and let b(t) = ∞.
For w ≡ 1, the IP optimum is 1, and x ≡ 1

d is an optimal LP solution, meaning that the LP
optimum is (2 − 1

d), hence the bound above is tight.
In fact, this proof shows that M is a (2− 1

d)-approximate solution, which can be found in
polynomial timeby solving (LP1’) (Tardos, 1986) for every graphGi , thereforewe also obtain
an approximation algorithm for those instances of the maximum-weight cyclic d-distance
b-matching problem in which (2d − 1)|n, which completes the proof. ��

The next theorem improves this upper bound in the non-cyclic case when b(t) = ∞ for
all t ∈ T . As a special case, this also improves the best known upper bound on the integrality
gap for the non-cyclic d-distance matching problem from (2 − 1

2d−1) (Madarasi, 2021) to

(2 − 2
d).

Theorem 2 Let b : S ∪ T → Z+ be such that b(t) = ∞ for all t ∈ T , and let d ≥ 2.
The integrality gap of (LP1) for the weighted d-distance b-matching problem is at most
(2 − 2

d). Furthermore, there exists a polynomial-time approximation algorithm with the
same guarantee.

Proof Let G = (S, T ; E) be a bipartite graph, where S = {s1, . . . , sn}, and let d ∈ N and
w : E → R+. If (2d − 2) � n, then add (2d − 2 − r) new isolated nodes to the end of S,
where r is such that 0 < r < 2d − 2 and n = k(2d − 2) + r for some k ∈ Z+. This leaves
the feasible d-distance b-matchings in G unchanged, therefore one can assume without loss
of generality that (2d − 2)|n.

We proceed similarly to the first part of the proof of Theorem 1, but nowwe leave out only
(d − 2) consecutive nodes — instead of (d − 1) — between disjoint intervals of length d of
S. That is, let Si ⊆ S denote the union of the sets Rd(si+q(2d−2)) for q ∈ {0, . . . , n

2d−2 − 1},
where i ∈ {1, . . . , 2d − 2} and Rd is to be taken in the cyclic sense. Let Ei consist of the
edges induced by Si and T , and let Gi = (S, T ; Ei) for i ∈ {1, . . . , 2d − 2}. Just as in the
proof of Theorem 1, we prove that the polytope defined by (LP1) is integer for Gi .

Claim 1 For each i ∈ {1, . . . , 2d − 2}, the polytope defined by (LP1) is integer for the
subgraph Gi .

Proof Without loss of generality, we can assume that G is a complete bipartite graph, and
hence the edge set of Gi is the complete graph between Si and T . Notice that (1b) is required
only for s ∈ Si , and (1c) only for the intervals of S contained in Si and for the intervals of
length d containing the last and the first nodes in two consecutive intervals in Si , since the
rest of the constraints are redundant. It suffices to prove that the matrix of this reduced (LP1)
is a network matrix (Frank 2011, pp 152). Fix an arbitrary order t1, . . . , tk of the nodes in T .
The columns of the matrix of the program, that is the variables, are ordered as follows. Let
the columns corresponding to the edges incident to t j form an interval for all j ∈ {1, . . . , k},
which appear in the order given by t1, . . . , tk , and for each t j , sort the interval of the edges
incident to t j by the index of their endpoint in S. Assume that the rows corresponding to
constraints (1c) appear first, in lexicographical order, and then the rows corresponding to
constraints (1b) follow, also in lexicographical order. Let L denote the matrix obtained this
way, and let Bt denote the submatrix of L given by the edges incident to t and by the
constraints (1c) for t . By construction,

123

308 Annals of Operations Research (2024) 332:303–327

Bt =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 . . . 1
1 1
1 . . . 1

1 1
. . .

1 1
1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the zero entries are omitted, and each row contains either two or d one entries. The lines
correspond to constraints (1c) alternately for an interval of Si and for the interval containing
the last and the first node of two consecutive intervals in Si . For every t ∈ T , there is one such
block Bt in L placed diagonally. Furthermore, the rows corresponding to constraints (1b)
give k identity matrices side by side, one under each Bt , that is, L looks as follows.

L =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
Bt1

]
[
Bt2

]

. . .
[
Btk

]

[
I

] [
I

]
. . .

[
I

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Now, we prove that L is a network matrix. Note that each column of L contains either two or
three ones. First, consider the submatrix L ′ formed by the columns of L containing exactly
three ones — we will handle the rest of the columns later. Deleting the full-zero rows from
the matrix L ′, which were created by deleting some of the columns from L , we get that

L ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[
At1

]
[
At2

]

. . .
[
Atk

]

[
I

] [
I

]
. . .

[
I

]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, where At =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1 1
1 1

. . .

1 1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

for each t ∈ T .
We prove that L ′ is a network matrix. Denote the size of the identity matrices in the last

rows of L ′ by m. Then each block At consists of (m + 1) rows and m columns. Let M ′
denote the submatrix given by the last m rows of L ′, that is, the identity matrices. Let the
tree F be a path P with m (undirected) edges f1, . . . , fm , which will correspond to the rows
of M ′. The orientation of these edges will be given later. For each node of the path P , add
k new leaves connected to that node. Let ei

1, . . . , ei
k denote those newly added leaf edges

which are incident to the i th node of P for i ∈ {1, . . . , m + 1}. Let edge ei
j correspond to the

((m + 1)(j − 1) + i)th row of L ′, in other words, ei
j belongs to the row containing the i th

row of At j . Orient the edges of P alternately along the path — the first edge can be oriented
arbitrarily, and this determines the direction of the other edges along the path. If the (at most)
two arcs of P adjacent to arc e j

i are oriented towards e j
i , then we orient e j

i outwards from

the common node. Otherwise, if the (at most) two arcs of P are oriented away from e j
i , then

e j
i is oriented inwards — since the arcs of P are alternately oriented, only these two cases
are possible.

123

Annals of Operations Research (2024) 332:303–327 309

Now, we define the non-tree arcs, which correspond to the columns of the matrix. Each
column intersects exactly one of the matrices in the diagonal, say At j , and each column
contains exactly three non-zero elements. Suppose that the r th column is the i th column of
At j for some j ∈ {1, . . . , k}. Then two of the three ones in the column are in the i th and

(i + 1)st rows of At j , to which rows the corresponding arcs are ei
j and ei+1

j , respectively.

The third one is in the j th identity matrix, in the row corresponding to arc fi . In the tree F ,
arcs ei

j , fi and ei+1
j form a directed path, hence one can add a non-tree arc from the target of

this path to its source, which corresponds to the r th column. This shows that L ′ is a network
matrix.

Next, we prove that the original L is also a network matrix by a simple extension of the
tree F and the non-tree arcs defined above. Let M denote the submatrix of the last |Ei | rows
of L , that is, M consists of the identity matrices of size |Ei | × |Ei | written side by side.

Observe that if there is exactly one non-zero element in the r th column of Bt j in L for
some j , then there is exactly one non-zero element in the r th column of every block Bt j ′ for
j ′ ∈ {1, . . . , k}. Each of these columns in L contains exactly two ones. The first one is in
the i th row of the corresponding block Bt j , which is associated with arc ei

j ∈ F . The other

one is in the r th row of M . For each j ∈ {1, . . . , k}, add a new leaf to F connected to the
endpoint of ei

j belonging to P , and associate it with the r th row of M . Orient it such that it

forms a directed path of length two with ei
j . Finally, add a non-tree arc from the source of

this path to its target, which corresponds to the column of L containing the r th column of
Bt j . This shows that L is indeed a network matrix. As the right-hand side of (LP1) is integer,
we get that the polytope defined by (LP1) is integer for Gi , which completes the proof of the
lemma. ��

We continue the proof of Theorem 2. Let x ∈ R
E+ be an optimal LP solution, and let

x (i) ∈ R
E+ be an optimal LP solution for Gi , where i ∈ {1, . . . , 2d − 2}. Let M∗ be a

maximum-weight d-distance b-matching, and let Mi be a maximum-weight d-distance b-
matching in Gi , where i ∈ {1, . . . , 2d − 2}. Chose a maximum-weight solution among
M1, . . . , M2d−2, and denote it by M .

Similarly to (2), as each edge of G is contained in exactly d of the graphs G1, . . . , G2d−2,
and by Claim 1, we get that

wx ≤ 1

d

2d−2∑

i=1

∑

e∈Ei

wex (i)
e = 1

d

2d−2∑

i=1

w(Mi) ≤ 2d − 2

d
w(M) ≤ 2d − 2

d
w(M∗),

which means that the integrality gap is at most (2− 2
d). The proof also shows that the edge set

M is a (2− 2
d)-approximate solution, which can be found in polynomial time, so the proof also

gives an approximation algorithm for the maximum-weight d-distance b-matching problem
with the same guarantee, provided that b(t) = ∞ for all t ∈ T . ��

Observe that, for d = 2, Claim 1 holds for arbitrary b, therefore (LP1) describes the
d-distance b-matching polytope.

Remark 1 In the proofs of Theorems 1 and 2, we constructed a collection of edge sets such
that the linear program becomes integer when the problem is restricted to any of them, and
every edge is contained in d of the selected edge sets. This means that these two collections
of edge sets form so-called (m, �)-covers for (m, �) = (2d −1, d) and (m, �) = (2d −2, d),
respectively, which gives an alternative way to finish the proofs, because the existence of an
(m, �)-cover implies that the integrality gap is at most m

�
(Madarasi, 2021).

123

310 Annals of Operations Research (2024) 332:303–327

Remark 2 The local search algorithm given for the unweighted d-distance matching problem
(Madarasi, 2021) also works for the unweighted d-distance b-matching problem. Therefore,
we have a (3/2 + ε)-approximation algorithm for the latter problem.

3 Hardness of approximation

In the double matching problem, we are given a bipartite graph G = (S, T ; E) and two
sets S1, S2 ⊆ S such that S1 ∪ S2 = S. The goal is to find a maximum weight (size) subset
M of the edges for which both M ∩ E1 and M ∩ E2 are matchings, where Ei denotes the
edges induced by Si and T for i ∈ {1, 2}. The double matching problem is known to be
APX-hard in the weighted case (Madarasi, 2021). This implies that the weighted d-distance
matching problem and the unweighted cyclic distance matching problems are APX-hard by
a weight-preserving reduction from the double matching problem (Madarasi, 2021).

In what follows, we prove that the hardness of approximation also applies to the
unweighted non-cyclic case.

Theorem 3 The unweighted double matching problem is NP-hard to α-approximate for any
α < 950

949 .

Proof Given are three finite disjoint sets X , Y , Z and a set of hyperedges E ⊆ X × Y × Z ,
a subset of the hyperedges F ⊆ E is called 3-dimensional matching if x1 	= x2, y1 	= y2
and z1 	= z2 for any two distinct triples (x1, y1, z1), (x2, y2, z2) ∈ F . Finding a maximum-
size 3-dimensional matching F ⊆ E cannot be approximated arbitrarily unless P=NP (Kann,
1991). In fact, the problem remains NP-hard to approximate better than 95

94 even for 2-regular
instances, that is, when each element of X ∪Y ∪ Z occurs in exactly two triples in E (Chlebík
&Chlebíková, 2006). To reduce the 2-regular 3-dimensional matching problem to the double
matching problem, consider the following construction.

Let HX ,HY and HZ denote three copies of the set of hyperedges H, where the three
versions of a hyperedge e ∈ H are e(X) ∈ HX , e(Y) ∈ HY and e(Z) ∈ HZ . Define a
bipartite graph G = (S, T ; E), where S = HX ∪ Y ∪ HZ , T = X ∪ HY ∪ Z and E is as
follows. For each e ∈ H, add edges e(X)e(Y) and e(Y)e(Z) ∈ E , furthermore, add an edge
to G between u and the two hyperedges in HU incident to u in H for each u ∈ U , where
U ∈ {X , Y , Z}. Let S1 = HX ∪ Y and S2 = Y ∪HZ . For a hyperedge e = (x, y, z) ∈ H, let
Ke = {e(X)e(Y), e(Z)e(Y), xe(X), ye(Y), ze(Z)} ⊆ E . Figures1a and 1b give an example for
the construction.

Assume that there exists anα-approximation algorithm for themaximumdoublematching
problem and let M be an α-approximate solution in G. We prove that one can construct a
(1
10/α−9)-approximate 3-dimensional matching in polynomial time using M , provided that

α < 10
9 .

First, consider the following transformation of M . For each e ∈ H, if |Ke ∩ M | <

3, then add edges e(X)e(Y) and e(Y)e(Z) to M , and remove all other edges of Ke. After
these operations, M remains feasible and its size does not decrease, hence it remains an
α-approximate double matching. Observe that after the transformation we have either |Ke ∩
M | = 2 and hence Ke ∩ M = {e(X)e(Y), e(Y)e(Z)}, or |Ke ∩ M | = 3 and hence Ke ∩ M =
{xe(X), ye(Y), ze(Z)} for each e = (x, y, z) ∈ H.

Construct the 3-dimensional matching F ⊆ H as the set of those hyperedges for which
|Ke ∩ M | = 3. Note that F is feasible, because Ke1 ∩ M = {x1e(X)

1 , y1e(Y)
1 , z1e(Z)

1 } and

123

Annals of Operations Research (2024) 332:303–327 311

Fig. 1 Illustration of the proof of Theorem 3. Each hyperedge is represented by a unique line style. The
highlighted 3-dimensional matching in (a) corresponds to the highlighted solution in (b)

Ke2 ∩ M = {x2e(X)
2 , y2e(Y)

2 , z2e(Z)
2 } can hold simultaneously only if x1 	= x2, y1 	= y2 and

z1 	= z2 — as the degrees of these nodes are at most one in M .
That is, we can construct a 3-dimensional matching F in H such that

|M | = 3|F | + 2(2|Z | − |F |) = |F | + 4|Z |,
since exactly three edges belong to each hyperedge in F , and two edges belong to each
hyperedge in H \ F . Applying this for a maximum double matching M∗, we get that

|M∗| = |F ′| + 4|Z | ≤ |F∗| + 4|Z |,
where F ′ denotes the 3-dimensional matching constructed from M∗, and F∗ is a maximum
3-dimensional matching in H . Similarly, for any 3-dimensional matching F in H , we can
create a double matching M in G such that |M | = |F | + 4|Z |, so |M∗| ≥ |F∗| + 4|Z |,
therefore

|M∗| = |F∗| + 4|Z |.
Hence, for theα-approximate doublematching M , the 3-dimensionalmatching F constructed
from M , and for optimal M∗ and F∗ solutions,

|M∗| − |M | = |F∗| − |F | (3)

holds.
With the greedy method, we can always construct a 3-dimensional matching of size at

least |H|
4 , therefore |F∗| ≥ |H|

4 = |Z |
2 . Using that |S| = 2|H| + |Z | = 5|Z | and that in a

double matching M each s ∈ S has degree at most 1, one gets that |M∗| ≤ 5|Z |. Therefore,
|M∗| ≤ 5|Z | ≤ 10|F∗| (4)

holds. It follows from these observations that

123

312 Annals of Operations Research (2024) 332:303–327

|F |
|F∗| = |F∗| − (|M∗| − |M |)

|F∗| = 1 − |M∗| − |M |
|F∗| ≥ 1 − 10

|M∗| − |M |
|M∗|

= 1 − 10

(

1 − |M |
|M∗|

)

= 1 − 10

(

1 − 1

α

)

= 10

α
− 9

where the first inequality follows from (3), and the second one holds by (4). If α < 10
9 and

F 	= ∅, then |F∗|
|F | ≤ 1

10/α−9 , so if we had anα-approximate algorithm for the doublematching

problem, then we could construct a (1
10/α−9)-approximate 3-dimensional matching in poly-

nomial time. The 2-regular 3-dimensionalmatching problem isNP-hard toβ-approximate for
any β < 95

94 , which implies that the double matching problem is NP-hard to α-approximate
for α < 950

949 . ��
By the size-preserving reduction from the doublematching problem to the distancematch-

ing problem given in Madarasi (2021), the previous theorem implies the following.

Theorem 4 The unweighted distance matching problem is NP-hard to α-approximate for any
α < 950

949 .

Clearly, this result also applies to the more general unweighted cyclic version of the
problem. Note that the proof given in Madarasi (2021) gives a slightly larger threshold of
760
759 in the weighted non-cyclic and in the unweighted cyclic cases.

4 Optimal permutations

This section investigates a slightly different problem, which is motivated by the second
application presented in the introduction. It is a natural question whether we can find a
permutation of S —which corresponds to the items on the conveyor belt — maximizing the
weight of the optimal d-distance b-matchings. Formally, let M∗

π denote an optimal d-distance
b-matching under the permutationπ of S.Wewant to find a permutation of S and a d-distance
b-matching M∗ with respect to this permutation such thatw(M∗) = maxπ∈S w(M∗

π), where
S is the set of all permutations of S.

In the next section, a polynomial-time algorithm is described for finding an optimal per-
mutation and an optimal d-distance matching under this permutation (that is, when b(s) = 1
for all s ∈ S and b(t) = ∞ for all t ∈ T). Section4.1, however, proves that the analo-
gous problem is NP-hard for d-distance b-matchings even if b ≡ 2 or d = 2, and gives
e-approximation algorithms for general b in both the cyclic and the non-cyclic cases, where
e is Euler’s number.

Aswe have already seen, for a given permutation of S, it is NP-complete to decide whether
a perfect (cyclic) d-distance matching exists; and finding a largest one is APX-hard. In this
light, it is quite surprising that we can find a permutation of S which maximizes the weight
of the maximum-weight (cyclic) d-distance matching — furthermore, an optimal distance
matching under the optimal permutation can be found as well.

Before entering the details of this method, we need the following lemma, which is easy
to prove by a straightforward reduction to the circulation problem.

Lemma 1 For a bipartite graph G = (S, T ; E), a weight function w : E → R+ on its edges
and integers k, r ∈ Z+, we can find a maximum-weight subset of the edges in polynomial
time satisfying the following three conditions:

1) The degrees of the nodes in S are at most 1,

123

Annals of Operations Research (2024) 332:303–327 313

Fig. 2 Illustration of the proof of Theorem 5

2) The degrees of the nodes in T are at most (k + 1), and
3) There are at most r nodes in T with degree exactly (k + 1).

Next, we prove that one can find a permutation maximizing the size of the optimal d-
distance matching. Note that the first algorithm for the non-cyclic case appeared in Madarasi
(2020). In the rest of this section, a revised, more intuitive approach is presented, which will
be modified to handle the cyclic case as well.

Theorem 5 For a bipartite graph G = (S, T ; E), a weight function w : E → R+ on its
edges and a positive integer d ∈ N, we can find a permutation of S along with a d-distance
matching M in polynomial time such that the weight of M is the largest among all d-distance
matchings over all permutations of S.

Proof Let k, r ∈ Z+ be such that |S| = kd + r , where 0 ≤ r < d . Find a maximum-weight
edge set M in G such that the degrees of the nodes in S are at most 1, the degrees of the nodes
in T are at most (k +1), and there are at most r nodes in T with degree exactly (k +1). Such
an edge set M can be found in polynomial time by Lemma 1.

Clearly, amaximum-weight d-distancematchings under all permutations fulfill these three
conditions, so for this largest possible weight W ,

w(M) ≥ W (5)

holds. To show equality, it suffices to construct a permutation of S such that M is a feasible
d-distance matching in G. Let t1, . . . , t|T | be a permutation of the nodes in T which lists
the nodes of degree (k + 1) first, then the nodes with degree smaller than k, and finally the
nodes of degree k. Let s′

1, . . . , s′
n be a permutation of S in which the neighbors in M of t j

form an interval for all j ∈ {1, . . . , |T |} and these intervals appear in the order given by
t1, . . . , t|T | (the order of the neighbors of any t j is arbitrary). Figure2a shows an example for
the construction.Now, take a table of size d×(k+1), and remove all cells from the last column
except for the first r . Fill the remaining cells of the table in row-major order with s′

1, . . . , s′
n .

Let s1 . . . , sn be the permutation of S obtained by reading the table in column-major order.
Figure2b shows an example for the table-filling step.

We claim that M is a feasible d-distance matching under the permutation s1, . . . , sn . The
degrees in M of the nodes in S are clearly at most 1. To see that the distance constraints

123

314 Annals of Operations Research (2024) 332:303–327

are met at each node t ∈ T , consider the following three cases. 1) The degree of t in M is
(k + 1). This means that the neighbors of t occupy one of the first r rows of the table, which
are of length (k + 1). In column-major order, there are (d − 1) other nodes between any two
consecutive neighbors of t , which was to be shown. 2) The degree of t in M is smaller than k.
The neighbors of t are placed to at most two rows of the table in a row-major manner. Each
of these rows is of length k or (k +1), therefore any two consecutive neighbors in row-major
manner have at least (d − 1) other nodes between them. The first and the last neighbors of
t have a column between them which contains no neighbors of t , and hence there are more
than (d − 1) nodes between them in column-major order. 3) The degree of t in M is k. By
construction, the neighbors of t either occupy one of the last (d − r) rows of the table —
which are of length k —, or they are placed to at most two rows in row-major manner such
that the upper row is of length (k + 1). Similarly to the previous case, there are (d − 1) other
nodes between any two consecutive neighbors and also between the first and the last one.
These three cases prove that M is feasible under the permutation s1, . . . , sn of S. By (5),
this means that M is a heaviest d-distance matching among all distance matchings under all
permutations, which completes the proof of the theorem. ��

Now we prove the analogous theorem for the cyclic case.

Theorem 6 For a bipartite graph G = (S, T ; E), a weight function w : E → R+ on its
edges and a positive integer d ∈ N, we can find a permutation of S and a maximum-weight
cyclic d-distance matching M with respect to this permutation in polynomial time such that
the weight of M is the largest over all permutations of S.

Proof We follow the same principle as in the proof of Theorem 5. Let |S| = kd + r , where
0 ≤ r < d . Find a maximum-weight edge set M in G such that the degrees of the nodes
in S are at most 1, and the degrees of the nodes in T are at most k. Such an edge set can
be found in polynomial time. Similarly to the proof of Theorem 5, it suffices to construct a
permutation of S such that M is a feasible d-distance matching in G.

Let t1, . . . , t|T | be a permutation of the nodes in T which lists the nodes of degree k first,
then the rest of the nodes. Let s′

1, . . . , s′
n be a permutation of S in which the neighbors in

M of t j form an interval for all j ∈ {1, . . . , k} and these intervals appear in the order given
by t1, . . . , t|T | (the order of the neighbors of any t j is arbitrary). Now, take a table of size
(d + 1) × k, and remove all cells from the last row except for the first r . Fill the remaining
cells of the table in row-major order with s′

1, . . . , s′
n . Let s1 . . . , sn be the permutation of S

obtained by reading the table in column-major order. Similarly to the proof for the non-cyclic
case, one can prove that M is a feasible d-distance matching under this permutation. ��

Observe that Theorems 5 and 6 extend to the case when degree bounds are also given for
the nodes in T . To prove this, one can require that in the initial edge set M , found in the first
steps of the proofs, the degree of each node t ∈ T is also at most b(t) — Lemma 1 is easy
to modify for finding such an edge set.

4.1 (Cyclic) d-distance b-matchings

This section proves that the analogous problem for d-distance b-matchings is hard, even if
b ≡ 2 or d = 2.

123

Annals of Operations Research (2024) 332:303–327 315

4.1.1 Hardness results

We saw that an optimal permutation can be found in polynomial time for both cyclic and
non-cyclic d-distance matchings. This section investigates the complexity of the analogous
problem for the d-distance b-matching problem. First, we show that finding an optimal
permutation is already hard when b(s) = 2 for all s ∈ S and b(t) = ∞ for all t ∈ T , that
is, we consider the slight modification of the d-distance matching problem where the degree
bound for each node in S is two — instead of the all-one bound.

Theorem 7 It is NP-complete to decide whether there exists a permutation of S such that
there is a perfect d-distance b′-matching under this permutation, where d = |S|/2 and

b′(v) =
{
2 if v ∈ S,

∞ if v ∈ T
(6)

for v ∈ S ∪ T .

Proof In the C4k+2Free2Factor problem, a bipartite graph G ′ = (S′, T ′; E ′) is given and
the goal is to decide whether it contains a 2-factor (that is, a subgraph in which the degree
of each node is exactly two) such that the length of every cycle in it is a multiple of 4. This
problem is known to be NP-complete (Bérczi & Schwarcz, 2021), therefore, it suffices to
reduce it to the problem defined in the theorem.

Without loss of generality, we can assume that |S′| = |T ′|—otherwise, the instance of the
C4k+2Free2Factor problem is not solvable. Let G = (S, T ; E) be a copy of G ′, and add |S′|
new nodes to S, and 2|S| new nodes to |T |. Add |S′| node-disjoint paths of length two on the
newly added nodes such that the nodes in the middle of the paths are in S and their endpoints
are in T . We show that G ′ has a 2-factor consisting of cycles whose length is divisible by 4
if and only if there is a permutation of S such that a perfect d-distance b′-matching exists in
G, where b′ is as defined in (6) and d = |S|/2.

Let s1, . . . , sn be a permutation of the nodes in S such that there exists a perfect d-distance
b′-matching M ⊆ E . The degrees in M of the nodes in S are exactly 2, so M contains all
the edges of the paths of length 2 added to G, and the degrees of the nodes in T ′ ⊆ T are
also exactly 2 since |S′| = |T ′|. Therefore, restricting M to the edge set of the original graph
G ′, we get a 2-factor in G ′. We prove that the length of each cycle is a multiple of 4. For all
t ∈ T , if si t, s j t ∈ M for some i 	= j and hence t ∈ T ′, then |i − j | ≥ |S′|. But |S| = 2|S′|,
thus one of the indices i and j is in {1, . . . , |S|}, and the other one is in {|S′| + 1, . . . , 2|S′|}.
This means that the nodes of S can be divided into two disjoint sets S1 and S2 such that one
of the neighbors of t is in S1 and the other one is in S2 for all t ∈ T ′. From this, one gets that
every second node of any cycle in M ′ is in S, and the nodes of the cycle in S are alternately
in S1 and in S2, so the length of every cycle must be a multiple of 4.

To finish the proof, we show that if there is a 2-factor in G ′ with cycles whose length is
divisible by 4, then there exists a permutation of the nodes in S such that there is a d-distance
b′-matching in G. For each cycle of the 2-factor, divide its nodes belonging to S into two sets
S1 and S2 alternately. Construct a permutation by enumerating the nodes of S1 in arbitrary
order, then themiddle nodes of the paths of length two in arbitrary order, and finally the nodes
of S2 in arbitrary order. Under this permutation, the union of the edge set of the 2-factor and
the edges of the paths of length two form a d-distance b′-matching, where b′ is as defined
in (6) and d = |S|/2 = |S′|. ��

To prove a similar theorem for the cyclic case, we need the following lemma.

123

316 Annals of Operations Research (2024) 332:303–327

Fig. 3 Illustration for the
reduction in the proof of
Lemma 2 for the hyperedge
(v1, v2, v3, v4)

Lemma 2 It is NP-complete to decide whether all nodes of a bipartite graph G = (S, T ; E)

can be covered by node-disjoint cycles of length 4.

Proof Given four disjoint sets X1, X2, X3, X4 and a set of hyperedges E ⊆ X1 × X2 × X3 ×
X4, a subset of the hyperedges F ⊆ E is called 4-dimensional matching if u1 	= v1, u2 	= v2,
u3 	= v3 and u4 	= v4 for any two distinct hyperedges (u1, u2, u3, u4), (v1, v2, v3, v4) ∈ F . It
is NP-complete to decide whether there exists a 4-dimensional matching of size |X1| (Karp,
1972).

We reduce the 4-dimensional matching problem to the problem defined in the lemma
statement. Let H = (X1∪X2∪X3∪X4, E) denote the hypergraph given in the 4-dimensional
matching problem, and define an instance of the problem given in the statement of the lemma
as follows. Let the node set of G consist of the elements in X1 ∪ X2 ∪ X3 ∪ X4 and, for
each e ∈ E , four additional nodes ve

1, v
e
2, v

e
3 and ve

4. For each hyperedge (v1, v2, v3, v4) ∈ E
add the edges v1v2, v2v3, v3v4 and v4v1 to G. Also add the edges ve

1v
e
2, ve

2v
e
3, ve

3v
e
4, ve

4v
e
1,

and v1v
e
1, v2v

e
2, v3v

e
3, v4v

e
4 to G for all e ∈ E . Figure3 illustrates the construction for the

hyperedge (v1, v2, v3, v4) ∈ E . It is easy to see that G is bipartite: let S consist of the nodes
in X2 ∪ X4 and also the nodes ve for v ∈ X1 ∪ X3, e ∈ E , and let T consist of the rest of the
nodes. By the definition of E , neither of the two parts induces any edges. We need to show
that there is a perfect 4-dimensional matching in H if and only if G has a vertex cover with
node-disjoint 4-cycles.

Firstly, given a perfect 4-dimensional matching F in H , we construct the set of 4-cycles
as follows. For any hyperedge e = (v1, v2, v3, v4) ∈ F , select the cycle formed by the nodes
v1, v

e
1, v

e
2, v2 and the cycle on nodes v3, v

e
3, v

e
4, v4. For each hyperedge (u1, u2, u3, u4) ∈

E \ F , also add the cycle formed by the nodes ue
1, ue

2, ue
3, ue

4. The 4-cycles obtained this way
are pairwise node-disjoint, because the hyperedges in F form a 4-dimensional matching.
Clearly, they cover all the nodes of G, because F is a perfect 4-dimensional matching.

Secondly, assume that there exists a cover with node-disjoint 4-cycles in G.Wemodify the
set of the cycles as follows. If for a hyperedge e = (v1, v2, v3, v4) both of the cycles formed
by nodes v1, v2, v3, v4 and ve

1, v
e
2, v

e
3, v

e
4 are in the subgraph, then delete these two cycles

and add the cycles formed by the nodes v1, v
e
1, v

e
2, v2 and v3, v

e
3, v

e
4, v4 instead. Clearly, the

new cycles are node-disjoint and cover every node of G. Now, construct a 4-dimensional
matching F in H by adding the hyperedge e = (v1, v2, v3, v4) to F if and only if the cycle
formed by the nodes ve

1, v
e
2, v

e
3, v

e
4 is not in the set of the selected 4-cycles. This is a perfect

4-dimensional matching, because if the cycle on nodes ve
1, v

e
2, v

e
3, v

e
4 is not selected, then the

two cycles covering these four nodes cover the nodes v1, v2, v3, v4, and because all nodes of
G are in exactly one of the selected 4-cycles. ��

Now we are ready to prove the analogous theorem for the cyclic case.

123

Annals of Operations Research (2024) 332:303–327 317

Theorem 8 It is NP-complete to decide whether there exists a permutation of the nodes in
S such that there is a perfect cyclic d-distance b′-matching under this permutation, where
d = |S|/2 and

b′(v) =
{
2 if v ∈ S,

∞ if v ∈ T
(7)

for v ∈ S ∪ T .

Proof Clearly, the problem is in NP. We reduce the problem defined in Lemma 2 to the
problem in the theorem. Let G = (S, T ; E) be a bipartite graph, and let d = |S|/2. Assume
that |S| = |T |. We show that the nodes of G can be covered by node-disjoint cycles of length
4 if and only if there exists a permutation of the nodes in S under which a perfect cyclic
d-distance b′-matching exists, where b′ is as defined in (7). This implies the statement of the
theorem, since the former problem is NP-complete by Lemma 2.

Firstly, assume thatwe have a permutation s1, . . . , sn of S underwhich a perfect d-distance
b′-matching M exists. Since the M-degree of every node in S is exactly 2, the size of M is
2|S|. Furthermore, d = |S|/2, therefore the degree of t in M is at most 2. From this, the
degree of t in M is exactly 2 by |S| = |T |, therefore M is the node-disjoint union of cycles.
If one of the neighbors of a node s ∈ S is t ∈ T , then t has a uniquely defined other neighbor,
since there exists exactly one node in S whose cyclic distance is at least |S|/2 from s. The
same holds for the other neighbor of s. So, for every s ∈ S, the two neighbors of it have the
same two neighbors, which gives a cycle of length 4. Hence the edges of the cyclic d-distance
b′-matching cover all nodes and is the union of node-disjoint 4-cycles.

Secondly, if there is a set of node-disjoint cycles of length 4 covering the nodes of G,
then we can construct a proper permutation of S as follows. For each cycle, take one of its
nodes in S, and put them in the first |S|/2 positions of the permutation in arbitrary order.
This clearly determines the order of the rest of the nodes in S, since for any node s from the
first |S|/2 nodes, there is exactly one other node in S having a common neighbor with s, so
this must be placed exactly |S|/2 positions after s. ��

Note that the proofs of Theorems 7 and 8 also show that the problem is NP-complete
when b(s) = b(t) = 2 for all s ∈ S and t ∈ T both in the cyclic and the non-cyclic case.
Next, Theorems 7 and 8 are extended to the case when b(s) ≥ 2 for all s ∈ S — instead of
b(s) = 2.

Theorem 9 Both in the cyclic and the non-cyclic case, it is NP-complete to decide whether
there exists a permutation of the nodes in S such that there is a perfect (cyclic) d-distance
b′′-matching under this permutation, where b′′(s) ≥ 2 for all s ∈ S and b′′(t) = ∞ for all
t ∈ T .

Proof In both cases, the problem is in NP. We prove the theorem for the cyclic and the
non-cyclic versions simultaneously by showing that finding a permutation under which a
perfect (cyclic) d-distance b′′-matching exists is more general than finding a permutation
under which a perfect (cyclic) d-distance b′-matching exists, where b′ is as defined in (7).

We modify the input graph of the perfect (cyclic) d-distance b′-matching problem as
follows. For each s ∈ S, add (b′′(s) − 2) new nodes to T , and connect them to s. Let F
denote the set of the newly added edges. We prove that there is a permutation of S under
which a perfect (cyclic) d-distance b′-matching exists in the original graph if and only if there
is a perfect (cyclic) d-distance b′′-matching in the new graph under the same permutation
of S.

123

318 Annals of Operations Research (2024) 332:303–327

Firstly, if there is a perfect (cyclic) d-distance b′-matching M ′ in the original graph under
some permutation of S, then M ′ ∪ F is a perfect (cyclic) d-distance b′′-matching in the new
graph under the same permutation.

Secondly, for the reverse direction, let M ′′ denote a perfect (cyclic)d-distanceb′′-matching
in the new graph under some permutation of S. Take the edge set M ′′ \ F , and remove all
except two of the edges incident to each node s ∈ S. This way one gets a feasible perfect
(cyclic) d-distance b′-matching in the original graph under the same permutation.

This completes the proof both in the cyclic and the non-cyclic version by Theorems 7 and
8, respectively. ��

4.2 (Cyclic) d-distance b-matchings for small d

By Theorems 7 and 8, finding an optimal permutation is hard when d = |S|/2. We show
that the problem is also hard for any d ≥ 2 that is polynomially smaller than |S|, which, as
a special case, implies that even the case d = 2 is NP-complete.

Theorem 10 It is NP-complete to decide whether there exists a permutation of the nodes in
S such that there is a perfect (cyclic) d-distance b′-matching under this permutation, where
|S| = d(� + 1) − 2, d ≥ 2, � = Ω(|S|c) for some constant c > 0, and

b′(v) =
{
deg(v) if v ∈ S,

∞ if v ∈ T
(8)

for v ∈ S ∪ T .

Proof The problem is clearly in NP. We give a reduction from the Hamiltonian path problem
in an undirected simple graphG ′ = (V ′, E ′) to the non-cyclic casewhen d = 2, thenwe show
that the problem stated in the theorem includes this as a special case. Construct a bipartite
graph G = (S, T ; E) such that S = V ′ and T is the edge set of the complement of G ′. For
each t = uv ∈ T , add edges ut and vt to G. We prove that there exists a Hamiltonian path
in G ′ if and only if there is a permutation of the nodes in S under which a perfect d-distance
b′-matching exists, where d = 2 and b′ is as defined in (8).

Firstly, assume that M is a perfect d-distance b′-matching in G under the permutation
s1, . . . , sn of S. By the definition of b′, this means that M = E , therefore {si t, si+1t} � E
for all i ∈ {1, . . . , n − 1} and for all t ∈ T . But then si si+1 ∈ E ′ for all i ∈ {1, . . . , n − 1},
which means that s1, . . . , sn defines a Hamiltonian path in G ′.

Secondly, assume that a Hamiltonian path in G ′ traverses the nodes of G ′ in the order
s1, . . . , sn . Thismeans that there is an edge ei in E ′ between si and si+1 for all i ∈ {1, . . . , n−
1}, that is, {si t, si+1t} � E for all i ∈ {1, . . . , n − 1} and for all t ∈ T . This means that
M = E is a perfect d-distance b′-matching in G under the permutation s1, . . . , sn of S, where
d = 2 and b′ is as defined above. This completes the proof for d = 2 in the non-cyclic case.

Now we prove that if n = |S| = d(� + 1) − 2 for � = Ω(nc) and d ≥ 2, then the
non-cyclic problem includes the case d = 2 for G ′ = (S′, T ′; E ′) with |S′| = 2�. Let
G = (S, T ; E) be a copy of G ′, and add a new node s̃q,r to S for all q ∈ {1, . . . , � + 1}
and r ∈ {1, . . . , d − 2}. For r ∈ {1, . . . , d − 2}, also add a new node tr to T and all edges
between tr and {s̃r ,1, . . . , s̃r ,�+1}.

Firstly,we show that if there is a permutation s1, . . . , sn of S underwhich E is feasible inG,
then there is a permutation of S′ underwhich E ′ is feasible inG ′.We claim that sid−1, sid ∈ S′
for all i ∈ {1, . . . , �}. By contradiction, suppose that sid−1 = s̃q,r or sid = s̃q,r for some q

123

Annals of Operations Research (2024) 332:303–327 319

and r . Let tr denote the only neighbor of s̃q,r . As E is feasible, all neighbors of tr on the left
of s̃q,r are among the nodes s1, . . . , sid−d . Similarly, all neighbors of tr on the right of s̃q,r

are among the nodes sid−1+d , . . . , sn . Therefore, the degree of t must be at most
⌈

id − d

d

⌉

+ 1 +
⌈

n − (id − 1 + d) + 1

d

⌉

= �,

which contradicts the fact that the degree of tr is (�+1) by the construction of G. This means
that sid−1, sid ∈ S′ for all i ∈ {1, . . . , �}, as we claimed. Since the size of S′ is 2�, the nodes
sid−1, sid for i ∈ {1, . . . , �} are exactly the nodes in S′. Therefore, every interval of length d
contains two nodes in S′, which means that E ′ is a feasible solution for G ′ and d = 2 under
the permutation of S′ obtained by restricting s1, . . . , sn to S′.

Secondly, we prove that if there is a permutation s′
1, . . . , s′

|S′| of S′ under which E ′ is
feasible, then there is a permutation of S under which E is feasible. Concatenate the subse-
quences s̃q,1, . . . , s̃q,d−2 for q = 1, . . . , � + 1. Then, insert s′

2q−1 and s′
2q in this order right

after s̃q,d−2 for q ∈ {1, . . . , �}. We claim that E is feasible under the permutation obtained
this way. As an interval of length d includes exactly two nodes in S′ and these nodes appear
in the order given by s′

1, . . . , s′
|S′|, the edge set E ′ is feasible. For each r ∈ {1, . . . , d − 2},

the neighbors of tr are the nodes s̃1,r , . . . , s̃�+1,r , which do not appear in an interval of length
d in the permutation defined above. This means that the edge set E \ E ′ is feasible as well.
Since E ′ and E\E ′ are node-disjoint, this implies that E is also feasible, which was to be
shown. This completes the proof in the non-cyclic case.

To show the hardness of the cyclic case, one can give a reduction from the Hamiltonian
cycle problem. The proof is a straightforward modification of the reduction for the non-cyclic
case, therefore it is left to the reader. ��

In the previous theorem, we did not assume that the coordinates of b are small, unlike in
Theorems 7 and 8. It remains open whether the problem becomes tractable when d = 2 and
the coordinates of b are small, for example b ≡ 2.

4.3 Approximation algorithms for finding a permutation

In this section, we give e-approximation algorithms for finding the best (cyclic) permutation
under which the weight of the optimal (cyclic) d-distance b-matching is as large as possible.
The approximation algorithms also give an e-approximate (cyclic) d-distance b-matching
under the permutation. Both algorithms are randomized, but they are easy to de-randomize,
which we briefly discuss at the end of the section.

Algorithm 1 Randomized approximation algorithm for cyclic S-permutations

For v ∈ S ∪ T , let b′(v) =
{

b(v) if v ∈ S,

min{� n
d �, b(t)} if v ∈ T .

Find a maximum-weight b′-matching M̂ in G.
Generate a cyclic permutation s1, . . . , sn of S uniformly at random.
M := ∅
for t ∈ T do

for i = 1, . . . , n do
if si t ∈ M̂ and si−d+1t, . . . , si−1t /∈ M̂ then

M := M ∪ {si t}
output s1, . . . , sn and M

123

320 Annals of Operations Research (2024) 332:303–327

First, consider the cyclic version of the problem. Algorithm 1 finds a maximum-weight
b′-matching M̂ in G for the b′ defined in the algorithm and takes a random cyclic permutation
of S. Then, for each t ∈ T , it adds an edge si t ∈ M̂ to the solution if and only if t and the
(d − 1) nodes cyclically before si induce no edges in M̂ . The algorithm returns the chosen
permutation and the union of the selected edges. Clearly, this edge set is a feasible cyclic d-
distance b-matching under the chosen permutation, because 1) the degree of any node s ∈ S
is at most b(s), since the found edge set is a subset of M̂ , and 2) the distance constraints are
met at each node t ∈ T , since no edge st is added for which an edge s′t ∈ M̂ exists such that
s′ is one of the (d − 1) nodes before s cyclically.

The following theorem gives a lower bound on the expected weight of the solution found
by Algorithm 1.

Theorem 11 Algorithm 1 outputs a cyclic permutation s1, . . . , sn of S and a feasible cyclic
d-distance b-matching M whose expected weight is at least

max

{(

1 − 1

d

)d−1

,

(

1 − 1

k

)k−1
}

(9)

times the weight of the heaviest cyclic d-distance b-matching under all permutations, where
k = maxt∈T b′(t) for the b′ defined in Algorithm 1. This lower bound is tight.

Proof As we have already seen, Algorithm 1 returns a feasible solution under the randomly
chosen permutation. Let E(n, d, k) denote the expected weight of the solution found by
the algorithm, and let α(d, k) denote the lower bound given by (9). First, we consider the
unweighted case when T = {t}. Without loss of generality, one can assume that k ≥ 2 and
d ≤ n. Note that n ≥ dk holds by the definition of b′. Let P(n, d, k) be the probability that
a given edge is added to the solution. By definition,

P(n, d, k) =
d−1∏

i=1

n − k − (i − 1)

n − i
. (10)

Clearly, E(n, d, k) = k P(n, d, k). Observe that

P(n, d, k) ≥ P(dk, d, k) (11)

holds for all n, d, k ∈ N provided that n ≥ dk, because dk is the smallest possible size of S
when the degree of t can be k in M̂ , and if the number of nodes in S is larger than dk, then
all additional nodes must be isolated, hence the probability of an edge being added can be
only larger. The value of P(dk, d, k) can be expressed as follows.

P(dk, d, k) =
d−1∏

i=1

kd − k − i + 1

kd − i
=

d−1∏

j=max{1,d−k+1}
kd − k − j + 1

min{k−1,d−1}∏

i=1
kd − i

=
min{k−1,d−1}∏

i=1

kd − k − (d − i) + 1

kd − i
=

min{k−1,d−1}∏

i=1

(k − 1)d − k + i + 1

kd − i
,

where the first equation holds by (10), and the third one because the product is telescopic.
From this, we immediately get that P(dk, d, k) is monotone decreasing in d for all k ∈ N,

123

Annals of Operations Research (2024) 332:303–327 321

and it tends to
(
1 − 1

k

)k−1
as d goes to infinity for all k ∈ N. This implies that

P(dk, d, k) ≥
(

1 − 1

k

)k−1

(12)

holds for all d, k ∈ N. Similarly, P(dk, d, k) is monotone decreasing in k for all d ∈ N, and

it tends to
(
1 − 1

d

)d−1
as k goes to infinity for all k ∈ N. This implies that

P(dk, d, k) ≥
(

1 − 1

d

)d−1

(13)

holds for all d, k ∈ N.
By (11), (12) and (13), P(n, d, k) ≥ α(d, k) holds for all n, d, k ∈ N provided that

n ≥ dk, which completes the proof of the unweighted case when |T | = 1. The bounds given
by (12) and (13) are (asymptotically) tight, therefore (9) cannot be improved, as we stated in
the theorem.

Since all edges incident to t appear in the output of Algorithm 1 with equal probability,
the expected weight of the returned edges is at least α(d, k)w(M̂ ∩ Δ(t)), which was to be
shown in the weighted case when |T | = 1.

We continue with the general weighted case, that is, when the size of T is arbitrary.
Let SC denote the set of all cyclic permutations of S, and let Mπ ⊆ M̂ denote the feasible
cyclic d-distance b-matching returned by the algorithmwhen it selects the cyclic permutation
π ∈ SC . The following computation leads to the bound stated in the theorem.

E(n, d, k) =
∑

π∈SC
w(Mπ)

|SC | =
∑

π∈SC

∑
t∈T w(Mπ ∩ Δ(t))

|SC |
=

∑

t∈T

∑
π∈SC

w(Mπ ∩ Δ(t))

|SC | =
∑

t∈T

P(n, d, degM̂ (t))w(M̂ ∩ Δ(t))

≥
∑

t∈T

α(d, k)w(M̂ ∩ Δ(t)) = α(d, k)w(M̂) ≥ α(d, k)w(M∗),

where M∗ is an optimal cyclic d-distance b-matching under all permutations. The first
inequality holds by the case |T | = 1, and the second one because any cyclic d-distance
b-matching must respect the degree bounds posed by b′ and M̂ is a heaviest b′-matching for
the b′ defined in Algorithm 1. This completes the proof of the theorem. ��

It is well known that (9) is monotone decreasing and tends to 1
e as k and d go to infinity.

This immediately implies the following.

Theorem 12 Algorithm 1 outputs a cyclic permutation s1, . . . , sn of S and a feasible cyclic
d-distance b-matching whose expected weight is at least 1

e times the weight of the heaviest
cyclic d-distance matching under all permutations. This lower bound is tight.

Now, we turn to the non-cyclic case.
Algorithm 2 is the analog of Algorithm 1 for the non-cyclic d-distance b-matching prob-

lem. First, the algorithm finds a maximum-weight b′-matching M̂ in G for the b′ defined in
Algorithm 2, and takes a random permutation of S. Then, for each t ∈ T , it selects an edge
si t ∈ M̂ if t and the (at most) (d − 1) nodes before si induce no edges in M̂ . It returns the
chosen permutation and the union of the selected edges. Similarly toAlgorithm 1, the edge set
returned by the algorithm is a feasible d-distance b-matching under the chosen permutation.

The following theorem for the non-cyclic version is analogous to Theorem 11.

123

322 Annals of Operations Research (2024) 332:303–327

Algorithm 2 Randomized approximation algorithm for S-permutations

For v ∈ S ∪ T , let b′(v) =
{

b(v) if v ∈ S,

min{� n
d �, b(t)} if v ∈ T .

Find a maximum-weight b′-matching M̂ in G.
Generate a permutation s1, . . . , sn of S uniformly at random.
M := ∅
for t ∈ T do

for i = 1, . . . , n do
if si t ∈ M̂ and smax{1,i−d+1}t, . . . , si−1t /∈ M̂ then

M := M ∪ {si t}
output s1, . . . , sn and M

Theorem 13 Algorithm 2 outputs a permutation s1, . . . , sn of S and a feasible d-distance
b-matching whose expected weight is at least

max

⎧
⎪⎨

⎪⎩

(

1 − 1

d

)d−1

,
1 + (k − 1)

(
1 − 1

k−1

)k

k

⎫
⎪⎬

⎪⎭
(14)

times the weight of the heaviest d-distance b-matching under all permutations, where k =
maxt∈T b′(t) for the b′ defined in Algorithm 2. This lower bound is tight.

Proof The outline of the proof is similar to that of Theorem 11, but the technical details are
slightly more complicated. LetE(n, d, k) denote the expected weight of the solution returned
by the algorithm, and let β(d, k) denote the lower bound given by (14). Similarly to the proof
of Theorem 11, consider the case when T = {t} and the problem is unweighted. Without
loss of generality, one can assume that k ≥ 2 and d ≤ n. Let P(n, d, k) be the probability
that a given edge is added to the solution, and let P(n, d, k, i) denote the probability that the
edge incident to si is added to the solution. By definition,

P(n, d, k) = 1

n

n∑

i=1

P(n, d, k, i),

and

P(n, d, k, i) =
min{d−1,i−1}∏

j=1

n − k − (j − 1)

n − j
.

Clearly, E(n, d, k) = k P(n, d, k). Observe that

P(n, d, k) ≥ P((d − 1)k + 1, d, k)

holds for all n, d, k ∈ N provided that n ≥ (d − 1)k + 1, because ((d − 1)k + 1) is the
smallest possible size of S when the degree of t can be k in M̂ , and if the number of nodes in
S is larger, then all the extra nodes are isolated, hence the probability that an edge is added
can be only larger. Let n̄ = (d −1)k +1. The value of P(n̄, d, k) can be expressed as follows.

123

Annals of Operations Research (2024) 332:303–327 323

P(n̄, d, k) = 1

n̄

n̄∑

i=1

P(n̄, d, k, i) = 1

n̄

n̄∑

i=1

min{d−1,i−1}∏

j=1

n̄ − k − (j − 1)

n̄ − j

= 1

n̄

d−1∑

i=1

i−1∏

j=1

n̄ − k − (j − 1)

n̄ − j
+ n̄ − d + 1

n̄

d−1∏

j=1

n̄ − k − (j − 1)

n̄ − j

= 1

(k − 1)d + 1

d−1∑

i=1

i−1∏

j=1

(k − 1)d − k − j + 2

(k − 1)d + 1 − j

+ (k − 1)d − d + 2

(k − 1)d + 1

d−1∏

j=1

(k − 1)d − k − j + 2

(k − 1)d + 1 − j

= 1

(k − 1)d + 1

d−1∑

i=1

min{i−1,k−1}∏

j=1

(k − 1)d + j − i − k + 2

(k − 1)d − j + 1

+ (k − 2)d + 2

(k − 1)d + 1

min{k−1,d−1}∏

j=1

(k − 2)d − k + j + 2

(k − 1)d − j + 1
, (15)

where the last equation holds by rearranging the products. Let f (d, k) and g(d, k) denote
the first and the second summand in the right hand-side of (15), respectively. Clearly,

lim
d→∞ g(d, k)= lim

d→∞
(k −2)d +2

(k −1)d +1

min{k−1,d−1}∏

j=1

(k −2)d −k + j + 2

(k −1)d − j + 1
=

(
k −2

k− 1

)k

. (16)

To derive the limit of f (d, k), we need the following computation.

((k − 1)d + 1) f (d, k)

=
d−1∑

i=1

min{i−1,k−1}∏

j=1

(k − 1)d + j − i − k + 2

(k − 1)d − j + 1

=
d−1∑

i=1

min{i−1,k−1}∏

j=1

(k − 1)d − k − j + 2

(k − 1)d − j + 1
=

∑d−1
i=1

(
(k−1)d−i+1

k−1

)

(
(k−1)d

k−1

)

=
(
(k−1)d+1

k

) − (
(k−2)d+2

k

)

(
(k−1)d

k−1

) = ((k − 1)d + 1)
(
(k−1)d

k−1

) − ((k − 2)d + 2)
(
(k−2)d+1

k−1

)

k
(
(k−1)d

k−1

)

= (k − 1)d + 1

k
− ((k − 2)d + 2)

(
(k−2)d+1

k−1

)

k
(
(k−1)d

k−1

)

= (k − 1)d + 1

k
− (k − 2)d + 2

k

k−1∏

j=1

(k − 2)d − j + 2

(k − 1)d − j + 1
, (17)

where the first equation holds by the definition of f , the second one by rearranging the
product, and the fourth one by applying the binomial identity

∑N
q=0

(q
K

) = (N+1
K+1

)
twice.

123

324 Annals of Operations Research (2024) 332:303–327

Using (17), we get that

lim
d→∞ f (d, k)= lim

d→∞
1

k
− (k −2)d +2

k((k −1)d +1)

k−1∏

j=1

(k − 2)d − j + 2

(k − 1)d − j + 1
=

1 −
(

k−2
k−1

)k

k
(18)

for all k ∈ N. By (15), (16) and (18), P(n̄, d, k) tends to

(
k − 2

k − 1

)k

+
1 −

(
k−2
k−1

)k

k
=

1 + (k − 1)
(

k−2
k−1

)k

k

as d goes to infinity for all k ≥ 2. Observe that P(n, d, k, i) is non-increasing in d , and
therefore so is P(n, d, k) for all n, k ∈ N. This implies that

P(n, d, k) ≥
1 + (k − 1)

(
k−2
k−1

)k

k
(19)

holds for alln, d, k ∈ Nprovided thatn ≥ (k−1)d+1. Similarly, P(n, d, k) is non-increasing

in k for all n, d ∈ N. From (15), it is easy to see that P(n̄, d, k) tends to
(
1 − 1

d

)d−1
as k

goes to infinity, therefore,

P(n, d, k) ≥
(

1 − 1

d

)d−1

(20)

holds. By (19) and (20), P(n, d, k) ≥ α(d, k) follows for all n, d, k ∈ N provided that
n ≥ (k − 1)d + 1, which completes the proof of the unweighted case when |T | = 1. The
bounds given in (19) and (20) are (asymptotically) tight, therefore (14) cannot be improved,
as we stated in the theorem.

Since all edges incident to t appear in the output of Algorithm 2 with equal probability,
the expected weight of the returned edges is at least β(d, k)w(M̂ ∩ Δ(t)), which was to be
shown in the weighted case when |T | = 1.

The general weighted case, when the size of T is arbitrary, can be handled by a compu-
tation similar to the end of the proof of Theorem 11. From this, we get that E(n, d, k) ≥
β(d, k)w(M∗), which completes the proof. ��

It is easy to see that (14) is monotone decreasing and tends to 1
e as k and d go to infinity.

This immediately implies the following.

Theorem 14 Algorithm 2 outputs a permutation s1, . . . , sn of S and a feasible d-distance
b-matching whose expected weight is at least 1

e times the weight of the heaviest d-distance
matching under all permutations. This lower bound is tight.

By Theorems 11 and 13, the expected approximation guarantees achieved by Algo-
rithms 1 and 2 are better than e when any of d , n

d or the largest degree in T is small.
For example, if d = 2, then both algorithms return a 2-approximate solution in expectation.

Both algorithms are easy to de-randomize using conditional probabilities as follows.
Observe that the conditional probability of an edge being added to the solution can be easily
computed under the condition that the positions of some of the nodes are already fixed. There-
fore, one can try to put each node to the first place, and choose the one that gives the highest
(conditional) expectation. Then try each of the remaining nodes at the second position and
put the best one there, and so on. The weights of the outputs of the de-randomized algorithms

123

Annals of Operations Research (2024) 332:303–327 325

are clearly at least as large as the expected weight of the solutions found by the randomized
algorithms.

In the rest of this section, an improved approximation algorithm for the non-cyclic case is
presented. Algorithm 2 includes an edge st in the solution set if and only if t has no neighbors
among the (d −1) nodes in front of s. A more efficient approach is to run a greedy algorithm
enumerating the edges incident to t from left to right for each t ∈ T , in other words, the
modified algorithm generates a random permutation of S and executes algorithm T - Greedy
as described in Madarasi (2021). Clearly, the solution returned by the modified algorithm is
at least as good as the one found by Algorithm 2, provided that they choose the same random
permutation. We propose the following conjecture:

Conjecture 1 Generating a random permutation of S, algorithm T - Greedy finds a feasible

d-distance b-matching whose expected weight is at least 1
2

d2+d+2
d2+d

> 1
2 times the weight of

the heaviest d-distance b-matching under all permutations.

Note that the conjecture is based on an extensive computational study. We computer-
verified the statement in all cases when |S| ≤ 1000 and d ≤ 100. Enumerating all such
instances directly is hopeless, but one can design a non-trivial dynamic programming algo-
rithm for computing the exact expected value in the case |S| = (k − 1)d + 1 and |T | = 1.
Similarly to the proof of Theorem 13, this confirms the conjecture for all problem instances
with |S| ≤ 1000 and d ≤ 100.

Note that it is not difficult to construct an example for each d in which the expected weight

of the returned edges is exactly 1
2

d2+d+2
d2+d

times the optimum, so one cannot hope to improve
the bound above.

5 Open questions

An FPT algorithm parameterized by d was given for the d-distance matching problem
(Madarasi, 2021). A straightforward generalization of this approach gives an FPT algo-
rithm parameterized by both d and maxv∈V b(v) for the d-distance b-matching problem. It
is not clear whether an FPT algorithm parameterized only by d exists for this problem. The
d-distance matching problem was shown to be solvable in polynomial time when the size of
T is a constant (Madarasi, 2021). Is the problem polynomial-time solvable when the size of
T is taken as a parameter?

It remains open whether an optimal permutation can be found when both d and the
coordinates of b are constants. Improving the e-approximation algorithms for finding the best
permutation—and in particular proving Conjecture 1—seems to be a challenging problem.

ByTheorems 5 and 6, finding a permutationmaximizing theweight of the heaviest (cyclic)
d-distance b-matching can be solvedwhen b(s) = 1 for all s, and it is NP-hardwhen b(s) = 2
for all s ∈ S. What can we say about the cases between these two extremes? It is easy to
see that the problem is solvable when b(s) ∈ {1, 2} and there are only a constant number of
nodes for which b is 2. A natural question is whether an FPT algorithm parameterized by the
number of nodes for which b is 2 exists.

The construction given in Theorem 8 seems to be easy to modify to show that the opti-
mization version of the cyclic problem is APX-hard. We do not know whether the non-cyclic
optimization problem behaves differently in this regard.

The integrality gap of (LP1’) is at most (2 − 1
d) in the cyclic case when the size of S is

divisible by (2d − 1). We believe that this bound holds regardless of the size of S, but the
proof of Theorem 1 does not seem to generalize to this case.

123

326 Annals of Operations Research (2024) 332:303–327

In the non-cyclic case, the integrality gap is at most (2− 2
d), but this does not seem to be

tight. The exact value of the integrality gap remains unknown.
In a natural generalization of the problem, a bound g(t, I) ∈ Z+ is given on the number

of edges induced by I and t for each t ∈ T and for each interval I of length d in S. When
g ≡ 1, we get back the d-distance b-matching problem. Some of the results presented in this
paper also apply to other special cases of this more general setting. For example, (LP1) easily
extends to the more general problem by changing the right hand-side of (1c) to g(si , Rd(si)),
and adding x ≤ 1. It is not hard to see that the bounds on the integrality gap given by
Theorems 1 and 2 hold for any uniform g.

The problem has several other natural generalizations. For example, pose distance con-
straints on both node classes, or drop some of the distance constraints, etc., which are subjects
for further research.

Motivated by the position-based scheduling problem on a single machine (Horváth &Kis,
2020), we introduce the position-based optimal permutation problem, in which placing s ∈ S
at each position has an associated cost, and the goal is to find a minimum-cost permutation
of S under which a perfect d-distance matching exists. When the cost function is uniform,
the problem can be solved by Theorem 5. This approach does not seem to work for other
cost functions, so it is an exciting open question whether this problem is polynomial-time
solvable.

Acknowledgements The author is grateful to Sára Hanna Tóth for discussions and for finding the gadget used
in the proof of Theorem 3. This research has been implemented with the support provided by the Ministry
of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund,
financed under the ELTE TKP 2021-NKTA-62 funding scheme, by theMinistry of Innovation and Technology
NRDI Office within the framework of the Artificial Intelligence National Laboratory Program RRF-2.3.1-21,
and by the Lendület Programme of the Hungarian Academy of Sciences grant number LP2021-1/2021.

Funding Open access funding provided by Eötvös Loránd University.

Declarations

Conflict of interest The author declares that he has no conflict of interest.

Humanor animal rights This article does not contain any studieswith humanparticipants or animals performed
by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aardal, K. I., van Hoesel, S. P. M., Koster, A. M. C. A., Mannino, C., & Sassano, A. (2007). Models and
solution techniques for frequency assignment problems. Annals of Operations Research, 153(1), 79–129.
https://doi.org/10.1007/s10479-007-0178-0

Baste, J., Rautenbach,D.,&Sau, I. (2019). Approximatingmaximumuniquely restrictedmatchings in bipartite
graphs. Discrete Applied Mathematics, 267, 30–40. https://doi.org/10.1016/j.dam.2019.04.024

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10479-007-0178-0
https://doi.org/10.1016/j.dam.2019.04.024

Annals of Operations Research (2024) 332:303–327 327

Bérczi, K., & Schwarcz, T. (2021). Complexity of packing common bases in matroids. Mathematical Pro-
gramming, 188(1), 1–18. https://doi.org/10.1007/s10107-020-01497-y

Bérczi, K., & Végh, L.A. (2010). Restricted b-matchings in degree-bounded graphs. In: F. Eisenbrand, F.B.
Shepherd (eds.) Integer Programming and Combinatorial Optimization, pp. 43–56. Springer Berlin Hei-
delberg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13036-6_4

Chlebík, M., & Chlebíková, J. (2006). Complexity of approximating bounded variants of optimization
problems. Theoretical Computer Science, 354(3), 320–338. https://doi.org/10.1016/j.tcs.2005.11.029.
Foundations of Computation Theory (FCT 2003)

Frank, A. (2011). Connections in Combinatorial Optimization. Oxford University Press.
Fürst, M., & Rautenbach, D. (2019). On some hard and some tractable cases of the maximum acyclic match-

ing problem. Annals of Operations Research, 279(1–2), 291–300. https://doi.org/10.1007/s10479-019-
03311-1

Horváth, M., & Kis, T. (2020). Polyhedral results for position-based scheduling of chains on a single machine.
Annals of Operations Research, 284(1), 283–322. https://doi.org/10.1007/s10479-019-03180-8

Itai, A., Rodeh,M.,&Tanimoto, S. (1978). Somematching problems for bipartite graphs. J. ACM, 25, 517–525.
https://doi.org/10.1145/322092.322093

Kann, V. (1991).Maximum bounded 3-dimensional matching isMAXSNP-complete. Information Processing
Letters, 37(1), 27–35. https://doi.org/10.1016/0020-0190(91)90246-E

Karp, R. (1972). Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.) Complexity of
Computer Computations, pp. 85–103. Plenum Press. https://doi.org/10.1007/978-1-4684-2001-2_9

Madarasi, P. (2020). The distance matching problem. In: M. Baïou, B. Gendron, O. Günlük, A.R. Mahjoub
(eds.) Combinatorial Optimization, pp. 202–213. Springer International Publishing, Cham. https://doi.
org/10.1007/978-3-030-53262-8_17

Madarasi, P. (2021). Matchings under distance constraints I. Annals of Operations Research, 305(1), 137–161.
https://doi.org/10.1007/s10479-021-04127-8

Madarasi, P. (2021). The simultaneous assignment problem. https://doi.org/10.48550/ARXIV.2105.09439.
https://arxiv.org/abs/2105.09439

Makai, M. (2007). On maximum cost Kt,t -free t-matchings of bipartite graphs. SIAM J. Discret. Math., 21(2),
349–360. https://doi.org/10.1137/060652282

Pap, G. (2005). Alternating paths revisited II: restricted b-matchings in bipartite graphs. EGRES Technical
Report TR-2005-13.

Tardos, E. (1986). A strongly polynomial algorithm to solve combinatorial linear programs. Operations
Research, 34(2), 250–256. https://doi.org/10.1287/opre.34.2.250

Zeitlhofer, T., & Wess, B. (2003). List-coloring of interval graphs with application to register assignment
for heterogeneous register-set architectures. Signal Processing, 83, 1411–1425. https://doi.org/10.1016/
S0165-1684(03)00089-6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10107-020-01497-y
https://doi.org/10.1007/978-3-642-13036-6_4
https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/10.1007/s10479-019-03311-1
https://doi.org/10.1007/s10479-019-03311-1
https://doi.org/10.1007/s10479-019-03180-8
https://doi.org/10.1145/322092.322093
https://doi.org/10.1016/0020-0190(91)90246-E
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-030-53262-8_17
https://doi.org/10.1007/978-3-030-53262-8_17
https://doi.org/10.1007/s10479-021-04127-8
https://doi.org/10.48550/ARXIV.2105.09439
https://arxiv.org/abs/2105.09439
https://doi.org/10.1137/060652282
https://doi.org/10.1287/opre.34.2.250
https://doi.org/10.1016/S0165-1684(03)00089-6
https://doi.org/10.1016/S0165-1684(03)00089-6

	Matchings under distance constraints II.
	Abstract
	1 Introduction
	2 Integrality gap and approximation algorithms
	3 Hardness of approximation
	4 Optimal permutations
	4.1 (Cyclic) d-distance b-matchings
	4.1.1 Hardness results

	4.2 (Cyclic) d-distance b-matchings for small d
	4.3 Approximation algorithms for finding a permutation

	5 Open questions
	Acknowledgements
	References

